AME 60636
Examination 1: Solution
Prof. J. M. Powers
23 February 2022

1. (40) Consider the irreversible reaction mechanism

$$
\begin{aligned}
1: \mathrm{H}_{2}+\mathrm{O}_{2} & \rightarrow \mathrm{OH}+\mathrm{OH} \\
2: \mathrm{H}+\mathrm{O}_{2} & \rightarrow \mathrm{OH}+\mathrm{O} \\
3: \mathrm{C}+2 \mathrm{O} & \rightarrow \mathrm{CO}_{2} \\
4: \mathrm{C}+\mathrm{H} & \rightarrow \mathrm{CH} .
\end{aligned}
$$

(a) Identify the number of species N, reactions J, and elements L.
(b) Find the $L \times N$ species-element matrix ϕ.
(c) Find the $N \times J$ stoichiometric reaction matrix $\boldsymbol{\nu}$.
(d) Demonstrate $\boldsymbol{\phi} \cdot \boldsymbol{\nu}=\mathbf{0}$.
(e) For isothermal, isochoric kinetics, write an ordinary differential equation for the evolution of the concentration of H ; define any necessary constants.

Solution

We have $N=8$ species. We can take them to be ordered as

$$
\left(\mathrm{H}_{2}, \mathrm{O}_{2}, \mathrm{OH}, \mathrm{H}, \mathrm{O}, \mathrm{C}, \mathrm{CO}_{2}, \mathrm{CH}\right)
$$

We have $J=4$ reactions, as numbered in the problem statement. We have $L=3$ elements and take them to be ordered as

$$
(\mathrm{H}, \mathrm{O}, \mathrm{C}) .
$$

With this ordering, we have

$$
\phi=\left(\begin{array}{llllllll}
2 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\
0 & 2 & 1 & 0 & 1 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1
\end{array}\right)
$$

And with this ordering, we get

$$
\boldsymbol{\nu}=\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
-1 & -1 & 0 & 0 \\
2 & 1 & 0 & 0 \\
0 & -1 & 0 & -1 \\
0 & 1 & -2 & 0 \\
0 & 0 & -1 & -1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Element conservation is assured because

$$
\boldsymbol{\phi} \cdot \boldsymbol{\nu}=\left(\begin{array}{cccccccc}
2 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\
0 & 2 & 1 & 0 & 1 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1
\end{array}\right)\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
-1 & -1 & 0 & 0 \\
2 & 1 & 0 & 0 \\
0 & -1 & 0 & -1 \\
0 & 1 & -2 & 0 \\
0 & 0 & -1 & -1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

We see that

$$
\frac{d \bar{\rho}_{\mathrm{H}}}{d t}=-k_{2} \bar{\rho}_{\mathrm{H}} \bar{\rho}_{\mathrm{O}_{2}}-k_{4} \bar{\rho}_{\mathrm{H}} \bar{\rho}_{\mathrm{C}}
$$

2. (20) Find the most general stoichiometric balance for the reaction

$$
\nu_{1}^{\prime} \mathrm{H}_{2}+\nu_{2}^{\prime} \mathrm{O}_{2} \leftrightharpoons \nu_{3}^{\prime \prime} \mathrm{H}_{2} \mathrm{O}+\nu_{4}^{\prime \prime} \mathrm{H}_{2} \mathrm{O}_{2}
$$

Solution

Let us take $\nu_{i}=\nu_{i}^{\prime \prime}-\nu_{i}^{\prime}$ so

$$
\nu_{1} \mathrm{H}_{2}+\nu_{2} \mathrm{O}_{2}+\nu_{3} \mathrm{H}_{2} \mathrm{O}+\nu_{4} \mathrm{H}_{2} \mathrm{O}_{2}=0 .
$$

We have $N=4, L=2$, and $J=1$. Take $l=1,2$ to correspond to (H,O) for elements. For species take, $i=1, \ldots, 4$ to correspond to $\left(\mathrm{H}_{2}, \mathrm{O}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O}_{2}\right)$. The stoichiometric matrix $\phi_{l i}$ is

$$
\phi_{l i}=\left(\begin{array}{llll}
2 & 0 & 2 & 2 \\
0 & 2 & 1 & 2
\end{array}\right) .
$$

Element balance is enforced by

$$
\sum_{i=1}^{N} \phi_{l i} \nu_{i}=0 .
$$

So we have

$$
\left(\begin{array}{cccc}
2 & 0 & 2 & 2 \\
0 & 2 & 1 & 2
\end{array}\right)\left(\begin{array}{l}
\nu_{1} \\
\nu_{2} \\
\nu_{3} \\
\nu_{4}
\end{array}\right)=\binom{0}{0} .
$$

Let us take $\nu_{3}=r$ and $\nu_{4}=s$ and get

$$
\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right)\binom{\nu_{1}}{\nu_{2}}=\binom{-2 r-2 s}{-r-2 s} .
$$

So

$$
\binom{\nu_{1}}{\nu_{2}}=\binom{-r-s}{-\frac{1}{2} r-s} .
$$

So

$$
\left(\begin{array}{l}
\nu_{1} \\
\nu_{2} \\
\nu_{3} \\
\nu_{4}
\end{array}\right)=\left(\begin{array}{c}
-r-s \\
-\frac{1}{2} r-s \\
r \\
s
\end{array}\right) .
$$

So we can say our most general balanced equation is

$$
(-r-s) \mathrm{H}_{2}+\left(-\frac{1}{2} r-s\right) \mathrm{O}_{2}+r \mathrm{H}_{2} \mathrm{O}+s \mathrm{H}_{2} \mathrm{O}_{2}=0 .
$$

Set $r=2$, and rearrange to get

$$
(2+s) \mathrm{H}_{2}+(1+s) \mathrm{O}_{2}=2 \mathrm{H}_{2} \mathrm{O}+s \mathrm{H}_{2} \mathrm{O}_{2} .
$$

3. (40) Species A and B have identical molecular masses and identical specific heats and undergo an irreversible reaction described by

$$
A+A \rightarrow B+A
$$

The reaction is adiabatic and isochoric. The fixed volume is V, and no mass enters or exits the volume. At $t=0, T=T_{o}, \bar{\rho}_{A}=\bar{\rho}_{A o}$, and $\bar{\rho}_{B}=0$. The reaction has $\mathcal{E}=0$ and $\beta=0$. It has collision frequency factor a, constant \bar{c}_{v}, and is exothermic.
(a) Write an appropriate simple ordinary differential equations for the change of $\bar{\rho}_{A}$ with respect to time.
(b) Find the equilibrium concentration of A.
(c) Find $\bar{\rho}_{A}(t)$ and $T(t)$.

Solution

There's a variety of ways to go about this problem. For the reaction we have

$$
\begin{aligned}
\frac{d \bar{\rho}_{A}}{d t} & =-r \\
\frac{d \bar{\rho}_{B}}{d t} & =r
\end{aligned}
$$

For the isochoric reaction, volume V, total mass m, and $\rho=m / V$, remain constant. We can restate our reaction laws in terms of number of moles n_{A}, n_{B} as

$$
\begin{aligned}
\frac{d n_{A}}{d t} & =-V r \\
\frac{d n_{B}}{d t} & =V r
\end{aligned}
$$

Adding the two, we get

$$
\frac{d}{d t}\left(n_{A}+n_{B}\right)=0
$$

Integrating, we get

$$
n_{A}+n_{B}=n_{A o}
$$

recalling that $n_{B o}=0$.
Our energy conservation relation gives a constant total enthalpy E, which retains its initial value:

$$
E=n_{A} \bar{e}_{A}+n_{B} \bar{e}_{B}=n_{A o} \bar{e}_{A, T_{o}}^{o}
$$

Substituting, we get

$$
n_{A}\left(\bar{c}_{v}\left(T-T_{o}\right)+\bar{e}_{A, T_{o}}^{o}\right)+\left(n_{A o}-n_{A}\right)\left(\bar{c}_{v}\left(T-T_{o}\right)+\bar{e}_{B, T_{o}}^{o}\right)=n_{A o} \bar{e}_{A, T_{o}}^{o}
$$

Solving, we find

$$
T=T_{o}+\frac{\bar{e}_{A, T_{o}}^{o}-\bar{e}_{B, T_{o}}^{o}}{\bar{c}_{v}}\left(1-\frac{n_{A}}{n_{A o}}\right)
$$

Now the ideal gas law gives us

$$
P V=\left(n_{A}+n_{B}\right) \bar{R} T
$$

Because $n_{A}+n_{B}=n_{A o}$ we get

$$
P V=n_{A o} \bar{R} T
$$

Solving for P, we get

$$
P=\frac{n_{A o} \bar{R}}{V} T
$$

Here T will be time-dependent, and thus P will also be time-dependent. Substituting from energy conservation, we get

$$
P=\frac{n_{A o} \bar{R} T_{o}}{V}\left(1+\frac{\bar{e}_{A, T_{o}}^{o}-\bar{e}_{B, T_{o}}^{o}}{\bar{c}_{v} T_{o}}\left(1-\frac{n_{A}}{n_{A o}}\right)\right)
$$

Now we have

$$
r=a \bar{\rho}_{A}^{2}=a \frac{n_{A}^{2}}{V^{2}}
$$

So, we get

$$
\frac{d n_{A}}{d t}=-V r=-a \frac{n_{A}^{2}}{V}
$$

The solution that satisfies the initial condition is

$$
n_{A}(t)=n_{A o} \frac{1}{1+a \frac{n_{A o}}{V} t}
$$

As $t \rightarrow \infty, n_{A} \rightarrow 0$, as long as $n_{A o}>0$. In the physical domain, this equilibrium is stable. We also see

$$
\bar{\rho}_{A}(t)=\bar{\rho}_{A o} \frac{1}{1+a \bar{\rho}_{A o} t}
$$

So

$$
T(t)=T_{o}+\frac{\bar{e}_{A, T_{o}}^{o}-\bar{e}_{B, T_{o}}^{o}}{\bar{c}_{v}}\left(\frac{a n_{A o} t}{V+a n_{A o} t}\right)
$$

