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SUMMARY AND INTRODUCTION 

This paper was written early in 1941 and circulated to the Civil Defence Research 
Committee of the Ministry of Home Security in June of that year. The present writer 
had been told that it might be possible to produce a bomb in which a very large 
amount of energy would be released by nuclear fission-the name atomic bomb had 
not then been used-and the work here described represents his first attempt to form 
an idea of what mechanical effects might be expected if such an explosion could occur. 
In the then common explosive bomb mechanical effects were produced by the sudden 
generation of a large amount of gas at a high temperature in a confined space. The 
practical question which required an answer was: Would similar effects be produced 
if energy could be released in a highly concentrated form unaccompanied by the 
generation of gas? This paper has now been declassified, and though it has been 
superseded by more complete calculations, it seems appropriate to publish it as it was 
first written, without alteration, except for the omission of a few lines, the addition of 
this summary, and a comparison with some more recent experimental work, so that 
the writings of later workers in this field may be appreciated. 

An ideal problem is here discussed. A finite amount of energy is suddenly released 
in an infinitely concentrated form. The motion and pressure of the surrounding air is 
calculated. It is found that a spherical shock wave is propagated outwards whose 
radius R is related to the time t since the explosion started by the equation 

R = S(y) t Eipo *, 

where po is the atmospheric density, E is the energy released and S(y) a calculated 
function of y, the ratio of the specific heats of air. 

The effect of the explosion is to force most of the air within the shock front into a 
thin shell just inside that front. As the front expands, the maximum pressure de- 
creases till, at about 10 atm., the analysis ceases to be accurate. At 20 atm. 45 % of 
the energy has been degraded into heat which is not available for doing work and used 
up in expanding against atmospheric pressure. This leads to the prediction that an 
atomic bomb would be only half as efficient, as a blast-producer, as a high explosive 
releasing the same amount of energy. 

In the ideal problem the maximum pressure is proportional to R-3, and comparison 
with the measured pressures near high explosives, in the range of radii where the two 
might be expected to be comparable, shows that these conclusions are borne out by 
experiment. 
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SIMILARITY ASSUMPTION 

The propagation and decay of a blast wave in air has been studied for the case 
when the maximum excess over atmospheric pressure does not exceed 2 atm. At 
great distances R from the explosion centre the pressure excess decays as in a sound 
wave proportionally to R-1. At points nearer to the centre it decays more rapidly 
than R-1. When the excess pressure is 05 atm., for instance, a logarithmic plot shows 
that it varies as R-19. When the excess pressure is 1 5 atm. the decay is proportional 
to R-2 8. It is difficult to analyze blast waves in air at points near the explosion centre 
because the initial shock wave raises the entropy of the air it traverses by an amount 
which depends on the intensity of the shock wave. The passage of a spherical shock 
wave, therefore, leaves the air in a state in which the entropy decreases radially so 
that after its passage, when the air has returned to atmospheric pressure, the air 
temperature decreases with increasing distance from the site of the explosion. For 
this reason the density is not a single-valued function of the pressure in a blast wave. 
After the passage of the blast wave, the relationship between pressure and density for 
any given particle of air is simply the adiabatic one corresponding with the entropy 
with which that particle was endowed by the shock wave during its passage past it. 
For this reason it is in general necessary to use a form of analysis in which the initial 
position of each particle is retained as one of the variables. This introduces great 
complexity and, in general, solutions can only be derived by using step-by-step 
numerical integration. On the other hand, the great simplicity which has been intro- 
duced into two analogous problems, namely, the spherical detonation wave (Taylor 
I950) and the air wave surrounding a uniformly expanding sphere (Taylor 1946), by 
assuming that the disturbance is similar at all times, merely increasing its linear 
dimensions with increasing time from initiation, gives encouragement to an attempt 
to apply similar principles to the blast wave produced by a very intense explosion in 
a very small volume. 

It is clear that the type of similarity which proved to be possible in the two above- 
mentioned problems cannot apply to a blast wave because in the latter case the 
intensity must decrease with increasing distance while the total energy remains 
constant. In the former the energy associated with the motion increased proportion- 
ally to the cube of the radius while the pressure and velocity at corresponding points 
was independent of time. 

The appropriate similarity assumptions for an expanding blast wave of constant 
total energy are 

pressure, p/po = y = R-3fi, (1) 

density, p/po = /f, (2) 

radial velocity, u = R-01 (3) 

where R is the radius of the shock wave forming the outer edge of the disturbance, 

po and po are the pressure and density of the undisturbed atmosphere. If r is the radial 
co-ordinate, y = rlR and fl, 01 and 2/ are functions of y. It is found that these 
assumptions are consistent with the equations of motion and continuity and with the 
equation of state of a perfect gas. 
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The equation of motion is au au -Po ay 
t r p ar (4 

Substituting from (1), (2) and (3) in (4) and writingfl, f Sj for a f1, a- 

dR -G01+ lqol) d- t + -(1fl+ po 0.= (5) 

This can be satisfied if = AR-, (6) 

where A is a constant, and 

-A(1?0y+,qo)?+q1 +p L-= 0. (7) 
The equation of continuity is 

ap rp (8) 

Substituting from (1), (2), (3) and (6), (8) becomes 

- kq71r'+ #'o + 7f 0 + 2 01 )= 0. (9) 

The equation of state for a perfect gas is 

t + U ar (PP-Y) 0 (10) 

where y is the ratio of specific heats. 
Substituting from (1), (2), (3) and (6), (10) becomes 

A(3f1+Yqfl)+rfl f1(-Ay+?1)-q5lfl= 0. (11) 

The equations (7), (9) and (11) may be reduced to a non-dimensional form by 
substituting f=fja2/A2' (12) 

0 = 01/A, (13) 

where a is the velocity of sound in air so that a2 = ypo/po. The resulting equations 
which contain only one parameter, namely, y, are 

95) lf-30, (7a) 

Vk' _ qS+?2q5/y (9a) 

3f+yf '+ + f(-+q5)-5f'=0O. (O. a) 

Eliminating 3b' from (lla) by means of (7a) and (9a) the equation for calculatingf' 
whenf, 4, ' nd y are given is 

f '{(q 
- 

0)2 _f1/fl= f{-3yq+0(3+1 )-2y22/y}e. (14) 
I I-2 
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Whenf' has been found from (14), q' can be calculated from (7a) and hence 3f' from 
(9 a). Thus if for any value of y, f, q and Vr are known their values can be computed 
step-by-step for other values of . 

SHOCK-WAVE CONDITIONS 

The conditions at the shock wave y = 1 are given by the Rankine-Hugoniot 
relations which may be reduced to the form 

Pi _ Y-l+(y+l)Y (15 
Po Y+1+(y-l)Yl' ) 

U21 
-a-= y{Y-l?(y?l)Y-}, (16) 

Uy-1 (y?-1)y 17 

where Pi, Ui and Yi represent the values of p, u and y immediately behind the shock 
wave and U = dR/dT is the radial velocity of the shock wave. 

These conditions cannot be satisfied consistently with the similarity assumptions 

represented by (1), (2) and (3). On the other hand, when Yi is large so that the pressure 

is high compared with atmospheric pressure, (15), (16) and (17) assume the approxi- 

mate asymptotic forms Pi 1y+ 

Po -' 
(16a) 

U2 2y 
a2=; +lZl (16a) 

u _ 2 (17a) 
U y+l, 

These approximate boundary conditions are consistent with (1), (2), (3) and (6); in 

fact (15 a) yields, for the conditions at y = 1, 

7 - 1'+ (15b) 

(16a) yields f = 1/+, (16b) 

and (17 a) yields = 21 (17 b) 

ENERGY 

The total energy E of the disturbance may be regarded as consisting of two parts, 

the kinetic energy rR 

K.E. = 4J pu2r2 dr, 

and the heat energy H.E. = 474 p2 ldr. 
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In terms of the variables f, , r and I 

E 4= TA2 pI i/rq52y 2dy +1 fj2d E4 J Po l\a2Q(yP I0' ay,jj} 

or since Po = a2po/y, E = BpO A2, where B is a function of y only whose value is 

B = 27 fo2y2&d? + - 4 jfy2 dd. (18) 

Since the two integrals in (18) are both functions of y only it seems that for a given 
value of y, A2 is simply proportional to E!po. 

NUMERICAL SOLUTION FORy =1-4 

When y = 1 4 the boundary values off, q5 and Vr at y = 1 are from (15a), (16a). 
(1 7a), 7, A and 6. Values off, 0 and ~f were calculated from ?y 1 0 to ql = 0 5, using 
intervals of 0 02 in . Starting each step with values off ', O5', ?/r', f, 0 and ?r found in 
previous steps, values of f', S' and 3b' at the end of the interval were predicted by 
assuming that the previous two values form a geometrical progression with the pre- 
dicted one; thus the (s + 1)th term, fS1 in a series of values of f' was taken as 

fs-+ = (fS)2/f_1. With this assumed value the mean value of f' in the sth interval was 
taken as 1(fgs - +fs) and the increment in f was taken as (0 02) (@) (fs +i +fs). The 
values of fs+1, qS'+ and /s+j were then calculated from formulae (14), (7a) and (9 a). 
If they differed appreciably from the predicted values a second approximation was 
worked out, replacing the estimated values offs'? by this new calculated value. In 
the early stages of the calculation neary = 1 two or three approximations were made, 
but in the later stages the estimated value was so close to the calculated one that the 
value off' calculated in this first approximation was used directly in the next stage. 

The results are given in table 1 and are shown in the curves of figure 1. These 
curves and also table 1 show three striking features: (a) the 0 curve rapidly settles 
down to a curve which is very nearly a straight line through the origin, (b) the density 
curve i/ rapidly approaches the axis Vf = 0, in fact at y = 05 the density is only 0*007 
of the density of the undisturbed atmosphere, (c) the pressure becomes practically 
constant and equal to 0O436/1P167 = 0 37 of the maximum pressure. These facts 
suggest that the solution tends to a limiting form as y decreases in which 0 = cy, 

= c = constant, f = 0 436, f', Vf and Vf ' become small. Substituting for - from yif 
(7a), (14) becomes 

(q - 0) 2= yo'( - 0) + -3-y-3,1+(3+1 )0- #'(9 f 2 (19) 

Dividing by y- 4 (19) becomes 

' 
(y-0)=y5o, 3+270 (20) 

If the left-hand side which containsf'/f be neglected the approximate solution of (20) 
for which 0 vanishes at y =0 is / (21) 
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FIGuRE 1. - -, curves f ancd lf (step-by-step calculation); -- + -, curve f (approximate 
formulae). In the other curves the small dots represent the steps of the calculations, the 
larger symnbols represent approximate formulae for: A, curve 0; 0, curve 0 -,I/^ 
o, curve ?If 

TABLE 1. STEP-BY-STEP CALCULATION FOR y= 14 

1/ f 0 
1.00 1-167 0-833 6.000 
0*98 0*949 0*798 4*000 
0*96 0*808 0*767 2-808 
0*94 0*711 0*737 2-052 
0*92 0*643 0*711 1P534 
0 90 0*593 0*687 1-177 
0*88 0*556 0*665 0.919 
0*86 0*528 0-644 0-727 
0*84 0*507 0-625 0-578 
0*82 0*491 0*607 0-462 
0-80 0*478 0.590 0 370 
0-78 0*468 0*573 0-297 
0-76 0*461 0*557 0-239 
0-74 0-455 0-542 0d191 
0-72 0-450 0*527 0-152 
0*70 0*447 0*513 0*120 
0*68 0-444 0-498 0-095 
0-66 0-442 0-484 0-074 
0-64 0-440 0-470 0-058 
0-62 0-439 0*456 0-044 
0-60 0-438 0-443 0-034 
0-58 0*438 0*428 0-026 
0*56 0-437 0-415 0-019 
0-54 0-437 0-402 0-014 
0-52 0-437 0*389 0-010 
0A0 0-436 0 375 0 007 
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The line 0- = /y is shown in figure 1. It will be seen that the points calculated by the 
step-by-step method nearly run into this line. The difference appears to be due to the 
accumulation of errors in calculation. 

APPROXIMATE FORMULAE 

The fact that the qS curve seems to leave the straight line 0 q1y rather rapidly 
after remaining close to it over the range y = 0 to q=0 5 suggests that an approxi- 
mate set of formulae might be found assuming 

5=-9117 y/y+ojy(22) 

where n is a positive number which may be expected to be more than, say, 3 or 4. If 
this formula applies aty = 1, 

1 2 y-l I 
+1 o a 2( +l); (23) 

inserting 0S = y/y + oyn, q' = n/y+nc'yn-l in (20), the value of f'/f at y 1 is 
f '/f= y(n + 2) (y + 1)/(y-1 ). From (14) and ( 15 b), (l 6 b), (I 7 b) the true value of 

f'/f at =I1 is 2y2+ 7,y -3 . Equating these two forms, 
Y- 1 ~utn 

7y -1 
n - l (24) 

The values of oa and n have now been determined to give the correct values of f'/f; 
0 and qS' at y = 1, i/' is determined by (9a) so that all the six correct values off, qS, / 
f', O', /' are consistent with (22) at =1. Substituting for qS from (22) in (20), 

f (n + 2) oy2yq-2 
f 1n1 ~~~~~~~~~~(25) f y -yaqocn-1 *( 

The integral of (25) which gives the correct value of f at y = 1 is 

logf = log 1'l oY2+7Y 3iog (Y+lYfln-1(26) 

At q = 0 5 this gives f = 0457 when y = 1P4. The value calculated by the step-by- 
step integration is 0-436, a difference of 5 %. 

The approximate form for #/ might be found by inserting the approximate forms 
for qS and qS' in (9 a). Thus 

log ~f = log Y+ Ij3 + (n + 2) oayVn1 d.(27) 
'Y 1 Jr -7 1) Iq yqn (7 

Integrating this and substituting for ac from (23), 

log # = log'Yl+ 31logy-2 (;'+)log()' lY). (28) 

When y is small this formula gives 

f = Dy3l(y-1), (29) 
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where log D = log + 2 (y + 5) log (+) (30) 

When y = 1P4 (30) gives D = 1P76 so that 

r = 176y75. (29a) 

At yi 0 5 this gives r = 0 0097; the step-by-step calculation gives i/ = 0 0073. 
At y = 08 formula (28) gives #f = 0-387, while table 1 gives #f = 0 370. At y- 0 9 
formula (28) gives Vf = 1 24, while the step-by-step solution gives 1P18. Some points 
calculated by the approximate formulae are shown in figure 1. 

In the central region of the disturbance the density decreases proportionally to 
r3/(y-1); the fact that the pressure is nearly constant there means that the temperature 
increases proportionally to r-3/(-1). At first sight it might be supposed that these 
very high temperatures involve a high concentration of energy near the centre. This 
is not the case, however, for the energy per unit volume of a gas is simply p/(y - 1) so 
that the distribution of energy is uniform. 

Values off, qS and Vr for y - calculated by the approximate formulae are given in 
table 2. 

TABLE 2. APPROXIMATE CALCULATION Y= 1*666 

y f 0 fl 
1l00 1*250 0*750 4l00 
0*95 0*892 0*680 2*30 
0*90 0*694 0*620 1*14 
0*80 0*519 0*519 0*63 
0*70 0*425 0*445 0*29 
0*50 0-379 0*300 0-05 
0*00 0*344 0*000 0l00 

BLAST WAVE EXPRESSED IN TERMS OF THE ENERGY OF THE EXPLOSION 

It has been seen in (18) that E/poA2 is a function of y only. Evaluating the in- 
tegrals in (18) for the case for y = 1P4, and using the step-by-step calculations, it is 
found that 

fY 
202 f d =- 1085 and fy2fdy = 04187. 

The kinetic energy of the disturbance is therefore 

K.E. = 27T(04185)pOA2 = 1164poA2, (31) 

while the heat energy is 

? H.E. =( -4)(O4) (0 187)pOA2 = 4196poA2; (32) 

the total energy is t herefore 
E = 5*36poA2. (33) 



Formation of a blast wave by a very intense explosion. I 167 

PRESSURE 

The pressure p at any point is 

pR-3fA2 = R-3fPOA -= 0133R-3Ef. (34) 

The maximum pressure at any distance corresponds withf = 1P166 at r = R. This is 
therefore Pmax. = 04155R-3 E. (35) 

VELOCITY OF AIR AND SHOCK WAVE 

The velocity u of the gas at any point is 

u = R-iAq! = R-AEi(Bpo)-14. (36) 

The velocity of radial expansion of the disturbance is, from (6), 

dR = AR-i = R-Ei(Bpo)-, (37) dt 

so that, if t is the time since the beginning of the explosion, 

t = 25R(Bpo)1E-i = 0926RIpLE-+, (38) 
when y = 1F4. 

The formulae (34) to (38) show some interesting features. Though the pressure 
wave is conveyed outwards entirely by the air the magnitude of the pressure depends 
only on ER-3 and not on the atmospheric density po. The time scale, however, is 
proportional to pi. It is of interest to calculate the pressure-time relationship for 
a fixed point, i.e. the pressure to which a fixed object would be subjected as the blast 
wave passed over it. If to is the time since initiation taken for the wave to reach 
radius Ro the pressure at time t at radius Ro is given by 

p (Ro)3 f 
Pi B (39)1,=1 

where Pi is the pressure in the shock wave as it passed over radius Ro at the time to, 
R is the radius of the shock wave at time t and y1 = RO/R. [f],=1 is the maximum 
value of f, namely, 1P166 when y = 1P4. y is related to t/to through (38) so that 

1 
to\W y = (to/t)f and = [ 1(t [f]qa1i* (40) 

Values of p/P1 calculated by (40) for y = 1P4 are shown in figure 2. 

[0 l 

Q 05 _ 

0 2 0 4 0 6 0 
t/to 

FIGURE 2. Pressure-time curve at a fixed point. 



168 Sir Geoffrey Taylor 

TEMPERAT-URE 

The temperature T at any point is related to the pressure and density by the 
relationship T ppo 1- 33ER-3 

~~i1~ PoP Po~ when y =b4. (41) To PoP Po Wf 

Sincef tends to a uniform value 0*436 in the central region (r < -R) and */ tends to the 
value 3f = 1.76V7f5, T tends to the value 

T ER-3 (0.133) (0.436) 5_ (42) 

TO P0 1-76 Po .3~E~-~ 

Thus the temperature near the centre is very high; for instance, when the wave has 
expanded to such a distance that the pressure in the central region is reduced to 
atmospheric pressure, po = (0.133) (0.436) ER-3, then (42) gives T/To = 75/1-76 
and at q = 0 5, r75 = 181 so that T/I0 = 103. If To = 2730, T = 27,0000. The 
temperature left behind by the blast wave is therefore very high, but the energy 
density is not high because the density of the gas is correspondingly low. 

HEAT ENERGY LEFT IN THE AIR AFTER IT HAS RETURNED TO ATMOSPHERIC PRESSURE 

The energy available for doing mechanical work is less than the total heat energy of 
the air. The heated air left behind by the shock wave can in fact only do mechanical 
work by expanding down to atmospheric pressure, whereas to convert the whole of 
the heat energy into mechanical work by adiabatic expansion the air would have to be 
expanded to an infinite extent till the pressure was zero. After the blast wave has 
been propagated away and the air has returned to atmospheric pressure it is left at 
a temperature T1, which is greater than To, the atmospheric temperature. The energy 
required to raise the temperature of air from To to T1 is therefore left in the atmosphere 
in a form in which it is not available for doing mechanical work directly on the 
surrounding atmosphere. This energy, the total amount of which will be denoted by 
E1, is wasted as a blast-wave producer. 

The energy so wasted at any stage of the disturbance can be calculated by finding 
the temperature T1 to which each element of the blast wave would be reduced if it 
were expanded adiabatically to atmospheric pressure. If T is the temperature of an 
element of the blast wave 

T i p V-V)lr =A2 fR-3 (Y-1)/'Y 

Also zT =ppo -- 
f 

A2 R-3, Also 
~~~~~~To pop ~fa2 

T,1 flly ZA2R-3 1/y 
hence = fb (A2 (43) 

The total heat energy per unit mass of air at temperature T1 is 

T 
x (gas constant) = ( 1)po0 
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The increase in heat energy per unit mass over that which the air contained before the 

passage of the disturbance is therefore P (7 I). The increase per unit 

volume of gas within the disturbed sphere is therefore Po (, _1) . Hence from (43) 
,y -1 To 

the total energy wasted when -the sphere has expanded to radius B is 

E = 4i7TR3 PoJ{f (A21i?3) 117 } 2dy. (44) 

This expression may conveniently be reduced to non-dimensional form by dividing 
by the total energy E of the explosion which is related to A by the formula (18). 
After inserting a2/y for po/po, this gives 

El 47B ( A2 A-")f(3 y)l'ff/2dq f ; 2d ] (45) 

437po R3 is the total mass of air in the sphere of radius R. This is also 47TR3p4 Vf2 dy, 

so that 1 
Jfbq2dy =-. (46) 

The quantity A2R-3/a2 is related to the maximum pressure Pi at the shock wave by 
the equation Pi A21-3 

Yi p0 2a2 Y1- - - = t2 [f In== 

where Yi is the pressure in the shock wave expressed in atmospheres. (46) therefore 
reduces to El BLyi/7 [ ]ff dy - 2d j(7 

For y = 1P4 numerical integration gives 

B = 5-36 (see (18)), ft=1 = P166, ffl1h12dq = 0219. 

(47) reduces therefore to E I 
-1- = l-[O-958yI1,,4-1P63]. (48) 

Some values.of E1/E are given in the second line of table 3. 
It is clear that E1/E must continually increase as R increases, and Yi decreases 

because the contribution toEl due to the air enclosed in the shock-wave surface when 
its radius is R2, say, remains unchanged when this air subsequently expands. A 
further positive contribution to E1 is made by each subsequent layer of air included 

TABLE 3 

y, (atm. at shock wave) 10,000 1,000 100 50 20 10* 5* 
E1/E (proportion of 0.069 0-132 0.240 0.281 0.325 0.333* 0.28* 

energy wasted) 
(El+E2)/E 0*096 0*189 0 337 0 393 0 455 - 

* Formulae inaccurate when Yi < 10. 
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within the disturbance. The fact that formula (48) gives a value of E1/E which in- 
creases till yi is reduced to 10 and then subsequently decreases is due to the in- 

accuracy of the approximate boundary conditions (I 5a), (IG6a) and (17 a), which are 
used to replace the true boundary conditions (15), (16) and (17). 

When y = I -4 and y1 = 1 0 the true value of pl/p0 is 3 -8 instead of 6 -0 as is assumed, 
the true value of U2/a2 iS8 87 instead of 8-6 and the true value of n,/ U is 0 74 instead of 
0-83. 

When yi = 5 the errors are much larger, niamely, pl/po is 2-8 inistead of 6*O, U2/a2 iS 

4*4 instead of 4-3, and ut1/U is 0-64 instead of 0.83. The proportion of the energy 
wasted, namely, E1/E, is shown as a function of yi in figure 3, yi being plotted on 
a logarithmic scale. 

o .5 

0-4- 

t0-3 

0 10O 2-0 3-0 4-0 
log10 Yi 

FiGURE 3. Heavy line, (E + E2)/E; thin line EIIE. (E + E2)/E is the proportion of the 
initial energy which is no longer available for doing work in propagation. E2/E is the 
work done by heated air expanding against atmospheric pressure (see note added October 
1949 (p. 172)). 

It will be seen that the limiting value of E1/E is certainly greater than 0-32, its 
value for yi = 20. It is not possible to find out how much greater without tracing the 

development of the blast wave using laborious step-by-step methods fdr values of y, 
less than, say, 10 or 20. 

COMPARISON WIETH HIGH EXPLOSIVES 

The range within which any comparison between the foregoing theory and the 
blast waves close to actual high explosives can be made is severely limited. In the 
first place the condition that the initial disturbance is so concentrated that the mass 
of the material in which the energy is originally concentrated is small compared with 
the mass of the air involved in the disturbance at any time limits the comparable 
condition during a real explosion to one in which the whole mass of air involved is 
several times that of the explosive. In the second place the modified form of the 
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shock-wave condition used in the analysis is only nearly correct when the rise in 
pressure at the shock-wave front is several-say at least 5 or 10-atmospheres. In a 
real explosive this limits the range of radii of shock wave over which comparison could 
be made to narrow limits. Thus with 10 lb. of C.E.* the radius R at which the weight 
of explosive is equal to that of the air in the blast wave is 3 ft., while at 3-8 ft. the air is 
only double the weight of the explosive. The pressure in the blast wave at a radius of 
6 ft. was found to be 9 atm., while at 8 ft. it was about 5 atm. It seems, therefore, that 
in this case the range in which approximate agreement with the present theory could 
be expected only extends from 3 8 to 6ft. from the 1O lb. charge. 

Taking the energy released on exploding C.E. to be 0-95kcal./g. the energy 
released when 1O lb. is exploded is 1-8 x 1014 ergs. If this energy had been released 
instantaneously at a point as in the foregoing calculations the maximum pressure at 
distance R given by (35) is 

Pmax.R3 = (0 155) (1 80 x 1014) = 2-79 x 1013 ergs. (49) 
Expressed in terms of atmospheres Pmax. is identical with Y1* If R is expressed in 

feet, (49) becomes 2-79 x 103 
YIR 3 = (30.45)3 x 106 ( ) 

The line representing this relationship on a logarithmic scale is shown in figure 4. 

I. 0 _ 

+8 

08 +6 R=7 ft. 
_ ~+5 range for 

comparison 
YIR'=990 4 ~~~~~~~~R= 3-8 ft. 

0 

?2 

0-6 1.0 14 1[8 
log1o Yi (atm.) 

FIGURE 4. Blast pressures near 10 lb. charge of C.E. compared with calculated blast pressures 
due to instantaneous release of energy of 10 lb. C.E. at a point. The numbers against the 
points on the curve give distances in feet. 

Though no suitable pressure measurements have been made, the maximum 
pressure in the blast from 1O lb. of C.E. has been found indirectly by observing the 
velocity of expansion of the luminous zone and, at greater radii, the blast-wave front. 
These values taken from a curve given in a report on some experiments made by the 
Road Research Laboratory are given in table 4. The observed values of U in ft./sec. 
given in column 2 of this table and the values of Yi (in atmospheres) found from the 

* C.E. is the name by which a certain high explosive used in many experiments by the 
Ministry of Home Security was known. 
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shock-wave formulae are given in column 3, where they are described as observed 
values though they were not observed directly. The 'observed' values are shown in 
figure 4. The values of Yi calculated from (50) are given in column 4. 

TABLE 4 

Yi (atm.) y1 calculated for 
observed with concentrated explosion 

R (ft.) U (ft./sec.) C.E. by (50) 
8 2350 6*2 
6 3100 9*3 4.6a 
5 3800 14-0 79 crange of 
4 4820 22*6 155J comparison 
3 6200 37.5 
2 8540 71-8 

Though the observed values are higher than those calculated, it will be noticed that 
in the range of radii 3-8 to 6 ft., in which comparison can be made, the observed curve 
is nearly parallel to the theoretical line y R3 990. In this range, therefore, the 
intensity of the shock wave varies nearly as the inverse cube of the distance from the 
explosion. The fact that the observed values are about twice as great as those calcu- 
lated on the assumption that the energy is emitted instantaneously at a point may 

perhaps be due to the fact that the measurements used in table 4 correspond with 
conditions on the central plane perpendicular to the axis of symmetry of the 
cylindrical charge used. The velocity of propagation of the luminous zone is greater 
on this plane and on the axis of symmetry than in other radial directions so that the 
pressures deduced in column 3 of table 4 are greater than the mean pressures at the 
corresponding radii. 

On the other hand, it has been seen that by the time the maximum pressure has 
fallen to 20 atm., 32% of the energy has been left behind in the neighbourhood of the 
concentrated explosive source, raising the air temperature there to very high values. 
The burnt gases of a real high explosive are at a very much lower temperature even 
while they are at the high pressure of the detonation wave. Their temperature is still 
lower when they have expanded adiabatically to atmospheric pressure, so that little 
heat energy is left in them. To this extent, therefore, a real high explosive may be 
expected to be more efficient as a blast producer than the theoretical infinitely con- 
centrated source here considered. 

Note added, October 1949. The data on which the comparison was based between 
the pressures deduced by theory and those observed near detonating explosives were 
obtained in 1940. More recent data obtained at the Road Research Laboratory 
using a mixture of the two explosives R.D.X. and T.N.T. have been given by Dr 

Marley. These are given in table 5, which shows the values of U observed for various 

TABLE 5. PRESSURE Y1Po AT DISTANCE R FROM EXPLOSION OF WEIGHT W OF 

T.N.T.-R.D.X. MIXTURE 

R/W- (ft./lb.-) 0*5 1.0 1.5 2-0 2*5 3*0 3.5 
U (thousands ft./sec.) 143 11.0 8.4 6*6 5-1 4 0 3.3 

y, (atm.) 198 117 68-3 42.0 25*1 15*4 10*5 
R/EIx 104(cm./ergsl) 5.39 10 8 16-2 21-5 27-0 32.4 37.8 
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values of R/WI. R the distance from the explosive is expressed in feet and W its 
weight in pounds. The third line in table 5 shows the result of deducing Yi from U 
using y = 1-4 in (16) and a = 1100ft./sec. in (16). 

For comparison with the concentrated point-source explosion, the value of RE-, 
expressed in cm. (erg.)-+ is found by multiplying the figures in line 1, table 5, by 

(354)V (1200 x42 107) = 1-078x 1o-3. The first factor converts ft. (lb.)-} to 

cm. (g.)-i, and the second replaces 1 g. by the equivalent energy released by this 
explosive, namely, 1200 cal. The values of RE-i are given in line 4, table 5. In 
figure 5 values of log10 Yi are plotted against log10 RE-1, and the theoretical values 
for a point source of the same energy as the chemical explosive are plotted in the 
same diagram. Comparing figures 4 and 5 it seems that the more recent shock-wave 
velocity results are qualitatively similar to the older ones in their relation to the 
point-source theory. The range of values of Yi for which comparison between theory 
and observation might be significant, is marked in figure 5. 
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FIGuR.E 5. Blast pressures near a chemical explosive (R.D.X.+T.N.T.) compared with 
theoretical pressure for conceiutrated explosion with same release of energy. Heavy line 
(upper part) is taken from shock-wave velocity measurements. Heavy line (lower part) is 
from piezo-electric crystals. Thin line, y, = 0O 155E7(poR3). The figures against the points 
represent the ratio of the mass of the air within the shock wave to the mass of the explosive. 

It will be seen that the chemical explosive is a more efficient blast producer than 
a point source of the same energy. The ratio of the pressures in the range of com- 
parison is about 3 to 1. This is more than might be expected in view of the calculation 
of E1/E as a function of yi which is given in table 3. E1 is the heat energy which 
is unavailable for doing mechanical work after expanding to pressure po Of the 
remaining energy, E - a part E2 is used in doing work against atmospheric 
pressure during the expansion of the heated air. The remaining energy, namely, 
E-1 -E2, is available for propagating the blast wave. 
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To find E2, the work done by unit volume of the gas at radius yR in expanding to 

atmospheric pressure is Tp l) Po- From (43) 

T, A2 \(1-r)Ir p A2R-3 
-1 = - R-3f) and p-f a= T- a2 Po f 

aPo 

hence E2 47TR34 {(R-3fA2) 1} 2dq, (51) 

A 2 _ __ _ 

but =- , so that 
a2]?3 (fX=1 

E2 4iR3pO[ YF ( 1 f 1fy'r2d q2d5 
E 

- 
E 4=1 dq - dq ~~~~~~~~(52) 

The first integral has already been calculated and found to be 0-219 when y = 1-4 
(see (47) and (48)). Substituting for Prax. from (35), 

E2 = 4__(_ _155) [_ (1 _ 11YY 1 (53) 

Values of (E2 + E1)/E have been added as a third line in table 3 and a corresponding 
curve to figure 3. 
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