
AME 499 - Undergraduate Research

A Study of the Mixing Induced by Two Ideal Vortices

Determining the Most Effective Vortex Configuration

For a Defined Measurement Quantifying Effectiveness

David M. Belczyk

Department of Aerospace and Mechanical Engineering

University of Notre Dame

Notre Dame, Indiana 46556-5637

dbelczyk@nd.edu

under the direction of: Dr. Joseph M. Powers and Dr. Mihir Sen

May 9, 2003

Abstract

Various configurations of a three-dimensional fluid system with a velocity field induced

by two ideal line vortices were studied, with the purpose of determining the most effective

configuration of those vortices for mixing. The distance, as well as the angle between the

vortices, was varied. Vortices were assumed to be of equal strength. A means of quantifying

the mixing capability of any given two-vortex system was estimated to be the change in

surface area with respect to time of a constant volume sphere allowed to deform under the

influence of the vortices. The center of the sphere was always located half-way between the

vortices. The induced velocity of a particle was determined numerically. It was found that

particle motion was periodic on the surface of a sphere when the two vortices intersected one

another. When there was a distance between the vortices, motion was non-periodic. The

system that caused the greatest change in surface area with respect to time of a constant

volume sphere was one that had a distance between the vortices equal to the diameter of the

sphere with the vortices at an angle of π/4 to one another. In this limited sense, this was

the most effective mixing system.



1 Introduction

1.1 Vortices

The system studied was composed of two fixed, ideal line vortices that each induced a

counter-clockwise velocity about themselves. A line vortex is, in geometrical terms, a line in

three-dimensional space that induces this surrounding velocity [1]. This velocity is known

as a flow field because it can be represented by a dimensional distribution of vectors acting

on the particle in space. The equation governing the flow field around an ideal vortex is

a solution to what is known as the Laplace equation. Deriving this equation shows crucial

assumptions in determining the flow field that was built into the numerical simulation. Eq.

(1) is the linear momentum equation for compressible, viscous flow,

ρ

[
∂v

∂t
+ v · ∇v

]
= ρf −∇p + ∇ · τ , (1)

where ρ is fluid density, v is fluid velocity, f is the applied body force, p is the pressure, and

τ is the stress tensor. By taking the curl of Eq. (1), defining f as the gradient of a potential

function and applying the vector identities that ∇×∇x = 0 and ∇ · (∇× x) = 0, Eq. (2)

is obtained,

∂ω

∂t
+ v · ∇ω − ω · ∇v + ω∇ · v =

1

ρ
∇× (∇ · τ ) , (2)

where the vorticity, ω is defined as ω = ∇× v. By defining the fluid as incompressible, it

is possible to say ∇ · v = 0, a condition of incompressibility. Also, because it is known that,

even in steady flow, an individual fluid particle can change its velocity as well as its position

in relation to time, we employ the natural derrivative in Eq. (3) with Eq. (2) to give Eq.

(4),

d

dt
=

∂

∂t
+ v · ∇, (3)
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dω

dt
= ω · ∇v +

1

ρ
∇× (∇ · τ ) . (4)

For incompressible, Newtonian flow, the last term in Eq. (4) can be simplified to give Eq.

(5) [8],

dω

dt
= ω · ∇v + ν∇2ω, (5)

where ν is the kinematic viscosity. Note from this equation that if initially ω = 0, then

the vorticity will remain zero for all time if the flow is inviscid. If it is assumed that this is

the case, then it is known that ∇ × v = 0, a condition for irrotational flow. If a velocity

potential function φ is defined, such that v = ∇× φ, and remembering that ∇ · v = 0, Eq.

(6), Laplace’s equation, follows,

∇2φ = 0. (6)

Because of the assumptions made, Laplace’s equation must be satisfied for incompressible,

irrotational flow, and thus, any solution to this equation necessarily meets these criteria.

Eq. (6) is a second order, linear, partial differential equation. The linearity of it allows that

superimposed flows that satisfy Eq. (6) have additive velocity terms [2]. In other words,

when a fluid particle is under the induced velocity of two incompressible, irrotational flows,

the velocity in any direction is the sum of the velocities induced by each. This an important

characteristic to a multiple vortex system like the ones simulated here because, as is shown

next, the flow field is a solution of Laplace’s equation.

The z-component of the vorticity vector in cylindrical coordinates is given here without

proof in Eq. (7) [2],

ωz =
1

2

[
∂uθ

∂r
+

1

r

(
uθ − ∂ur

∂θ

)]
, (7)

where uθ is the angular velocity around the line of the vortex and ur is the velocity along

the perpendicular distance r, either towards or away from the vortex. By setting ωz equal
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to zero in Eq. (7) for the condition of irrotationality and setting ur = 0 because a vortex

only induces a rotational velocity about itself, Eq. (8) is obtained.

∂uθ

∂r
+

uθ

r
= 0 (8)

Because it is known that the velocity induced on a particle around an ideal vortex is only

a function of the particle’s perpindicular distance from the line of the vortex, it can be said

that uθ is a function of r but not of θ. As a result, the derivative in Eq. (8) becomes an

ordinary derivative. Solving Eq. (8) gives Eq. (9),

uθ =
k

r
, (9)

where k is a constant for the strength of the vortex which is equal to Γ/2π. Here, Γ is

measured in units of length squared per time, and r in units of length. Thus, the induced

flow field surrounding a line vortex is Eq. (10),

uθ =
Γ

2πr
, (10)

where r is the perpendicular distance between a fluid particle and the line center of the

vortex. Eq. (10) is a solution to the Laplace equation [3], meaning that the flow around the

vortex is incompressible, irrotational and additive. The flow will remain irrotational for all

time. In addition, it can be shown that Bernoulli’s equation is applicable anywhere within

the flow field of a vortex system [1].

It should be noted that actual vortices have a viscous central core that affects the velocity

surrounding its center. For the purposes of this analysis, however, the line vortex is an

idealized version of the real with no core. Particles at the center of a line vortex are at a

mathematical singularity where velocity is infinite, and these particles never leave the line.
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1.2 Chaos

One question regarding the flows generated in the two vortex system was whether or not

they would be periodic. Periodicity is the tendency for any particular dynamic system to

behave such that it predictably repeats itself. To illustrate this point, one could imagine

the periodicity of a sine wave describing the motion of a frictionless pendulum. Chaos is

a developing theory which seeks to explain another phenomenon known as non-periodicity,

which is the tendency for a system’s behavior to never repeat. It was introduced at the

beginning of the 1960’s and has many applications in nearly all parts of nature [4]. In this

case, however, it is most relevant in showing that non-linear dynamic systems, such as this

two-vortex system, are not always predictable or periodic.

Non-linear systems can behave stably, in that small perturbations can be dampened.

Sometimes perturbations cause a magnification of the effect of a restoring term in the sys-

tem. The same system, however, if driven differently by changing parameters, can become

unpredictable. This type of unpredictable system is known as chaotic. An example of a

discrete, non-linear system that behaves this way is given in Eq. (11),

xn+1 = cxn(1 − xn), (11)

where c is a constant parameter that drives the system. Fig. 1 and Fig. 2 show iterative

solutions of Eq. (11). Fig. 1 shows the behavior of the system for one particular value of

c. For this value, the system stabilized and came to equilibrium. Any perturbation, in the

form of a change of the initial x value, does not change the stabilizing trend of the system

or its ultimate equilibrium value.

In Fig. 2, the same equation was solved iteratively, only this time with a different value

for c. The system is chaotic. It will never come to rest at equilibrium and is unpredictable.

The unpredictable nature of the system is due to a condition known as sensitive depen-

dence on initial conditions [4]. This means that tiny perturbations change the behavior of

the system in the long run. To demonstrate this point, Fig. 3 shows two iterative solutions
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Figure 1: Solution to Eq. (11) with c = 2.6.

of Eq. (11) with a change in initial conditions. The two plots initially appear to be the

same, but in the long run, the non-linearity of the equation magnifies the tiny perturbation.

The plots eventually become two completely different systems.

A final point to be understood regarding chaos theory is that of the strange attractor

[4]. Systems that behave chaotically will not map to phase space showing any type of closed

loop. In other words, if the system is solved for an infinite amount of time, it will never

return to the point at which it started or to any point that has already been a solution.

Sometimes, however, regardless of initial conditions, a solution to a chaotic system plotted

in phase space will consistently form a similar pattern, although it is never exactly the same.

The solution will never repeat, but wind infinitely into the repeating pattern and will always

behave differently within the bounds of that pattern.
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Figure 2: Solution to Eq. (11) with c = 3.8.

1.3 Mixing

The fundamental element of the mixing of one fluid within another is called diffusion. This

occurs at the atomic level, when molecules, as a result of random molecular motion, inter-

sperse with other molecules [5]. Diffusion can be described as the movement of a species

from a region of high concentration to a region of low concentration [6]. To illustrate this

point, one could imagine releasing a drop of food coloring in a glass of water. Without any

agitation, the colored droplet will diffuse throughout the entire glass, eventually. This type

of diffusion can be referred to as ordinary diffusion because it is driven by a concentration

gradient. Pressure diffusion and forced diffusion are two other types that are not relevant

to this particular work. Diffusion occurs in all circumstances where fluids are in contact,

but for diffusion alone to mix two fluids, the time period is often too great for industrial

application. Had the imagined glass of water been stirred when the food coloring was added,
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Figure 3: Two solutions to Eq. (11) with c = 3.8 and varying initial conditions .

the two fluids would have completely mixed more quickly because the mixing would increase

diffusion rates.

Imagining a two fluid system, diffusion occurs over the contact area between the fluids.

It follows, then, that to increase the effect of diffusion the surface contact area between the

two fluids should be increased. This allows more fluid interspersion to occur, though the

rate of that diffusion has not changed. This diffusion of mass is measured in terms of a flux,

which is a vector that denotes mass transfer of a species through a unit area per unit time.

The flux of fluid A into fluid B in a two fluid system is expressed by Fick’s Law, Eq. (12)

[6],

J?
A = −cDAB∇xA, (12)

where J?
A is the flux of fluid A with units of mass per unit area per unit time, c is the
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concentration of fluid A, DAB is a mass diffusivity coefficient with units of length squared

over time that varies with each system, and xA is the mole fraction of fluid A. The mole

fraction is defined as the molar concentration of species A divided by the molar density of

the entire solution or fluid system, xA = cA/c. From this relationship, it is easy to see that a

mixing system that increases the surface contact area between fluids A and B increases the

mass transfer per unit time from one fluid into the other.

Mixing has a special correlation to chaos theory for this particular set of experiments. To

achieve the most effective configuration of two vortices for the purpose of mixing, a chaotic

system is desirable. A flow field that induces periodic motion will be incapable of producing

the increase in surface area that a non-periodic system can create. This is why turbulence,

which is chaotic, within a heat exchanger is desirable for efficiency: because the intertwining

of the fluid spreads the heat more evenly through the whole of the fluid and thus carries

more away. In a similar way, a chaotic two-vortex system will do more to aid diffusion by

intertwining the fluids more deeply into each other and increasing surface contact area. A

strange attractor, however, may be an exception to this statement. Though a system with a

strange attractor is indeed chaotic, there is a possibility that the solution is chaotic within

a very bounded area, effectively doing little more than a periodic system.

2 Numerical Methods

2.1 Derivation of Flow Field

To derive the flow field for a two vortex system with variable distance and skew, first a three-

dimensional Cartesian coordinate system was chosen to simplify calculations. It appears in

Fig. 4. Vortex 1 lies along the Y -axis and does not move or rotate. Vortex 2 lies a distance

l along the Z-axis inclined at an angle θ into the page, around the Z-axis, as seen in Fig. 5.

The angle θ is measured from the positive Y -axis.

Since velocity terms are additive, the total velocity can be determined by adding the

contributions from each vortex. Dealing first with vortex 1, the perpendicular distance r
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Figure 4: Cartesian coordinate system as applied to two vortices and relevant dimensions

from the line of the vortex to any point in the field is r =
√

x2 + z2. Let the angle formed

between a line from the vortex to the point and the Z-axis be α. To determine the velocity

in the Z-direction, one must multiply the induced angular velocity, given by Eq. (9), by

sin α. By inspection, sin α = x/
√

x2 + z2. To find the velocity in the X-direction one must

multiply the angular velocity by z/
√

x2 + z2. Velocity due to vortex 1 is shown in Eqs. (13),

(14) and Eq. (15):

dx

dt
=

Γ

2π

z

x2 + z2
, (13)

dy

dt
= 0, (14)

dz

dt
=

Γ

2π

x

x2 + z2
. (15)

Vortex 1 contributes no velocity in the Y -direction.

To find the velocity induced by vortex 2, a second coordinate system must be imposed
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with its origin where vortex 2 intercepts the Z-axis. This second system will rotate with

vortex 2 through the angle θ. The axes of this second system are annotated as X2, Y2 and Z2,

and they correspond to X, Y and Z, respectively, when θ = 0. A view of the two systems,

looking down the Z-axis, is shown in Fig. 5.

Y

X

θ

Y2

X2

Z and Z2 are
alligned out of
the page

Figure 5: The fixed and rotating coordinate systems as viewed along the Z-axis

Whereas the the fluid particle coordinate can be in terms of X, Y and Z for vortex 1, the

coordinates must be mapped into the vortex 2 system before its contributing velocity can be

found. This is accomplished using z2 = z − l and x2 = x cos θ − y sin θ. Following the same

logic as before, the induced velocity of vortex 2 is contained in Eqs. (16), (17)and (18):

dx2

dt
=

Γ

2π

z2

x2
2 + z2

2

, (16)

dy2

dt
= 0, (17)

dz2

dt
=

Γ

2π

x2

x2
2 + z2

2

. (18)

To determine combined equations for the flow field, it is first noted that because the Z

and Z2 directions are always aligned, the induced velocities of the vortices in this direction

10



are simply added together. It is also the case that vortex 2 induces no velocity in the Y2

direction. Velocity in the X2 direction, however, corresponds to velocity in both the X and

Y direction by the following relationships: dx/dt = cos θdx2/dt and dy/dt = − sin θdy2/dt.

Taking these factors into account and converting all coordinates to measures of X, Y and Z,

the flow field is found for the two vector system. It is given in Eq. (19), Eq. (20) and Eq.

(21), with initial conditions in Eq. (22):

dx

dt
=

Γ

2π

(
z

x2 + z2
+

(z − l) cos θ

(x cos θ − y sin θ)2 + (z − l)2

)
, (19)

dy

dt
= − Γ

2π

(z − l) sin θ

(x cos θ − y sin θ)2 + (z − l)2
, (20)

dz

dt
= − Γ

2π

(
x

x2 + z2
+

x cos θ − y sin θ

(x cos θ − y sin θ)2 + (z − l)2

)
, (21)

x(0) = L, y(0) = L, z(0) = L. (22)

2.2 Scaling

The derived flow field contains dimensional parameters and will thus produce dimensional

results. To make the results of the examined system more universal, the equations should be

scaled. Then, the results are really ratios that can be likened to any other system with any

units. To do so, Eqs. (23) and (24) define dimensionless coordinates and a dimensionless

parameter, which is a ratio of the distance between the vortices to initial particle position,

x̃ =
x

L
, ỹ =

y

L
, z̃ =

z

L
, (23)

ε =
l

L
. (24)

The dimensionless time is given in Eq. (25),
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t̃ = t
Γ

L2
, (25)

and thus, Eq. (26) follows,

d

dt̃
=

L2

Γ

d

dt
. (26)

By substituting in Eq. (23), Eq. (25) was found,

dx̃

dt̃
=

L

Γ

dx

dt
, (27)

with similar results for y and z.

By substituting using Eq. (23) and (24) and multiplying by the term found in Eq. (27),

the dimensional flow field is converted to a dimensionless flow field, given in Eq. (28), Eq.

(29) and Eq. (30).

dx̃

dt̃
=

1

2π

(
z̃

x̃2 + z̃2
+

(z̃ − ε) cos θ

(x̃ cos θ − ỹ sin θ)2 + (z̃ − ε)2

)
, (28)

dỹ

dt̃
= − 1

2π

(z̃ − ε) sin θ

(x̃ cos θ − ỹ sin θ)2 + (z̃ − ε)2
, (29)

dz̃

dt̃
= − 1

2π

(
x̃

x̃2 + z̃2
+

x̃ cos θ − ỹ sin θ

(x̃ cos θ − ỹ sin θ)2 + (z̃ − ε)2

)
. (30)

The initial conditions are scaled to Eq. (31),

x̃(0) = 1, ỹ(0) = 1, z̃(0) = 1. (31)

2.3 Numerical Integration

The non-dimensional flow field was solved and iterated numerically using a fourth order

Runge-Kutta method. Following this method, if given Eq. (32), the solution is iterated as

in Eq. (33) [7].
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y′ = f(t, y) (32)

yn+1 = yn + h

(
kn1 + 2kn2 + 2kn3 + kn4

6

)
(33)

Here, h is a time step that can be assigned any value. The accuracy of the method depends

on the value of h. The k functions are given by Eqs. (34) through (37).

kn1 = f(tn, yn) (34)

kn2 = f(tn +
1

2
h, yn +

1

2
hkn1) (35)

kn3 = f(tn +
1

2
h, yn +

1

2
hkn2) (36)

kn4 = f(tn + h, yn + hkn3) (37)

In this case, the flow field is not a function of time, and so just the x, y and z values are

substituted for the k functions.

2.4 Error

In numerical integration, the results are subject to two types of error: truncation error and

round-off error [7]. Truncation error is a function of the method and is manifested at the

level of an individual step giving an overall error in the final value. For the fourth order

Runge-Kutta method, the error at each individual step, called local truncation error, has

a value of h5. The truncation error in the final result, called global truncation error, has

a value of Ch4, where C is some constant. Round-off error results from the inability of a

computer to carry all the decimal places for the value of a variable. It magnifies as the

amount of iterations increases.

13



These two types of error are dependent upon one another, in that an attempt to prevent

one can increase the other. For example, a very small h value will mean a low truncation

error both globally and locally, but it will also take more iterations to reach a certain time

value. The increased amount of calculations, with the computer losing everything beyond the

sixteenth decimal place at each one, increases round-off error. To be effective in numerical

calculation, one must choose an h value that minimizes both errors. In the case of the particle

paths determined, it was important that output not be subject to error at a large enough

scale to appear as movement that does not actually occur. If that were the case, particle

movement due to the flow field would be indistinguishable from that caused by numerical

error. To solve this problem for the sake of graphical output, a particular time period over

which the system was to be iterated was determined, and a system with a known solution

was run over this time period. With ε = θ = 0, the two vortices reside above one another

and a particle released in the flow field should travel in a circle about the line of the vortices.

The time period, seven seconds, was long enough so that the particle would travel around

the circle roughly forty times. The value of h was adjusted until there was no graphical

derivation around the circle.

Euler’s method produced more numerical error, because the local truncation error is is

h2 instead of h5. The h value had to be so small to guarantee low truncation error that the

program required several orders of magnitude more iterations, and round-off error began to

accumulate. The higher order of the Runge-Kutta method allows for much more efficient

solution.

3 Numerical Simulation Approach

There were two approaches taken to understand the varying effectiveness of vortex configura-

tions. First, a single particle was released in the flow field with initial placement determined

by scaling. The parameters ε and θ were varied individually to see what type of effect each

configuration would have on the motion of a single particle. Single particle motion, however,
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was not used to determine the ultimate effectiveness of a system.

To measure effectiveness, a sphere was released within the flow field. The surface of this

sphere was defined by 993 points. Each point was allowed to move under the influence of

the flow field for a short period of time, allowing the field to slightly deform the surface of

the sphere. An algorithm approximated the surface area of the sphere by using Eq. (38) to

find the area of the quadrilateral formed by every set of four adjacent points and adding to

to find the total.

area =

√√√√(s − a)(s − b)(s − c)(s − d) − abcd cos2

(
(A + B)

2

)
(38)

Here, s is found by Eq. (39).

s =
a + b + c + d

2
(39)

The geometric equivalent of the variables in Eqs. (38) and (39) can be seen in Fig. 6.

a

b

c

d

A

B

Figure 6: Geometrical representation of variables in Eqs. (38) and (39)

Because it is known that the flow field is incompressible, it is also known that the volume

of fluid contained within the sphere will not change. As it is deformed in the flow field,
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however, the surface area of the constant volume will change. It is known that the funda-

mental element of mixing is diffusion, and a way to increase diffusion between fluids that

have fixed diffusion parameters is to increase contact surface area. Therefore, it is desirable

to maximize the surface area in a minimum time frame. By measuring the surface area

before and after the time that the sphere is allowed to deform within the flow field, a dA/dt

value can be determined. The system with the highest dA/dt is the most effective because

it will produce the most amount of mixing in the shortest amount of time using the same

two vortices present in every system, just at different orientation.

Different systems were tested by varying ε and θ. Each time the sphere was placed with

its center on the XZ-plane, half-way between the two vortices with a constant radius of
√

3.

4 Numerical Simulation Tools

To perform the tasks required, two computer programs were developed. The basic flowcharts

for each appear as Figs. 7 and 8.

In the program for a single particle, ε and θ can be varied any time the program is run.

The initial position of the particle is determined by scaling, as shown in section 2.2. The

program iterates the position of the particle by numerically solving Eqs. (28), (29) and (30)

using the Runge-Kutta Method. The particle position is written to a file along with Matlab

commands, so that after the program is finished, a three dimensional graph of the particle

path can be determined. A print step is chosen beforehand, which determines how many

iterations will run between the times when the particle position is printed to the output file.

The number can be changed to satisfy the desired resolution of the graph.

The algorithm that deforms a sphere in the flow field allows the choice of the same

parameters. The radius is fixed, because it must also satisfy the scaled initial conditions

in that a point L distance in the X, Y and Z directions must reside on the surface of the

sphere. This makes the radius a constant of
√

3. The points on the surface of the sphere are

defined using polar coordinates. A full longitudinal ring of points is defined by iterating φ,
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Define particle position

Find induced velocity

Print current position to out file

Iterate position

Run out file in Matlab

For
time
t

Figure 7: Flowchart showing the method of a program for finding the path of a single particle
through the flow field

and after each ring is completed, θ of the coordinate system is iterated through a distance

of π. After each iteration, the point is mapped into the Cartesian system so it can be run in

the existing equations for the flow field. Each particle is displaced in the same way as in the

single particle program. The time of the simulation, however, is much shorter so that the

sphere only slightly deforms. The surface area is approximated using Eqs. (38) and (39),

and dÃ/dt̃ is calculated by finding the change in surface area and dividing by the scaled

time. The initial and final position of each point is written to an output file, which creates

a three-dimensional graphical comparison between the two spheres.
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5 Results

To show that the flow field was modeled correctly, a test can be performed by running the

single particle program with a vortex configuration of known effect. When the distance l

between the vortices is zero and the angle θ is zero, the vortices reside above one another and

should cause the particle to travel in a circle with its center at the vortices. Fig. 9 shows the

output for this system, which performed as was expected. This system can also be used to

estimate the error in the applied numerical methods. Fig. 18 shows the accumulated error in

the distance r from the line vortex in the circular path system from Fig. 9. By dividing the

value of r for each dimensionless timestep by the initial value of r, the percent error in the

position of th particle is determined. The plot goes through t̃ = 4200, which is the length of

dimensionless time for which all the single particle systems were run.

It was found that when the two vortices intersect, regardless of the value of θ, the particle

path is a closed loop. This is demonstrated in Fig. 10. When the flow field is examined in

light of the constraints θ = π/2 and ε = 0, Eqs. (28), (29) and (30) reduce to Eqs. (40),

(41) and (42), explaining this occurance.

dx̃

dt̃
=

1

2π

z̃

x̃2 + z̃2
(40)

dỹ

dt̃
= − 1

2π

z̃

ỹ2 + z̃2
(41)

dz̃

dt̃
= − 1

2π

x̃

x̃2 + z̃2
+

1

2π

ỹ

ỹ2 + z̃2
(42)

Eqs. (43) and (44) follow.

x̃
dx̃

dt̃
+ ỹ

dỹ

dt̃
+ z̃

dz̃

dt̃
= 0 (43)

∫
x̃dx̃ +

∫
ỹdỹ +

∫
z̃dz̃ = 0 (44)
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Solving Eq. (44) gives Eq. (45), the equation for a sphere. When all the coordinates of the

plot in Fig. 10 are substituted into Eq. (45), they do all equal the same constant, save a

slight variation due to numerical error. This holds true for any angle θ as long as ε = 0.

x̃2 + ỹ2 + z̃2 = C (45)

Figs. 11 through 14 show a particle released in a chaotic system. In each, ε is fixed

and θ is varied. The particle path will not repeat. For the two vortex system to become

non-periodic, ε must not equal zero. If this is true, then the system is chaotic regardless of

the angle θ.

Figs. 15 through 17 also show a series of chaotic systems with fixed θ and varying ε. The

figure for ε = 2 can already be seen as Fig. 13.

Fig. 19 shows a graph generated by the sphere deformation program. The longitudinal

lines show the surface of the sphere as it was originally defined. The dots show the same

points defining the surface after a period of deformation.

Since it was already known from single particle investigation that intersecting vortices

would not increase the surface area of the sphere if they intersected at its origin, testing

began at ε = 1 and stopped at ε = 4, where it was clear that the dÃ/dt̃ value had already

peaked. These results were condensed into a single graph, Fig. 20, showing dÃ/dt̃ versus ε

for varying θ.

6 Discussion

The limited case was studied, that two ideal vortices of equal strength are needed to quickly

and thoroughly mix a sphere of fluid A, situated between the vortices, into surrounding fluid

B. It was found that the most effective vortex configuration is to have a distance between the

vortices equal to the diameter of the sphere with an angle between the vortices of π/4 rad.

These results make sense physically. It is known that if the two vortices intersect, at any

angle, at the origin of the sphere, the rate of change of surface area will be zero. Every
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particle will be confined to a path on the surface of the fluid sphere. As the vortices are

moved apart, keeping the origin of the sphere between them, the rate of change of surface

area increases. If the vortices continue to move apart so that they reside far beyond the

boundaries of the sphere, then there will be little induced velocity because of the distance

from the lines of the vortices. Therefore, there is a peak in the attainable change in surface

area between these two limits. Physically, it is easy to imagine it might reside at the only

physical boundary between these limits: the point where the vortices leave the volume of the

sphere. In the computer simulations, it was not possible to position the vortices right at the

boundary of the sphere, because this would have left the points at the top and bottom of the

sphere on the line of the vortex, creating a singularity. The distance used, to approximate the

change in surface area at the diameter, 3.5, is only slightly larger than the actual diameter

of the sphere, and so it gives a fair approximation.

Calculating a good approximation of the deformed sphere is crucial to quantifying the

effectiveness of the compared systems. Because all spheres had a radius of
√

3, it is possible to

calculate the correct initial surface area for any one of them as A = 4πr2 = 12π = 37.7. The

computer simulations also found this initial area to compare to the final area for calculating

dÃ/dt̃. Values of this calculation ranged from 37.9 to 38.17. Taking the largest error in

surface area, it is 1.25 percent of the actual A. The reason the computer program used a

calculated initial area value was because it was the approximated figure of a sphere and

not an actual sphere that was being deformed in the flow field. The degree of resolution

in the surface that contributed to the initial overestimate was likely to work the same way

in finding the final volume. Comparing like solutions treats these imperfections rather as a

part of the geometry. Using the theoretical area result would have magnified errors, even

though it more correctly defined the shape being approximated.

It is interesting to imagine that each of the points on the deformed sphere is traveling

in a chaotic path like some of the single particle figures contained here. Other than saying

that the introduction of an ε value adds new terms to the flow field that no longer allow it to
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reduce to the equation for a sphere, it is not yet determined what exactly is changing in the

system to lead to such disorder from such order. This an an area where the project should

be furthered: obtaining a mathematical understanding of the transition into chaos.

Other areas where the project could be furthered include numerical simulation of the

same systems but with unequal vortex strength. It would also be interesting to release

several particles near each other in the flow field, plotting the path of each on the same

graph and determining how much the paths diverge. More accurate results for the rate of

change in surface area could be obtained by refining the points on the surface of the released

sphere.

Although the system considered here is ideal, the results have real world application. If a

stream of fluid A was released into fluid B, it should most likely enter the fluid between two

vortices oriented in the manner found here, with the distance between equal to the cross-

sectional diameter of the stream. This is an idea applicable to all types of entrance flows or

to scenarios in industry where vats of fluid at rest need to be mixed. Energy can be saved

if the vortices are oriented properly to maximize the effect of the power driving the system.

If vortices are induced within internal pipe flows such as mufflers and heat exchangers, it

would be of benefit to design the anomalies along the length of the pipes to create vortices

of this orientation, as increased effectiveness would require less to be made.
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Define the surface of the sphere

Select one surface particle

Find Velocity

Iterate position

Approximate surface area

Print final position
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Figure 8: Flowchart showing the method of a program for finding the change in area of a
sphere released in the flow field
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Figure 9: The particle travels in a circle around the vortices when ε and θ are zero. There
is no change of position in the Y -direction.
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Figure 10: The particle path is periodic on the surface of a sphere for all θ when ε is zero.
Here, θ = π/2.
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Figure 11: A three dimensional view. Here, ε = 2, θ = 0.
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Figure 12: A three dimensional view and projection to the XY -plane. Here, ε = 2, θ = π/4.
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Figure 13: A three dimensional view and projection to the XY -plane. Here, ε = 2, θ = π/2.
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Figure 14: A three dimensional view and projection to the XY -plane. Here, ε = 2, θ = 3π/2.
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Figure 15: A three dimensional view and projection to the XY -plane. Here, ε = 1, θ = π/2.
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Figure 16: A three dimensional view and projection to the XY -plane. Here, ε = 3, θ = π/2.
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Figure 17: A three dimensional view and projection to the XY -plane. Here, ε = 4, θ = π/2.
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Figure 19: The initial (lines) and later deformed (points) surface of the sphere. Here, ε = 3
and θ = π/2.
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Figure 20: dÃ/dt̃ versus ε for varying θ.
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Figure 21: C code numerically simulating single particle motion
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Figure 22: C code numerically simulating sphere deformation and finding change in area
(continued next page)
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Figure 23: C code numerically simulating sphere deformation and finding change in area
(continued next page)
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Figure 24: C code numerically simulating sphere deformation and finding change in area
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