AME 60636 Examination 1 Prof. J. M. Powers 23 February 2022

1. Consider the irreversible reaction mechanism

$$\begin{array}{rrrr} 1:H_2+O_2&\rightarrow &OH+OH\\ 2:H+O_2&\rightarrow &OH+O\\ 3:C+2O&\rightarrow &CO_2\\ 4:C+H&\rightarrow &CH. \end{array}$$

- (a) Identify the number of species N, reactions J, and elements L.
- (b) Find the $L \times N$ species-element matrix ϕ .
- (c) Find the $N \times J$ stoichiometric reaction matrix $\boldsymbol{\nu}$.
- (d) Demonstrate $\boldsymbol{\phi} \cdot \boldsymbol{\nu} = \boldsymbol{0}$.
- (e) For isothermal, isochoric kinetics, write an ordinary differential equation for the evolution of the concentration of H; define any necessary constants.
- 2. Find the most general stoichiometric balance for the reaction

$$\nu'_1 H_2 + \nu'_2 O_2 \rightleftharpoons \nu''_3 H_2 O + \nu''_4 H_2 O_2$$

3. Species A and B have identical molecular masses and identical specific heats and undergo an irreversible reaction described by

$$A + A \to B + A.$$

The reaction is *adiabatic* and *isochoric*. The fixed volume is V, and no mass enters or exits the volume. At t = 0, $T = T_o$, $\overline{\rho}_A = \overline{\rho}_{Ao}$, and $\overline{\rho}_B = 0$. The reaction has $\mathcal{E} = 0$ and $\beta = 0$. It has collision frequency factor a, constant \overline{c}_v , and is exothermic.

- (a) Write an appropriate simple ordinary differential equations for the change of $\overline{\rho}_A$ with respect to time.
- (b) Find the equilibrium concentration of A.
- (c) Find $\overline{\rho}_A(t)$ and T(t).