
COMBUSTION AND FLAME 88: 239-264 (1992) 239 

Simplifying Chemical Kinetics: Intrinsic Low-Dimensional 
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A general procedure for simplifying chemical kinetics is developed, based on the dynamical systems approach. In 
contrast to conventional reduced mechanisms no information is required concerning which reactions are to be 
assumed to be in partial equilibrium nor which species are assumed to be in steady state. The only "inputs" to the 
procedure are the detailed kinetics mechanism and the number of degrees of freedom required in the simplified 
scheme. (Four degrees of freedom corresponds to a four-step mechanism, etc.) The state properties ~ven by the 
simplified scheme are automatically determined as functions of the coordinates associated with the degrees of 
freedom. Results are presented for the CO/H 2 lair system. These show that the method provides accurate results 
even in regimes (e.g., at low temperatures) where conventional mechanisms fail. 

INTRODUCTION 

In the last two decades a triumph of combustion 
research has been the detailed computation of 
one-dimensional laminar flames [1-3] . The 
agreement between measurements and these cal­
culations demonstrates that we have adequate 
knowledge of the reaction and transport mecha­
nisms (at least for simple fuels). A typical reac­
tion mechanism (for methane, say) involves about 
40 species and 200 reactions. 

For more general flows, the numerical solution 
of the conservation equations including detailed 
kinetics is computationally demanding, or even 
prohibitive. For example, Smooke et al. [4] re­
port that 150 h of supercomputer time were re­
quired to make calculations of a steady, axisym­
metric, methane-air diffusion flame. Thus it is 
highly desirable to develop methods that make 
mathematical simplifications to the reaction kinet­
ics, without sacrificing accuracy. 

Simplified kinetic schemes are in particular 
demand for making turbulent combustion calcula­
tions. The recent works of Chen at al. [5] well 
illustrate current approaches. Simplified three- or 
four-step schemes have been developed by sev-
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eral groups (e.g., Peters ang Kee [6], Bilger and 
Kee [7], Chen [8]). These schemes represent the 
thermodynamical state of the fluid in terms of 
four or five variables (rather than more than 40 
required by the detailed mechanism). The state 
properties can then be tabulated as functions of 
these four or five variables, and these tables are 
used in the turbulent-combustion calculation. 

Current approaches to devising reduced mecha­
nisms are described by Smooke [9]. Principal 
ingredients are partial eqUilibrium and steady-state 
assumptions for particular reactions and species. 
This type of approach has three drawbacks: 

1. For each fuel/oxidizer system, and for each 
order of the scheme (i.e., two-step, four-step, 
etc.) considerable human time and labor is 
required to develop the method. 

2. The partial-equilibrium and steady-state as­
sumptions invoked are inevitably applied to 
ranges of compositions and temperatures 
where they provide poor approximations. 

3. Error estimates or limits of applicability are 
only obtained by comparison of results ob­
tained both by a detailed and the reduced 
reaction mechanism, but not from the method 
itself. 

We develop here a general procedure for sim­
plifying chemical kinetics which is free of these 
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drawbacks. The "inputs" to the procedure are 
the detailed kinetics mechanism and the number 
of degrees of freedom required in the simplified 
scheme. (Four degrees of freedom corresponds to 
a four-step mechanism, etc.) No information is 
required concerning which reactions are to be 
assumed to be in partial equilibrium. 

The mathematical model for gas-phase chemi­
cal reaction systems consists of a set of partial 
differential equations, namely the conservation 
equations, which describe the time-dependent de­
velopment of all the properties that determine the 
state of the system (e.g., species mass fractions, 
specific enthalpy, pressure and velocity field). 
The governing processes (i.e., flow, molecular 
transport, and chemical reaction) occur at time 
scales that differ by orders of magnitude. Chemi­
cal reaction usually is governed (e.g., in combus­
tion processes) by time scales ranging from 10- 9 

to 102 s. If we look at a typical spectrum of time 
scales as it occurs, for example, in flames (pre­
sented schematically in Fig. 1), it can be seen that 
the chemical time scales cover a larger range than 
the so-called physical time scales (denoting, e.g., 
molecular transport). The very fast time scales in 
chemical kinetics are usually responsible for equi­
libration processes (reactions are in partial equi­
librium, species are in steady state). If we make 
use of the fact that those time scales are very fast, 
it is possible to decouple them, that is, we can 
assume local equilibrium with respect to the fastest 
time scales. 

chemjcal time scales 

slow time scales 
e.g. NO·formation 

intermediate 
time scales 

fast time scales 
steady state 
partial equilibrium 

physical time scales 

time scales of flow, 
transport, turbulence 

Fig. 1. Schematical illustration of the time scales governing a 
chemically reacting flow. 
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For the simplest case (homogeneous, adiabatic 
isobaric reaction) the state of the reacting system 
is described by a set of n s ordinary differential 
equations, where n s is the number of species 
involved in the detailed kinetics scheme. Thus ns 
different time scales govern the process and n s 

variables are needed in order to describe the 
system. The advantage of decoupling the fast 
time scales is the following: if we decouple, say, 
the n f fastest time scales, the remaining number 
of time scales is given by n g = n s - n f' and the 
system can be described in terms of a much 
smaller number (i.e., ng) of variables (degrees of 
freedom). In addition to reducing the number of 
equations that have to be solved in complex flow 
problems, there is one major advantage of this 
reduction of the number of state variables: very 
often (e.g., in pdf methods for turbulent flows) 
the computation of the chemical rates of change is 
so time consuming that it is desirable not to 
calculate them directly, but to use a table lookup. 
For combustion processes, which are governed 
by a large number of different species and reac­
tions, a table setup for a detailed reaction mecha­
nism would be impossible (a methane-air flame 
would already need a more than 30-dimensional 
table, exceeding any available storage on a com­
puter). But if we are able to describe the chemical 
system in terms of a small number (say, e.g., 
five) variables, such a table setup is practicable. 

In this work we develop a method that allows 
decoupling the fast time scales of chemical reac­
tions and thus globally reduces the dimension of 
the composition space of the chemical system. 
Based on an eigenvector analysis of the governing 
equations in a homogeneous chemical reaction 
system, the local time scales in the composition 
space (which are associated with the eigenvalues) 
are identified and the state properties given by the 
simplified scheme are automatically determined 
as functions of the coordinates associated with the 
degrees of freedom. 

Existing simplified schemes involve partial­
equilibrium and steady-state assumptions. The 
imposition of n f( n f < n r) such assumptions de­
fines an n g -dimensional manifold (n g = n s - n f) 
to which (by assumption) the state is confined. 
The reduced n g -step scheme yields trajectories 
on this manifold. Different imposed assumptions 
yield different manifolds. The method developed 
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here defines an intrinsic n g-dimensional mani­
fold: the n f local conditions that generate the 
manifold stem from the eigenvalue-eigenvector 
representation of the local Jacobian matrix. This 
intrinsic manifold is optimal in at least two re­
spects. First, for initial conditions on the mani­
fold, the trajectories are exact for linear systems 
(i.e., the detailed and reduced schemes are identi­
cal). Second, for initial conditions off the mani­
fold, the resulting trajectories are optimally at­
tracted to the manifold. 

The concepts we use are those used in the 
study of dynamical systems. Herein we agree 
with the approach of Lam and Goussis [11-13], 
who use the dynamical systems approach in order 
to simplify chemical kinetics. Using a CSP (com­
putational singular perturbation) method, they 
identify the available simplifications of the chemi­
cal kinetics of a given reaction system, decouple 
the fastest time scales, and thus are able to re­
move the stiffness of the ordinary differential 
equation system and solve it by explicit methods 
obtaining a high accuracy. Although using similar 
methods, our approach is different. We use the 
dynamical system approach, not in order to over­
come the stiffness of the differential equation 
system, but in order to develop a scheme that 
reduces the state space of a reaction system glob­
ally in such a way that it can be tabulated for 
subsequent use in turbulent combustion calcula­
tions (e.g., in pdf methods [14, 15]). 

In the next sections, the problem is formulated 
mathematically. Results are then given for the 
CO /H 2 / air system. These confirm the favorable 
properties claimed above. While the development 
is mathematical, no attempt at rigor is made. In 
particular, the existence, uniqueness, and 
smoothness of several manifolds is implicitly as­
sumed without comment. 

GEOMETRICAL REPRESENTATION OF 
CHEMICAL KINETICS 

General Reactive System 

The mathematical model for gas-phase chemical 
reaction systems consists of a set of partial­
differential equations, namely the conservation 
equations, which describes the time-dependent 
development of all the properties that determine 
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the state of the system (e.g., species mass frac­
tions Wi' specific enthalpy h, density p, and 
velocity field v) [16, 17]. In its most general 
form, this equation system can be written as 

ap _ 
-=r at p' 

apv _ 
-=r at u' 

apwi _ _ 

-- = rw. + 0i' at I 

aph _ 
-=r at h' 

together with equations of state 

P=P(p,h,w), 

T= t(p,h,w), , 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

where P is the pressure and T is the tempera­
ture. The terms r denote expressions that ac­
count for convection, molecular transport, exter­
nal forces, etc. Chemical reaction is introduced 
only by a source term fi i in the species equations 
because it creates neither mass, momentum, nor 
energy. Although very simple in appearance, this 
equation system can be very difficult to solve, 
especially if space-dependent problems are treated 
(see, e.g., Ref. 18). 

Simple Homogeneous System 

Although we are interested in the general case 
formulated above, the development of the method 
is performed for the simplest case of a spatially 
homogeneous, adiabatic, isobaric system. In this 
case the whole equation system simplifies to 

ah 
- =0 
at ' 

(7) 

ap 
(8) -=0 

at ' 
acpi 

(9) -=0· 
at " 

where the term for chemical reaction is given by 

wi(h,P,¢) 
O· = ---:---~ 

, p(h,P,¢) (10) 
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In these equations Wi denotes the molar rate of 
production of a chemical species i due to chemi­
cal reaction, and ~i is its specific mole number, 
which is defined by: ~i = Wi / M i , where Mi is 
the molar mass of species i. This nomenclature is 
chosen because ~i also can be regarded as the 
number of moles of species i per unit mass. In 
the discussion section we return to the general 
case and discuss the influences of rh , rp , and rq,j 
that are absent from Eqs. 7-9. 

State, Composition and Reaction Spaces 

At any time t, the simple homogeneous system 
considered is completely determined by a set of 
state variables, namely the total enthalpy, the 
pressure, and n s composition variables (with n s 
as the number of species in the reaction system). 
Thus the state of the system at any time can be 
represented as a point in a (2 + n s)-dimensional 
state space ~, and the solution of Eqs. 7-9 
describes the trajectory of the system in this 
space. 

Since the system considered is adiabatic and 
isobaric, hand P are fixed in time (see Eqs. 7 
and 8). Consequently it is sufficient to consider 
the n s-dimensional composition space ill. It is 
useful to regard ill as a vector space, and hence at 
any time t, the composition is a vector ~(t) in 
this space. In the natural basis, the coordinates of 
the vector are ~ = (~I' ~2"'" ~n )T. 

Above it was pointed out that there are two 
state variables that do not change with time (h 
and P). By the law of element conservation there 
are n e (= number of different elements in the 
reaction system) additional variables that do not 
change with time, namely the specific element 
mole numbers Xi' which are defined by Xi = 

Zi / M i , where Zi is the element mass fraction and 
Mi the molar mass of the element i. 

Let 11 j, i denote the number of atoms of ele­
ment i in a species j. Then Ili = (Ill, i' 112, i' 

..• ,Iln )T shall be called the element compo­
sition vectors. The specific element mole num­
bers result from the specific mole numbers ac­
cording to 

Xi = L Ilk, i~k = Ilr~· (11 ) 
ns 
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time. 
For each element there is a corresponding ele­

ment vector I'i' Similarly, we have a reaction 
vector Pi for each elementary chemical reaction 
[11]. With Ak denoting a molecule of species k, 
the ith reaction can be written as 

OI,iAI + 02,i A 2 + ... +Ons,iAns -+ 

al,iAI + a 2,i A 2 + ... +ans,iAns' 

where Ok i and a k i are integers defining the 
reaction. With the stoichiometric coefficients be­
ing v k, i = ak, i-Ok, i' the reaction vector for 
reaction i is defined by Pi = (VI, i' v2, i' ... , 

Vn i)T. Element conservation in chemical reac­
ti~~s forces 

ns "" 
" V k -Ilk - = 0 L...J ,I ,J or T 

Pi I' j = 0 (12) 
k=1 

for all reactions i and elements j. Thus all ele­
ment vectors are orthogonal to all reaction vec­
tors. The way of looking at a chemical reaction 
system in terms of element and reaction vectors 
may seem a little strange at first, but it provides a 
useful tool for theoretical investigations. 

We define the reaction subspace R to be the 
space spanned by the reaction vectors Vi' The 
dimensionality of this space is nr = ns - ne' 
This is the case provided there are no inert 
species. If there are inert species, these can be 
treated as additional "elements," with corre­
sponding element vectors I'i' and corresponding 
(fixed) Xi' It follows that the ne element vectors 
I'i and any nr linearly independent reaction vec­
tors Vi span the composition space ill. Conse­
quently such a set of vectors can be used as an 
alternative basis for ill. 

Finally we note, that not every point in ill (or 
~) corresponds to a realizable composition (or 
state). Rather there is a realizable region given by 
the conditions 

T(h, p,~) > 0 

(boundedness of temperature) , (13) 

P> 0 (boundedness of pressure) , (14) 

0:::;; Mi~i:::;; 1 

(boundedness of mass fractions) , (15) 
ns ns ne 

L Wi = L Mi~i = L MiXi = 1 
i=1 i=1 i=1 

It can be shown that the Xi do not change with (normalization). (16) 
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Equation 16 gives three equivalent statements of 
the constraint that mass fractions sum to unity. 
This last constraint is different from the others, 
because it not only limits the space, but actually 
reduces the dimension of the accessible space by 
one. That is, in the ns-dimensional composition 
space 4>, realizable compositions are restricted to 
the (n s - 1) dimensional linear manifold M, for 
which Eq. 16 is satisfied. 

Equation 15 (by itself) restricts realizable com­
positions to a simplex Sif> in 4>. Thus, in combi­
nation, Eqs. 15 and 16 confine realizable compo­
sitions to the intersection of M and Sif>' which is 
a (ns - I)-dimensional simplex, whose boundary 
is denoted by 04>. 

This rather formal way of looking at chemical 
kinetics can be illustrated by a simple example, 
such as the 0 3 /02 /0 system. In this case we 
have a three-dimensional composition space, the 
composition being given by <P = (fa3 , <P02 , <Po). 
Due to element conservation (in this case, be­
cause we have only one element, equivalent to the 
law of mass fractions summing to 1), possible 
states of the chemical system are confined to a 
plane defined by 

(17) 

Additional constraints (Eq. 15) confine the acces­
sible composition space to the triangle shown in 
Fig. 2. Within this triangle chemical reaction 
takes place. Any movement off the plane (Le., in 
direction of the element vector) is forbidden. The 
reaction subspace can be spanned by any two 

o 

Fig. 2. Schematical illustration of the composition space of a 
simple 0 3 /02 /0 system. 
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linearly independent reaction vectors. Chemical 
reaction proceeds according to the chemical rate 
equations within the subspace (also shown 
schematically in Fig. 2) until equilibrium is 
reached, where equilibrium corresponds to one 
point in the composition space here, that is, in 
this case equilibrium is a O-dimensional subspace 
of the composition space. 

Partial-Equilibrium and Steady-State 
Assumptions 

The partial-equilibrium and steady-state assump­
tions are commonly used in reduced kinetics 
schemes. It is helpful to the understanding of the 
scheme developed here to observe that these as­
sumptions lead to lower"dimensional manifolds in 
composition space. 

Usually reduced mechanisms are developed by 
assuming the rates in directions of some vectors 
in composition space to vanish. Thus, for exam­
ple, partial-equilibrium assumptions force the 
rates in direction of some reaction vector (namely 
the one corresponding to the reaction in partial 
equilibrium) to vanish. Steady-state assumptions 
force the rate of production of some species to 
vanish. A detailed discussion of those methods of 
mechanism reduction in terms of the geometrical 
representation of chemical kinetics is given in 
Appendix A. 

Although those quasi-steady-state and partial­
equilibrium assumptions are quite convenient to 
use, they have one major disadvantage, namely 
the explicitly imposed assumption. A case-by-case 
understanding of different chemical reaction sys­
tems is needed in order to develop reduced mech­
anisms. Depending on the nature of the reaction 
process, the mixture composition, the tempera­
ture range, and SO on, different partial-equi­
librium or steady-state assumptions have to be 
specified. Although, for example, a species may 
be in quasi-steady state within a certain domain of 
the composition space, the quasi-steady-state as­
sumption might be improper outside this domain. 
Thus it would be useful to have a scheme, where 
(given a detailed reaction mechanism) only the 
desired dimension of the reaction subspace would 
have to be specified, and the "best assumptions" 
would be automatically generated by the scheme. 
Such a method can be developed. It is based on 
an analysis of the eigenvalues and eigenvectors of 
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the Jacobian of the system equations and de­
scribed in the section on the mathematical model. 

The CO IH 2 I Air System 

Throughout this article, we use the CO/H 2 lair 
system to provide specific examples. In this reac­
tion system there are 13 different species (i.e., 
n s = 13), which are ordered as follows: N 2' CO, 
H 2, 02' H 20, CO2, OH, H, 0, H02, CHO, 
H20 2, and CH 20. Furthermore there are four 
different elements in the reaction system (i.e., 
ne = 4), which are, in order, N, C, H, 0. Ac­
cordingly there are four different linearly inde­
pendent element vectors It i where 

ItN = (2,0,0,0,0,0,0,0,0,0,0,0,0)T, 

Itc = (0, I, 0, 0, 0, 1 , 0, 0, 0, 0, 1 , 0, 1) T , 

ItH = (0,0,2,0,2,0,1,1,0,1, 1,2,2)T, 

Ito = (0, I, 0, 2, 1, 2, 1, 0, 1, 2, 1 , 2, 1 (. 

The detailed reaction mechanism consists of 67 
elementary reactions and is listed in Table 1 (see 
Ref. 19 for references). Thus there are 67 reac­
tion vectors which correspond to elementary reac­
tions. The reaction vectors corresponding to the 
first six elementary reactions, for example, are 
given by: 

", = (0,0,0, - 1,0,0,1, - 1, 1,0,0,0.0)T, 

"2 = (0,0,0,1,0,0, - 1,1, - 1,0,0,0,0)T, 

"3 = (0,0, - 1,0,0,0,1,1, - 1,0,0,0,0)T, 

"4 = (0,0,1,0,0,0, - 1, - 1, 1,0,0,0,0)T, 

"5 = (0,0, - 1,0,1,0, - 1, 1,0,0,0,0,0)T, 

"6 = (0,0,1,0, - 1,0,1, - 1,0,0,0,0,0(. 

Of course any possible chemical reaction (obey­
ing the law of element conservation) can be ex­
pressed by a reaction vector, too. 

With the number of species (i.e., the dimen­
sion of the composition space) n s = 13 and four 
different elements (corresponding to conserved 
variables), the dimension of the reaction subspace 
is given by n r = n s - n e = 13 - 4 = 9. The 
nitrogen molecule is assumed to be inert, and 
thus is treated as an element. 
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The specific system considered in the sample 
calculations in the mathematical model is a stoi­
chiometric carbon monoxide-hydrogen-air com­
bustion system at pressure of 1 bar with a hy­
drogen-to-carbon atom mole ratio of 1: 10. The 
specific enthalpy of the system is 106 J Ikg, which 
corresponds to a temperature of about 400 K for 
an unburned mixture (only H 2, 02' CO, and N2 
present) and a temperature of about 2430 K for 
an equilibrium mixture. 

Reaction Trajectories 

Let us now look at trajectories in the state space 
for certain fixed values of enthalpy, pressure and 
specific element mole numbers (which are in fact 
constant in homogeneous, adiabatic isobaric sys­
tems). Element conservation together with iso­
baricity and adiabaticity introduces 2 + n e alge­
braic constraints into the system of governing 
equations, namely: 

'Ii' 

h = const, 

P = const, 

Xj = const j = 1,2, ... , ne. (18) 

These algebraic constraints define an (n r = n s -

ne)-dimensionallinear manifold in the state space, 
the accessible space for given h, P, and Xj. The 
significance of this manifold is that if a chemical 
system has a state corresponding to a point on 
this manifold, for all times the state of the system 
is given by a point that is also a point on this 
manifold. Here one can also see the significance 
of the element and reaction vectors, which had 
been defined above: All movements in the state 
space according to a linear combination of the 
reaction vectors corresponds to a change of state 
due to chemical reaction, which means a move­
ment parallel to the manifold. Move~ents in 
direction of element vectors correspond to a 
change of the element composition. They are 
perpendicular to the manifold and cannot occur if 
we allow only closed homogeneous systems. An­
other property of the trajectories on the manifold 
is that they do not cross (uniqueness of the equa­
tion system [20]) and that they all approach one 
common point, namely the equilibrium point of 
the system. 

Figure 3 shows sample plots of trajectories 
(obtained from numerical simulations using a de-
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TABLE 1 

Reaction Mechanism of the CO/H 2 /Air System [19]a 

A (3 Ea 

1 02 + H ---> OH + ° 2.00 X 10 14 0.00 70.3 
2 OH+ 0--->02 +H 1.47 x 1013 0.00 2.1 
3 H2 + ° --->OH + H 5.06 X 104 2.67 26.3 
4 OH + H ---> H2 + ° 2.24 X 104 2.67 18.4 
5 H2 + OH ---> H 20 + H 1.00 X 108 1.60 13.8 
6 H 20 + H ---> H2 + OH 4.46 x 108 1.60 77.1 
7 OH + OH ---> H 20 + ° 1.50 X 109 1.14 0.4 
8 H 2 0 + 0---> OH + OH 1.51 X 1010 1.14 71.6 
9 H + H + M' ---> H2 + M' 1.80 X 10 18 -1.00 0.0 

10 H2 + M' ---> H + H + M' 6.98 X 10 18 -1.00 436.0 
11 H + OH + M' ---> H 20 + M' 2.20 X 1022 -2.00 0.0 
12 H 20 + M' ---> H + OH + M' 3.80 X 10 23 -2.00 499.4 
13 ° + ° + M' ---> 02 + M' 2.90 X 1017 -1.00 0.0 
14 02 + M' ---> ° + ° + M' 6.78 X 1018 -1.00 496.4 
15 H + 02 + M' ---> H02 + M' 2.30 X 10 18 -0.80 0.0 
16 H02 + M' ---> H + O2 + M' 2.66 X 1018 -0.80 206.2 
17 H02 + H ---> OH + OH 1.50 x 10 14 0.00 4.2 
18 OH + OH ---> H02 + H 1.63 x 10 13 0.00 158.0 
19 H02 + H ---> H2 + O2 2.50 X 1013 0.00 2.9 
20 H2 + 02 ---> H02 + H 8.39 X 1013 0.00 232.8 
21 H02 + H ---> H 20 + ° 3.00 X 1013 0.00 7.2 
22 H 20 + 0---> H02 + H 3.29 X 1013 0.00 232.2 
23 H02 + ° ---> OH + O2 1.80 X 1013 0.00 -1.7 
24 OH + 02 ---> H02 + ° 2.67 X 1013 0.00 220.3 
25 H02 + OH ---> H 20 + 02 6.00 X 1013 0.00 0.0 
26 H 20 + O2 ---> H02 + OH 8.97 x 1014 0.00 293.2 
27 H02 + H02 ---> H 20 2 + O2 2.50 X lOll 0.00 -5.2 
28 OH + OH + M' ---> H 20 2 + M' 3.25 X 1022 -2.00 0.0 
29 H 20 2 + M' ---> OH + OH + M' 2.11 X 1024 -2.00 206.8 
30 H 20 2 + H ---> H2 + H02 1.70 X 1012 0.00 15.7 
31 H2 + H02 ---> H 20 2 + H 9.35 X 1011 0.00 91.2 
32 H 20 2 + H ---> H 20 + OH 1.00 x 1013 0.00 15.0 
33 H 20 + OH ---> H 20 2 + H 2.66 X 10 12 0.00 307.6 
34 H 20 2 + ° ---> OH + H02 2.80 X 1013 0.00 26.8 
35 OH + H02 ---> H 20 2 + ° 6.80 X 10 12 0.00 .- 94.4 
36 H 20 2 + OH ---> H 20 + H02 5.40 X 10 12 0.00 4.2 
37 H 20 + H02 ---> H 20 2 + OH 1.32 x 10 13 0.00 143.0 
38 CO + OH ---> CO2 + H 4.40 X 106 1.50 -3.1 
39 CO2 + H ---> CO + OH 6.12 x 108 1.50 94.1 
40 CO + H02 ---> CO2 + OH 1.50 x 10 14 0.00 98.7 
41 CO2 + OH ---> CO + H02 2.27 X 10 15 0.00 349.7 
42 CO + ° + M' ---> CO2 + M' 7.10 X 1013 0.00 -19.0 
43 CO2 + M' ---> CO + ° + M' 1.69 X 10 16 0.00 506.4 
44 CO + 02 ---> CO2 + ° 2.50 X 1012 0.00 200.0 
45 CO2 + ° ---> CO + 02 2.55 X 1013 0.00 229.0 
46 HCO + M' ---> CO + H + M' 7.10 X 10 14 0.00 70.3 
47 CO + H + M' ---> HCO + M' 1.07 X 1015 J 0.00 8.6 
48 HCO + H ---> CO + H2 2.00 X 10 14 0.00 0.0 
49 CO + H2 ---> HCO + H 1.17 X 1015 0.00 374.4 
50 HCO + ° ---> CO + OH 3.00 x 1013 0.00 0.0 
51 CO + OH ---> HCO + ° 7.72 X 1013 0.00 366.5 
52 HCO + ° ---> CO2 + H 3.00 X 1013 0.00 0.0 
53 CO2 + H ---> HCO + ° 1.07 X 10 16 0.00 463.7 
54 HCO + OH ---> CO + H 2O 1.00 X 10 14 0.00 0.0 
55 CO + H 20 ---> HCO + OH 2.60 x 1015 0.00 437.7 
56 HCO + 02 ---> CO + H02 3.00 X 10 12 0.00 0.0 
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TABLE 1 

(Continued) 

A (3 Eo 

57 CO + H02 --> HCO + O2 5.21 X 1012 0.00 144.5 
58 CH 20 + M' --> HCO + H + M' 1.40 X 1017 0.00 320.0 
59 HCO + H + M' --> CH 20 + M' 2.62 X 10 15 0.00 -56.8 
60 CHzO + H --> HCO + H2 2.50 X 1013 0.00 16.7 
61 HCO + H2 --> CH 20 + H 1.82 X 1012 0.00 76.0 
62 CH 20 + 0 --> HCO + OH 3.50 X 1013 0.00 14.6 
63 HCO + OH --> CH 20 + 0 1.12 X 1012 0.00 66.0 
64 CH 20 + OH --> HCO + H 2O 3.00 X 1013 0.00 5.0 
65 HCO + H20 --> CH 20 + OH 9.71 X 1012 0.00 127.6 
66 CH 20 + H02 --> HCO + H20 2 1.00 X 1012 0.00 33.5 
67 HCO + H20 2 --> CH 20 + H02 1.32 X lOll 0.00 17.3 

o A in em/mo1/s; EA in kJ/mol; k = A Tflexp( -EA / RT). 
Collision efficiencies fH2 = 1.00, f0 2 = 0.35, fH 20 = 6.50, fN2 = 0.50, feo = 1.50, fe0 2 = 1.50. 

tailed reaction mechanism, which can be found, 
e.g., in Ref. 19) for the water-gas system for the 
specific values of pressure, enthalpy, and element 
composition described in the previous section. 
Plotted are projections into the CO2 jR20 and 
the CO2 JOR planes, respectively (it should be 
noted that this projection leads to some lines that 
cross, which by no means corresponds to a cross­
ing of trajectories). Chemical reaction can be 
regarded as a movement along those trajectories. 

Attracting Manifolds 

There is one notable feature that can be seen in 
Fig. 3, namely the fact that trajectories tend to 
"bunch" and approach one another far before 
eqUilibrium is reached. It looks as if there is a 
low-dimensional manifold (represented by a line 
in this two-dimensional projection) that has the 
property that all trajectories tend to approach that 
manifold, and that on this manifold only slow 
time scales govern the chemical reaction. In other 
words, even systems with quite different initial 
conditions approach common attracting mani­
folds. 

This observation leads to the central question 
addressed in this article: Are there low-dimen­
sional attracting manifolds in the state space that 
have the property that if a trajectory is near the 
manifold, it will remain close to it for all times? 
We answer this question in the affirmative, and 
show how such manifolds can be determined and 
used to simplify chemical kinetics. 

MATHEMATICAL MODEL 

General Idea 

The behavior of a chemical reaction system can 
be well understood if one looks at distinct points 
in the state space and analyzes the behavior in the 
neighborhood. Let us assume that we apply a 
small perturbation to the system. Row will it 
respond? The answer can be provided by a modal 
analysis (Appendix B), which describes the be­
havior of the system in a linearized neighborhood 
of some point in the state space in terms of an 
analysis of the eigenValues and eigenvectors of 
the Jacobian of the governing equation system. 
This analysis reveals that there are n s characteris­
tic time scales (given by the eigenvalues of Jhe 
Jacobian) associated with n s characteristic direc­
tions (the corresponding eigenvectors). Now there 
are three principal possibilities how a system can 
react to a perturbation, shown schematically in 
Fig. 4: 

1. If we perturb in the direction of an eigenvec­
tor whose eigenvalue has a positive real part, 
the perturbation will increase. 

2. If we perturb in the direction of an eigenvec­
tor whose eigenvalue is zero (this usually cor­
responds to a change of a conserved variable), 
the perturbation will not change with time. 

3. If we perturb in the direction of an eigenvec­
tor whose eigenvalue has a negative real part, 
the perturbation will relax to zero. 

It shall be noted that in this example many 
simplifications had been made (linearization, etc.), 
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x 
Fig. 4. Schematical illustration of the behavior of a dynami­
cal system. 

but nevertheless it gives an idea of the behavior 
of real systems. If we look at real chemical 
systems, sample calculations for a CO/H 2 /02 

combustion system show the following: Some 
eigenvalues are zero, namely those corresponding 
to the eigenvectors that can be expressed as linear 
combinations ofthe element vectors (this can also 
be shown analytically). Almost all other eigenval­
ues are negative with values from typically 
- 10 - 2 to - 10 7 S - 1. Only very few eigenvalues 
are positive (in the sample calculations at most 
one eigenvalue was positive). At the equilibrium 
point all eigenvalues are zero or negative. 

Because in chemical reactions a large number 
of the eigenvalues have large negative values (for 
an isothermal system, for example, it can be 
easily shown that the sum of the eigenvalues is 
always negative), many perturbations of a state 
(that could be induced, for example, by molecu­
lar diffusion) lead to some sort of fast relaxation 
(which indeed need not lead to the initial state). 
Furthermore the example (together with Fig. 3) 
shows that many different initial conditions after 
some short time (in fact the time scale associated 
with the smallest eigenvalues) can lead to move­
ments within one common subspace of the com­
position space. 

Further insight is obtained if we look at the 
time development of a linearized system in the 
neighborhood of some state 4>0. In Appendix C it 
is shown for a linearized system that if we iden­
tify in the composition space the points where the 
system is in equilibrium with respect to the fastest 
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time scales (i.e., the rates in direction of the 
eigenvectors with the smallest eigenvalues is 
zero), we obtain a subspace of the composition 
space in which all movements correspond to slow 
time scales. States that are not in this subspace 
evolve rapidly in time in direction of this sub­
space. 

The consequences for general systems are as 
follows: If a subspace in the composition space 
can be found where the system is "in equilib­
rium" with respect to its smallest m eigenvec­
tors, this subspace defines a low-dimensional 
manifold that is characterized by the fact that 
movements along it are associated with slow 
time scales and can be used to simplify chemical 
kinetics. 

Mathematical Model 

In the previous section it was shown (for simple 
examples) that based on an eigenvector analysis 
of the governing equations in a homogeneous 
chemical reaction system, it is possible to identify 
some low-dimensional subspaces of the composi­
tion space that may be used to simplify the de­
scription of complicated chemical systems. This 
section outlines how the above considerations can 
be used to construct a method that, given a 
detailed reaction mechanism, defines a low-di­
mensional manifold in the state space with the 
property that all the movements on this manifold 
represent slow time-scale processes, and that sys­
tems with initial states that do not lie on this 
manifold evolve rapidly in time in the direction of 
the manifold. 

Consider a chemical reaction system with the 
governing equations 
ah 4 
at = 0, (7) 

ap 
at = 0, (8) 

a4>i wi(h,P,4» 
i = 1,2, ... , ns ' at p(h,P,4» 

(9,10) 

or, written in terms of vectors, 

a 1/1 at = F(I/I) , (19) 

with 1/1 = (h, P, 4>1' 4>2' ... ,4>n )T. 
s 
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For each point in the state space, the eigenval­
ues of the Jacobian P", (with components 
a F; / a if; j) identify the n s + 2 different time scales 
associated with the movement in the state space. 
The corresponding eigenvectors describe the 
"characteristic directions" associated with those 
time scales. Now the general idea is to look for 
points in the state space for which components in 
the directions of certain eigenvectors (in this case 
those associated with fast time scales) vanish. 
Because the occurrence of degenerate eigenvalues 
can complicate the analysis, it is useful to work in 
a modified eigenvector basis. This modified local 
basis shall be given as follows: The eigenvectors 
corresponding to distinct eigenvalues, as well as 
linearly independent eigenvectors corresponding 
to a multiple eigenvalue form basis vectors. If an 
eigenvalue of multiplicity m has less than m 
linearly independent eigenvectors, or if there is a 
complex pair of eigenvalues, the vectors, which 
span the corresponding invariant subspace, shall 
form basis vectors. 

In this way it is possible to construct a basis 
that spans the whole space of dimension n ::::: n s 

+ 2. Now define an nc-dimensional manifold in 
reaction space by the condition that the compo­
nents of the movement in the direction of n f ::::: 

nr - nc distinct basis vectors vanish. In other 
words, given the modified basis of eigenvectors 
V, where V is a matrix with a column partition­
ing given by the vectors Vi of the modified eigen­
vector basis, ordered according to decreasing 
values of the real parts of the corresponding 
eigenvalues 

V= (~, v2 JJ (20) 

and its inverse V- I : 

VI 

) , V-I::::: 
v2 

(21 ) 

un 

the equation system 

WP(1/t) ::::: 0 (22) 

defines the low-dimensional manifold, where W 
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is the n rby-n matrix 

U 2+ne+ nc+ 1 

W::::: 
U2+ne+ nc+ 2 (23) 

(i.e., W is the matrix formed by the last n f rows 
of the inverse of the matrix of basis vectors). In 
this way we define an n c ::::: n r - n rdimensional 
manifold in the reaction space with the property 
that for all points on this manifold, the compo­
nents of the velocity in direction of the eigenvec­
tors corresponding to the n rmost negative eigen­
values vanish. Roughly speaking this manifold 
represents states that are "in equilibrium with 
respect to the fastest relaxing time scales." How­
ever, there is the possibility of some arbitrariness 
in the formulation, namely if either the eigenval­
ues ~+n +n and ~+n +n +1 form a complex 
pair or ife~:n +n = ~~n ~n + I. In those cases 
the constructio~ of the ma~if~ld can depend on 
the choice of the modified basis vectors. 

The formulation above would allow the con­
struction of a low-dimensional manifold. How­
ever, due to poor conditioning (roughly speaking, 
"nearly linearly-dependent eigenvectors"), nu­
merical difficulties could arise [21]. Thus it is 
useful to work in terms of another basis, the basis 
of the so-called real Schur vectors [21]. It can be 
shown that the formulation in this basis is equiva­
lent to the formulation above. Furthermore, the 
basis of real Schur vectors can be easily com­
puted [21] and it has the advantage of being 
orthogonal. Following this approach, the low-di­
mensional manifold is constructed as follows: 

Let QTp",Q = N denote the real Schur decom­
position of the Jacobian, such that the eigenvalues 
Ai appear in the diagonal of 4N (or in the 2-by-2 
blocks in case of complex pairs) in the order of 
descending real parts. (Such a Schur decomposi­
tion always exists and can be calculated efficiently 
using a modification of the algorithm in Ref. 22.) 
If Q is written as 

q2 (24) 

I 
with qi being the Schur vectors, then the low­
dimensional manifold is defined as the set of 
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points in the state space for which 

T 
Q2+ne+nc+ 1 

T 
Q2+ne+ nc+ 2 F(1/;). (25) 

QL T denotes the n rby-n matrix, whose row 
partitioning are the transpose of the Schur vectors 
Qi with i = 2 + ne + ne + 1,2 + ne + ne + 
2, ... , n, or, in other words Q L T is the matrix 
that is obtained from QT by omitting the first 
2 + ne + nc rows, namely the rows correspond­
ing to the conserved and the slowly changing 
variables. 

From this construction it can be seen that there 
is one major difference compared with conven­
tional reduced mechanisms, namely the fact that 
the only restriction imposed on the system is the 
choice of the dimension n e of the manifold in the 
reaction space. 

Numerical Solution 

After the formUlation for the construction of the 
low-dimensional manifold has been given, there 
is need for a numerical method that allows the 
computation. In general, the manifold in the reac­
tion subspace can (at least piecewise) be 
parametrized by ne( = nr - nf ) coordinates. 

Thus together with Eq. 25, 2 + ne + ne pa­
rameters define the low-dimension manifold in 
the state space. The task of identifying the low­
dimensional manifold consists of solving the pa­
rameter equations 

with P(1/;T) being 2 + ne + ne additional pa­
rameter equations necessary to complete the equa­
tion system. The choice of those equations influ­
ences problems of existence and uniqueness of a 
solution to Eq. 26, but not the construction ofthe 
manifold itself. Because we are treating closed, 
adiabatic, isobaric systems here, 2 + ne of the 

. parameter equations are readily obtained, namely 
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by specifying 

0= h - T h , 

0= P - Tp , 

i=I,2, ... ,ne , (27) 

that is, by using the equations fixing enthalpy, 
pressure, and element composition. The choice of 
the remaining n e parameter equations cannot be 
performed in such an easy way in order to guar­
antee existence and uniqueness. 

To summarize, in order to obtain the manifold, 
we now have to solve the equation system 

0= QLT(1/;)F(1/;) , 

0= g(1/;, Te), 

0= h( 1/;, Te), 

(28) 

(29) 

(30) 

where Eq. 28 gives the definition equations for 
the manifold, Eq. 29 the parameter equations that 
fix the conserved variables, and Eq. 30 the re­
maining parameter equations, which have yet to 
be specified. The parameters Te and the corre­
sponding equations can be chosen quite arbitrarily 
and may, for example, be the temperature, spe­
cific mole numbers, specific element mole num­
bers, concentrations, or even linear combinations 
of them. Their definition has no influence on the 
manifold itself, but only allows some parametri­
zation. If we use specific mole numbers in order 
to parametrize the manifold, this corresponds to a 
projection of the manifold onto coordinates in the 
natural basis of the state space. The equation 
system 30 then reads 

cPi - T<I>i = 0 (31) 

for ne specific species. 
Now after the equation system has been com-t 

pleted, there are several ways of finding solu­
tions. The simplest way is to look for solutions 
for fixed values of the parameters, that is, solve 
Eq. 26 by Newton's method. 

In order to illustrate this, let us take the 
CO/H 2 lair combustion system as an example. 
U sing detailed chemistry, the dimension of the 
governing ordinary differential equation system is 
15, with the enthalpy h, the pressure P, and the 
specific mole numbers of the species H 2' CO, 
02' N2, CO2, H20, H, 0, OH, H02, HCO, . 
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CHzO, and HzOz as dependent variables. Be­
cause the reaction system is said to be closed, 
adiabatic, homogeneous, and isobaric, there are 
six conserved variables, namely, the pressure, the 
enthalpy, and the specific element mole numbers 
of H, 0, C, and N. Thus the dimension of the 
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reaction space is n - n e - 2 = 9. If we want to Y 
reduce the dimension of the reaction space to let 
us say two, two parameters have to be defined. 
The choice is quite arbitrary; thus assume that the 
specific mole numbers of HzO and COz are the 
parameters. In this way we would end up with the 
equation system 

0= h - Th' 

0= P - Tp , 

o = XH ( <1» - T H , 

0= Xo(<I» - TO' 

0= Xe(<I» - Te , 

0= XN(<I» - TN' 

0= <l>H20 - T H20 , 

0= cf>e02 - Te0 2 , 

(32) 

which, for given reference values T, calculates 
points that lie on the manifold. This defines a 
two-dimensional manifold in the reaction space 
with the reaction progress variables being ¢H 20 

and cf>e02 ' If this equation system is solved for 
varying values of the parameters, a table of points 
on the low-dimensional manifold is obtained. 
Certain difficulties may arise, however, depend­
ing on the choice of parameters, which can be 
seen from Fig. 5. It shows an arbitrary example 
for a one-dimensional manifold in a two-dimen­
sional space. If x is chosen as a parameter, in 
some domains a unique mapping could not be 
defined. However, if we choose y as the parame­
ter, the problem is easily solved in this example. 
Another problem is that the theoretically accessi­
ble values for the parameters do not necessarily 
need to be values for which points on the mani­
fold exist. This can be seen from a simple exam­
ple. Consider the CO/Hz lair system discussed 
above. Theoretically (assuming a stoichiometric 
mixture) all hydrogen could be present as HzO. 
But at high temperatures the construction of the 

x 
Fig. 5. Mapping of a one-dimensional manifold. 

manifold would always determine a certain 
amount of hydrogen which appears as H or OH. 
All those problems can be easily avoided because 
the choice of the parametrization does not influ­
ence the construction of the manifold. Thus arc­
length continuation methods can be used to solve 
Eq. 26 [27]. 

In this work we use several different ap­
proaches to solve Eq. 26. Usually, the solution is 
performed by Newton's method. In case of con­
vergence problems due to bad initial guesses, an 
iterative approach is used. It can be outlined as 
follows: 

Start with an initial guess of the state variables 
o (h, P, <1» that fulfills the algebraic equations 
P(if;, r) of Eq. 26. 
For i = 0,1,2, ... 

Compute the Jacobian iF", of the governing 
equation system and the Real Schur decomposi­
tion iQTiF/Q = N for given iif; =i(h, P,<I». 
Solve 

P(if;,r) =0, (33) 

iQLT:~ =iQLTF(if;), (34) 

until a steady state is obtained. 
If II i+ 1 if; - i if; II < E accept solution, set if; 
= i+ 1 if; and leave loop. 

The solution ofthe differential/algebraic equation 
system 33-34 is performed by an extrapolation 
method [23, 24]. 

Additionally, if problems in the parametriza­
tion occur as described above, the arc-length 
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continuation methods ALCON 1 [28] or PITCON 
[29] can be used. 

However, it would be desirable to develop a 
general procedure, that is, a general arc-length 
continuation method with an arbitrary number of 
parameters, capable of avoiding those problems 
in the numerical solution. 

RESULTS 

Given a detailed reaction mechanism, the method 
presented so far allows the automatic generation 
of low-dimensional manifolds in composition 
space, which can be used to obtain simplified 
models for chemical reaction systems. In order to 
show the validity of the approach, sample calcula­
tions for low-dimensional manifolds, as well as 
for trajectories in the state space have been per­
formed. The system considered here is a carbon 
monoxide-hydrogen-air combustion system that 
has been discussed in detail in a previous section. 
Calculations using the method described in this 
article are performed in order to determine one­
and two-dimensional manifolds in the reaction 
space. The reason for the restriction to such low 
dimensions is only because of problems in the 
visualization of the results. Higher-dimensional 
manifolds can easily be calculated, too. Sample 
trajectories are calculated by solving the system 
of governing equations for an adiabatic, isobaric, 
homogeneous closed reaction system for varying 
initial conditions. Details can be found in Refs. 
18 or 25. All calculations (low-dimensional mani­
fold as well as sample trajectories) are based on a 
detailed reaction mechanism consisting of 13 
species and 67 elementary reactions listed in Table 
1 (see, e.g., Ref. 19 for details and further 
references) . 

One-Dimensional Manifolds 

A comparison of one-dimensional manifolds in 
the reaction space obtained by the method de­
scribed in this article with manifolds obtained 
from a conventional reduced mechanism has been 
performed in order to point out the difference 
between these two methods. The reaction progress 
variable is chosen to be the specific mole number 
of CO2 • The conventional reduced mechanism is 
obtained in the following way: For points on the 
calculated one-dimensional manifold in the state 
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space an analysis of the reaction mechanism is 
performed, that is, based on a detailed mecha­
nism [19], the reactions that are in partial equilib­
rium as well as the species that are in quasi­
steady-state are determined. The results are used 
to form the algebraic constraints needed to con­
struct the manifold. At the conditions that are 
investigated, H02 , HCO, CH 20, and H 20 2 are 
almost in quasi-steady-state, and the reactions 

H + °2 ...... OH + 0, 

0+ H2 ...... OH + H, 

OH + H2 ...... H 20 + H, 

CO + OH + M ...... CO2 + H 

are more or less in partial equilibrium. Using 
those constraints, the compositions on the mani­
fold for the reduced mechanism are calculated 
using Newton's method. 

In this way, for fixed values of the enthalpy, 
the pressure, and the element mass fractions, all 
other state variables are explicitly given as func­
tions of the reaction progress variable alone. 

Figures 6a and 6b show examples of this map­
ping for the specific mole numbers of H 20 and 
H. It can be seen that at temperatures higher than 
about 1700 K (corresponding to a specific mole 
number for CO2 of about 6 for this particular 
mixture) the two manifolds agree quite well. Be­
low this temperature there seems to be a change 
of the reaction paths that cannot be accounted for 
by the quasi-steady-state and partial eqUilibrium 
assumptions made in the conventional reduced 
mechanism. In order to show that the manifold 
obtained by the above method describes the reac­
tion system better than the one obtained with the 
conventional reduced mechanism, sample calcula­
tions of trajectories in the state space (based on a 
detailed reaction mechanism [19]) are performed. 
Many different initial conditions are used, corre­
sponding to pure mixtures of H 2, 02' CO, CO2 ,4 

H 20, and N2 as well as to mixtures with large 
amounts of hydrogen atoms added. Plots of the 
two manifolds together with the trajectories are 
shown in Figs. 7a and 7b. Plotted are the specific 
mole numbers of H20 and H versus the reaction 
progress variable (specific mole number of CO2), 

respectively. It can be seen that the trajectories 
approach the manifold, which is calculated using 
the method described in this article. Even in 
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Fig. 6. (a) Plot of the one-dimensional manifold for the specific mole number of H 20, • 
denotes the equilibrium value, (b) Plot of the one-dimensional manifold for the specific 
mole number of H, • denotes the equilibrium value, 

253 



254 

. 5 III 

.45 

.4" 

.35 

.30 
0 
N 
I 

.25 

.20 

.15 

·Hl 
2.5 3.0 3.5 

. 7 III 

.65 

. 6 III 

.55 

. 5 III 

.45 

.4" 

.35 

I .3" 

.25 

.2" 

.15 

. 1" 

.05 

Ii! 
2.5 3.1i! 3.5 

intrinsic 
low-dimensional manifold 

4.0 4.5 5.0 5.5 6.0 
CO2 
(a) 

4.1i! 4.5 5.1i! 
CO2 
(b) 

U. MAAS AND S. B. POPE 

conventional 

reduced mechanism 

6.5 7.0 7.5 9.0 

conventional 

reduced mechanism 

9.5 9.0 

Fig. 7. (a) Plot of the one-dimensional manifold for the specific mole number of H 20 
together with sample trajectories. • denotes the equilibrium value. (b) Plot of the 
one-dimensional manifold for the specific mole number of H together with sample 
trajectories .• denotes the equilibrium value. 
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regions (low temperatures) where a conventional 
reduced mechanism with such a small number of 
steps fails, the manifold describes the reaction 
system quite well. 

One aspect that those pictures do not show is 
the speed with which the trajectories approach the 
low-dimensional manifold. In fact (as is shown 
later for examples with two reaction progress 
variables) it only takes a short time for the trajec­
tories to approach the manifold, compared with 
the time associated with the following movement 
along the manifold. One further effect can be seen 
in the plots. In regions of low temperatures, the 
trajectories approach the manifold, but only 
"merge' , with it as soon as the temperature 
increases. Thus it might be necessary to take into 
account another reaction progress variable (in­
creasing the dimension of the reaction space to 
two) at low temperatures. In fact, calculations 
show (see below) that the low-temperature range 
can be described much better if two reaction 
progress variables are defined. 

Two-Dimensional Manifolds 

For the two-dimensional manifolds in ~e reaction 
space the specific mole numbers of CO2 and H 20 
have been chosen as parameters. Thus (given 
specific values for the enthalpy, the pressure, and 
the specific element mole numbers) the numerical 
method provides values for the specific mole 
numbers of all species as functions of cPco2 and 
cPH 20' The results then can be visualized in a 
three-dimensional plot of the chosen variable ver­
sus the two reaction progress variables. 

Figures 8a and 8b show plots of the two-di­
mensional manifolds for the specific mole num­
bers of H and OH, respectively. However, the 
method produces such manifolds for all the dif­
ferent species in the reaction system. In addition 
to the two-dimensional manifolds (represented 
by the nets of lines), the one-dimensional mani­
folds (described above), which lie on the two­
dimensional manifolds, have been plotted and can 
be seen as lines on the surfaces. There are several 
important features that should be mentioned: First 
the manifolds are nonlinear. This can be ex­
pected, because the chemistry introduces nonlin­
ear terms in the governing equation system. Far 
more interesting is the fact that there exist local 
maxima and minima in the plots (e.g., the mini­
mum in the plot of the OH specific mole num-
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(a) 

(b) 

Fig. 8. (a) Plot of the two-dimensional manifold for the 
specific mole number of H .• denotes the equilibrium value. 
Plotted are specific mole numbers in the range of 1.85-9.32 
for CO2 , 0.096-0.496 for H 20, 0.0-0.855 for H. The 
arrows at the axes denote increasing values of the variables .• 
denotes the equilibrium value. (b) Plot of the two-dimensional 
manifold for the specific mole number of OH .• denotes the 
equilibrium value. Plotted are specific mole numbers in the 
range of 1.85-9.32 for CO2 , 0.096-0.496 for H20, 
0.0-0.224 for OH. The arrows at the axes denote increasing 
values of the variables .• denotes the eqUilibrium value. 

bers). In these regions there seems to be a change 
of the reaction paths governing the chemical ki­
netics, which is recognized fY the method. 

In the same way as for the one-dimensional 
manifolds, the significance of these manifolds is 
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best understood if the plots of sample trajectories 
in the state space are added. Figures 9a and 9b 
show plots of the two-dimensional manifolds to­
gether with sample trajectories for the specific 
mole numbers of H and OH, respectively. The 
sample trajectories start at very different initial 

t 

(a) 

r 

(b) 

Fig. 9. (a) Plot of the two-dimensional manifold together with 
sample trajectories for the specific mole number of H. • 
d'rtotIts the bquilibrium value: Plotted are specific mole num­
bers (scaling as in Fig. 8a). (b) Plot of the two-dimensional 
manifold together with sample trajectories for the specific 
mole number of OH .• denotes the equilibrium value. Plotted 
are specific mole numbers (scaling as in Fig. 8b). 
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conditions and are calculated using a detailed 
reaction mechanism as described above. Plotted 
are not only the trajectories, but also their projec­
tions (in direction of the vertical axes) on the 
manifold. Thus the trajectories merge with the 
manifold where the two curves (trajectories and 
projection) merge. Additionally vertical bars have 
been included between the trajectories and the 
projections. These verticals represent equidistant 
time steps of 10 p,s on the trajectories. Thus, if 
there are, say, ten vertical bars between the initial 
state of the trajectory and the point where it 
merges with the manifold, this would correspond 
to a time of 100 p,s that is necessary for the 
trajectory to approach the manifold. 

Furthermore the improvement made by using a 
two-dimensional instead of a one-dimensional 
manifold can be seen in Fig. 9. The trajectories 
merge with the manifold much faster than the 
different trajectories merge. Thus it should be 
expected that the results would further improve if 
a three-dimensional manifold were used. 

The figures above showed that, for very differ­
ing initial conditions, trajectories in the state space 
approach rapidly the low-dimensional manifold. 
The rate of approaching depends on the time 
scales (eigenvalues) that are associated with the 
eigenvectors that have been used to construct the 
"equilibrium condition" of the manifold. If, for 
example, we consider the CO/H2 /02 /N2 sys­
tem, there are 15 time scales (i.e., eigenvalues) at 
each point in the state space. Six of them are zero 
(those corresponding to conserved variables). 
There are nine remaining eigenvalues correspond­
ing to chemical reactions (the corresponding 
eigenvectors are linear combinations of reaction 
vectors). If two additional parameters are speci­
fied (C02 and H20 in our case), the two largest 
time scales are associated with movements paral­
lel to the manifold. The largest of the remaining 
seven eigenvalues then corresponds to the slowest 
time scale of movements in the direction of the 
manifold and gives an idea of the speed with 
which states near the low-dimensional manifold 
approach the manifold. 

One possibility to quantify those results is to 
define some mapping between points of the trajec­
tories and corresponding points on the manifold. 
The definition of such a mapping is quite arbi­
trary, and because we are mainly interested only 
in the time it takes for the trajectory to approach 
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the manifold, we can make a simple choice. In 
this work the mapping has been simply defined as 
the vertical projection of the trajectory onto the 
manifold. Thus, for example, cf>oHtr( cf>c02 , cf>H 20) 
denotes the value of the specific mole number of 
OH on the trajectory for given values of the 
parameters cf>co2 and cf>H 20' cf>oH mao ( cf>co2 , cf>H 20) 
denotes the corresponding value on the manifold. 
Values for the trajectories and the corresponding 
values on the low-dimensional manifold have been 
calculated for various trajectories, and the results 
have been plotted in Fig. 10 for the specific mole 
numbers of the hydroxy-radicals. Figure lOa 
shows a long time scale, including part of the 
time interval of relaxation to equilibrium. In this 
case in fact the curves of the trajectories and of 
the corresponding projections on the manifold 
cannot be distinguished, which shows that in this 
time interval the low-dimensional manifold is a 
good approximation for the chemical reaction 
system, that is, the trajectories have already ap­
proached the manifold. Figure lOb simply shows 
a much shorter time interval, namely at the begin­
ning of the reaction. Here it can be seen that 
although trajectories and the corresponding val­
ues of the low-dimensional manifold start at dif­
ferent initial values, after a short time (at most 
0.1 ms) the curves (and thus the trajectory and 
the manifold) merge. 

Figure 11 finally shows a plot of the error 
defined by 

f' = 
cf>OH mao ( cf>co2 , cf>H 20) - cf>oHtr( cf>co2 , cf>H 20) 

cf>OH mao ( cf>co2 , cf>H 20) 

as a function of time. In this case the initial error 
is 100%, because the mixtures considered in the 
calculation of the trajectories are all mixtures 
with no OH present in the initial state. The error 
decreases rapidly after a short time (depending on 
the initial conditions of the trajectories), corre­
sponding to the time needed for the trajectories to 
approach the manifold. It is emphasized again 
that the definition of the distance and thus the 
error is quite arbitrary, but convenient. A more 
sophisticated way to define the error could be 
based on a projection of the states of the trajecto­
ries on the manifold in direction of the trajectory. 

These examples show that (together with the 
knowledge of the eigenvalues at specific points in 

257 

the state space) sample calculations of trajectories 
can provide information about the quality of the 
approximation by the low-dimensional manifold. 

DISCUSSION 

The examples above have shown that the method 
of constructing intrinsic low-dimensional mani­
folds in composition space presented in this arti­
cle provides a useful method for reducing chemi­
cal kinetics. In applications, tabulated values of 
the manifold as functions of some parameters can 
be used to reduce the dimension of the composi­
tion space remarkably. This can be especially 
useful for pdf calculations of turbulent reacting 
flows, where the dimension of the composition 
space determines the number of independent vari­
ables in the transport equation for the joint pdf 
[14, 15]. 

There are several advantages of the method in 
comparison to conventional reduced mechanisms 
(based on quasi-steady-state and partial-equi­
librium assumptions). In the method presented in 
this article the "reduction" of the mechanism 
(and of the dimension of the state space) is per­
formed automatically, based on a detailed reac­
tion mechanism. The only imposed restriction is 
the dimension of the manifold. Thus very large 
reaction systems can be handled, which is impor­
tant, because current detailed mechanisms for 
combustion processes involve up to 600 species 
and 2500 reactions [26]. Furthermore (apart from 
the need of a detailed mechanism), no "chemical 
knowledge" has to be incorporated into the 
model. In fact the method itself can produce 
information about the chemistry. Together with 
the construction of the low-dimensional manifold, 
information about the characteristic time scales 
(eigenvalues) and corresponding characteristic di­
rections (eigenvectors) is obtained. At every point 
on the low-dimensional manifold, the method can 
identify the elementary reactions associated with 
the different time scales. (This analysis has been 
added to the method, but not been discussed in 
this article.) 

In contrast to other reduced mechanisms our 
method does not provide simple closed-form ex­
pressions for the chemical kinetics. The basic 
closed-form analytic equations for the low-dimen­
sional manifold are too complicated to be used 
directly. Therefore we solve the equations in 
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Fig. 10. (a) Plot of the specific mole number of H from sample trajectories and their 
projection on the manifold versus time. (b) Plot of the specific mole number of OH from 
sample trajectories and their projection on the manifold versus time. 
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Fig. 11. Plot of the normed distance between sample trajectories and the manifold (see text). 

order to tabulate the manifolds for subsequent 
use. This kind of representation of the results is 
not very convenient from a kineticist's viewpoint. 
As a consequence sensitivity results cannot be 
obtained directly. But our method is not aimed at 
obtaining kinetic details of a combustion system 
(here detailed numerical calculations of homoge­
neous ignition and one-dimensional laminar flames 
will very often provide the best insight). Our aim 
is to couple chemical kinetics with very compli­
cated flow problems (like pdf methods for turbu­
lent flows). In many of those models the computa­
tional effort forces a tabulation of the chemical 
kinetics in order to be able to treat not only 
idealized systems (like one-dimensional flames), 
but technically relevant three-dimensional pro­
cesses in complex geometries. In principle all the 
method does is to uncouple fast time scales in the 
chemical kinetics and assume them to be in equi­
librium. Thus, if one knows the "physical" time 
scales of the combustion process considered (e.g., 
diffusion, turbulent time scales), the method also 
allows one to decouple those fast chemical time 
scales that are much faster than the "physical" 

time scales in systems other than homogeneous 
systems. 

Although the methods of the approach dis­
cussed in this article are similar to those used by 
Lam and Goussis [11-13] (namely the dynamic 
systems theory), the aim and the realization of 
our approach is different in many aspects. Lam 
and Goussis use Computational Singular Pertur­
bation for the analysis of distinct reaction trajec­
tories. In their method they use refined basis 
vectors in order to decouple slow and fast time­
scales. In this way they are able to integrate the 
stiff differential equation systems of chemical ki­
netics by means of explicit solvers with a very 
high accuracy [12]. At the same time (by identify­
ing reaction groups) they obtain useful informa­
tion about the chemical kinetics of the system. 
Our aim is quite different and motivated by the 
need of reduced schemes in turbulence modeling, 
especially in pdf methods. In those methods there 
is a high demand for reduced schemes that allow 
the treatment of complex reaction systems by a 
low-dimensional state space, that is, schemes that 
describe the reaction system in terms of only a 
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few state variables. Thus, in this case, it is neces­
sary not to look at distinct trajectories in the 
reaction space, but to reduce the dimension of the 
state space globally. By means of the method of 
constructing intrinsic low-dimensional manifolds, 
we are able to describe the reaction space in 
terms of only a few parameters (i.e., controlling 
variables). Having determined such low-dimen­
sional manifolds, it is possible to tabulate the 
results. In this way, for given values of the 
controlling variables, all the remaining state vari­
ables are explicitly given. The results then can be 
used to calculate the temporal development of the 
chemical states (by means of solving the chemical 
rate equations using detailed chemistry), which is 
used by a table-lookup, for example in pdf meth­
ods [15]. The computational cost for the calcula­
tion of the low-dimensional manifold and the 
integration of the corresponding rate equations 
are a small expense compared with the subse­
quent use in turbulence calculations. 

The results presented in this article give only 
some examples of the potential of the method. 
Further work includes the implementation of the 
method in laminar and turbulent flame calcula­
tions, that is, the extension to nonhomogeneous 
problems [30]. One important question to be ad­
dressed is the choice of the parametrizing vari­
ables, which (as described above) does not influ­
ence the construction of the manifold, but only 
determines the way of mapping. Finally the nu­
merical method that has been developed to deter­
mine the intrinsic manifold can be refined in 
several respects. 
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APPENDIX A: PARTIAL-EQUILIBRIUM 
AND STEADY-STATE ASSUMPTIONS 

Alternative Bases 

The composition space <I> is an ns-Jimensional 
space. The realizable subset is an (ns - 1)­
dimensional subspace (due to the constraint that 
the mass fractions sum to unity). In the composi­
tion space <I> some distinct vectors have special 
meanings: a movement along a reaction vector Pi 

corresponds to a (possibly physically unrealistic) 
chemical reaction; a movement along an element 
vector p, i corresponds to a change of element 
composition (which is not allowed in chemical 
reactions). If we restrict to a given element com­
position, an (n s - n e)-dimensional linear sub­
space R of the composition space <I> is defined, 
which contains all states that can be changed into 
another by chemical reaction. This subspace R 
shall be called the reaction subspace. It is 
spanned by reaction vectors Pi' 

For further analysis it is useful to describe the 
state not in terms of specific mole numbers, but 
in terms of some other basis. Now, the composi­
tion space can be described in any convenient 
basis that spans the space [11]. For example, take 
a basis formed by n s linearly independent vec­
tors. The change of the basis is given by 

Bs = 4>, (AI) 

where s are the new variables and B is the 
transformation matrix, with the column partition­
ing given by the basis vectors: 

(A2) 
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The inverse of B, B- 1, which is used for the 
transformation, is denoted by 

(A3) 

The system of governing equations (Eq. 9) is 
transformed according to 

s = B- 10(s, h, p) = o. (A4) 

(From now on, if an inverse of a matrix is 
formed, it shall always be assumed that the ma­
trix is not singular.) 

Separation Into Conserved and" Reacting" 
Scalars 

If B is a basis formed by n e element composition 
vectors and n r = n s - n e linearly independent 
reaction vectors, that is, 

the equation system is transformed to 

o 

+), 
(AS) 

(A6) 

Noting that the first ne components of s are the 
coordinates ~-i in the element space E (spanned 
by p,;), while the remaining n r components of s 
are coordinates ri in the reaction space R, 

SI ~I 

sne ~ne (A7) 
sne+1 rl 

sns rn, 
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the equation system reads 

~ = 0, 

r = f( h, P, s) . (AS) 

This means that in this basis we automatically 
separate into conserved and reactive variables, 
that is, ne algebraic equations confine the chemi­
cal reaction to the reaction space, n r differential 
equations describe the movement within the reac­
tion space. 

Partial-Equilibrium Assumption 

In partial-equilibrium schemes a set of (linearly 
independent) reactions is specified, which are as­
sumed to have equal forward and reverse rates. 
To begin, for simplicity, we consider the partial­
equilibrium assumption applied to reaction 1. By 
assumption, the forward and reverse rates of 
reaction 1 balance, and hence the reaction rate is 
zero: 

(A9) 

where b i is the ith row vector of the inverse B - , 
of the transformation matrix. In the nr-dimen­
sional reaction space R, the points r [recall s = 
(~, r)] that satisfy this nonlinear algebraic equa­
tion form an ( n r - 1 )-dimensional nonlinear 
manifold, Pl. More generally if the first n p 

reactions (np =s; n r ) are in partial equilibrium, 
then the np equations Ii = 0, i = 1,2, ... , np 
define an (n r - np)-dimensional manifold Pnp 

in R. 
The idea behind the partial equilibrium as­

sumption is that, except near Pn , the reaction 
• p 

rates Ii' 1= 1,2, ... , np are very large, caus-
ing the composition rapidly to approach the mani­
fold Pn . This can be formalized by defining 
trajectories (from any initial composition) by the 
equations 

r= 

A 

A 

A (AI0) 
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in the limit as A -+ 00. Thus, in the first in­
finitesimal time interval, r n +" r n + 2' . . . , r n 

~ p r 
change infinitesimally, while r" r 2' ... , r n 

change to a point on the manifold Pn , so that 
p 

Ali is finite (i.e., Ii = 0, i = 1,2, ... , np ). 

Steady-State Assumption 

In steady-state assumptions the time derivative of 
the concentrations of n q distinct species is said to 
vanish, the species then obtaining steady states. 
Let the species be ordered so that the first n q are 
in the steady state. 

In this case the transformation matrix B is not 
only formed by the element and the reaction 
vectors, but also by the species vectors ai-the 
natural basis of the composition space: 

(All) 

These are unit vectors that are orthogonal neither 
to the element, nor to the reaction vectors. 

( ,! ... B= ,...., 

I 
';, ) 
(A12) 

The equations for the steady-state assumptions 
read 

i= 1,2, ... ,nq , (A13) 

where b i is the ith row vector of the inverse B - , 
of the transformation matrix. Thus, if nq species 
(nq =s; n r ) are assumed to be in steady state, then 
the nq equations (A 13) define an (n r - n q)­
dimensional manifold Qn in R. 

q 

Combined Partial-Equilibrium and Steady­
State Assumption 

Of course quasi-steady-state and partial-equi­
librium assumptions are usually combined. Thus 
the dimension of the reaction manifold (i.e., the 
subspace in which reaction proceeds) of a system 
with ns species, ne different elements, nq quasi­
steady-state and n p partial eqUilibrium assump­
tions is given by nm = ns - ne - np - n q. As 
a result, if we have, for example, a one-step 
mechanism, this corresponds to a single line in 
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the reaction space, a two-step mechanism corre­
sponds to a surface, and so on. 

APPENDIX B: RESPONSE OF A 
CHEMICAL SYSTEM TO DISTURBANCES 

Let us start from the system equations of a reac­
tion system, written in terms of element and 
reaction vectors. They are given by 

s = B-10(h, P,s) 

o 

o 
=F(h,P,s)= i1(h,P,s) (Bl) 

Now look at the behavior in the neighborhood of 
a point SO in the composition space. Given that 
point, one may ask the following question: Sup­
pose the state is perturbed to s· (e.g., displaced 
by a certain error vector E). How will the system 
respond? If we assume that the equations can be 
linearized in the neighborhood of SO, the equa­
tions can be rewritten as 

(B2) 

where F;, denotes the Jacobian aF / as. With 
E = (s' - so) the equation reads 

de ° - = F;,(s ,h, P)e, 
dt 

e(t = 0) = eO. (B3) 

Suppose that the initial perturbation is given by 
eO• Then e develops according to [20] 

(B4) 

Now let us assume that F;, can be diagonalized. 
The finally presented method outlined in this 
paper, however is not based on this assumption. 
Now, if we define the perturbations in terms of 
the eigenvectors of the Jacobian (PE = e, with P 
as the modal matrix of the Jacobian), we finally 
end up with a very simple equation for the devel­
opment of perturbations where the variables are 
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decoupled, namely: 

i=1,2, ... ,ns ' (B5) 

where Ai denote the eigenvalues of the Jacobian 
and Ei the components in the basis of the eigen­
vectors. 

The significance of this equation system is: 
Suppose, that a chemical reaction system is per­
turbed in direction of the ith eigenvector of the 
Jacobian. Then there will be a response in the 
direction of this eigenvector, the time scale of the 
response given by the corresponding eigenvalue. 
There are three principal possibilities: (1) A( > 0, 
in which case the magnitude of the perturbation 
will increase; (2) A( = 0, in which case the 
magnitude of the perturbation will not change 
with time; and (3) A( < 0, in which case the 
magnitude of the perturbation will relax to zero. 
(A( denotes the real part of the eigenvalue.) 

APPENDIX C: BEHAVIOR OF A 
LINEARIZED SYSTEM 

For an equation system 

dq, 
- = F(q,) 
dt ' 

q,(t = 0) = q,0, (Cl) 

the linearized equations in the neighborhood of 
q,0 are given by 

Defining fP = q, - q,0, the equation reads 

(C3) 

If we assume for simplicity that the Jacobian F", 
is not singular (in this case this corresponds, 
roughly speaking, to a system where all con­
served variables have been eliminated), and mak­
ing use of fP(t = 0) = 0, the solution is simply 
given by 

(C4) 
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Furthermore a change of the basis shall be intro­
duced. If Q is defined as the matrix, whose 
column partition are the basis vectors, the vari­
ables cp are transformed into ~ according to 
Q~ = cp, and the resulting equation system reads 

Performing straightforward operations on this 
equation, and using 

d~1 . Q- 1p(4)0)=_ =~(t=O), 
dt 1=0 

(C6) 

we end up with the equation system 

~(t) = (e N1 - I)N-11f(t = 0), (C7) 

where N = Q- I Pq, Q. Thus the time development 
of the system can be expressed in terms of the 
rates d~ / dt at t = 0, that is, at the time when 
the system has the state 4>0. 

Now let us assume that we have chosen the 
transformation matrix Q such that N is an upper 
triangular matrix, with the eigenvalues appearing 
in the diagonal in decreasing order. (In fact such 
a transformation matrix always exists [21]). Then 

U. MAAS AND S. B. POPE 

the values of the ~ can be obtained recursively by 

i=n,n-1, ... ,2,1 
.f, = a ebn . nl .;, (t = 0) 
¥In n, n YIn , 

n 

~i = L ai,jebij~At = 0), 
}=i 

n 

~I = L aI,jebl,jl~j(t = 0), 
}=l 

(C8) 

where a and b are some coefficients that are not 
specified here. Immediately one can see the con­
sequences for the system if, say, the last m rates 
~i equal zero at the point 4>0 in the composition 
space. Then we end up with an equation system 
where the ~i (i = n - m + 1, ... , n) remain 
zero for all times (for the linear system). Thus, if 
the matrix N is chosen such that the eigenvalues 
of the Jacobian appear in descending order along 
the diagonal, this would mean that if we find all 
the states, where the initial rates Ifi for i = n -
m + 1, ... , n are zero, we obtain the states 
from which reaction proceeds only according to 
slow time scales. Reactions with fast time scales 
would be in equilibrium in such systems. 


