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Accuracy and efficiency of the Karhunen-Loève (KL) method is compared to a

pseudospectral method employing global Lagrange interpolating polynomials for a

two-dimensional linear heat conduction problem and for the supersonic flow of an in-

viscid, calorically perfect ideal gas about an axisymmetric blunt body. For the heat

conduction problem, efficiency and accuracy of a KL Galerkin model, pseudospectral

approximation, and a second order finite difference approximation are compared for

two sets of boundary conditions: one with an infinite number of modes and a second

with a finite number of modes. For both the infinite and finite mode boundary con-

ditions, the KL Galerkin model achieves an accuracy consistent with the underlying

pseudospectral solver in as few as five modes. Not including the cost of sampling

the design space and building the KL model, the KL Galerkin model is an order

of magnitude faster than the pseudospectral method for the finite mode boundary

condition, two orders of magnitude faster than the pseudospectral method for the

infinite mode boundary condition, and five orders of magnitude faster than the fi-

nite difference for both types of boundary conditions at an accuracy level of 10−4 as

measured against a separation of variables solution. In the supersonic blunt body

problem, the bow shock is fitted, and the Euler equations are solved in generalized
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coordinates using both a KL least-squares model and a pseudospectral method.

Not including the cost of sampling the design space and building the KL model, the

KL least-squares method requires almost half the CPU time as the pseudospectral

method to achieve the same level of accuracy. Single variable design problems are

solved for both the heat conduction problem and the supersonic blunt body prob-

lem using the pseudospectral solver and the KL model; in both problems, the KL

model optimal design predictions are within the expected level of accuracy of the

KL models. For both problems, a response surface which is a quadratic polynomial

fit of the design problem objective function versus the geometric design variable is

built from a design space sampling of three pseudospectral solutions. For the heat

conduction problem, the KL model is significantly more accurate than the response

surface over most of the design space, while for the blunt body design problem, the

KL model is slightly less accurate than the response surface. Since the KL model

requires more CPU time, the single variable blunt body design problem posed here

offers no advantage over a response surface in terms of CPU time. Nevertheless, the

accuracy of the response surface is strongly dependent on the problem, whereas the

KL method achieves a consistently low level of error for both the heat conduction

and supersonic blunt body problems considered.
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CHAPTER 1

INTRODUCTION

Computer-assisted multi-disciplinary design and optimization in the aeronautical

engineering community is a promising area of current research. The optimization of

air vehicles has often relied on low fidelity aerodynamic models due to the need for

rapid evaluation of aerodynamic design variables such as lift, drag, or heat transfer.

Unfortunately, the use of low fidelity models can lead to unacceptable uncertainties

in the final optimal design, especially where design safety margins are tight [1]. In

addition, low fidelity models often do not provide the complete flow field information

such as pressure, temperature, and velocity distributions, acoustic signature, shock

wave location, which the designer may require. For these reasons, high fidelity

models such as the Euler or Navier Stokes equations are often required. For most

problems, these model equations can be solved only after discretization.

A major difficulty in employing discrete solvers in a multi-disciplinary design

process is the large central processing unit (CPU) requirements of these codes. It

is not uncommon for discrete solutions to three dimensional flows around complex

aircraft configurations to require on the order of ten or more hours of CPU time per

steady state solution [1], and these solutions are often not fully resolved. Complete

resolution of complex flow structures could require considerably more CPU time.

A design incorporating multiple disciplines, e.g. aerodynamics, structures, controls,

may easily have hundreds or even thousands of design variables. While interdisci-
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plinary coordination schemes using varying fidelity models [2] help to alleviate the

CPU cost associated with interdisciplinary dependence, the aerodynamics discipline

alone could still involve hundreds or more design variables. For this reason, cur-

rent gradient-based numerical optimizers can be prohibitively expensive when used

directly with discrete solvers of high fidelity models, and approximation becomes

necessary.

One popular approximation technique for the design of complex, multi-variable

problems is the response surface approximation [3]. Response surfaces typically

approximate quantities such as the lift and drag of the vehicle as a function of

the design variables, e.g. geometric parameters, by simple functional forms which

interpolate among a set of solutions. The solutions among which the response sur-

face interpolates are obtained from more costly solvers such as high fidelity discrete

solvers. An advantage of the response surface method is that both objective func-

tion and gradient evaluation are rapid. Furthermore, polynomial approximation

of the objective function ensures that the gradients are continuous. This increases

the efficiency of the numerical optimizer in the sense that fewer iterations may be

needed to reach an optimum. Disadvantages of the response surface method include

a potential lack of accuracy in capturing the system response by a simple function,

a strong dependence of computational cost on the number of design variables, and

loss of detailed flow field information unless the flow solutions from which the model

was built are stored. While it is theoretically possible to construct response surfaces

for flow quantities at multiple locations in the flow, it is difficult to implement in

practice. Flow field information may be needed for design of a thermal protection

system, for coupling with a structural code in static and aeroelastic design, for in-

verse vehicle design in sonic boom mitigation, acoustic or radar signature reduction,

or for shock wave placement for efficient high speed propulsion.
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A recently developed method which does yield detailed flow field information by

solution of the governing equations such as the Euler or Navier-Stokes equations is

the adjoint method [4, 5, 6] adopted from control theory [7]. This method is compu-

tationally efficient for gradient-based optimizers since objective function gradients

with respect to an arbitrary number of design variables can be approximated by

solving a single adjoint equation. Since the adjoint equation is of similar complexity

as the governing equations, each iteration of the optimizer regardless of the number

of design variables is equivalent in computational cost to two flow field solutions.

The fact that the computational cost of the adjoint method does not increase with

the number of design variables is a significant advantage over the response surface

method whose computational cost increases with increasing number of design vari-

ables. Although still in development, the adjoint method appears to be promising

as an accurate and efficient means of multidisciplinary, multi-variable optimal de-

sign. Nevertheless, the adjoint method has the disadvantage of requiring that a

unique adjoint equation be derived and solved for each new design objective func-

tion that may be formulated. Since the adjoint equation is of similar complexity

to the governing equations themselves, a discrete solver would be required which

could yield accurate approximations to a range of various adjoint equations which

the designer may wish to formulate.

Another approximation technique is the Karhunen-Loève (KL) method. This

technique is a method of weighted residuals where the trial functions are eigenfunc-

tions of the averaged auto-correlation of previous numerical flow-field solutions. It

can be shown that the KL decomposition yields an optimal set of orthonormal ba-

sis functions in the sense that the fewest number of functions of all possible bases

are required for a given level of accuracy in reconstructing the original set of data.

Employing the KL modes as the trial functions of a Galerkin [8], orthogonal collo-
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cation [9], or least-squares [10] method of weighted residuals, reduced dimension

models have been developed which yield accurate solutions to partial differential

equations for a computational cost several orders of magnitude lower than discrete

solvers. Advantages of the KL method over response surfaces are the automatic

generation of detailed flow field information in a straightforward manner, and a

potential increase in accuracy. The KL method also has the advantage that the

KL decomposition of the flow field solutions can also be used as a data compres-

sion strategy for the flow solutions by discarding higher order KL modes and thus

reduce storage requirements. This could be particularly advantageous for multi-

variable design problems where a large number of flow field solutions are required

to adequately sample the design space. The KL method also has advantages over

the adjoint method in that the KL model is independent of the design problem

formulation. This flexibility in specifying the design problem is an important at-

tribute for an optimal design code [11]. Nevertheless, the computational cost of the

KL method, unlike the adjoint method, increases with increasing number of design

variables.

We next review some applications of the KL theory in optimization and mod-

elling of thermo-fluid systems. The KL decomposition has been used in conjunction

with the Galerkin method of weighted residuals to develop approximate models of

turbulent fluid mechanical phenomena, e.g. Aubry, et al. [12], and Sirovich and

Park [13, 14]. The first use of the KL method for a control application was by

Chen and Chang [15] , where it was used to control spatiotemporal patterns on a

catalytic wafer using experimentally determined KL modes. Independently, Park

and Cho [16] developed a KL Galerkin model of a nonlinear heat equation for con-

trol or parameter estimation; more recently the KL Galerkin method has been used

to approximate Navier-Stokes solutions for flow control [17, 18, 19], inverse con-
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vection [20, 21, 22, 23, 24], and radiation [25] problems. Theodoropulou, et al. [9]

successfully implemented what they called an “orthogonal collocation” method with

KL modes for the optimization of rapid thermal chemical vapor deposition systems

in one dimension.

The KL method has been applied to compressible flow problems by LeGresley

and Alonso [10] who used a KL least-squares model of the Euler equations in a

finite volume formulation to optimize the pressure distribution around an airfoil in

subsonic flow and more recently extended the method via domain decomposition to

include the high subsonic region with mild shocks, [26]. Lucia [27] developed KL

models for one, and simple two dimensional geometries in supersonic flow by using

a domain decomposition method to isolate the shock, and applying the KL method

to only the smooth regions of the flow field. The region of the flow containing

the shock is approximated via a shock capturing technique. A KL least-squares

model for the supersonic flow over a blunt body using shock-fitting was developed

by Brooks and Powers [28]. The KL model of the supersonic blunt body problem

will be presented with more details in the current work.

We briefly review the literature on solutions to the supersonic flow over blunt

body geometries. Rusanov [29] and Hayes and Probstein [30] have given thorough

reviews of early contributions, of which a few will be mentioned. Two methodologies

for calculating solutions to the supersonic flow about a blunt body are the direct

and inverse methods. In the direct method the body shape is specified, and then

the shock shape and flow field are calculated. In the inverse method the shock

shape is specified, and the body shape which would support that shock shape is

calculated. At first, studies concerning the inverse problem were based on series

expansion of the governing equations in the vicinity of the shock wave [31]. Later,

numerical solutions to the inverse, supersonic blunt body problem were performed
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by Garabedian and Lieberstein [32] and Van Dyke [33]. Evans and Harlow [34]

were the first to generate numerical solutions to the direct problem by integrating

the unsteady Euler equations to a relaxed steady state solution. Moretti and

Abbett [35] used finite differences and fitting of the shock to generate accurate

solutions of the Euler equations about a blunt body; this laid the foundation for

subsequent shock-fitting numerical schemes. Pseudospectral approximations to the

Euler equations employing shock-fitting with spectral filtering were first performed

by Hussaini, et al. [36] and without spectral filtering by Kopriva [37] and later by

Brooks and Powers [38, 39], who extended the work of Kopriva to systematically

cast the equations in a standardized form for numerical analysis.

The first step in generating a KL model is to develop a set of numerical so-

lutions to the governing equations for a range of design variables or in this case,

a single design variable. The shock-fitting, pseudospectral method described by

Brooks and Powers [39] is employed for this step. The shock is fitted since approx-

imation of discontinuous solutions with high order polynomials exhibit the Gibbs

phenomenon in the form of global oscillations in the solution [40]. These oscilla-

tions can cause the numerical scheme to become unstable, and attempts to remove

the oscillations by spectral filtering or by addition of artificial viscosity significantly

reduces the accuracy of the numerical method. The more common alternative of

shock capturing, while generally stable and non-oscillatory, yields only first order

accuracy. The pseudospectral method is chosen since it has the advantage of an

exponential grid convergence rate for sufficiently smooth solutions; consequently,

relative to finite difference or finite element methods with polynomial convergence

rates, pseudospectral methods can generally achieve the same absolute error with

a smaller computational cost, or for the same computational effort, pseudospectral

methods generate a more accurate solution than finite difference or finite element

6



methods. The pseudospectral method is chosen rather than a spectral method,

such as a Galerkin method, which also exhibits exponential grid convergence rates,

since the nonlinear terms in the governing equations and boundary conditions are

much easier to approximate using the pseudospectral method. The high accuracy

attainable by the pseudospectral method is important for assessing the accuracy

of the KL least squares model and for proper resolution of high order KL modes.

Since the magnitude of the KL modes decreases rapidly with increasing mode num-

ber, more high order modes can be reliably resolved from a pseudospectral method

than from finite difference or finite volume methods. In addition, since the solution

is known in terms of high order polynomials, the KL modes can also be expressed

in terms of polynomials, and integration of the KL modes necessary for the least

squares method can be performed exactly by means of Gaussian quadrature, thus

maintaining the high accuracy of the method.

We briefly review pseudospectral methods. An early unified mathematical de-

scription of the theory of spectral and pseudospectral methods was given by Gottlieb

and Orszag [40]. Significant advances occurred in the late 1970’s and early 1980’s

and are well documented by Canuto, et al. [41], with particular application to fluid

dynamics. For a more recent review, see Gottlieb and Hesthaven [42].

There does not appear to be complete consensus in the literature for the defi-

nition of pseudospectral; a definition is adopted here which we believe useful and

consistent with that of Fornberg [43]. We define a pseudospectral method to be

a collocation type of method of weighted residuals, as defined by Finlayson [44],

in which the error in the solution to the governing equations is driven to zero at

collocation points; the flow quantities are represented in terms of global interpo-

lating polynomials defined at the collocation points. The spatial derivatives are

approximated by taking derivatives of the interpolating polynomials and evaluating
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the derivatives at the collocation points. The interpolating polynomials used in the

current work are global Lagrange interpolating polynomials, where the algorithm for

finding derivatives of these polynomials is taken from Fornberg [43]. A property of

the pseudospectral method is that approximations to derivatives have global support

in one dimension, making it equivalent to a finite difference scheme with a stencil

that extends over the entire domain. As the number of points is increased, the size

of the stencil grows, leading to solutions which converge at an ever faster rate. The

pseudospectral method is easily extended to multiple dimensions by approximating

the flow quantities as products of one dimensional interpolating polynomials.

The second step in the development of the KL model is to perform a KL de-

composition on the characteristic solution set generated by the flow solver. The

KL decomposition, also called Proper Orthogonal Decomposition (POD), appears

to have been developed independently in the 1940’s by several researchers including

Karhunen [45] and Loève [46]. Lumley [47] proposed the KL decomposition as a

rational procedure for the extraction of coherent structures in a turbulent flow field.

The KL decomposition is also closely related to the singular value decomposition and

principal component analysis used in data compression and image processing [48].

As originally introduced by Lumley, the KL decomposition was impractical for more

than one spatial dimension. It was not until Sirovich [49] introduced the method

of snapshots that the KL decomposition became practical for highly resolved, three

dimensional flows.

The final step in the development of the KL model is to approximate the gov-

erning equations and boundary conditions in a series expansion of the KL modes

and solve for the coefficients in the expansion via a least squares, Galerkin, or col-

location method of weighted residuals. For the current work, a KL Galerkin model

will be developed for a two-dimensional heat conduction problem and a KL least
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squares model will be developed for the supersonic flow over a blunt body geometry.

The least squares method was employed for the blunt body problem because the KL

Galerkin model was not numerically stable when more than one mode was employed

in the model.

In the remainder of this dissertation, we will give an overview for the devel-

opment of the KL Galerkin and least-squares models including the fundamental

equations. Next, a KL Galerkin model is developed for a two-dimensional heat

conduction problem following the three steps just described above. The heat con-

duction problem will be posed with two different boundary conditions: an infinite

mode boundary condition and a finite three-mode boundary condition. The finite

mode boundary condition is constructed such that the exact separation of variables

solution consists of only three terms in the series solution, while the infinite mode

boundary condition has an exact separation of variables solution with an infinite

number of terms in the series expansion of the solution. The infinite mode and

finite mode boundary conditions were chosen in order to evaluate the efficiency of

the KL Galerkin model of the heat conduction problem for problems with both few

and multiple spatial scales. After presenting results of the accuracy and efficiency

of the KL Galerkin model compared to both a second order finite difference and

pseudospectral solvers, a single variable design problem is solved using both the KL

Galerkin model and the pseudospectral solver.

Next, the supersonic blunt body problem is posed including the physical and

computational grids, the primitive variable formulation of the governing equations

and their transformation to generalized coordinates, the boundary conditions and

the discretized form of the equations. After discretization the resulting system of

differential-algebraic equations (DAEs) is cast into the form of a system of ordinary

differential equations (ODEs) which can be solved using standard software packages.
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Validation and verification results for the pseudospectral flow solver are presented.

Next, ten pseudospectral solutions, are generated for ten different values of a single

geometric variable, and the KL modes corresponding to these ten solutions are then

presented. The KL least-squares model of the blunt body problem is subsequently

presented along with error convergence plots with respect to the number of KL

modes used in the model. The error in the KL model is measured against a highly

resolved solution from the pseudospectral solver. Finally, a single-variable optimal

design problem is posed and then solved using both the KL least-squares model and

the pseudospectral solver. The accuracy of the KL model is compared to that of

the pseudospectral solver for the single-variable optimal design problem.

Contributions of the current work include assessing the computational efficiency

of the KL method in comparison with other discrete approximations such as a second

order finite difference and pseudospectral method, and with response surfaces. The

current work is also unique in evaluating the efficiency and accuracy of the KL

method for different classes of problems: a linear problem, a nonlinear problem,

a problem with an infinite mode boundary condition, and a problem with a finite

mode boundary condition. Finally, the current work is novel in that it is the first

work to use shock fitting with the KL method, and one of the first studies where a

KL model has been developed for a geometry in a supersonic flow.
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CHAPTER 2

KARHUNEN-LOÈVE DESIGN OPTIMIZATION STRATEGY

Here we give an overview of the three steps for developing a KL Galerkin or

least-squares model. The design space is sampled using a discrete solver, pseu-

dospectral solver in this case, then the KL decomposition is performed yielding a

set of KL modes, and finally approximation of the governing equations and bound-

ary conditions in terms of the KL modes leads to a reduced dimension model of the

problem.

2.1 Design Space Sampling

The first step in developing a KL model for use in optimization is to generate a

set of K characteristic solutions or snapshots which span the design space of interest

in the problem. In the current study, the design space is parameterized by a single

geometric variable, b for the blunt body problem and Γ for the heat conduction

problem. The method is theoretically easy to extend to multivariable optimization

problems. For the current work, the characteristic solutions are generated from

a pseudospectral solver. Let us consider the following system of time-dependent

partial differential equations, boundary conditions, and initial conditions in two

space dimensions, ξ and η, defined over the domain

Ω : {ξ ∈ [0, 1] , η ∈ [0, 1]} , (2.1)
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and bounded by S,

∂y

∂τ
+ f

(
y,

∂y

∂ξ
,
∂y

∂η
,
∂2y

∂ξ2
,
∂2y

∂η2

)
= 0, (2.2)

g

(
y,

∂y

∂ξ
,
∂y

∂η

)
= 0, (2.3)

along with the initial conditions,

y (ξ, η, 0) = y0 (ξ, η) , (2.4)

For the heat conduction problem, y (ξ, η, τ) : R3 → R1, and f :R3 → R1, and

g :R3 → R4. For the blunt body problem [39], y (ξ, η, τ) : R3 → R10, and f :R3 →
R10, and g :R3 → R11, where the function y (ξ, η, τ) consists of six terms, yq (ξ, η, τ) ,

q = 1, ..., 6, defined over Ω and four terms, yq (ξ, η, τ) , q = 7, ..., 10, defined over

S. All of the algebraic constraints, Eq. (2.3), are boundary conditions and thus

apply only on S. Although Eq. (2.2) is time-dependent, for the optimal design

problem only steady state solutions are considered. Solving the time-dependent

equation to a relaxed steady state is a convenient numerical solution technique and

computationally easier than directly solving the formally steady problem, although

less efficient.

The system of equations in Eqs. (2.2) and (2.3) along with initial conditions,

Eq. (2.4) are solved for K distinct values of the geometric variable denoted now as

bk, k = 1, ..., K, at steady state. We make the following definition

Xq
k(ξ, η) = yq(ξ, η, τ → ∞; bk),

q = 1, ..., Q,

k = 1, ..., K,
(2.5)

where Q = 1 for the heat conduction problem and Q = 6 for the blunt body problem,

and construct the following K ×Q matrix of functions X (ξ) where for this problem

ξ ≡ (ξ, η),

X (ξ) =


X1

1 (ξ) · · · X1
K(ξ)

...
. . .

XQ
1 (ξ) XQ

K(ξ)

 . (2.6)
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The function X (ξ) contains a solution for a particular geometry bk in each of its

columns; the rows of X (ξ) are composed of a particular independent variable for

the span of the geometries.

2.2 Karhunen-Loève Decomposition

The second step in the development of the KL model is to perform a separate

KL decomposition on each row of X (ξ). Since there are six rows for the blunt

body problem, the KL decomposition will be performed six times, while for the

heat conduction problem the KL decomposition is performed only once since the

problem consists of a single scalar equation. In Appendix A, we derive the KL

decomposition using a more detailed and transparent process than often is given

in the literature. It is shown that the eigenfunctions, ϕq
k(ξ), k = 1, ..., K, of the

kernel Rq(ξ,ξ′) = 1
K

∑K
m=1 Xq

k(ξ)Xq
k(ξ

′), are orthonormal and form on average the

most efficient linear basis, in a least-squares error sense, for constructing a truncated

series approximation to any of the Xq
k(ξ), k = 1, ..., K, where q = 1, ..., Q, denote

the dependent variables of the problem.

2.3 Karhunen-Loève Galerkin Model

For the case of the heat conduction problem, the final step in developing a KL

Galerkin model is a projection of the solution space of the differential equation onto

the ϕj(ξ). Let us approximate y (ξ, η, τ) from Eqs. (2.2) and (2.3) , or simply

y (ξ, η, τ) , since Eq. (2.2) is a scalar equation, by a series expansion in the KL

eigenfunctions, ϕ1
k(ξ, η), i.e.

y (ξ, η, τ) ≈ ỹ(ξ, η, τ) =
L∑

i=1

a1
i (τ) ϕ1

i (ξ, η), L ≤ K. (2.7)
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The time varying coefficients a1
i (τ) , i = 1, ..., L, are to be determined. Substituting

Eq. (2.7) into Eq. (2.2) , we define the following residual function

e (ξ, η, τ) =
∂ỹ

∂τ
+ f

(
ỹ,

∂ỹ

∂ξ
,
∂ỹ

∂η
,
∂2ỹ

∂ξ2
,
∂2ỹ

∂η2

)
, (2.8)

which we enforce to be orthogonal to each of the eigenfunctions, ϕ1
i (ξ, η), i = 1, ..., L,

i.e. ∫ 1

0

∫ 1

0

e (ξ, η, τ) ϕ1
i (ξ, η)dξdη = 0, i = 1, ..., L. (2.9)

Substituting the expressions for the residual, e (ξ, η, τ) , from Eq. (2.8) and ỹ(ξ, η, τ)

from Eq. (2.7) into Eq. (2.9) , and making use of the orthogonality of the ϕ1
i (ξ, η),

we arrive at the following L equations for the L coefficients, a1
i (τ) , i = 1, ..., L:

d

dτ
a1

i (τ) +

∫ 1

0

∫ 1

0

f

(
a1

i ,
∂ϕ1

i

∂ξ
,
∂ϕ1

i

∂η
,
∂2ϕ1

i

∂ξ2
,
∂2ϕ1

i

∂η2

)
ϕ1

i (ξ, η)dξdη = 0, i = 1, ..., L.

(2.10)

The boundary conditions from Eq. (2.3) are subsequently incorporated into the

solution of Eq. (2.10) by an integration by parts procedure as described in the

Appendix D.

2.4 Karhunen-Loève Least-Squares Model

For the case of the blunt body problem, the final step in developing a KL least-

squares model is to expand the yq (ξ, η, τ → ∞; b) , q = 1, ..., 6, defined over Ω in

terms of the KL modes, ϕq
k(ξ, η), q = 1, ..., 6, k = 1, ..., K, from step 2. Let us

consider a steady state form of Eqs. (2.2) and (2.3) , assuming that a unique, stable

steady state solution exists,

f̂

(
ŷ,

∂ŷ

∂ξ
,
∂ŷ

∂η
,
∂2ŷ

∂ξ2
,
∂2ŷ

∂η2

)
= 0, (2.11)

ĝ

(
ŷ,

∂ŷ

∂ξ
,
∂ŷ

∂η

)
= 0, (2.12)
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where ŷ (ξ, η) is of dimension six, corresponding to yq (ξ, η, τ → ∞; b) , q = 1, ..., 6, f̂

is of dimension four also defined over Ω, and ĝ is of dimension eight and defined over

S. For the current supersonic blunt body problem, the six terms in ŷ (ξ, η) are the

density, pressure, two velocity components, and two physical grid coordinates, the

four components of f̂ are the steady-state form of the Euler equations, and the eight

components of ĝ are the appropriate nonlinear boundary conditions. The dimen-

sion of ĝ is reduced from the dimension of g because linear boundary conditions are

not included in ĝ since they are automatically satisfied by the KL approximation as

will be elaborated in a subsequent section. The reduction in the dimensions for ŷ

and f̂ compared to y and f respectively is a result of eliminating the characteristic

formulation for several time-dependent boundary conditions in favor of the Euler

equations, and dropping the evolution equations for the physical grid coordinates

over Ω in favor of algebraic expressions for the physical grid coordinates only at the

body surface. Since the problem in Eqs. (2.11) and (2.12) consists of twelve equa-

tions and six unknowns, it is overconstrained, and as a consequence, the problem is

solved in a least-squares sense. Each component of ŷ (ξ, η) , ŷq (ξ, η) , q = 1, ..., 6,

in Eqs. (2.11) and (2.12) is approximated by a truncated series expansion in the

KL eigenfunctions, ϕq
k(ξ, η), i.e.

ŷq(ξ, η) ≈ ỹq(ξ, η) =
L∑

i=1

aq
i ϕ

q
i (ξ, η),

q = 1, ..., 6,

L ≤ K,
(2.13)

so that the aq
i , i = 1, ..., L, q = 1, ..., 6, are the unknowns to be determined. Substi-

tuting the approximation ỹq(ξ, η) from Eq. (2.13) into Eqs. (2.11) and (2.12) , we

get the following residual error function for f̂ , ef ,

ef = f̂

(
ỹ,

∂ỹ

∂ξ
,
∂ỹ

∂η
,
∂2ỹ

∂ξ2
,
∂2ỹ

∂η2

)
, (2.14)

and the residual error function for ĝ, eg,

eg = ĝ

(
ỹ,

∂ỹ

∂ξ
,
∂ỹ

∂η

)
, (2.15)
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where ỹ = [ỹ1(ξ, η), ..., ỹ6(ξ, η)]
T

. We now integrate the absolute value of each

component of both the residual error vector function ef over the domain Ω, and the

residual error vector function eg over the boundary S, multiply each component by

their respective weights and add them together to obtain a total residual error, e,

i.e.

e =
4∑

q=1

ωq
f

∫
Ω

√
eq

fe
q
fdΩ+

8∑
q=1

ωq
g

∫
S

√
eq

ge
q
gdS, (2.16)

where eq
f , q = 1, ..., 4, are the components of ef , and eq

g, q = 1, ..., 8, are the com-

ponents of eg. The approximation coefficients aq
i in Eq. (2.13) are chosen in order

to minimize e in Eq. (2.16) . The ωq
f and ωq

g in Eq. (2.16) are constant weights

which are chosen empirically to enhance convergence to a global minimum for e.

A method for choosing the weights which yield an optimal convergence to a global

minimum is something which has not been considered. The problem of minimizing

e is a multi-variable minimization problem which is solved using a standard Newton

method. The IMSL routine, DUMINF is employed to minimize e in Eq. (2.16) for

the current work.
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CHAPTER 3

KARHUNEN-LOÈVE GALERKIN LINEAR HEAT TRANSFER

OPTIMIZATION PROBLEM

In this chapter we present a two-dimensional, linear heat conduction equation

for which a KL Galerkin model will be developed and the accuracy and efficiency

of the model evaluated compared to a pseudospectral method and a second order

finite difference method. Two different boundary conditions will be employed. One

boundary condition corresponds to a separation of variables series solution with only

three terms and the other with an infinite number of terms. After presentation of

the efficiency results, a single variable design problem will be solved using both the

KL Galerkin model and the pseudospectral solver.

3.1 Problem Description

The two-dimensional unsteady linear heat conduction equation defined over the

domain Ω : {ξ ∈ [0, 1] , η ∈ [0, 1]} in dimensionless form is

∂T

∂τ
=

∂2T

∂ξ2
+ Γ2∂2T

∂η2
, (3.1)

where T is temperature, ξ and η are the two-dimensional spatial coordinates, τ is

time and Γ is the aspect ratio of a plate as seen in Figure 3.1. The dimensional

form for temperature, T ∗, spatial coordinates ξ∗ and η∗, and time τ ∗ is recovered
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Figure 3.1. Schematic of heat conduction problem.

from the following equations

T ∗ = T
Q̇

κ∗ + T ∗
∞, ξ∗ = ξ

√
ΓL∗

B, η∗ = η
L∗

B√
Γ

, τ ∗ = τ
ΓL∗2

B

α∗ , (3.2)

where dimensional quantities are denoted by ∗, T ∗
∞ is the temperature of the sur-

rounding medium, κ∗ is the thermal conductivity of the solid, L∗
B is a characteristic

length, Q̇ is a constant heat flow rate per unit depth, and α∗ is the coefficient of

thermal diffusivity. The first set of boundary conditions which we will consider are

a constant temperature gradient on the lower wall,

∂T

∂η
(ξ, 0, τ) = − 1

Γ
, (3.3)

and convection on the other three sides,

∂T

∂η
(ξ, 1, τ) = − β√

Γ
T (ξ, 1, τ) , (3.4)

∂T

∂ξ
(0, η, τ) = β

√
ΓT (0, η, τ), (3.5)

∂T

∂ξ
(1, η, τ) = −β

√
ΓT (1, η, τ), (3.6)
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where the Biot number, β defined as, β = h̃L∗
B/κ∗, is set equal to unity for this

problem and h̃ is the coefficient of convection for the surrounding medium. Eq. (3.3)

is consistent with Fourier’s law of heat conduction,

q∗ = −κ∗∇T ∗, (3.7)

for a constant heat flow rate per unit depth, Q̇, through the boundary, η∗ = 0, where

Q̇ =

∫ √
ΓL∗

B

0

q∗ (ξ∗, 0, τ ∗) dξ∗ = q∗ (ξ∗, 0, τ ∗)
√

ΓL∗
B, (3.8)

q∗ is the heat flux vector, and q∗ is the component of q∗ in the η direction, i.e.

q∗ = −κ∗∂T ∗

∂η∗ . (3.9)

Substituting the expression for q∗ (ξ∗, 0, τ ∗) from Eq. (3.8) , i.e. q∗ (ξ∗, 0, τ ∗) = Q̇√
ΓL∗

B

,

into Eq. (3.9) evaluated at η∗ = 0 yields the following expression,

∂T ∗

∂η∗

∣∣∣∣
(ξ∗,0,τ∗)

= − Q̇√
Γκ∗L∗

B

, (3.10)

which is the dimensional form of the boundary condition in Eq. (3.3) . For the

second set of boundary conditions, we replace Eq. (3.3) with the following

∂T

∂η
(ξ, 0, τ) = − 1

Γ

3∑
i=1

(
β
√

Γ

σi

sin σiξ + cos σiξ

)
, (3.11)

where the σi, i = 1, 2, 3, are eigenvalues of an appropriate Sturm-Liouville operator

and can be found in Appendix C. There exists a separation of variables solution

for the heat conduction problem with both the boundary conditions Eq. (3.3) and

Eq. (3.11); this solution is also detailed in Appendix C. The difference in the

separation of variables solution between the two types of boundary conditions is

that the solution to the heat conduction problem with the boundary condition in

Eq. (3.3) requires an infinite number of terms in the series expansion of the solution

while the boundary condition in Eq. (3.11) requires only three terms in the series

19



expansion of the solution. For this reason, the boundary condition in Eq. (3.11)

will be referred to as a finite mode boundary condition. In the series expansion of

the solution to the first boundary condition, Eq. (3.3) , 750 terms are retained which

was found to yield a maximum local error L∞[Ω] in T (ξ, η, τ → ∞) of 1 × 10−9.

Although the unsteady formulation of the heat conduction problem has been

posed, we are only interested in the steady state temperature distribution. Solving

the unsteady form of the heat conduction problem to a steady state is simpler than

solving the steady form for both the pseudospectral and KL Galerkin methods.

Since the steady state solution to the linear problem, Eqs. (3.3 − 3.6) is unique

and therefore independent of the initial conditions, we choose the following initial

conditions

T (ξ, η, 0) = 1. (3.12)

The optimization problem is to maximize the average temperature, Tavg(Γ) over the

domain as a function of the domain aspect ratio, Γ, i.e.

Tavg(Γ) =

∫ 1

0

∫ 1

0

T (ξ, η, τ → ∞; Γ)dξdη, (3.13)

where the boundary condition in Eq. (3.3) is used. The second boundary condition

in Eq. (3.11) has been introduced for the efficiency tests only and is not employed

in the optimal design problem.

3.2 Pseudospectral and Finite Difference Solutions

The first step in developing a KL Galerkin model of the heat conduction problem

is the generation of a set of steady state characteristic solutions. The steady state

solutions are found by integrating the unsteady equations to a long time steady

state, where there is no further improvement in the error as measured against the

steady state separation of variables solution. A pseudospectral method using global
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Lagrange interpolating polynomials is employed. Since this problem is linear, in-

stead of a pseudospectral method, we could have implemented another method of

weighted residuals such as a Galerkin method. However, in preparation for the

subsequent blunt body problem, a solver with the capability of easily handling non-

linearities is desired, so that the pseudospectral method is chosen. The temperature

is approximated in terms of global Lagrange interpolating polynomials defined on

the mesh ξn, n = 0, ..., N, ηm, m = 0, ...,M , i.e.

T (ξ, η, τ) ≈ INMT (ξ, η, τ) =
N∑

i=0

M∑
j=0

T (ξi, ηj, τ)L
(N)
i (ξ)L

(M)
j (η) , (3.14)

where we chose the following Chebyshev distribution of nodes,

ξi =
1

2

[
1 − cos

( π

N
i
)]

, i = 0, ..., N, (3.15)

ηj =
1

2

[
1 − cos

( π

M
j
)]

, j = 0, ...,M,

which correspond to the location of the zeroes of a Chebyshev polynomial of order

N and M respectively achieves a maximum. This choice of nodes is not unique and

is made because global Lagrange polynomial approximations of general nonperiodic

functions defined on this grid were found in Appendix B to yield a more uniform and

overall lower error than a uniform grid. A 9 × 9 grid with the distribution defined

by Eq. (3.15) is shown in Figure 3.2. The Lagrange interpolating polynomials are

defined as

L(N)
n (ξ) =

N∏
l=0,l 6=n

(ξ − ξl)

N∏
l=0,l 6=n

(ξn − ξl)

, n = 0, ..., N, (3.16)

L(M)
m (η) =

M∏
l=0,l 6=m

(η − ηl)

M∏
l=0,l 6=m

(ηm − ηl)

, m = 0, ...,M.
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Figure 3.2. 9 × 9 computational grid for the pseudospectral solution to the heat

conduction problem.

It is easily shown that the Lagrange interpolating polynomials, L
(N)
n (ξ), and L

(M)
m (η)

have the values of unity at ξ = ξn and η = ηm and zero at the other collocation

points, i.e.

L(N)
n (ξi) = δni =

 0 if n 6= i,

1 if n = i.
; L(M)

m (ηj) = δmj =

 0 if m 6= j,

1 if m = j.
. (3.17)

The first derivatives in Eqs. (3.3 − 3.6), and the second derivatives in Eq. (3.1)

are approximated by taking derivatives of Eq. (3.14). We choose to evaluate the

derivatives on the grid, (ξi, ηj) , chosen to be the same grid as that used to define

the interpolating polynomial, i.e. (ξi, ηj) ≡ (ξn, ηm), although this choice is not

unique. Differentiating Eq. (3.14), and making use of Eq. (3.17), we have the

22



following approximation for the first derivatives

∂T

∂ξ

∣∣∣∣
(ξi,ηj)

≈
N∑

n=0

T (ξn, ηj, τ)
dLn

dξ
(ξi), (3.18)

∂T

∂η

∣∣∣∣
(ξi,ηj)

≈
M∑

m=0

T (ξi, ηm, τ)
dLm

dη
(ηj).

and for the second derivatives,

∂2T

∂ξ2

∣∣∣∣
(ξi,ηj)

≈
N∑

n=0

T (ξn, ηj, τ)
d2Ln

dξ2
(ξi), (3.19)

∂2T

∂η2

∣∣∣∣
(ξi,ηj)

≈
M∑

m=0

T (ξi, ηm, τ)
d2Lm

dη2
(ηj).

The terms dLn

dξ
(ξi) and dLm

dη
(ηj) in Eq. (3.18) and the terms d2Ln

dξ2 (ξi) and d2Lm

dη2 (ηj)

in Eq. (3.19) are evaluated efficiently for an arbitrary grid using an algorithm de-

veloped by Fornberg [43]. The points which both define the Lagrange interpo-

lating polynomials and at which derivatives are evaluated are chosen according to

Eq. (3.15).

The boundary conditions in Eqs. (3.3 − 3.6) are approximated on the mesh ξn,

n = 0, ..., N, ηm, m = 0, ...,M , by employing Eq. (3.18) as follows

∂T

∂η
(ξn, 0, τ) ≈

M∑
j=0

T (ξn, ηj, τ)
dL

(M)
j (0)

dη
= − 1

Γ
, n = 0, ..., N, (3.20)

∂T

∂η
(ξn, 1, τ) ≈

M∑
j=0

T (ξn, ηj, τ)
dL

(M)
j (1)

dη
= − β√

Γ
T (ξn, 1) , n = 0, ..., N, (3.21)

∂T

∂ξ
(0, ηm, τ) ≈

N∑
i=0

T (ξi, ηm, τ)
dL

(N)
i (0)

dξ
= β

√
ΓT (0, ηm), m = 0, ...,M, (3.22)

∂T

∂ξ
(1, ηm, τ) ≈

N∑
i=0

T (ξi, ηm, τ)
dL

(N)
i (1)

dξ
= −β

√
ΓT (1, ηm), m = 0, ...,M. (3.23)

From Eqs. (3.20 − 3.23) we derive the following explicit expressions for the values
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of T (ξ, η, τ) at the boundaries

T (ξn, 0, τ) = −
(

dL
(M)
0 (1)

dη

)−1 (
T (ξn, 1, τ)

(
dL

(M)
M (1)

dη
+

β√
Γ

)
(3.24)

+
M−1∑
j=1

T (ξn, ηj, τ)
dL

(M)
j (1)

dη

)
,

n = 0, ..., N,

T (ξn, 1, τ) =

dL
(M)
M (0)

dη
− dL

(M)
0 (0)

dη

(
dL

(M)
0 (1)

dη

)−1 (
dL

(M)
M (1)

dη
+

β√
Γ

)−1

(3.25)dL
(M)
0 (0)

dη

(
dL

(M)
0 (1)

dη

)−1 M−1∑
j=1

T (ξn, ηj, τ)
dL

(M)
j (1)

dη

− 1

Γ
−

M−1∑
j=1

T (ξn, ηj, τ)
dL

(M)
j (0)

dη

)
,

n = 0, ..., N,

T (0, ηm, τ) =

dL
(N)
0 (0)

dξ
− β

√
Γ −

(
dL

(N)
N (1)

dξ
+ β

√
Γ

)−1
dL

(N)
N (0)

dξ

dL
(N)
0 (1)

dξ

−1

(3.26)

dL
(N)
N (0)

dξ

(
dL

(N)
N (1)

dξ
+ β

√
Γ

)−1 (
N−1∑
i=1

T (ξi, ηm, τ)
dL

(N)
i (1)

dξ

−
N−1∑
i=1

T (ξi, ηm, τ)
dL

(N)
i (0)

dξ

)
,

m = 1, ...,M − 1,

T (1, ηm, τ) = −
(

dL
(N)
N (1)

dξ
+ β

√
Γ

)−1 N−1∑
i=0

T (ξi, ηm, τ)
dL

(N)
i (1)

dξ
, (3.27)

m = 1, ...,M − 1.
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Employing Eqs. (3.24 − 3.27) for T (ξ, η, τ) at the boundaries, the discretized

form of Eq. (3.1) can be expressed as a system of ODEs of the following form

dT

dτ

∣∣∣∣
(ξn,ηm,τ)

= F (T (ξn, ηm, τ) ; Γ) ,
n = 1, ..., N − 1,

m = 1, ...,M − 1,
(3.28)

which is integrated in time to steady state using a second order Runge-Kutta

method.

A second order central finite difference method was also implemented in order to

compare the efficiencies of both the pseudospectral and KL Galerkin methods with a

finite difference method. For the finite difference method, the boundary conditions

are approximated by a second order accurate one-sided differencing scheme which

permits explicit expressions for T (ξ, η, τ) to be obtained at the boundaries as a

function of T (ξ, η, τ) in the interior of the domain. A system of (ODEs) of the

same form as Eq. (3.28) is obtained and these equations are then integrated in time

to steady state.

The temperature distribution for the separation of variables solution at Γ = 1.5

is shown in Figure 3.3 for the boundary condition Eq. (3.3). Figure 3.4 is the

temperature distribution from the separation of variables solution for the boundary

condition in Eq. (3.11) , where the exact separation of variables solution contains

three terms in the expansion. We see in both Figures 3.3 and 3.4 that the tem-

perature is highest along the boundary η = 0 where the heat source is located

and diminishes as η = 1 is approached due to heat loss via convection through the

remaining boundaries. The temperature distribution in Figure 3.4 has a notice-

able peak in the temperature near the corner {ξ = 0, η = 0} which is not present in

Figure 3.3 due to the finite mode boundary condition employed in Figure 3.4.

In order to verify the algorithm, a series of grid convergence tests were per-

formed showing the L∞[Ω] error in T (ξ, η, τ → ∞) measured against a separation

of variables solution to the heat conduction problem as a function of number of
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Figure 3.3. Sample temperature distribution for the infinite mode boundary condi-

tion (BC1) and Γ = 1.5.
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Figure 3.4. Sample temperature distribution for the finite mode boundary condition

(BC2) and Γ = 1.5.
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nodes. Figure 3.5 shows the grid convergence of the L∞[Ω] error in T (ξ, η, τ → ∞)

for both the pseudspectral solver and the finite difference solver with the infinite

mode boundary condition, Eq. (3.3) denoted as BC1, and the finite mode boundary

condition, Eq. (3.11) denoted as BC2. The convergence rate of the finite difference

method for BC2 is seen to be significantly worse than that of the pseudospectral

method for the the same boundary condition; however, the convergence rate of

the finite difference method for BC1 is only slightly lower than that of the pseu-

dospectral method for the same boundary condition. The convergence rate of the

pseudospectral method is seen to be more sensitive to changes in the boundary con-

ditions than the finite difference method for the two different boundary conditions

considered here. Even though the convergence rate of the pseudospectral method

is only slightly higher than the finite difference method for BC1, the magnitude of

the error is one to two orders of magnitude lower for the same number of nodes than

the finite difference method.

3.3 Karhunen-Loève Modes

The second step in developing a KL Galerkin model of the heat conduction

problem is generating a set of KL modes from a set of characteristic solutions.

For the current work, ten characteristic solutions are taken to be pseudospectral

solutions to the heat conduction problem for the following ten values of aspect

ratio Γ = {0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0}. The ten KL eigenmodes

generated from 35×25 grid pseudospectral for the heat conduction problem with the

boundary condition in Eq. (3.3) are shown in Figure 3.6. The associated eigenvalues,

λ, are shown in Figure 3.7. Other choices for the number of snapshots, values of

Γ, and the grid resolution for the snapshots are possible and impact the accuracy

in the resulting KL model.
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Figure 3.5. Grid convergence L∞[Ω] error in T (ξ, η, τ → ∞) measured against a

separation of variables solution for Γ = 1.5.

It can be seen in Figure 3.6, that the first two modes are most structurally similar

to the temperature distribution in Figure 3.3 and the subsequent modes become

increasingly structurally complex as the mode number increases. The magnitude

of the eigenvalues in Figure 3.7 is seen to decrease rapidly with increasing mode

number, until the roundoff precision of the computer is reached at the eighth mode.

3.4 Karhunen-Loève Galerkin Model

The final step to develop a KL Galerkin model is to employ the Galerkin method

of weighted residuals with the KL modes from the previous step as the basis func-

tions. The temperature distribution is approximated as a linear combination of the

KL modes,
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Figure 3.6. Ten KL eigenmodes with associated eigenvalues built from ten uniform

samples for Γ ∈ [3/4, 3] on a 35 × 25 grid.
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T (ξ, η, τ) ≈ T̃ (ξ, η, τ) =
L∑

k=1

ak(τ)ϕk(ξ, η), (3.29)

where ak(τ), k = 1, ..., K, are the expansion coefficients. Substituting the ap-

proximation for T (ξ, η, τ) from Eq. (3.29) into Eq. (3.1) yields the following error

function

e(ξ, η, τ) =
∂T̃

∂τ
− ∂2T̃

∂ξ2
− Γ2∂2T̃

∂η2
. (3.30)

In the Galerkin method of weighted residuals, it is enforced that e(ξ, η, τ) be or-

thogonal to each of the basis functions, ϕl(ξ, η), l = 1, ..., L, where L is the number

of modes in the expansion.∫ 1

0

∫ 1

0

e(ξ, η, τ)ϕl(ξ, η)dξdη = 0, l = 1, ..., L. (3.31)

Substituting Eq. (3.30) into Eq. (3.31) yields∫ 1

0

∫ 1

0

∂T

∂τ
(ξ, η, τ)ϕl(ξ, η)dξdη, (3.32)

=

∫ 1

0

∫ 1

0

∂2T

∂ξ2
(ξ, η, τ)ϕl(ξ, η)dξdη + Γ2

∫ 1

0

∫ 1

0

∂2T

∂η2
(ξ, η, τ)ϕl(ξ, η)dξdη,

l = 1, ..., L.

The two terms on the right-hand side of Eq. (3.32) can be expanded by integrating

by parts, as in Appendix D, which yields the following∫ 1

0

∫ 1

0

∂2T

∂ξ2
(ξ, η, τ)ϕl(ξ, η)dξdη (3.33)

=

∫ 1

0

(
∂T

∂ξ
(1, η) ϕl (1, η) − ∂T

∂ξ
(0, η) ϕl (0, η)

)
dη −

∫ 1

0

∫ 1

0

∂T

∂ξ
(ξ, η)

∂ϕl

∂ξ
(ξ, η) dξdη,

∫ 1

0

∫ 1

0

∂2T

∂η2
(ξ, η, τ)ϕl(ξ, η)dξdη (3.34)

=

∫ 1

0

(
∂T

∂η
(ξ, 1) ϕl (ξ, 1) − ∂T

∂η
(ξ, 0) ϕl (ξ, 0)

)
dξ −

∫ 1

0

∫ 1

0

∂T

∂η
(ξ, η)

∂ϕl

∂η
(ξ, η) dξdη.
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Making use of the boundary conditions from Eqs. (3.3 − 3.6) or Eqs. (3.11) and

(3.4 − 3.6) , Eqs. (3.33) and (3.34) can be rewritten as follows:∫ 1

0

∫ 1

0

∂2T

∂ξ2
(ξ, η, τ)ϕl(ξ, η)dξdη (3.35)

= −
√

Γβ

∫ 1

0

(T (1, η) ϕl (1, η) + T (0, η) ϕl (0, η)) dη −
∫ 1

0

∫ 1

0

∂T

∂ξ
(ξ, η)

∂ϕl

∂ξ
(ξ, η) dξdη,

∫ 1

0

∫ 1

0

∂2T

∂η2
(ξ, η, τ)ϕl(ξ, η)dxdy (3.36)

= −
∫ 1

0

(
β√
Γ

T (ξ, 1) ϕl (ξ, 1) − ψ (ξ)

Γ
ϕl (ξ, 0)

)
dξ −

∫ 1

0

∫ 1

0

∂T

∂η
(ξ, η)

∂ϕl

∂η
(ξ, η) dξdη,

where ψ (ξ) = 1 if Eq. (3.3) is used or ψ (ξ) =
∑3

i=1

(
β
√

Γ
σi

sin σiξ + cos σiξ
)

if

Eq. (3.11) is used. Substituting the approximation for T (ξ, η, τ) from Eq. (3.29)

into the left-hand side of Eq. (3.32) yields the following∫ 1

0

∫ 1

0

∂T

∂τ
(ξ, η, τ)ϕl(ξ, η)dξdη (3.37)

=
L∑

k=1

d

dτ
(ak(τ))

∫ 1

0

∫ 1

0

ϕk(ξ, η)ϕl(ξ, η)dξdη

=
d

dτ
(al(τ)), l = 1, ..., L,

where we have made use of the fact that the basis functions ϕl(ξ, η), l = 1, ..., L, are

orthonormal. Finally, we have the following form for Eq. (3.32) after making use

of Eqs. (3.35 − 3.37) ,

d

dτ
(al(τ)) = −

∫ 1

0

∫ 1

0

(
∂T

∂ξ

∂ϕl

∂ξ
+ Γ2∂T

∂η

∂ϕl

∂η

)
dξdη (3.38)

− β
√

Γ

∫ 1

0

(T (1, η) ϕl (1, η) + T (0, η) ϕl (0, η)) dη

− βΓ3/2

∫ 1

0

T (ξ, 1) ϕl (ξ, 1) dξ + Γ

∫ 1

0

ψ (ξ) ϕl (ξ, 0) dξ

l = 1, ..., L.

Once the ordinary differential equations in Eq. (3.38) have been solved to steady-

state, the temperature distribution is recovered from Eq. (3.29). The integrals in
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Eq. (3.38) are approximated by employing Gauss-Legendre quadrature as described

in Appendix E.

3.5 Results for Karhunen-Loève Model

3.5.1 Karhunen-Loève Mode Convergence for Ten Snapshot KL Model, Γ ∈ [3/4, 3] ,

Infinite Mode Boundary Condition (BC1)

Convergence of the L∞ [Ω] error in T (ξ, η) as a function of the number of KL

modes is shown in Figure 3.8 for a KL model built from ten snapshots for the heat

conduction problem with the boundary condition in Eq. (3.3). The ten snapshots

are uniformly distributed over the range Γ ∈ [3/4, 3]. The snapshots are generated

using the pseudospectral solver on both a 35 × 25 grid and a 21 × 17 grid and

all the snapshots have nominally the same level of accuracy. The error in both

the pseudospectral and KL Galerkin model is assessed by comparison with a high

accuracy separation of variables solution. After the sixth mode for the 35 × 25

grid KL model and after the fifth mode for the 21 × 17 grid KL model there is no

further improvement in the accuracy of the model, since the KL model accuracy has

reached the level of error in the samples as shown by the dark lines in Figure 3.8.

3.5.2 Karhunen-Loève Mode Convergence for Ten Snapshot KL Model, Γ ∈ [3/4, 3] ,

Finite Mode Boundary Condition (BC2)

Convergence of the L∞ [Ω] error in T (ξ, η) as a function of the number of KL

modes is shown in Figure 3.9 for a KL model built from ten snapshots for the heat

conduction problem with the boundary condition in Eq. (3.11). The ten snapshots

are uniformly distributed over the range Γ ∈ [3/4, 3]. The snapshots are generated

using the pseudospectral solver on both a 15× 15 grid and a 11× 11 grid and once

again the error in all of the snapshots is nominally the same. The error in both the

33



2 4 6 8 10
10

−6

10
−4

10
−2

10
0

Number of KL modes

L ∞
[Ω

] e
rr

or
 in

 T

35x25 grid pseudospectral
35x25 grid KL model      
21x17 grid pseudospectral
21x17 grid KL model      

Figure 3.8. L∞ [Ω] error in T (ξ, η, τ → ∞) as a function of the number of KL modes

for the infinite mode boundary condition (BC1), Γ = 3/2.
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Figure 3.9. L∞ [Ω] error in T (ξ, η, τ → ∞) as a function of the number of KL modes

for the finite mode boundary condition (BC2), Γ = 3/2.

pseudospectral and KL Galerkin model is assessed by comparison with the exact

separation of variables solution. After the ninth mode for the 15 × 15 grid KL

model and after the fifth mode for the 11 × 11 grid KL model there is no further

improvement in the accuracy of the model. For the case of the 11 × 11 grid KL

model the error reaches the level of the error in the snapshots; however, for the case

of the 15 × 15 grid KL model the level of accuracy is about an order of magnitude

higher than the level of accuracy in the snapshots as shown by the dark lines in

Figure 3.9. It is not clear why the 15×15 grid KL model does not reach the level of

accuracy in the snapshots and this something which requires further investigation.
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Figure 3.10. KL Galerkin model Tavg (Γ) versus Γ built from 10 snapshots on a

35 × 25 grid.

3.5.3 Design Problem

In Figures 3.10 and 3.11, we show the plot of Tavg (Γ) versus Γ for KL models

using various numbers of KL modes compared to Tavg (Γ) from a highly resolved

pseudospectral solution. It is seen that for the KL model with one mode, the

prediction is fairly poor, with the predicted value for the Γ yielding the maximum

Tavg (Γ) around 1.0 instead of the pseudospectral prediction for Γ at 1.85 . Including

at least two KL modes in the model yields good agreement with the pseudospectral

solution. As seen in Figure 3.11, the optimum value of Γ which yields the highest

value of Tavg is Γ = 1.85, and the value of Tavg is 0.4734.

Now we develop a KL model taking only three snapshots at Γ = 3/4, 15/8, and

3 from the pseudospectral solution on a 17 × 17 grid and compare the predictions

for Tavg from the KL model to a quadratic polynomial fit of the three snapshots.
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Figure 3.11. KL Galerkin model Tavg (Γ) versus Γ magnified built from 10 snapshots

on a 35 × 25 grid.
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Figure 3.12. Tavg versus Γ for the KL model built from 3 snapshots on a 17 × 17

grid and a quadratic fit of Tavg from the same 3 snapshots.

The plot of Tavg versus Γ for the three mode KL model and the quadratic fit are

shown in Figures 3.12 and 3.13 compared to Tavg from the pseudospectral solver on

the same 17× 17 grid. The equation for the quadratic fit of Tavg versus Γ is Tavg =

−0.029968574 + 0.130287875Γ + 0.334459475Γ2. It is seen that the dependence of

Tavg on Γ is better approximated by the KL model than the quadratic fit.

3.5.4 Efficiency of Karhunen-Loève Galerkin Model

Figures 3.14 and 3.15 show the L∞ [Ω] error in T (ξ, η) versus CPU time in sec-

onds for the KL Galerkin model, the pseudospectral solver, and the finite difference

method for the boundary condition in Eq. (3.3) and the boundary condition in

Eq. (3.11) respectively along with linear fits of the data points to make comparison

easier. The various data points representing the pseudospectral and finite differ-
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Figure 3.13. Magnification of Tavg versus Γ for the KL model built from 3 snapshots

on a 17 × 17 grid and a quadratic fit of Tavg from the same 3 snapshots.
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ence solutions are found by varying the number of grid points; finer grids yield more

accurate results but also take longer to compute. The data points representing the

KL model are all from KL models built with ten uniform snapshots over the range

Γ ∈ [3/4, 3] but with various levels of grid refinement and number of modes. The

accuracy and computational cost for the KL model are functions of both the grid

refinement in the snapshots and the number of modes used in the approximation;

finer grid snapshots and more modes used in the KL model increase the accuracy

of the predictions, but also the computational cost. In Figure 3.14 the slope of

the line representing the error versus CPU time is significantly steeper for the KL

model than for the pseudospectral method, so that the KL model requires nearly

three orders of magnitude less CPU time at the lowest error level. In Figure 3.15 it

is seen that the KL model and pseudospectral method predictions have roughly the

same slope of error versus CPU time with the KL model at a slightly lower CPU

time for the same level of accuracy. The finite difference method is significantly

less efficient than either the pseudospectral or KL Galerkin methods. The efficiency

results shown in this section do not take into consideration the computational cost

of building the KL Galerkin model, although this is also an important consideration

in deciding whether to use the KL method for a particular design problem.

Further understanding of the efficiency of the KL Galerkin method can be gained

by examining the operation count per time step required in the computational al-

gorithm as compared to the pseudospectral and finite difference methods. For

the two-dimensional problem considered here, the KL Galerkin method requires

O(LNM) operations, where L is the number of modes in the KL model, and N

and M are the number of nodes in spatial direction ξ and η respectively. The

pseudospectral method requires O(N 2M + M2N) operations per time step when

the spatial derivatives are evaluated by direct differentiation of the Lagrange inter-
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Figure 3.14. L∞ [Ω] error in T (ξ, η, τ → ∞) versus CPU time in seconds for the

infinite mode boundary condition (BC1), Γ = 3/2.
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Figure 3.15. L∞ [Ω] error in T (ξ, η, τ → ∞) versus CPU time in seconds for the

finite mode boundary condition (BC2), Γ = 3/2.

polating polynomials, and the finite difference method requires O(NM) operations

per time step, but requires a much larger N and M for the same level of accuracy

as the pseudospectral method. Comparing the operation count per time step for

the KL and pseudospectral methods, it is evident that when L = N = M , if both

methods yield the same accuracy, then the pseudospectral method will have twice

the operation count per time step as the KL method. For the heat conduction

problem with the finite mode boundary condition, L ≈ N/3, and N = M yields the

same level of accuracy for the KL and pseudospectral methods, so that the opera-

tion count per time step of the pseudospectral solver is about six times that of the

KL Galerkin model. In addition, the KL method has a less restrictive time step

requirement than the pseudospectral method since higher frequency information

which tends to contribute to instability has been reduced by truncating the number

of modes employed in the KL model. This explains why the total computational
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cost of the pseudospectral method is approximately an order of magnitude greater

than that of the KL Galerkin model for the finite mode case. On the other hand,

for the case with the infinite mode boundary condition L ≈ N/6 and N ≈ M for

the same level of accuracy. For this reason, and due to the less restrictive time step

requirement of the KL Galerkin model, which resulted in fewer time steps to reach a

steady state solution, the computational cost of the pseudospectral method is nearly

two orders of magnitude greater than that of the KL Galerkin model for the infinite

mode boundary condition at an accuracy of 10−5. The finite difference method

has fewer operations per time step than either the KL Galerkin or pseudospectral

methods, but the convergence rate is only second order rather than exponential, so

that the efficiency is much lower.

Since the heat conduction problem is linear, it is possible to further reduce

the number of operations per time step for the KL Galerkin method to O(L2).

Similarly, a Galerkin method employing Chebyshev basis functions could be easily

implemented with an operation count of O(L2) per time step, where L is the number

of Chebyshev polynomials retained in the solution approximation, and a significant

reduction in computational cost could be realized. This issue will be discussed

further in the “Future Work” section of the conclusions.
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CHAPTER 4

KARHUNEN-LOÈVE LEAST-SQUARES BLUNT BODY OPTIMAL DESIGN

PROBLEM

4.1 Supersonic Blunt Body Flow and Pseudospectral Solver

4.1.1 Governing Equations

In this chapter we will develop a KL least-squares model for a two-dimensional,

axisymmetric blunt body geometry in supersonic flow. The accuracy and efficiency

of the KL model are compared to the accuracy and efficiency of a pseudospectral

solver. A single variable design problem is solved using both the pseudospectral

solver and the KL model and the results are compared.

The two-dimensional, axisymmetric Euler equations for a calorically perfect ideal

gas are, in dimensionless form:

∂ρ

∂t
+ u

∂ρ

∂r
+ w

∂ρ

∂z
+ ρ

(
∂u

∂r
+

∂w

∂z
+

u

r

)
= 0, (4.1)

∂u

∂t
+ u

∂u

∂r
+ w

∂u

∂z
+

1

ρ

∂p

∂r
= 0, (4.2)

∂w

∂t
+ u

∂w

∂r
+ w

∂w

∂z
+

1

ρ

∂p

∂z
= 0, (4.3)

∂p

∂t
+ u

∂p

∂r
+ w

∂p

∂z
+ γp

(
∂u

∂r
+

∂w

∂z
+

u

r

)
= 0, (4.4)

where ρ is density, p is pressure, u and w are the velocities in the radial and axial

directions, respectively, r is the radial coordinate, z is the axial coordinate, t is time,
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and γ is the ratio of specific heats. The dimensional form for pressure, p∗, density,

ρ∗, and r∗ and z∗ components of velocity, u∗ and w∗, respectively, are recovered from

the following equations,

p∗ = pp∗∞, (4.5)

ρ∗ = ρρ∗
∞, (4.6)

u∗ = u
√

p∗∞/ρ∗∞, w∗ = w
√

p∗∞/ρ∗∞, (4.7)

where dimensional quantities are denoted by a ∗, and freestream quantities are

denoted by ∞. The dimensional space and time variables are

z∗ = zL∗
B, r∗ = rL∗

B, (4.8)

t∗ = tL∗
B/

√
p∗∞/ρ∗∞, (4.9)

where L∗
B is the length of the body. For this problem, we choose z ∈ [−∞, 1] and

r ∈ [0,∞] and select the body geometry such that the body surface coordinates,

R and Z, are in the domain R ∈ [0, 1] and Z ∈ [0, 1] . The freestream flow is at

zero angle of attack so that the component of freestream velocity in the r direction,

u∞ = 0. Since the dimensionless pressure, p∞, and density, ρ∞, are equal to unity,

the component of freestream velocity in the z direction, w∞, can be expressed as

the following function of γ and the freestream Mach number, M∞,

w∞ =
√

γM∞. (4.10)

Defining the entropy to be s, we have, for a calorically perfect ideal gas with zero

freestream entropy,

s = ln

(
p

ργ

)
, (4.11)

where the entropy is non-dimensionalized by the specific heat at constant volume,

c∗v,

s∗ = sc∗v. (4.12)
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The following equation, which will prove useful, is an extended Crocco’s theorem

which is nothing more than a combination of the linear momentum principle coupled

with some definitions from thermodynamics:

∂v

∂t
+ ∇ho = T∇s + v × ω, (4.13)

where ho = h+ 1
2
v · v is the total enthalpy, T is temperature, v is the velocity vector,

and ω is the vorticity vector. The dimensional temperature, T ∗, total enthalpy, h∗
o,

and vorticity, ω∗ can be found from the following relations

T ∗ =
p∗∞

c∗vρ∗∞
T, h∗

o =
p∗∞
ρ∗∞

ho, ω∗ =
1

L∗
B

√
p∗∞
ρ∗∞

ω. (4.14)

The derivation of the extended Crocco’s theorem is presented in Appendix F. In

the steady state limit, the extended Crocco’s theorem reduces to what is normally

referred to as Crocco’s theorem:

∇ho = T∇s + v × ω. (4.15)

We also show in Appendix F, that in the steady state limit, the total enthalpy is

constant along a streamline. In addition, since the freestream flow is uniform, and

since there is also no change in total enthalpy across a shock, the total enthalpy is

constant everywhere for this inviscid, steady flow, which gives rise to

∇ho = 0. (4.16)

Thus the steady Crocco’s theorem for the current problem becomes

T∇s = −v × ω. (4.17)

We also present at this time, the vorticity transport equation appropriate for this

unsteady, inviscid, compressible flow,

∂

∂t

(
ω

ρ

)
+ (v · ∇)

(
ω

ρ

)
=

(
ω

ρ
· ∇

)
v+

1

ρ3
∇ρ ×∇p, (4.18)
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which is obtained by taking the curl of the linear momentum equation and making

use of certain vector identities. We will make use of the vorticity transport equation

for verification of the flow solver to be presented subsequently. Making use of the

Gibbs equation in the form T∇s = ∇h− 1
ρ
∇p, the vorticity transport equation can

also be written in terms of temperature and entropy:

∂

∂t

(
ω

ρ

)
+ (v · ∇)

(
ω

ρ

)
=

(
ω

ρ
· ∇

)
v +

1

ρ
∇T ×∇s. (4.19)

Details of the derivation of both forms of the vorticity transport equation can be

found in Appendix F. For two-dimensional, steady flows the vorticity transport

equation reduces to

(v · ∇)

(
ω

ρ

)
=

1

ρ3
∇ρ ×∇p, (4.20)

or

(v · ∇)

(
ω

ρ

)
=

1

ρ
∇T ×∇s. (4.21)

From the definition for the ∇ operator in cylindrical coordinates, the vorticity trans-

port equation, for the current two-dimensional, axisymmetric problem, reduces to

the following scalar equation in the steady state limit

u
∂

∂r

(
ωθ

ρ

)
+ w

∂

∂z

(
ωθ

ρ

)
=

1

ρ3

(
∂ρ

∂z

∂p

∂r
− ∂ρ

∂r

∂p

∂z

)
+

uωθ

rρ
, (4.22)

or

u
∂

∂r

(
ωθ

ρ

)
+ w

∂

∂z

(
ωθ

ρ

)
=

1

ρ

(
∂T

∂z

∂s

∂r
− ∂T

∂r

∂s

∂z

)
+

uωθ

rρ
, (4.23)

where the only nonzero component of vorticity, ωθ, is in the direction normal to the

r − z plane.

To facilitate the solution to the Euler equations for time-varying geometry,

Eqs. (4.1 − 4.4) are rewritten in terms of a general body-fitted coordinate system,
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ξ(z, r, t), η(z, r, t) and τ (z, r, t) . Employing the chain rule of differentiation,

∂

∂z
=

∂ξ

∂z

∂

∂ξ
+

∂η

∂z

∂

∂η
+

∂τ

∂z

∂

∂τ
, (4.24)

∂

∂r
=

∂ξ

∂r

∂

∂ξ
+

∂η

∂r

∂

∂η
+

∂τ

∂r

∂

∂τ
,

∂

∂t
=

∂ξ

∂t

∂

∂ξ
+

∂η

∂t

∂

∂η
+

∂τ

∂t

∂

∂τ
,

and taking τ (z, r, t) = t, the nondimensional form of Eqs. (4.1 − 4.4) in generalized

coordinates is

∂ρ

∂τ
+ û

∂ρ

∂ξ
+ ŵ

∂ρ

∂η
+ ρ

(
∂ξ

∂r

∂u

∂ξ
+

∂ξ

∂z

∂w

∂ξ
+

∂η

∂r

∂u

∂η
+

∂η

∂z

∂w

∂η

)
+

ρu

r
= 0, (4.25)

∂u

∂τ
+ û

∂u

∂ξ
+ ŵ

∂u

∂η
+

1

ρ

(
∂ξ

∂r

∂p

∂ξ
+

∂η

∂r

∂p

∂η

)
= 0, (4.26)

∂w

∂τ
+ û

∂w

∂ξ
+ ŵ

∂w

∂η
+

1

ρ

(
∂ξ

∂z

∂p

∂ξ
+

∂η

∂z

∂p

∂η

)
= 0, (4.27)

∂p

∂τ
+ û

∂p

∂ξ
+ ŵ

∂p

∂η
+ γp

(
∂ξ

∂r

∂u

∂ξ
+

∂ξ

∂z

∂w

∂ξ
+

∂η

∂r

∂u

∂η
+

∂η

∂z

∂w

∂η

)
+

γpu

r
= 0, (4.28)

where the contravariant velocity components û and ŵ are

û =
∂ξ

∂t
+ u

∂ξ

∂r
+ w

∂ξ

∂z
, (4.29)

ŵ =
∂η

∂t
+ u

∂η

∂r
+ w

∂η

∂z
. (4.30)

The following standard relations between the metrics and inverse metrics will be

necessary

∂ξ

∂z
=

1

J

∂r

∂η
,

∂η

∂z
= − 1

J

∂r

∂ξ
, (4.31)

∂ξ

∂r
= − 1

J

∂z

∂η
,

∂η

∂r
=

1

J

∂z

∂ξ
,

∂ξ

∂t
=

(
∂r
∂τ

∂z
∂η

− ∂r
∂η

∂z
∂τ

)
J

,
∂η

∂t
=

(
∂r
∂ξ

∂z
∂τ

− ∂r
∂τ

∂z
∂ξ

)
J

,

J =
∂r

∂η

∂z

∂ξ
− ∂r

∂ξ

∂z

∂η
,
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where J is the determinant of the following metric Jacobian matrix, J

J =


∂z
∂ξ

∂z
∂η

∂z
∂τ

∂r
∂ξ

∂r
∂η

∂r
∂τ

0 0 1

 , (4.32)

or for the more general case where t is a function of ξ, η, and τ

J =


∂z
∂ξ

∂z
∂η

∂z
∂τ

∂r
∂ξ

∂r
∂η

∂r
∂τ

∂t
∂ξ

∂t
∂η

∂t
∂τ

 . (4.33)

4.1.2 Computational and Physical Coordinates

The physical domain of the blunt body problem, Fig. 4.1, is constructed such

that the body surface lies along the computational boundary (ξ, 0) , the shock lies

along the boundary (ξ, 1) , the symmetry axis is a third boundary at (0, η) , and the

fourth boundary at (1, η) is a supersonic outflow. The transformation between

the physical coordinates (r, z) and computational coordinates (ξ, η) is taken to be

r (ξ, η, τ) = R(ξ) +
η dZ(ξ)

dξ
h (ξ, τ)√(

dR(ξ)
dξ

)2

+
(

dZ(ξ)
dξ

)2
, (4.34)

z (ξ, η, τ) = Z(ξ) − η dR(ξ)
dξ

h (ξ, τ)√(
dR(ξ)

dξ

)2

+
(

dZ(ξ)
dξ

)2
. (4.35)

where the nonlinear function h (ξ, τ) must be specified to completely determine

the mapping, and R(ξ) and Z(ξ) are known functions. After manipulation, the

transformations in Eqs. (4.34) and (4.35) yield the following identity

h (ξ, τ) =

√
(z (ξ, 1, τ) − z (ξ, 0, τ))2 + (r (ξ, 1, τ) − r (ξ, 0, τ))2, (4.36)

from which it holds that the function h (ξ, τ) is the distance in r − z space between

the body surface, η = 0, and the shock, η = 1, along lines of constant ξ. The
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Figure 4.1. Schematic of shock-fitted high Mach number flow over an axisymmetric

blunt body including computational (ξ, η) and physical (r, z) coordinates.
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function h (ξ, τ) is subsequently referred to as the shock distance function. We thus

see that Eqs. (4.34) and (4.35) form an implicit algebraic equation for the coordinate

transformation. It is apparent from Eqs. (4.34) and (4.35) that the functions R (ξ)

and Z (ξ) parameterize the blunt body surface, η = 0, i.e.

r (ξ, 0, τ) = R (ξ) , (4.37)

z (ξ, 0, τ) = Z (ξ) ,

and that the body surface is not a function of time. The transformations in

Eqs. (4.34) and (4.35) have been constructed so that lines of constant ξ are normal

to the body surface and have no curvature in r− z space, i.e. the unit vector in the

η direction, eη, is identical to the unit vector in the direction normal to the body

surface, eBN , which is not necessarily normal to the shock except at η = 0. In order

to demonstrate that eη = eBN , an expression for eBN is first found by enforcing the

following restriction,

eBN · eBT = 0, (4.38)

and employing the following definition for the unit vector in the direction tangent

to the body, eBT ,

eBT =

∂r
∂ξ

er + ∂z
∂ξ

ez√(
∂r
∂ξ

)2

+
(

∂z
∂ξ

)2

∣∣∣∣∣∣∣∣
(ξ,0,τ)

. (4.39)

From Eqs. (4.38) and (4.39) the following expression for eBN is obtained,

eBN =

∂z
∂ξ

er − ∂r
∂ξ

ez√(
∂r
∂ξ

)2

+
(

∂z
∂ξ

)2

∣∣∣∣∣∣∣∣
(ξ,0,τ)

. (4.40)

The unit vector in the η direction is defined as

eη =

∂r
∂η

er + ∂z
∂η

ez√(
∂r
∂η

)2

+
(

∂z
∂η

)2
, (4.41)
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which for the transformations defined in Eqs. (4.34) and (4.35) becomes

eη =

dZ(ξ)
dξ

er − dR(ξ)
dξ

ez√(
dZ(ξ)

dξ

)2

+
(

dR(ξ)
dξ

)2
. (4.42)

Since it is apparent from Eqs. (4.34) and (4.35) that ∂z
∂ξ

∣∣∣
(ξ,0,τ)

= dZ(ξ)
dξ

and ∂r
∂ξ

∣∣∣
(ξ,0,τ)

=

dR(ξ)
dξ

, the expression for eη in Eq. (4.42) is equivalent to eBN in Eq. (4.40) .

Since the shock is attached to a boundary of the physical grid, the physical grid

coordinates r(ξ, η, τ) and z(ξ, η, τ), will evolve in time except along the body surface,

whose coordinates do not change; the body shape is fixed with respect to time. The

time evolution equations for the physical grid r(ξ, η, τ), and z(ξ, η, τ) can be found

by differentiating Eqs. (4.34) and (4.35) with respect to time as follows,

∂

∂τ
r (ξ, η, τ) =

η dZ(ξ)
dξ

v (ξ, τ)√(
dR(ξ)

dξ

)2

+
(

dZ(ξ)
dξ

)2
, (4.43)

∂

∂τ
z (ξ, η, τ) = − η dR(ξ)

dξ
v (ξ, τ)√(

dR(ξ)
dξ

)2

+
(

dZ(ξ)
dξ

)2
, (4.44)

where the shock velocity function v (ξ, τ) is

v (ξ, τ) =
∂

∂τ
h (ξ, τ) . (4.45)

For the current problem we have chosen the following functions to parameterize the

blunt body surface

R(ξ) = ξ, (4.46)

Z(ξ) = ξ1/b, (4.47)

where the domain for the geometric parameter b is restricted to b ∈ (0, 2/3) . Elim-

inating the parameter ξ, we see that the body surface is described by R = Zb

52



4.1.3 Boundary Conditions

The kinematic boundary condition of no mass flux at the body surface requires

that the velocity component normal to the body surface, vBN (ξ, τ), be equal to

zero, i.e.

vBN (ξ, τ) = v|(ξ,0,τ) ·eBN = 0, (4.48)

where v (ξ, η, τ) is the velocity vector,

v (ξ, η, τ) = u (ξ, η, τ) er + w (ξ, η, τ) ez. (4.49)

Substituting the definition of eBN from Eq. (4.40) into Eq. (4.48) , the kinematic

boundary condition at the body becomes

vBN (ξ, τ) =

(
u
∂z

∂ξ
− w

∂r

∂ξ

)∣∣∣∣
(ξ,0,τ)

= 0. (4.50)

Employing the inverse metric relations from Eq. (4.31) , Eq. (4.50) can also be

written as

vBN (ξ, τ) =

(
u
∂η

∂r
+ w

∂η

∂z

)∣∣∣∣
(ξ,0,τ)

= ŵ (ξ, 0, τ) = 0. (4.51)

In Eq. (4.51) , the term ∂η
∂t

∣∣
η=0

equals zero, which is apparent from the fact that

∂z
∂τ

∣∣
η=0

= ∂r
∂τ

∣∣
η=0

= 0 from Eqs. (4.34) and (4.35) and the transformation rules in

Eq. (4.31).

In order to formulate a numerical boundary condition at the body for ρ, u, w,

and p, Eqs. (4.25 − 4.28) are written in the following form

∂z

∂τ
+ A

∂z

∂ξ
+ B

∂z

∂η
+ s = 0, (4.52)

where

z =



ρ

u

w

p


, s =



ρu/r

0

0

γpu/r


, (4.53)
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A =



û ρ∂ξ
∂r

ρ∂ξ
∂z

0

0 û 0 1
ρ

∂ξ
∂r

0 0 û 1
ρ

∂ξ
∂z

0 γp∂ξ
∂r

γp∂ξ
∂z

û


,B =



ŵ ρ∂η
∂r

ρ∂η
∂z

0

0 ŵ 0 1
ρ

∂η
∂r

0 0 ŵ 1
ρ

∂η
∂z

0 γp∂η
∂r

γp∂η
∂z

ŵ


. (4.54)

The flux Jacobian matrix B is then decomposed as,

B = P−1ΛηP, (4.55)

where the square matrix, P contains the left eigenvectors of B in its rows; the

diagonal matrix Λη contain the eigenvalues of B in its diagonal; and P−1 is the

inverse of P. Substituting Eq. (4.55) into Eq. (4.52) and premultiplying by P

yields the following characteristic formulation [50, 51] of the governing equations,

P
∂z

∂τ
+ PA

∂z

∂ξ
+ ΛηP

∂z

∂η
+ Ps = 0. (4.56)

The diagonal eigenvalue matrix, Λη, and the left eigenvector matrix P are

Λη =



ŵ 0 0 0

0 ŵ 0 0

0 0 ŵ − c

√(
∂η
∂z

)2
+

(
∂η
∂r

)2
0

0 0 0 ŵ + c

√(
∂η
∂z

)2
+

(
∂η
∂r

)2


, (4.57)

P =



0 −
∂η
∂z

∂η
∂r

( ∂η
∂z )

2
+( ∂η

∂r )
2

( ∂η
∂r )

2

( ∂η
∂z )

2
+( ∂η

∂r )
2 0

1 0 0 − 1
c2

0 − ρc ∂η
∂r

2
√

( ∂η
∂z )

2
+( ∂η

∂r )
2 − ρc ∂η

∂z

2
√

( ∂η
∂z )

2
+( ∂η

∂r )
2

1
2

0
ρc ∂η

∂r

2
√

( ∂η
∂z )

2
+( ∂η

∂r )
2

ρc ∂η
∂z

2
√

( ∂η
∂z )

2
+( ∂η

∂r )
2

1
2


, (4.58)

where c =
√

γp/ρ is the dimensionless acoustic speed. Since ŵ is everywhere

negative and since ‖ŵ‖ < ‖c
√(

∂η
∂z

)2
+

(
∂η
∂r

)2‖ at η = 0, only the first three of the

equations in Eq. (4.56) can be used in formulating numerical boundary conditions
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since they are associated with negative eigenvalues, Λη. The fourth equation in

Eq. (4.56) is associated with a positive eigenvalue and thus describes information

propagation from inside the body which must therefore be discarded as nonphysical;

in its place the physical boundary condition, Eq. (4.51) , is employed. The three

differential equations from Eq. (4.56) to be solved at the body surface, η = 0, are(
∂η

∂z

∂u

∂τ
− ∂η

∂r

∂w

∂τ
+ û

(
∂η

∂z

∂u

∂ξ
− ∂η

∂r

∂w

∂ξ

)
(4.59)

+ŵ

(
∂η

∂z

∂u

∂η
− ∂η

∂r

∂w

∂η

)
+

1

ρ

(
∂η

∂z

∂ξ

∂r
− ∂η

∂r

∂ξ

∂z

)
∂p

∂ξ

)∣∣∣∣
(ξ,0,τ)

= 0,(
∂ρ

∂τ
− 1

c2

∂p

∂τ
+ û

(
∂ρ

∂ξ
− 1

c2

∂p

∂ξ

)
+ ŵ

(
∂ρ

∂η
− 1

c2

∂p

∂η

))∣∣∣∣
(ξ,0,τ)

= 0, (4.60)

∂p

∂τ
− ρc

(
∂η
∂r

∂u
∂τ

+ ∂η
∂z

∂w
∂τ

)√(
∂η
∂z

)2
+

(
∂η
∂r

)2
+ ρc2

(
∂ξ

∂r

∂u

∂ξ
+

∂ξ

∂z

∂w

∂ξ

)
(4.61)

−
ρcû

(
∂η
∂r

∂u
∂ξ

+ ∂η
∂z

∂w
∂ξ

)
√(

∂η
∂z

)2
+

(
∂η
∂r

)2
+

û − c
(

∂η
∂z

∂ξ
∂z

+ ∂η
∂r

∂ξ
∂r

)√(
∂η
∂z

)2
+

(
∂η
∂r

)2

 ∂p

∂ξ

+

ŵ − c

√(
∂η

∂z

)2

+

(
∂η

∂r

)2
 ∂p

∂η
−

ρc
(

∂η
∂r

∂u
∂η

+ ∂η
∂z

∂w
∂η

)
√(

∂η
∂z

)2
+

(
∂η
∂r

)2

 +
ρc2u

r

∣∣∣∣∣∣
(ξ,0,τ)

= 0,

which are obtained from the first three equations in Eq. (4.56) .

Eqs. (4.59 − 4.61) are not in the same form as Eq. (2.2), and so we will proceed

to put them into that form. Taking the derivative of Eq. (4.50) with respect to

time yields(
∂

∂τ

(
u
∂z

∂ξ
− w

∂r

∂ξ

)
=

∂z

∂ξ

∂u

∂τ
− ∂r

∂ξ

∂w

∂τ
+ u

∂

∂τ

(
∂z

∂ξ

)
− w

∂

∂τ

(
∂r

∂ξ

))∣∣∣∣
(ξ,0,τ)

= 0,

(4.62)
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or since the body surface is fixed in time, the terms ∂
∂τ

(
∂z
∂ξ

)
and ∂

∂τ

(
∂r
∂ξ

)
are equal

to zero, and we have (
∂z

∂ξ

∂u

∂τ
− ∂r

∂ξ

∂w

∂τ

)∣∣∣∣
(ξ,0,τ)

= 0, (4.63)

or in terms of the inverse metrics(
∂η

∂r

∂u

∂τ
+

∂η

∂z

∂w

∂τ

)∣∣∣∣
(ξ,0,τ)

= 0. (4.64)

At the body surface, the velocity component tangent to the body surface is defined

as

vBT (ξ, τ) = v|(ξ,0,τ) ·eBT , (4.65)

where

v|(ξ,0,τ) ·eBT =
u∂r

∂ξ
+ w ∂z

∂ξ√(
∂r
∂ξ

)2

+
(

∂z
∂ξ

)2

∣∣∣∣∣∣∣∣
(ξ,0,τ)

. (4.66)

Differentiating Eq. (4.66) with respect to time yields

∂

∂τ
vBT (ξ, τ) =

∂

∂τ

 u∂r
∂ξ

+ w ∂z
∂ξ√(

∂r
∂ξ

)2

+
(

∂z
∂ξ

)2


∣∣∣∣∣∣∣∣
(ξ,0,τ)

(4.67)

=


∂r
∂ξ

∂u
∂τ

+ ∂z
∂ξ

∂w
∂τ

+ u ∂2r
∂τ∂ξ

+ w ∂2z
∂τ∂ξ√(

∂r
∂ξ

)2

+
(

∂z
∂ξ

)2
−

(
∂r
∂ξ

∂2r
∂τ∂ξ

+ ∂z
∂ξ

∂2z
∂τ∂ξ

) (
u∂r

∂ξ
+ w ∂z

∂ξ

)
((

∂r
∂ξ

)2

+
(

∂z
∂ξ

)2
)3/2


∣∣∣∣∣∣∣∣∣
(ξ,0,τ)

,

or since the terms ∂2z
∂τ∂ξ

and ∂2r
∂τ∂ξ

are equal to zero at η = 0 , the evolution equation

for vBT (ξ, τ) is defined as

∂

∂τ
vBT (ξ, τ) =

 ∂r
∂ξ

∂u
∂τ

+ ∂z
∂ξ

∂w
∂τ√(

∂r
∂ξ

)2

+
(

∂z
∂ξ

)2


∣∣∣∣∣∣∣∣
(ξ,0,τ)

=

 −∂η
∂z

∂u
∂τ

+ ∂η
∂r

∂w
∂τ√(

∂η
∂z

)2
+

(
∂η
∂r

)2

∣∣∣∣∣∣
(ξ,0,τ)

. (4.68)
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Substituting Eq. (4.68) into Eq. (4.59) and making use of Eq. (4.51) yields the

following evolution equation for vBT (ξ, τ) ,

∂

∂τ
vBT (ξ, τ) =

(
û

(
∂η
∂r

∂w
∂ξ

− ∂η
∂z

∂u
∂ξ

)
+ 1

ρ

(
∂η
∂r

∂ξ
∂z

− ∂η
∂z

∂ξ
∂r

)
∂p
∂ξ

)
√(

∂η
∂z

)2
+

(
∂η
∂r

)2

∣∣∣∣∣∣
(ξ,0,τ)

. (4.69)

Substituting Eq. (4.64) into Eq. (4.61) and making use of the fact that ŵ (ξ, 0, τ) = 0

yields the following evolution equation for p at η = 0∂p

∂τ
=

ρcû
(

∂η
∂r

∂u
∂ξ

+ ∂η
∂z

∂w
∂ξ

)
+ c

(
∂η
∂r

∂ξ
∂r

+ ∂η
∂z

∂ξ
∂z

)
∂p
∂ξ√(

∂η
∂z

)2
+

(
∂η
∂r

)2
(4.70)

− ρc2

(
∂ξ

∂r

∂u

∂ξ
+

∂ξ

∂z

∂w

∂ξ
+

∂η

∂r

∂u

∂η
+

∂η

∂z

∂w

∂η

)

+c

√(
∂η

∂z

)2

+

(
∂η

∂r

)2
∂p

∂η
− û

∂p

∂ξ
− ρc2u

r

∣∣∣∣∣∣
(ξ,0,τ)

.

Substituting Eq. (4.51) into Eq. (4.60) yields the following equation for ρ at η = 0(
∂ρ

∂τ
=

1

c2

∂p

∂τ
− û

(
∂ρ

∂ξ
− 1

c2

∂p

∂ξ

))∣∣∣∣
(ξ,0,τ)

, (4.71)

where in place of the term ∂p
∂τ

in Eq. (4.71) the right-hand side of Eq. (4.70) is

employed. The velocity components u (ξ, 0, τ) and w (ξ, 0, τ) can be easily found

from Eqs. (4.50) and (4.66), as a function of vBT (ξ, τ) , and the result is the following,

u (ξ, 0, τ) =

∂r
∂ξ

vBT (ξ, τ)√(
∂r
∂ξ

)2

+
(

∂z
∂ξ

)2

∣∣∣∣∣∣∣∣
(ξ,0,τ)

, w (ξ, 0, τ) =

∂z
∂ξ

vBT (ξ, τ)√(
∂r
∂ξ

)2

+
(

∂z
∂ξ

)2

∣∣∣∣∣∣∣∣
(ξ,0,τ)

.

(4.72)

At the shock boundary, the Rankine-Hugoniot relations are solved along with a

compatibility equation. Specifically, the Rankine-Hugoniot relations are

v∞ · eST |(ξ,1,τ) = v · eST |(ξ,1,τ) , (4.73)

δS (ξ, τ) =
γ − 1

γ + 1
δ∞ (ξ, τ) +

2γ

(γ + 1) δ∞ (ξ, τ)
, (4.74)
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p (ξ, 1, τ) =
2

γ + 1
δ2
∞ (ξ, τ) − γ − 1

γ + 1
, (4.75)

ρ (ξ, 1, τ) =
δ∞ (ξ, τ)

δS (ξ, τ)
, (4.76)

where δS and δ∞ are the component of fluid velocity normal to the shock in the

shock-attached reference frame on the downstream and freestream sides of the shock

respectively, i.e.

δS (ξ, τ) = v · eSN |(ξ,1,τ) − vSN (ξ, τ) , (4.77)

= v · eSN |(ξ,1,τ) − (eη · eSN) v (ξ, τ) ,

δ∞ (ξ, τ) = v∞ · eSN |(ξ,1,τ) − (eη · eSN) v (ξ, τ) , (4.78)

and the nondimensional freestream velocity vector v∞, is

v∞ =
√

γM∞ez. (4.79)

In Eqs. (4.73 − 4.77), eST is a unit vector in the direction tangent to the shock wave,

eSN is a unit vector in the direction normal to the shock wave, and vSN (ξ, τ) and

v (ξ, τ) are the velocities of the shock in the, eSN , and, eη, directions respectively.

Quantities denoted with a subscript of ∞ are freestream quantities, and those with

no subscripts are post shock quantities. The unit vectors eST and eSN , are in terms

of the inverse metrics

eST =
−∂η

∂z
er + ∂η

∂r
ez√(

∂η
∂z

)2
+

(
∂η
∂r

)2

∣∣∣∣∣∣
(ξ,1,τ)

, (4.80)

eSN =
∂η
∂r

er + ∂η
∂z

ez√(
∂η
∂z

)2
+

(
∂η
∂r

)2

∣∣∣∣∣∣
(ξ,1,τ)

. (4.81)

In order to solve the Rankine-Hugoniot equations, an expression for the shock

velocity, v (ξ, τ) , is needed. Differentiating Eqs. (4.74) and (4.75) with respect to

time yields

∂

∂τ
δS (ξ, τ) = A1 (ξ, τ)

∂

∂τ
δ∞ (ξ, τ) , (4.82)
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∂

∂τ
p (ξ, 1, τ) = A2 (ξ, τ)

∂

∂τ
δ∞ (ξ, τ) , (4.83)

where

A1 (ξ, τ) =
γ − 1

γ + 1
− 2γ

(γ + 1) δ2∞ (ξ, τ)
, A2 (ξ, τ) =

4δ∞ (ξ, τ)

γ + 1
. (4.84)

The terms ∂
∂τ

δS (ξ, τ) and ∂
∂τ

δ∞ (ξ, τ) in Eqs. (4.82) and (4.83) are found by differ-

entiating Eqs. (4.77) and (4.78) respectively to yield the following,

∂

∂τ
δS (ξ, τ) =

(
∂v

∂τ
· eSN + v · ∂eSN

∂τ
− (eη · eSN)

∂v

∂τ
− veη · ∂eSN

∂τ

)∣∣∣∣
(ξ,1,τ)

, (4.85)

∂

∂τ
δ∞ (ξ, τ) =

(
∂v∞
∂τ

· eSN + v∞ · ∂eSN

∂τ
− (eη · eSN)

∂v

∂τ
− veη · ∂eSN

∂τ

)∣∣∣∣
(ξ,1,τ)

.

(4.86)

Multiplying Eq. (4.82) by ρc and adding it to Eq. (4.83) , and replacing the term

∂
∂τ

δS (ξ, τ) by Eq. (4.85) and the term ∂
∂τ

δ∞ (ξ, τ) by (4.86), we arrive at the following

equation for the shock acceleration ∂
∂τ

v (ξ, τ) ,

∂

∂τ
v (ξ, τ) =

((A2 + ρcA1) (v∞ − veη) − ρc (v − veη)) · ∂eSN

∂τ
− ρc∂v

∂τ
· eSN− ∂p

∂τ

(eη · eSN) (A2 + ρc (A1 − 1))

∣∣∣∣∣
(ξ,1,τ)

.

(4.87)

The terms ∂p
∂τ

and ρc∂v
∂τ

· eSN must be specified by a compatibility equation which is

the characteristic equation associated with the wave propagating from the body to

the shock along the normal direction. This compatibility equation is in the same

form as the fourth compatibility equation in Eq. (4.56) only written in shock coor-

dinates instead of the body coordinate system (ξ, η, τ). After some simplification,

the following shock acceleration equation is obtained

∂

∂τ
v (ξ, τ) =

(A2 + ρcA1) (v∞ − veη) · ∂eSN

∂τ
− ρc (v − veη) · ∂eSN

∂τ
+ A3

(eη · eSN) (A2 + ρc (A1 − 1))

∣∣∣∣∣
(ξ,1,τ)

,

(4.88)
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where

A3 = û
∂p

∂ξ
+ ŵ

∂p

∂η
+ γp

(
∂ξ

∂z

∂w

∂ξ
+

∂η

∂z

∂w

∂η
+

∂ξ

∂r

∂u

∂ξ
+

∂η

∂r

∂u

∂η

)
(4.89)

ρc

 ∂z
∂ξ√(

∂z
∂ξ

)2

+
(

∂r
∂ξ

)2

(
û
∂ur

∂ξ
+ ŵ

∂u

∂η
+

1

ρ

(
∂ξ

∂r

∂p

∂ξ
+

∂η

∂r

∂p

∂η

))

−
∂r
∂ξ√(

∂z
∂ξ

)2

+
(

∂r
∂ξ

)2

(
û
∂w

∂ξ
+ ŵ

∂w

∂η
+

1

ρ

(
∂ξ

∂z

∂p

∂ξ
+

∂η

∂z

∂p

∂η

)) +
γpu

r
.

The time derivative of the normal unit vector, ∂eSN

∂τ
, is found by taking the time

derivative of Eq. (4.81) with the metrics from Eq. (4.31) in place of the inverse

metrics to yield,

∂eSN

∂τ
=

(
∂r
∂ξ

∂2z
∂τ∂ξ

− ∂z
∂ξ

∂2r
∂τ∂ξ

)(
∂z
∂ξ

ez + ∂r
∂ξ

er

)
((

∂z
∂ξ

)2

+
(

∂r
∂ξ

)2
)3/2

. (4.90)

Since there is a geometric singularity in Eq. (4.89) at r = 0, an alternate ex-

pression for v (0, τ) is needed. Taking the derivative of Eq. (4.35) with respect to ξ

yields

∂

∂ξ
z (ξ, η, τ) =

dZ (ξ)

dξ
− η d2R(ξ)

dξ2 h (ξ, τ)√(
dR(ξ)

dξ

)2

+
(

dZ(ξ)
dξ

)2
− η dR(ξ)

dξ
d
dξ

h (ξ, τ)√(
dR(ξ)

dξ

)2

+
(

dZ(ξ)
dξ

)2
(4.91)

+
η dR(ξ)

dξ
h (ξ, τ)

(
dR(ξ)

dξ
d2R(ξ)

dξ2 + dZ(ξ)
dξ

d2Z(ξ)
dξ2

)
((

dR(ξ)
dξ

)2

+
(

dZ(ξ)
dξ

)2
)3/2

,

and since for our problem

dR (ξ)

dξ
= 1, (4.92)

dZ (ξ)

dξ
=

1

b
ξ

1
b
−1, (4.93)

d2R (ξ)

dξ2
= 0, (4.94)

60



d2Z (ξ)

dξ2
=

1 − b

b2
ξ

1
b
−2, (4.95)

Eq. (4.91) becomes

∂

∂ξ
z (ξ, η, τ) =

1

b
ξ

1
b
−1 − η ∂

∂ξ
h (ξ, τ)√

1 + 1
b2

ξ
2
b
−2

+
(1 − b) ηh (ξ, τ) ξ

2
b
−3

b3
(
1 + 1

b2
ξ

2
b
−2

)3/2
. (4.96)

Evaluating Eq. (4.96) at ξ = 0 yields for b ∈ (0, 2/3) ,

∂z

∂ξ

∣∣∣∣
(0,η,τ)

= −η
∂h

∂ξ

∣∣∣∣
(0,τ)

. (4.97)

At the centerline, ξ = 0, the shock is taken to be normal to the z axis so that

∂z

∂ξ

∣∣∣∣
(0,1,τ)

= 0, (4.98)

which from Eq. (4.97) yields

∂h

∂ξ

∣∣∣∣
(0,τ)

= 0, (4.99)

and consequently from Eq. (4.45) , we have the following expression for v (0, τ) ,

∂

∂ξ
v (0, τ) = 0. (4.100)

Applying Eq. (4.99), to Eq. (4.97) at the boundary ξ = 0, the following expression

holds,

∂z

∂ξ

∣∣∣∣
(0,η,τ)

= 0. (4.101)

We impose the following appropriate boundary conditions on the centerline,

ξ = 0, in computational coordinates

∂w

∂ξ

∣∣∣∣
(0,η,τ)

= 0, (4.102)

∂p

∂ξ

∣∣∣∣
(0,η,τ)

= 0, (4.103)

u (0, η, τ) = 0, (4.104)

ρ (0, η, τ) = ρ (0, 1, τ)

(
p (0, η, τ)

p (0, 1, τ)

)1/γ

, (4.105)
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where use has been made of Eq. (4.101) and the transformation rules from Eq. (4.24)

to transform the boundary conditions in r − z space, ∂w
∂r

∣∣
(0,z,t)

= ∂p
∂r

∣∣
(0,z,t)

= 0 to

ξ − η space. The boundary condition in Eq. (4.105) comes from casting the energy

equation, Eq. (4.4) , in terms of the non-dimensional entropy, s,

∂s

∂t
+ u

∂s

∂r
+ w

∂s

∂z
= 0. (4.106)

Enforcing steady state, ∂s
∂t

= 0, and zero velocity in the r direction, u (0, η, τ) =

0, Eq. (4.106) reduces to ∂s
∂z

∣∣
(0,η,τ)

= 0. Thus s (0, η, τ) is constant and equal

to s (0, 1, τ) , the nondimensional value of the entropy downstream of the shock.

Substituting s (0, η, τ) = ln
(

p(0,1,τ)
ρ(0,1,τ)γ

)
into the equation for entropy, Eq. (4.11) ,

and simplifying gives the boundary condition in Eq. (4.105). We note that the

enforcement of steady state for entropy is artificial and potentially precludes some

classes of unsteady behavior.

At the supersonic outflow boundary, ξ = 1, no physical boundary conditions are

required as all waves are exiting the domain. Here the governing equations are

solved in exactly the same manner as in the interior.

4.1.4 Summary of Governing Equations and Boundary Conditions

The governing equations and boundary conditions can be written in terms of the

system of time-dependent partial differential and algebraic equations in Eqs. (2.2 − 2.4)
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in the two space dimensions, ξ and η, where

y (ξ, η, τ) =



ρ (ξ, η, τ)

u (ξ, η, τ)

w (ξ, η, τ)

p (ξ, η, τ)

r (ξ, η, τ)

z (ξ, η, τ)

vBT (ξ, τ)

ρ (ξ, 0, τ)

p (ξ, 0, τ)

v (ξ, τ)



, (4.107)

f =



−û∂u
∂ξ

− ŵ ∂u
∂η

− 1
ρ

(
∂ξ
∂r

∂p
∂ξ

+ ∂η
∂r

∂p
∂η

)
Eq. (4.25)

−û∂w
∂ξ

− ŵ ∂w
∂η

− 1
ρ

(
∂ξ
∂z

∂p
∂ξ

+ ∂η
∂z

∂p
∂η

)
Eq. (4.26)

−û∂p
∂ξ

− ŵ ∂p
∂η

− γp
(

∂ξ
∂r

∂u
∂ξ

+ ∂ξ
∂z

∂w
∂ξ

+ ∂η
∂r

∂u
∂η

+ ∂η
∂z

∂w
∂η

)
− γpu

r
Eq. (4.27)

−û∂ρ
∂ξ

− ŵ ∂ρ
∂η

− ρ
(

∂ξ
∂r

∂u
∂ξ

+ ∂ξ
∂z

∂w
∂ξ

+ ∂η
∂r

∂u
∂η

+ ∂η
∂z

∂w
∂η

)
− ρu

r
Eq. (4.28)

η
∂Z(ξ)

∂ξ
v(ξ,τ)√

( ∂R(ξ)
∂ξ )

2
+( ∂Z(ξ)

∂ξ )
2

Eq. (4.43)

− η
∂R(ξ)

∂ξ
v(ξ,τ)√

( ∂R(ξ)
∂ξ )

2
+( ∂Z(ξ)

∂ξ )
2

Eq. (4.44)

−(û( ∂η
∂r

∂w
∂ξ

− ∂η
∂z

∂u
∂ξ )+ 1

ρ(
∂η
∂r

∂ξ
∂z

− ∂η
∂z

∂ξ
∂r )

∂p
∂ξ )√

( ∂η
∂z )

2
+( ∂η

∂r )
2

∣∣∣∣
(ξ,0,τ)

Eq. (4.69)(
− 1

c2
∂p
∂τ

+ û
(

∂ρ
∂ξ

− 1
c2

∂p
∂ξ

))∣∣∣
(ξ,0,τ)

Eq. (4.71)

−
(

ρcû( ∂η
∂r

∂u
∂ξ

+ ∂η
∂z

∂w
∂ξ )+c( ∂η

∂r
∂ξ
∂r

+ ∂η
∂z

∂ξ
∂z )

∂p
∂ξ√

( ∂η
∂z )

2
+( ∂η

∂r )
2

−ρc2
(

∂ξ
∂r

∂u
∂ξ

+ ∂ξ
∂z

∂w
∂ξ

+ ∂η
∂r

∂u
∂η

+ ∂η
∂z

∂w
∂η

)
+c

√(
∂η
∂z

)2
+

(
∂η
∂r

)2 ∂p
∂η

− û∂p
∂ξ

− ρc2u
r

)∣∣∣∣
(ξ,0,τ)


Eq. (4.70)

−
(

(A2+ρcA1)(v∞−veη)· ∂eSN
∂τ

−ρc(v−veη)· ∂eSN
∂τ

+A3

(eη ·eSN )(A2+ρc(A1−1))

)∣∣∣∣
(ξ,1,τ)

Eq. (4.88)



,

(4.108)
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g =



u − vBT
∂r
∂ξ√

( ∂r
∂ξ )

2
+( ∂z

∂ξ )
2

∣∣∣∣∣∣
(ξ,0,τ)w − vBT

∂z
∂ξ√

( ∂r
∂ξ )

2
+( ∂z

∂ξ )
2

∣∣∣∣∣∣
(ξ,0,τ)


Eq. (4.72)

ρ (ξ, 1, τ) − δ∞(ξ,τ)
δS(ξ,τ)

Eq. (4.76)

(v∞ · eST − v · eST )|(ξ,1,τ) Eq. (4.73)

δS (ξ, τ) − γ−1
γ+1

δ∞ (ξ, τ) + 2γ
(γ+1)δ∞(ξ,τ)

Eq. (4.74)

p (ξ, 1, τ) − 2
γ+1

δ2
∞ (ξ, τ) − γ−1

γ+1
Eq. (4.75)

ρ (0, η, τ) − ρ (0, 1, τ)
(

p(0,η,τ)
p(0,1,τ)

)1/γ

Eq. (4.105)

u (0, η, τ) Eq. (4.104)

∂w
∂ξ

∣∣∣
(0,η,τ)

Eq. (4.102)

∂p
∂ξ

∣∣∣
(0,η,τ)

Eq. (4.103)

∂v
∂ξ

∣∣∣
(0,τ)

Eq. (4.100)



. (4.109)

In Eqs. (4.107 − 4.109) y (ξ, η, τ) : R3 → R10 and f :R3 → R10 while g :R3 → R11.

The functions y (ξ, η, τ) and f contain six components which are time-dependent

functions over the domain Ω with the remaining four components time-dependent

functions defined for on S only. The equation ∂y
∂τ

+ f = 0 represents ten partial

differential equations with ten unknowns and g = 0 represents appropriate boundary

conditions.

4.1.5 Numerical Solution Technique

In order to convert the system of partial differential and algebraic equations to

a system of (DAEs), it is necessary to approximate the spatial derivatives ∂y
∂ξ

, and

∂y
∂η

at grid points (ξi, ηj) , i = 0, ..., N, j = 0, ...,M. We choose to specify the grid

in the computational domain, Fig. 4.2, according to the following Gauss-Lobatto
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Figure 4.2. Gauss-Lobatto Chebyshev computational grid for the shock-fitted blunt

body.

Chebyshev distribution

ξi =
1

2

(
1 − cos

( π

N
i
))

, i = 0, ..., N, (4.110)

ηj =
1

2

(
1 − cos

( π

M
j
))

, j = 0, ...,M.

The functions y(ξ, η, τ) are approximated in terms of a double Lagrange global

interpolating polynomial defined on the mesh ξn, n = 0, ..., N, ηm, m = 0, ...,M , i.e.

y(ξ, η, τ) ≈
N∑

n=0

M∑
m=0

y(ξn, ηm, τ)L(N)
n (ξ)L(M)

m (η). (4.111)

Derivatives of y(ξ, η, τ ; b) are evaluated by differentiating Eq. (4.111). Evaluating

these derivatives on the grid, (ξi, ηj) , chosen to be the same grid as that used to

define the interpolating polynomial, i.e. (ξi, ηj) ≡ (ξn, ηm), and making use of
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Eq. (3.17) yields the following approximations for the spatial derivatives of y,

∂y

∂ξ

∣∣∣∣
(ξi,ηj)

≈
N∑

n=0

y(ξn, ηj, τ)
dLn

dξ
(ξi), (4.112)

∂y

∂η

∣∣∣∣
(ξi,ηj)

≈
M∑

m=0

y(ξi, ηm, τ)
dLm

dη
(ηj).

The metrics ∂2z
∂τ∂ξ

and ∂2r
∂τ∂ξ

in Eq. (4.90) are specified by differentiating Eq. (4.112)

with respect to time, i.e.

∂2z(ξi, ηj, τ)

∂τ∂ξ
=

N∑
n=0

∂

∂τ
z(ξn, ηj, τ)

dLn

dξ
(ξi), (4.113)

∂2r(ξi, ηj, τ)

∂τ∂ξ
=

N∑
n=0

∂

∂τ
r(ξn, ηj, τ)

dLn

dξ
(ξi).

After spatial discretization of Eqs. (4.107 − 4.109) on an (N + 1)×(M + 1) grid,

the equations reduce to the following system of P2 (DAEs)

dyp (τ)

dτ
= fp (y1, ..., yP2 , ) , p = 1, ..., P1, (4.114)

0 = gp (y1, ..., yP2) , p = P1 + 1, ..., P2, (4.115)

with initial conditions

yp (0) = y0p, p = 1, ..., P1, (4.116)

consisting of P2 = 6 (NM + N + M) + 5 total equations and equal number of un-

knowns. The system is composed of P1 = 6NM + 2M ODEs and P2 − P1 =

6N + 4M + 5 algebraic equations, where the primary variables, yp (τ) , p = 1, ..., P1,
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taken to be those whose time derivative explicitly appears in Eq. (4.114) are

yp (τ) =



ρ (ξi, ηj, τ)

u (ξi, ηj, τ)

w (ξi, ηj, τ)

p (ξi, ηj, τ)


i=1,...,N,

j=1,...,M−1,

r (ξi, ηj, τ)

z (ξi, ηj, τ)

 i=0,...,N,
j=1,...,M,

vBT (ξi, τ)

ρ(ξi, 0, τ)

p(ξi, 0, τ)

v(ξi, τ)


i = 1, ..., N,



, p = 1, ..., P1, (4.117)

and the secondary variables yp (τ) , p = P1 + 1, ..., P2 are

yp (τ) =



u (ξi, 0, τ)

w (ξi, 0, τ)

ρ (ξi, 1, τ)

u (ξi, 1, τ)

w (ξi, 1, τ)

p (ξi, 1, τ)



i = 1, ..., N,

ρ(0, ηj, τ)

u(0, ηj, τ)

w(0, ηj, τ)

p(0, ηj, τ)


j = 0, ...,M,

v (0, τ)



, p = P1 + 1, ..., P2. (4.118)
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The functions fp (y1, ..., yP2) , p = 1, ..., P1, are

fp =



(
−û∂ρ

∂ξ
− ŵ ∂ρ

∂η
− ρ

(
∂ξ
∂r

∂u
∂ξ

+ ∂ξ
∂z

∂w
∂ξ

+ ∂η
∂r

∂u
∂η

+ ∂η
∂z

∂w
∂η

)
− ρu

r

)∣∣∣
(ξi,ηj ,τ)(

−û∂u
∂ξ

− ŵ ∂u
∂η

− 1
ρ

(
∂ξ
∂r

∂p
∂ξ

+ ∂η
∂r

∂p
∂η

))∣∣∣
(ξi,ηj ,τ)(

−û∂w
∂ξ

− ŵ ∂w
∂η

− 1
ρ

(
∂ξ
∂z

∂p
∂ξ

+ ∂η
∂z

∂p
∂η

))∣∣∣
(ξi,ηj ,τ)(

−û∂p
∂ξ

− ŵ ∂p
∂η

− γp
(

∂ξ
∂r

∂u
∂ξ

+ ∂ξ
∂z

∂w
∂ξ

+ ∂η
∂r

∂u
∂η

+ ∂η
∂z

∂w
∂η

)
− γpu

r

)∣∣∣
(ξi,ηj ,τ)


i=1,...,N,

j=1,...,M−1,

η
dZ(ξ)

dξ
v(ξ,τ)√

( dR(ξ)
dξ )

2
+( dZ(ξ)

dξ )
2

∣∣∣∣∣∣
(ξi,ηj ,τ)

− η
dR(ξ)

dξ
v(ξ,τ)√

( dR(ξ)
dξ )

2
+( dZ(ξ)

dξ )
2

∣∣∣∣∣∣
(ξi,ηj ,τ)


i=0,...,N,
j=1,...,M,

−(û( ∂η
∂r

∂w
∂ξ

− ∂η
∂z

∂u
∂ξ )+ 1

ρ(
∂η
∂r

∂ξ
∂z

− ∂η
∂z

∂ξ
∂r )

∂p
∂ξ )√

( ∂η
∂z )

2
+( ∂η

∂r )
2

∣∣∣∣
(ξi,0,τ)(

− 1
c2

∂p
∂τ

+ û
(

∂ρ
∂ξ

− 1
c2

∂p
∂ξ

))∣∣∣
(ξi,0,τ)

−
(

ρcû( ∂η
∂r

∂u
∂ξ

+ ∂η
∂z

∂w
∂ξ )+c( ∂η

∂r
∂ξ
∂r

+ ∂η
∂z

∂ξ
∂z )

∂p
∂ξ√

( ∂η
∂z )

2
+( ∂η

∂r )
2

−ρc2
(

∂ξ
∂r

∂u
∂ξ

+ ∂ξ
∂z

∂w
∂ξ

+ ∂η
∂r

∂u
∂η

+ ∂η
∂z

∂w
∂η

)
+c

√(
∂η
∂z

)2
+

(
∂η
∂r

)2 ∂p
∂η

− û∂p
∂ξ

− ρc2u
r

)∣∣∣∣
(ξi,0,τ)

−
(

(A2+ρcA1)(v∞−veη)· ∂eSN
∂τ

−ρc(v−veη)· ∂eSN
∂τ

+A3

(eη·eN )(A2+ρc(A1−1))

)∣∣∣∣
(ξi,1,τ)



i = 1, ..., N,


(4.119)
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and the functions gp (y1, ..., yP2) , p = P1 + 1, ..., P2, are

gp =



u − vBT
∂r
∂ξ√

( ∂r
∂ξ )

2
+( ∂z

∂ξ )
2

∣∣∣∣∣∣
(ξi,0,τ)w − vBT

∂z
∂ξ√

( ∂r
∂ξ )

2
+( ∂z

∂ξ )
2

∣∣∣∣∣∣
(ξi,0,τ)

ρ (ξi, 1, τ) − δ∞(ξi,τ)
δS(ξi,τ)

(v∞ · eST − v · eST )|(ξi,1,τ)

δS (ξi, τ) − γ−1
γ+1

δ∞ (ξi, τ) + 2γ
(γ+1)δ∞(ξi,τ)

p (ξi, 1, τ) − 2
γ+1

δ2
∞ (ξi, τ) − γ−1

γ+1



i = 1, ..., N,

ρ (0, ηj, τ) − ρ (0, 1, τ)
(

p(0,ηj ,τ)

p(0,1,τ)

)1/γ

u (0, ηj, τ)

∂w
∂ξ

∣∣∣
(0,ηj ,τ)

∂p
∂ξ

∣∣∣
(0,ηj ,τ)


j = 0, ...,M,

∂
∂ξ

v (0, τ)



(4.120)

There are no equations for the grid points on the body since these are fixed in time,

nor is there an equation for the tangential velocity on the body at the centerline

since this quantity is redundant, the velocity components, u(0, ηj, τ), w(0, ηj, τ),

already being specified by Eqs. (4.102) and (4.104).

As a final step Eq. (4.120) is now written such that the secondary variables yp,

p = P1 + 1, ..., P2, can be solved explicitly as a function of the primary variables yp,

p = 1, ..., P1, i.e.

yp (τ) = ĝp (y1, ..., yP1) , p = P1 + 1, ..., P2. (4.121)

Making use of Eq. (4.112) yields the following expression for w (0, ηj, τ) ,

w (0, ηj, τ) =

∑N
n=1 w(ξn, ηj, τ)dLn

dξ
(0)

dL0

dξ
(0)

; (4.122)
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similar expressions are found for p (0, ηj, τ) , and v (0, τ) . Eqs. (4.73) and (4.74)

are reformulated into the following two equations for the quantities u (ξi, 1, τ) and

w (ξi, 1, τ) , i = 1, ..., N,

u (ξi, 1, τ) =

 ∂z
∂ξ

∂r
∂ξ

√
γM∞(

∂z
∂ξ

)2

+
(

∂r
∂ξ

)2 +

∂z
∂ξ

(δS + (eη · eSN) v)√(
∂z
∂ξ

)2

+
(

∂r
∂ξ

)2


∣∣∣∣∣∣∣∣
(ξi,1,τ)

, (4.123)

w (ξi, 1, τ) =


(

∂z
∂ξ

)2 √
γM∞(

∂z
∂ξ

)2

+
(

∂r
∂ξ

)2 −
∂r
∂ξ

(δS + (eη · eSN) v)√(
∂z
∂ξ

)2

+
(

∂r
∂ξ

)2


∣∣∣∣∣∣∣∣
(ξi,1,τ)

.

Once the quantities, w (0, ηj, τ) , p (0, ηj, τ) , z (0, ηj, τ) , and v (0, τ) are found from

Eq. (4.122) and u (ξi, 1, τ) and w (ξi, 1, τ) are found from Eq. (4.123) , all the sec-

ondary variables can be expressed as explicit functions of the primary variables
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where

ĝp =



 vBT
∂r
∂ξ√

( ∂r
∂ξ )

2
+( ∂z

∂ξ )
2

∣∣∣∣∣∣
(ξi,0,τ) vBT

∂z
∂ξ√

( ∂r
∂ξ )

2
+( ∂z

∂ξ )
2

∣∣∣∣∣∣
(ξi,0,τ)

δ∞(ξi,τ)
δS(ξi,τ) ∂z

∂ξ
∂r
∂ξ

√
γM∞

( ∂z
∂ξ )

2
+( ∂r

∂ξ )
2 +

∂z
∂ξ

(δS+(eη ·eSN )v)√
( ∂z

∂ξ )
2
+( ∂r

∂ξ )
2

∣∣∣∣∣∣
(ξi,1,τ) ( ∂z

∂ξ )
2√

γM∞

( ∂z
∂ξ )

2
+( ∂r

∂ξ )
2 −

∂r
∂ξ

(δS+(eη ·eSN )v)√
( ∂z

∂ξ )
2
+( ∂r

∂ξ )
2

∣∣∣∣∣∣
(ξi,1,τ)

2
γ+1

δ2
∞ (ξi, τ) + γ−1

γ+1



i = 1, ..., N,

(
ρ (0, 1, τ)

(∑N
n=1 p(ξn,ηj ,τ) dLn

dξ
(0)

p(0,1,τ)
dL0
dξ

(0)

)1/γ
)∣∣∣∣∣

(0,ηj ,τ)

0∑N
n=1 w(ξn,ηj ,τ) dLn

dξ
(0)

dL0
dξ

(0)∑N
n=1 p(ξn,ηj ,τ) dLn

dξ
(0)

dL0
dξ

(0)


j = 0, ...,M,

∑N
n=1 v(ξn,τ) dLn

dξ
(0)

dL0
dξ

(0)



, (4.124)

where δS (ξi, τ) = γ−1
γ+1

δ∞ (ξi, τ) − 2γ
(γ+1)δ∞(ξi,τ)

. The system of DAEs in Eqs. (4.114)

and (4.115) are converted into the following system of P1 ODEs,

dxp (τ)

dτ
= hp (x1, ..., xP1) , p = 1, ..., P1, (4.125)

where

hp (x1, ..., xP1) ≡ fp (y1, ..., yP1 , ĝq (y1, ..., yP1)) ,
p = 1, ..., P1,

q = P1 + 1, ..., P2,
(4.126)

and

xp (τ) = yp (τ) , p = 1, ..., P1. (4.127)

71



The system of Eqs. (4.114) and (4.115) can finally be expressed in the standard form

for a system of ODEs,

dx

dτ
= h (x) , (4.128)

with accompanying initial conditions

x (0) = x0, (4.129)

where

x0 = (x1 (0) , ..., xP1 (0))T . (4.130)

The initial conditions for the shock distance, h (ξi, τ) , are taken to be constant,

i.e., h (ξi, τ) = h (0, τ) = 0.25, i = 1, ..., N, which is sufficient to set initial con-

ditions for the remainder of the physical grid coordinates, r(ξi, ηj, τ), z(ξi, ηj, τ),

i = 0, ..., N, j = 0, ...,M, by making use of Eqs. (4.34) and (4.35). The shock

velocity, v(ξi, τ), i = 0, ..., N, is initially set to zero. The initial values for the

variables, ρ (ξi, ηj, τ) , u (ξi, ηj, τ) , w (ξi, ηj, τ) , p (ξi, ηj, τ) , i = 1, ..., N, j = 1, ...,M,

ρ(ξi, 0, τ), u(ξi, 0, τ), and p(ξi, 0, τ), i = 1, ..., N, are set equal to the value behind the

shock at (η = 1) for the corresponding ξ coordinate line, e.g. ρ(ξi, ηj, 0) = ρ(ξi, 1, 0).

The initial values for u(ξi, 0, τ), i = 1, ..., N, are chosen so that the boundary con-

dition at η = 0, Eq. (4.50) is satisfied exactly, and the initial values for ρ (0, ηj, τ) ,

u (0, ηj, τ) , w (0, ηj, τ) , p (0, ηj, τ) , j = 0, ...,M, are chosen so that the boundary

conditions at ξ = 0, Eqs. (4.102 − 4.105) are satisfied exactly. The initial values

for the variables vBT (ξi, τ) i = 1, ..., N, are prescribed once the values for r(ξi, 0, τ),

z(ξi, 0, τ), u(ξi, 0, τ) and w(ξi, 0, τ) have been specified.

Solutions have been obtained for the system of ODEs, Eqs. (4.125) , with the

standard ODE solver LSODA, [52, 53], which automatically adjusts the time step

and order of accuracy of the method to achieve a specified level of accuracy. It also

automatically switches between an explicit method and implicit method depending
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on the stiffness of the problem. Because the bulk of our problems have been stable,

it was possible to use a simple Runge-Kutta technique with a CFL number of 0.3, so

as to resolve the fastest acoustic time scales. In general, however, the CFL criteria

is not sufficient for maintaining stability of the numerical solution. The criteria for

determining that steady state has been reached is when the change in the variables

yp, p = 1, ..., P1, from one time step to the next drops below a threshold level of

10−15 or ceases to show any further decrease in error over a period of τ = 1.

4.2 Pseudospectral Flow Solver Verification and Validation

4.2.1 Supersonic Cone Flow

The solution to supersonic flow over a cone, or Taylor-Maccoll solution [54], will

be used to verify the code described in the previous section. Details of the derivation

can be found in Appendix G. A highly accurate ODE solver was used to generate

solutions to the Taylor-Maccoll flow, which will be subsequently referred to as the

exact solution. The only modification to the blunt body problem formulation to

generate pseudospectral approximations to the Taylor-Maccoll flow is a replacement

of the centerline boundary condition at ξ = 0 with a Dirichlet boundary condition

containing the values of ρ, u, w, p, r, and z from the exact solution in order to avoid

the problem of the geometric singularity at ξ = 0. A schematic of a 40 degree cone

in M∞ = 3.5 flow including the physical and computational coordinates is shown

in Figure 4.3 for a 5 × 5 grid. For the initial conditions, ρ, u, w, p, r, and z are

taken from the exact solution with a sinusoidal perturbation in the shock velocity,

i.e. v (ξ, 0) = 0.1 sin (2πξ). Figure 4.4, is the time history of the L∞[Ω] error in

ρ (ξ, η) over the domain, Ω, for the pseudospectral prediction measured against the

exact solution for a M∞ = 3.5 flow over a 40 degree cone solved on a 5 × 17 grid.

The figure demonstrates a rapid relaxation to the exact solution.
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Figure 4.3. Schematic of the physical (r, z) and computational (ξ, η) grids for the

Taylor-Maccoll problem.
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Figure 4.4. Single 5×17 grid L∞[Ω] residual error in ρ (ξ, η) measured against Taylor-

Maccoll similarity solution as a function of time, τ, for a 40o cone at M∞ = 3.5 and

∆t = 0.0005.
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Figure 4.5. L∞[Ω] error in ρ (ξ, η) measured against a Taylor-Maccoll similarity

solution for a 40o cone in M∞ = 3.5 flow as grid is refined in the η direction.

A grid convergence test for the pseudospectral prediction of the Taylor-Maccoll

flow is conducted by refining the grid in the η− direction for a fixed number of

five nodes in the ξ−direction. The accuracy of the method is unaffected by grid

refinement in the ξ− direction since all derivatives are zero in that direction. As

we can see from Figure 4.5, there is a rapid decrease in the error until about 10−12

when the error flattens probably due to roundoff error. Note the spectral nature of

the grid convergence, that is the slope of the error curve continues to steepen with

increasing number of nodes, at least until the roundoff limit is reached, and does

not reach a constant value for the slope as would be the case for a method with a

fixed order of accuracy.
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4.2.2 Supersonic Blunt Body Flow

Further verification and validation of the pseudospectral solver is performed by

generating approximate solutions to the blunt body problem. Contours of Mach

number, pressure, entropy with the velocity vector field, and the single nonzero

component of vorticity, ωθ, are shown in Figs. 4.6-4.9 for the case of M∞ = 3.5 ,

generated on a 17 × 9 grid. The sonic line, M = 1, can be identified in Fig. 4.6,

and it is observed that the outflow velocity is indeed supersonic as required in the

derivation of the outflow boundary condition. In the plot of contours of pressure,

Fig. 4.7, pressure at the stagnation point is seen to be more than sixteen times

the freestream pressure at M∞ = 3.5, and the jump in pressure across the normal

shock at the centerline is over thirteen times the freestream pressure. Despite such

a large discontinuity in pressure, the flow field is accurately resolved by the shock

fitting method. The entropy contour plot, Fig. 4.8, shows generation of entropy

at the shock where the entropy jump across the shock is a function of the shock

angle with respect to the freestream flow. The maximum change in entropy occurs

at the centerline where the shock is normal to the freestream flow. The velocity

field is overlaid on the entropy contours to show that the entropy is constant along

streamlines since the curved shock is the only mechanism for entropy generation in

this problem. A grid refinement study was performed to verify that the entropy

remained constant along streamlines downstream of the shock and it was found that

as the grid was refined v · ∇s → 0, which is consistent with the inviscid form of

the entropy equation, Eq. (F.20), in the limit of steady state. The contour plot of

vorticity, Figure 4.9, shows that the vorticity is not zero throughout the flow field.

Vorticity is generated at the shock boundary due to the curvature of the shock and

then convected downstream. The vorticity undergoes a change along streamlines

via compressibility effects and non-barotropic effects according to Eq. (4.20).

77



-0.2 0 0.2 0.4 0.6 0.8 1 
0 

0.5 

1 

1.5 

z 

r 

 0.4 

0.6 

 0.8 

 1 

 1.2 

 1.4 

 1.6 

 1.8 

 

Figure 4.6. Contours of Mach number for flow over the blunt body for b = 0.5,

M∞ = 3.5, 17 × 9 grid.

78



-0.2 0 0.2 0.4 0.6 0.8 1 
0 

0.5 

1 

1.5 

z 

r 

 15 

10 

8.5 

7.5 

6.5 

5.5 

11.5 

13.5 

 

Figure 4.7. Contours of pressure for flow over the blunt body for b = 0.5, M∞ = 3.5,

17 × 9 grid.
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Figure 4.8. Contours of entropy with velocity vectors for flow over the blunt body

for b = 0.5, M∞ = 3.5, 17 × 9 grid.
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Figure 4.9. Contours of vorticity for flow over the blunt body for b = 0.5, M∞ = 3.5,

17 × 9 grid.
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Figure 4.10. Contours of ho−ho∞ for flow over the blunt body for b = 0.5, M∞ = 3.5,

and two grid resolutions: 17 × 9 and 29 × 15.

Grid refinement tests verified that the pseudospectral flow solutions satisfied

the condition of constant stagnation enthalpy. Contours of ho − ho∞ for a 17 × 9

grid and a 29 × 15 grid solution are shown in Fig. 4.10, from which it is evident

that (ho − ho∞) → 0 as the grid is refined, where ho∞ is the freestream stagnation

enthalpy. Grid refinement tests also verified that both Crocco’s theorem, Eq. 4.17,

and the steady state form of the vorticity transport equation, Eqs. 4.22 and 4.23,

were satisfied.

As a means of code validation for the blunt body, a comparison is made between

the numerical results for the pressure distribution on the body with that of the

modified Newtonian [55] sine squared law,

Cp|Newtonian = Cpo sin2 φ, (4.131)

where Cpo is the pressure coefficient at the body stagnation point and φ is the

local surface inclination angle measured with respect to the z axis. The pressure
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coefficient, Cp is defined as

Cp =
p∗ − p∗∞
1
2
ρ∗∞w∗2∞

=
p (ξ, 0, τ) − 1

1
2
γM2∞

. (4.132)

The modified Newtonian approximation is a semi-analytical model for the surface

pressure distribution over blunt bodies. Anderson [56] reports that for a power law

body with b = 0.5 and aspect ratio near unity, the modified Newtonian approxima-

tion does well in predicting the pressure distribution on the surface of the body. As

can be seen from Fig. 4.11, the pseudospectral code also predicts close agreement

for the pressure distribution on the surface of the body defined by r =
√

z. As a

further check on the validity of the pseudospectral code, in Fig. 4.12 a comparison

is made of the pseudospectral prediction for the shock shape for M∞ = 3.5 flow

over a sphere with that of an empirical formula by Billig [57] developed for flow over

spherically blunted cones based on experiment.

A grid convergence study is performed for the blunt body with the L∞[Ω] error

over the domain, Ω in ρ (ξ, η) shown in Fig. 4.13, at M∞ = 3.5 and b = 0.5, where

the error is measured against a 65 × 33 or 2145 node numerical solution. For 861

nodes, the L∞[Ω] error over the domain, Ω in ρ (ξ, η) has been reduced to the order

of 10−12 and subsequently flattens due to roundoff error. Like grid convergence

plots for the Taylor-Maccoll solution, the convergence of the error for the blunt

body problem shows a spectral convergence rate as expected of the pseudospectral

numerical technique.

4.3 Blunt Body Karhunen-Loève Modes

Ten solutions, also referred to as snapshots in the context of the KL method, are

generated for ten different values of M∞ chosen uniformly in the range M∞ ∈ [3, 4],

with the geometric parameter b fixed at 0.5. From these ten snapshots, ten KL
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Figure 4.11. Blunt body surface Cp distribution predictions at M∞ = 3.5 from

modified Newtonian theory and from the pseudospectral method, where b = 0.5;

17 × 9 grid.
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Figure 4.12. Shock shape prediction of the pseudospectral code for a sphere M∞ =

3.5 compared with an empirical formula [57] derived from experiments; 17× 9 grid.
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65 × 33 grid, solution for a b = 0.5, M∞ = 3.5 blunt body.
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Figure 4.14. Eigenvalues of density for ten snapshots over the range M∞ ∈ [3, 4].

modes, ϕq
k and associated eigenvalues λq

k, k = 1, ..., 10, q = 1, ..., 6, are calculated

for each of the primitive variables, ρ, u, w, and p and the physical coordinates r

and z, where subscripts indicate the number of the mode and superscripts dictate

to which variable the KL modes and eigenvalues belong. The method of snapshots,

Eqs. (A.25) and (A.23), was used to generate the KL modes and eigenvalues. A

plot of the eigenvalues of density as a function of KL mode number are shown in

Fig. 4.14 while the ten normalized KL modes are shown in Fig. 4.15. A rapid

decay in the magnitude of the eigenvalues, and a progressively richer topologically

structured set of KL modes is observed as the mode number increases.

4.4 Least-Squares Method

In the KL least-squares method, the steady state density, ρ̃ (ξ, η) , r and z velocity

components, ũ (ξ, η) and w̃ (ξ, η) respectively, pressure, p̃ (ξ, η), and physical grid
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Figure 4.15. Ten KL eigenmodes of density with associated eigenvalues, λ, generated

from ten snapshots in the range M∞ ∈ [3, 4].
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coordinates r̃ (ξ, η) and z̃ (ξ, η) are approximated in terms of the KL modes as

follows,

ρ̃ (ξ, η) =
∑K

k=1 a1
kϕ

1
k (ξ, η)

ũ (ξ, η) =
∑K

k=1 a2
kϕ

2
k (ξ, η)

w̃ (ξ, η) =
∑K

k=1 a3
kϕ

3
k (ξ, η)

p̃ (ξ, η) =
∑K

k=1 a4
kϕ

4
k (ξ, η)

r̃ (ξ, η) =
∑K

k=1 a5
kϕ

5
k (ξ, η)

z̃ (ξ, η) =
∑K

k=1 a6
kϕ

6
k (ξ, η)

. (4.133)

Employing Eq. (4.133) , the KL least-squares formulation of the blunt body problem

is written in the form of Eqs. (2.14) and (2.15) where

ỹ (ξ, η) =



ρ̃ (ξ, η)

ũ (ξ, η)

w̃ (ξ, η)

p̃ (ξ, η)

r̃ (ξ, η)

z̃ (ξ, η)


, (4.134)

f̂

(
ỹ,

∂ỹ

∂ξ
,
∂ỹ

∂η

)
=



̂̃u∂ũ
∂ξ

+ ̂̃w ∂ũ
∂η

+ 1
ρ̃

(
∂ξ
∂r̃

∂p̃
∂ξ

+ ∂η
∂r̃

∂p̃
∂η

)
̂̃u∂w̃

∂ξ
+ ̂̃w ∂w̃

∂η
+ 1

ρ̃

(
∂ξ
∂z̃

∂p̃
∂ξ

+ ∂η
∂z̃

∂p̃
∂η

)
̂̃u∂p

∂ξ
− ̂̃w ∂p

∂η
− γp̃

(
∂ξ
∂r̃

∂ũ
∂ξ

+ ∂ξ
∂z̃

∂w̃
∂ξ

+ ∂η
∂r̃

∂ũ
∂η

+ ∂η
∂z̃

∂w̃
∂η

)
− γp̃ũ

r̃̂̃u∂ρ̃
∂ξ

− ̂̃w ∂ρ̃
∂η

− ρ̃
(

∂ξ
∂r̃

∂ũ
∂ξ

+ ∂ξ
∂z̃

∂w̃
∂ξ

+ ∂η
∂r̃

∂ũ
∂η

+ ∂η
∂z̃

∂w̃
∂η

)
− ρ̃ũ

r̃


,

(4.135)
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and

ĝ

(
ỹ,

∂ỹ

∂ξ
,
∂ỹ

∂η

)
=



ṽBN (ξ)

(v∞ · ẽST − ṽ · ẽST )|(ξ,1)(
δ̃ − γ−1

γ+1
δ̃∞ + 2γ

(γ+1)δ̃∞

)∣∣∣
(ξ,1)(

p̃ − 2
γ+1

δ̃2
∞ − γ−1

γ+1

)∣∣∣
(ξ,1)(

ρ̃ − δ̃∞
δ̃

)∣∣∣
(ξ,1)

ρ̃ (0, η, τ) − ρ̃ (0, 1, τ)
(

p̃(0,η,τ)
p̃(0,1,τ)

)1/γ

r̃ (ξ, 0) − r (ξ, 0)

z̃ (ξ, 0) − z (ξ, 0)



, (4.136)

where

δ̃ = ṽ · ẽSN |(ξ,1) , (4.137)

δ̃∞ = v∞ · ẽSN |(ξ,1) , (4.138)

ṽBN (ξ) =

(
ũ
∂z̃

∂ξ
− w̃

∂r̃

∂ξ

)∣∣∣∣
(ξ,0)

, (4.139)

̂̃u = ũ
∂ξ

∂r̃
+ w̃

∂ξ

∂z̃
, (4.140)

̂̃w = ũ
∂η

∂r̃
+ w̃

∂η

∂z̃
. (4.141)

The approximate metric terms ∂ξ
∂r̃

, ∂ξ
∂z̃

, ∂η
∂r̃

, and ∂η
∂z̃

are found from the inverse met-

rics in Eq. (4.31) and the relations in Eq. (4.133) , e.g. ∂ξ
∂r̃

= − 1
J

∂z̃
∂η

. The spatial

derivatives in Eq. (4.135) are calculated by taking derivatives of the quantities in

Eq. (4.133) , e.g.

∂

∂ξ
ρ̃ (ξ, η) =

K∑
k=1

a1
k

∂

∂ξ
ϕ1

k (ξ, η) ,
∂

∂η
ρ̃ (ξ, η) =

K∑
k=1

a1
k

∂

∂η
ϕ1

k (ξ, η) . (4.142)

The terms ẽST , and ẽSN in Eqs. (4.136 − 4.138) are found by substituting the KL ap-

proximations for the metrics ∂η
∂r̃

, and ∂η
∂z̃

into Eqs. (4.80) and (4.81) . In Eq. (4.136) ,

the coordinates r (ξ, 0) and z (ξ, 0) are specified from the choice of b which fixes the
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body surface via the parameterization in Eqs. (4.46) and (4.47) . The linear bound-

ary conditions in Eq. (4.102 − 4.104) , ∂w
∂ξ

∣∣∣
(0,η,τ)

= 0, ∂p
∂ξ

∣∣∣
(0,η,τ)

= 0, u|(0,η,τ) = 0,

Eq. (4.101) , ∂z
∂ξ

∣∣∣
(0,η,τ)

= 0, and r|(0,η,τ) = 0 are not included in Eq. (4.136) since

each of the KL modes satisfies them exactly; this is apparent upon noting that the

KL modes are linear combinations of the snapshots from Eq. (A.23). In addition,

at steady state we have v (ξ, τ) = 0, so that the evolution equations for physical grid

coordinates and the equation for the shock velocity in Eqs. (4.43), (4.44) and (4.88)

are not considered. The physical grid coordinates over the domain Ω are included

implicitly in the functions f̂ and ĝ through the metrics, and explicitly in the last

two components of ĝ at the body surface, η = 0.

We define the following error functions over the domain Ω

eq
f = f̂ q, q = 1, ..., 4, (4.143)

where f̂ q is the qth component of the function f̂ . At the boundary S, the error

function is defined as:

eq
g = ĝq, q = 1, ..., 8, (4.144)

where ĝq is the qth component of ĝ. A total error, e, is formed from Eqs. (4.143)

and (4.144) as follows

e =
4∑

q=1

∫
Ω

ωq
f

√
eq

fe
q
fdΩ +

8∑
q=1

∫
S

ωq
g

√
eq

ge
q
gdS, (4.145)

where ωq
f = ωq

g = 1, q = 1, ..., 3, ω4
f = ω4

g = 0.1, ω5
g = ω6

g = 1, and ω7
g = ω8

g = 1000

are constant weights chosen empirically to enhance convergence to a global minimum

for e. The coefficients in Eq. (4.133) are chosen via a Newton method such that

the total error, e defined in Eq. (4.145) , is minimized.
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4.5 Results for Karhunen-Loève Least-Squares Model for Supersonic Blunt Body

Flow

4.5.1 Karhunen-Loève Mode Convergence for Ten Snapshot KL Model, M∞ ∈
[3, 4], b = 1/2

Convergence of the L∞ [Ω] error in ρ (ξ, η) as a function of the number of KL

modes is shown in Figure 4.16 for a KL model built from ten snapshots. The ten

snapshots are uniformly distributed over the range M∞ ∈ [3, 4], while the geometry

is fixed at b = 0.5. The snapshots are generated using the pseudospectral solver

described in [39] on both a 17× 9 grid and a 22× 12 grid. The error is assessed by

comparison with a highly resolved 33× 17 grid solution. After the fourth mode for

the 17 × 9 grid KL model and after the fifth mode for the 22 × 12 grid KL model

there is no further improvement in the accuracy of the model, since the KL model

accuracy has reached the level of error in the samples as shown by the dark lines in

Figure 4.16.

The distribution of L∞ [Ω] error in ρ (ξ, η) for the KL model over the entire

range, M∞ ∈ [3, 4] , is shown in Figure 4.17 for the KL model built from ten 17× 9

grid pseudospectral snapshots. Once again, the L∞ [Ω] error in ρ (ξ, η) decreases

with increasing number of KL modes until the approximate accuracy of the samples

is reached around 5 × 10−5. Once the accuracy of the snapshots has been reached,

there is no further improvement in the accuracy with increasing number of KL

modes, since the higher order modes do not contain relevant information; they are

corrupted by numerical error in the KL modes. For finer grid solutions than the

22×12 grid, the KL model accuracy became very sensitive to the ωq
f in Eq. (4.145);

therefore, the 22 × 12 grid KL model is the finest grid KL model employed in the

current work.
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Figure 4.16. KL model L∞[Ω] error in ρ for both a 17 × 9 and 22 × 12 grid,

M∞ = 3.5, b = 0.5. Errors determined by comparison to highly resolved 33 × 17

grid.
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Figure 4.17. KL model L∞[Ω] error in ρ for a 17 × 9 grid, M∞ ∈ [3, 4], b = 0.5.

Errors determined by comparison to highly resolved 33 × 17 grid.
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4.5.2 Single Variable Design Problem

To illustrate the use of a KL model for an optimal design problem, the power

law body described parametrically in Eqs. (4.46) and (4.47) is considered, and the

value of b is sought which minimizes the drag coefficient, CD for fixed freestream

Mach number, M∞ = 3.5, and ratio of specific heats, γ = 7
5
. For the axisymmetric

problem, the equation for CD (b) is

CD (b) =
4

γM2∞

∫ 1

0

pr
∂r

∂ξ

∣∣∣∣
η=0

dξ. (4.146)

The integral in Eq. (4.146) is evaluated by using Gauss quadrature to achieve high

accuracy in CD comparable to the accuracy in p and r from Eq. (4.146).

Before finding the value of b which minimizes CD from Eq. (4.146), a KL model

is built with ten uniformly spaced snapshots that span the design space in which the

minimum is expected, that is b ∈ [1/3, 1/2] for M∞ = 3.5. Here the snapshots are

generated using the pseudospectral solver on a 17×9 grid. A plot of the eigenvalues

of density as a function of KL mode number is shown in Figure 4.18 while the ten

normalized KL modes are shown in Figure 4.19. There is a rapid decrease in the

magnitude of the eigenvalues, and the KL modes become topologically richer as

the mode number increases. A convergence plot of the L∞ [Ω] error in ρ (ξ, η)

with respect to the number of KL modes is shown in Figure 4.20, where the error is

measured against a highly resolved 33×17 grid solution of the pseudospectral solver.

After the fourth mode there is no further improvement in the accuracy of the model,

since the KL model accuracy has reached the level of error in the samples.

The distribution of L∞ [Ω] error in ρ (ξ, η) for the KL model over the entire range,

b ∈ [1/3, 1/2] is shown in Figure 4.21. Once again, the L∞ [Ω] error decreases with

increasing number of KL modes until the approximate accuracy of the samples is

reached around 5 × 10−5. Once the accuracy of the snapshots has been reached,
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Figure 4.18. Eigenvalues of density for ten snapshots over the range b ∈ [1/3, 1/2].

there is no further improvement in the accuracy with increasing number of KL

modes, since the higher order modes do not contain relevant information; they are

corrupted by numerical error in the KL modes.

Since we are interested in the drag coefficient, CD, in Figure 4.22, we show the

error convergence in CD as a function of number of KL modes in the model over

the range of geometric parameter b ∈ [1/3, 1/2]. The KL model was built from ten

snapshots distributed uniformly over the range b ∈ [1/3, 1/2]; the snapshots were

solved on a 17 × 9 grid. Again, the error is measured against a highly resolved

33 × 17 grid solution of the pseudospectral solver. It is seen that the error in the

KL model is higher than the error in the pseudospectral solver over part of the range

of b and lower over another part even with all ten modes used in the KL model.

It may be that there is fortuitous cancelling of errors in the process of integrating

to find CD which over part of the range of b favors the pseudospectral method and
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Figure 4.19. Ten KL eigenmodes of density with associated eigenvalues, λ, generated

from ten snapshots in the range b ∈ [1/3, 1/2].
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Figure 4.20. KL model L∞[Ω] error in ρ for a 17 × 9 grid, M∞ = 3.5, b = 0.5.

Errors determined by comparison to highly resolved 33 × 17 grid.
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Figure 4.21. KL model L∞[Ω] error in ρ for a 17× 9 grid, b ∈ [1/3, 1/2], M∞ = 3.5.

Errors determined by comparison to highly resolved 33 × 17 grid.
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Figure 4.22. KL model L∞[Ω] error in ρ for a 17× 9 grid, b ∈ [1/3, 1/2], M∞ = 3.5.

Errors determined by comparison to highly resolved 33 × 17 grid.

over another part favors the KL model. This seems likely since the plot of L∞ [Ω]

error in ρ (ξ, η) from Figure 4.21 shows convergence in number of KL modes down

to the level of accuracy in the snapshots.

In Figures 4.23 and 4.24, we show the plot of CD versus b for KL models using

various numbers of KL modes compared to CD from the pseudospectral solver on

the same 17× 9 grid. It is seen that for the KL model with one or two modes, the

prediction is fairly poor; in fact, for the case of one KL mode, the trend of decreasing

CD with increasing b is the opposite of what it should be. Including at least three

KL modes in the model yields very good agreement with the actual solution. There

is a bias error in the prediction of CD versus b for KL models with greater than four

modes. The bias error is on the order of the error for the pseudospectral prediction

on a 17 × 9 grid, Fig. 4.21, from which the KL model was developed, so that this
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Figure 4.23. CD versus b for the KL model built from 10 snapshots on a 17×9 grid,

M∞ = 3.5

bias error is within the error tolerance of the KL model. From Figure 4.24 it is

seen that the optimum value of b is 0.35 and the drag value for this geometry is

CD = 0.824.

Now we develop a KL model taking only three snapshots at b = 1/3, 5/12, and

1/2 from the pseudospectral solution on a 17 × 9 grid and compare the predictions

for CD from this KL model to a quadratic polynomial fit of the three snapshots.

The plot of CD versus b for the three mode KL model and the quadratic fit are

shown in Figures 4.25 and 4.26 compared to CD from the pseudospectral solver

on the same 17 × 9 grid. The equation for the quadratic fit of CD versus b is

CD = 1.4601676 − 1.0082742b + 0.9983798b2. It is seen that the dependence of CD

on b is approximated quite well using a quadratic polynomial so that the three mode

KL model is actually a less accurate approximation of CD.
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Figure 4.24. Magnification of CD versus b for the KL model built from 10 snapshots

on a 17 × 9 grid, M∞ = 3.5

4.5.3 Efficiency of Karhunen-Loève Model Versus Pseudospectral Solver

Figure 4.27 shows the error in the optimum CD versus CPU time in seconds for

both the KL model and pseudospectral solver along with linear fits of the data points

to make comparison easier. The various data points representing the pseudospectral

solutions are found by varying the number of grid points; finer grids yield more

accurate results but also take longer to compute. The data points representing the

KL model are all from KL models built with ten uniform snapshots over the range

b ∈ [1/3, 1/2] but with various levels of grid refinement and number of modes. The

accuracy and computational cost for the KL model are functions of both the grid

refinement in the snapshots and the number of modes used in the approximation;

finer grid snapshots and more modes used in the KL model increase the accuracy

of the predictions, but also the computational cost. In Figure 4.27 it is seen that
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Figure 4.25. CD versus b for the KL model built from 3 snapshots on a 17 × 9 grid

and a quadratic fit of CD from the same 3 snapshots, M∞ = 3.5

the KL model and pseudospectral method predictions have the same slope of error

versus CPU time with the KL model at a slightly lower CPU time for the same level

of accuracy.
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Figure 4.26. Magnification of CD versus b for the KL model built from 3 snapshots

on a 17 × 9 grid and a quadratic fit of CD from the same 3 snapshots, M∞ = 3.5
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Figure 4.27. Error in the optimum CD versus CPU cost in seconds for the KL model

and pseudospectral solver, M∞ = 3.5 Errors determined by comparison to highly

resolved 33 × 17 grid.

105



CHAPTER 5

CONCLUSIONS

5.1 Heat Conduction Problem

A KL Galerkin model was developed for a two-dimensional linear heat conduc-

tion problem with two different types of boundary conditions. The first boundary

condition was multi-mode while the second one was a finite mode boundary con-

dition in the sense that the exact separation of variables solution has only three

terms in the series expansion of the solution. Comparing the efficiency of the KL

Galerkin method with the pseudospectral method and a second order finite differ-

ence method, it was seen that both the KL Galerkin and pseudospectral methods

were significantly more efficient than the second order finite difference method for

both types of boundary conditions. The computational cost of sampling the de-

sign space and building the KL model was not included in the solution cost of the

KL model even though this may add a significant amount of computational cost to

the overall design process. The efficiency results of the heat conduction problem

indicate that the higher efficiency of the KL method with respect to pseudospectral

methods is problem-dependent. For the heat conduction problem with an infinite

number of modes in the separation of variables solution, the pseudospectral method

does not converge in a spectral manner, the KL method still converges spectrally,

and consequently offers a significant increase in efficiency over the pseudospectral
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method. On the other hand, for the heat conduction problem with only three terms

in the separation of variables solution, both the pseudospectral method and the KL

Galerkin methods converge spectrally.

A comparison of the accuracy of the KL model in predicting the average temper-

ature as a function of aspect ratio built from only three snapshots with a quadratic

polynomial least squares fit, or one dimensional response surface, for Tavg versus

Γ revealed that the KL model was significantly more accurate. Although the

computational cost of predicting Tavg by the KL method is more than that of the

response surface, for a given level of accuracy the KL method may be more efficient

since fewer design space samples would be needed for the KL method to achieve a

specified accuracy level over the response surface method. As a consequence, the

cost of building the KL model would be significantly less than the response surface

particularly when multiple design variables are considered.

5.2 Blunt Body Problem

A pseudospectral numerical approximation technique was developed for the in-

viscid supersonic flow over a blunt body geometry. The discretized form of the

governing equations and boundary conditions were formulated in terms of a system

of ODEs which are solvable using a standard ODE solver. Due to the fitting of the

shock and use of global polynomials in the solution approximation, the pseudospec-

tral results show high accuracy and spectral convergence with number of nodes.

A KL least-squares model for the supersonic flow over a blunt body geometry

was developed. The error convergence rate for the KL model is rapid, with the

maximum accuracy level achieved with five KL modes for the single design variable

problem posed. The maximum accuracy of the KL model is theoretically limited to

the accuracy of the snapshots from which the model was built, and the results shown
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here support the theoretical accuracy limit. Comparison of the computational cost

of the KL model versus the pseudospectral method reveals slightly lower cost for the

KL model than for the pseudospectral method. This is due to the fact that both

the pseudospectral and KL least-squares methods exhibit spectral convergence rates.

Given the additional overhead in sampling the design space, finding and then storing

the KL eigenmodes, the advantage of using the KL method in favor of a direct

solver is not clear, since the direct solver in this case is of comparable efficiency.

Furthermore, it has been shown that for the blunt body optimal design problem,

representing the functional dependence of CD on b by a quadratic polynomial is

more accurate than the predictions for CD from a KL model employing three modes.

Given that the computational cost of predicting CD from a quadratic polynomial

is much less than the cost of the KL model, it is not advantageous to use the KL

method for this specific design problem.

The current work has contributed in beginning to make serious comparison of the

computational efficiency of the KL method with other discrete approximations such

as a second order finite difference and pseudospectral method, as well as comparing

the accuracy of the KL method with response surfaces. These types of cost compar-

isons are something that has received little attention in the literature. Furthermore,

although many researchers have employed finite difference, finite element, or finite

volume methods with relatively low convergence rates in design applications, from

the current results it may be worthwhile to explore the use of pseudospectral type

methods instead. The current work has contributed also in beginning to compare

the efficiency and accuracy of the KL method for different classes of problems such

as linear versus nonlinear problems, infinite mode and finite mode problems. More

work is needed to clarify what problems would be best solved by the KL method or

would be more easily and efficiently solved by some other discrete method. Finally,
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the current work is novel in that it is the first work to use shock fitting with the

KL method, and one of the first studies where a KL model has been developed for

a geometry in a supersonic flow.

5.3 Future Work

Future work includes the solution of multi-variable design problems using the KL

method and the evaluation of the accuracy and efficiency of the KL method as com-

pared with response surfaces with multiple design variables. Storage requirements

for the KL method also need to be investigated as compared to the response surface

method when full flow field information is necessary for the design problem. The

KL method automatically retains all the flow field information whereas if the flow

field is needed in the response surface method, the original flow field solutions must

be retained. If more design space samples are required for the response surface to

achieve the same level of accuracy as the KL method, then in addition to requiring

longer to build the response surface model, it would also require more storage to

maintain all the flow field information. The savings in both computational cost of

building the model and the reduction in storage requirements could be significant

for the KL method as compared to the response surface method particularly as the

number of design variables increases, and this needs to be shown.

A Galerkin method employing Chebyshev polynomials as a basis, instead of the

pseudospectral method using global Lagrange interpolating polynomials, needs to

be implemented to determine whether the same poor convergence rate for the heat

conduction problem with the infinite mode boundary condition is seen for both

methods. In addition, if a Galerkin method employing Chebyshev polynomials is

employed, the KL modes could be expressed as a linear combination of Chebyshev

polynomials; this would reduce the storage requirements of the KL modes since
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only the coefficients in the series expansion would have to be retained. Also, the

computational cost for the Chebyshev based Galerkin and the KL Galerkin methods

should be significantly less than the pseudospectral method employed here. This

improvement in computational efficiency needs to be quantified.

The necessity to use shock fitting to obtain both the pseudospectral and KL

model results in a significant complication that renders application of both meth-

ods difficult for problems with embedded discontinuities; nevertheless, recent work

by Nasuti and Onofri [58], has shown promise in fitting complex two dimensional

shock structures. In addition, although the topology of the current problem is

simple enough to permit a single domain solution, for problems with more complex

topologies, multiple shocks for example, a multi-domain pseudospectral method such

as that proposed by Kopriva [59], is more convenient. Combining the shock fit-

ting scheme of Nasuti and Onofri with the multi-domain pseudospectral method of

Kopriva to obtain pseudospectral solutions for the supersonic flow over arbitrary

two-dimensional geometries is an area for future research.

Assuming that one can obtain multi-domain solutions for problems with complex

shocks, the next step would be the creation of a KL model. Creation of a multi-

domain KL model by generating a separate set of KL modes for each domain should

be possible; nevertheless, a methodology would be needed to handle situations where

for example the shock structure changes resulting in a change in the number of

domains as parameters in the problem change. It may not be clear for such problems

the appropriate set of KL modes to use in approximating the solution in a particular

domain.

Since the efficiency of the KL method suffers when the integrals in the KL

model are evaluated each time the model is run, as is the case for general nonlinear

problems, the possibility of generating approximations to these integrals at the time
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of building the model needs to be investigated. Perhaps the governing equations

could be linearized about a baseline geometry to remove the nonlinearity. The

ability to evaluate the integral terms at the time of constructing the model is critical

to developing KL models which are significantly less costly to run than discrete

approximations such as the pseudospectral method, particularly when the cost of

building the KL model is accounted for. A future paper will focus on comparing the

computational cost for a linear heat conduction problem, where the integrals in the

Galerkin formulation are evaluated at the time of building the model, versus a heat

conduction problem with temperature dependent diffusivity, where the integrals in

the Galerkin formulation are evaluated each time a new solution to the model is

required. A linearization of the governing equations about a baseline geometry will

also be performed and the results for accuracy and efficiency assessed.
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APPENDIX A

KARHUNEN-LOÈVE DECOMPOSITION

Given a set of Fk(ξ), k = 1, ..., K, we seek a set of real, orthonormal basis

functions, ϕ̂i (ξ), i.e.∫
Ω

ϕ̂i (ξ) ϕ̂j (ξ) dξ = δij, i = 1, ..., L, L ≤ K, (A.1)

and coefficients, cki such that approximating Fk(ξ) by,

Fk(ξ) ≈
L∑

i=1

ckiϕ̂i (ξ) , (A.2)

minimizes ε2 in the following expression:

ε2 =
1

K
∫

Ω
dξ

K∑
k=1

∫
Ω

(
Fk (ξ) −

L∑
i=1

ckiϕ̂i (ξ)

)2

dξ, (A.3)

subject to the orthonormality constraint, Eq. (A.1) . Here, ξ≡ (ξ, η) is a spatial

variable of dimension two defined over the domain, Ω : {ξ ∈ [0, 1] , η ∈ [0, 1]}.
At this point, let us assume that we have a set of orthonormal basis functions,

ϕ̂i (ξ) , i = 1, ..., L, and propose that the coefficients, cki, be

cki =

∫
Ω

Fk (ξ) ϕ̂i (ξ) dξ,
k = 1, ..., K

i = 1, ..., L
. (A.4)

We will show that this choice yields a minimum value of ε2. For any other choice

of coefficients bki, ε2 can be written

ε2 =
1

K
∫

Ω
dξ

K∑
k=1

∫
Ω

(
Fk (ξ) −

L∑
i=1

bkiϕ̂i (ξ)

)2

dξ. (A.5)
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Substituting the following expression for the bki,

L∑
i=1

bki =
L∑

i=1

cki −
L∑

i=1

(cki − bki) , (A.6)

into Eq. (A.5) and making use of Eqs. (A.1) and (A.4) , ε2 in Eq. (A.5) is, after

simplification,

ε2 =
1

K
∫

Ω
dξ

K∑
k=1

∫
Ω

(
Fk (ξ) −

L∑
i=1

ckiϕ̂i (ξ)

)2

dξ+
L∑

i=1

(cki − bki)
2

 , (A.7)

from which it is clear that choosing bki = cki minimizes ε2.

Having found the optimal choice of cki from Eq. (A.4) , the set of functions,

ϕ̂i(ξ), i = 1, ..., L, which minimize ε2 are found next. Let us expand the integrand

in Eq. (A.3):

ε2 =
1

K
∫

Ω
dξ

K∑
k=1

(∫
Ω

(Fk (ξ))2 dξ − 2
L∑

i=1

cki

∫
Ω

Fk (ξ) ϕ̂i (ξ) dξ (A.8)

+
L∑

i=1

L∑
j=1

ckickj

∫
Ω

ϕ̂i (ξ) ϕ̂j (ξ) dξ

)
.

Imposing the restriction of orthonormality from Eq. (A.1) , Eq. (A.8) becomes:

ε2 =
1

K
∫

Ω
dξ

K∑
m=1

(∫
Ω

(Fk (ξ))2 dξ − 2
L∑

i=1

cki

∫
Ω

Fk (ξ) ϕ̂i (ξ) dξ+
L∑

i=1

c2
ki

)
. (A.9)

Substituting definition for cki from Eq. (A.4) into Eq. (A.9) yields

ε2 =
1

K
∫

Ω
dξ

K∑
m=1

(∫
Ω

(Fk (ξ))2 dξ −
L∑

i=1

c2
ki

)
, (A.10)

or

ε2 =
1

K
∫

Ω
dξ

K∑
k=1

(∫
Ω

(Fk (ξ))2 dξ −
L∑

i=1

∫
Ω

Fk (ξ) ϕ̂i (ξ) dξ

∫
Ω

Fk (ξ′) ϕ̂i(ξ
′)dξ′

)
.

(A.11)

Observing that the terms
∫
Ω

[Fk (ξ)]2 dξ and
∫

Ω
dξ in Eq. (A.11) are known con-

stants, it is evident that minimizing ε2 is equivalent to minimizing:

− 1

K

K∑
k=1

(
L∑

i=1

∫
Ω

Fk (ξ) ϕ̂i (ξ) dξ

∫
Ω

Fk (ξ′) ϕ̂i(ξ
′)dξ′

)
, (A.12)
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or upon interchanging integration and summation, minimizing ε2 is equivalent to

maximizing: ∫
Ω

∫
Ω

R(ξ,ξ′)
L∑

i=1

ϕ̂i(ξ)ϕ̂i(ξ
′)dξdξ′, (A.13)

where

R(ξ,ξ′) =
1

K

K∑
k=1

Fk(ξ)Fk(ξ
′). (A.14)

subject to Eq. (A.1) .

Next the maximization of Eq. (A.13) via calculus of variations is considered.

Suppose that ϕi(ξ), i = 1, ..., L, are the functions which maximize the expression in

Eq. (A.13) . Then any functions, ϕ̂i (ξ) , can be written as ϕ̂i (ξ) = ϕi(ξ) + εϕ̃i(ξ),

where ε is a constant and ϕ̃i(ξ) is an arbitrary function. Substituting ϕ̂i (ξ) =

ϕi(ξ) + εϕ̃i(ξ) into Eq. (A.13) , the function to be maximized f (ε) , becomes

f (ε) =

∫
Ω

∫
Ω

R(ξ,ξ′)
L∑

i=1

(ϕi(ξ) + εϕ̃i(ξ)) (ϕi(ξ
′) + εϕ̃i(ξ

′)) dξdξ′, (A.15)

subject to Eq. (A.1) . In order to solve this constrained maximization problem,

the method of Lagrange multipliers is employed, and a maximum for the following

modified function f ∗ (ε) is sought:

f ∗ (ε) =

∫
Ω

∫
Ω

R(ξ,ξ′)
L∑

i=1

(ϕi(ξ) + εϕ̃i(ξ)) (ϕi(ξ
′) + εϕ̃i(ξ

′)) dξdξ′ (A.16)

−
L∑

i=1

λi

(∫
Ω

(ϕi(ξ
′) + εϕ̃i(ξ

′)) (ϕi(ξ
′) + εϕ̃i(ξ

′)) dξ′ − 1

)
,

where the λi are the Lagrange multipliers. Now for a maximum, it is required that

d
dε

f ∗ (ε) = 0 at ε = 0. Differentiating Eq. (A.16) with respect to ε and evaluating

at ε = 0 yields the following equation after simplifying

d

dε
f ∗ (ε)

∣∣∣∣
ε=0

=

∫
Ω

∫
Ω

R(ξ,ξ′)
L∑

i=1

(ϕi(ξ)ϕ̃i(ξ
′) + ϕ̃i(ξ)ϕi(ξ

′)) dξdξ′ (A.17)

− 2
L∑

i=1

λi

∫
Ω

ϕi(ξ
′)ϕ̃i(ξ

′)dξ′

= 0.
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Since, by definition, R(ξ, ξ′) = R(ξ′, ξ) in Eq. (A.14) , and since ξ and ξ′ are

dummy variables, it is observed that the two terms inside parenthesis in Eq. (A.17)

are equivalent, so that Eq. (A.17) can be written as

L∑
i=1

∫
Ω

(∫
Ω

R(ξ,ξ′)ϕi(ξ)dξ − λiϕi(ξ
′)
)

ϕ̃i(ξ
′)dξ′ = 0. (A.18)

From Eq. (A.18) it is seen that the quantity in parenthesis must be equal to zero

since the ϕ̃i(ξ
′) are arbitrary and generally non-zero functions, so that Eq. (A.18)

becomes ∫
Ω

R(ξ,ξ′)ϕi(ξ)dξ = λiϕi(ξ
′), i = 1, ..., L. (A.19)

It is recognized that Eq. (A.19) is simply the definition for the eigensystem of the

linear integral operator ∫
Ω

R(ξ,ξ′) (·) dξ, (A.20)

so that the finite series of orthonormal functions which minimize Eq. (A.3) are the

first L eigenfunctions of this operator. Since it is easily shown that the operator in

Eq. (A.20) is self-adjoint, i.e.∫
Ω

(∫
Ω

R(ξ,ξ′)f(ξ)dξ

)
g(ξ′)dξ′ =

∫
Ω

(∫
Ω

R(ξ,ξ′)g(ξ′)dξ′
)

f(ξ)dξ, (A.21)

and positive definite, i.e.∫
Ω

(∫
Ω

R(ξ,ξ′)f(ξ)dξ

)
f(ξ′)dξ′ > 0, (A.22)

the eigenvalues, λi, are all real and positive.

Next the computation of the eigensystem in Eq. (A.19) by the method of snap-

shots as proposed by Sirovich [49] is considered. Since the kernel R(ξ, ξ′) is com-

posed of K linearly independent solutions, Fk(ξ), k = 1, ..., K, the eigenfunctions,

ϕi(ξ) can be expressed as a linear combination of these solutions, i.e.

ϕi(ξ) =
K∑

j=1

αijFj(ξ), i = 1, ..., K. (A.23)
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The coefficients, αij, are found by substituting Eq. (A.23) into Eq. (A.19) and

making use of Eq. (A.14) which yields∫
Ω

1

K

K∑
k=1

Fk(ξ)Fk(ξ
′)

K∑
j=1

αijFj(ξ)dξ (A.24)

= λi

K∑
j=1

αijFj(ξ
′), i = 1, ..., K,

or after simplifying
K∑

k=1

αikβjk = λiαij,
i = 1, ..., K,

j = 1, ..., K,
(A.25)

where

βjk =
1

K

∫
Ω

Fj(ξ)Fk(ξ)dξ. (A.26)

Solving the discrete eigenvalue problem for the αij from Eq. (A.25), the eigenvectors

of Eq. (A.20) are then reconstructed via Eq. (A.23). This procedure will be repeated

for each of the six components of the steady state solution vector xq
k(ξ), q = 1, ..., 6,

k = 1, ..., K, which includes the density, pressure, velocity components and the

physical grid coordinates. For this multi component problem Eq. (A.19) becomes∫
Ω

Rq(ξ,ξ′)ϕq
k(ξ)dξ = λq

kϕ
q
k(ξ

′),
q = 1, ..., 6,

k = 1, ..., K,
(A.27)

where

Rq(ξ,ξ′) =
1

K

K∑
k=1

Xq
k(ξ)Xq

k(ξ
′). (A.28)
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APPENDIX B

INTERPOLATION ERROR USING LAGRANGE INTERPOLATING

POLYNOMIALS

In calculating the derivatives of the Lagrange interpolating polynomials at the

nodes, e.g.
dL

(N)
p

dξ
(ξn), there will be interpolation error. We will assess the magnitude

of the interpolation error of the Lagrange interpolating polynomials by comparing

the exponential function,

f (x) = ex, (B.1)

and its analytic first and second derivatives with its numerical approximations.

Consistent with the methodology in the current work, we will approximate f(x) in

terms of Lagrange interpolating polynomials, i.e.

f(x) ≈
N∑

i=0

f(xi)L
(N)
i (x). (B.2)

The exact first and second derivatives of f(x) are

df

dx
= ex, (B.3)

d2f

dx2
= ex, (B.4)

and the numerical approximations are

df

dx
≈

N∑
i=0

f(xi)
dL

(N)
i

dx
(x), (B.5)
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d2f

dx2
≈

N∑
i=0

f(xi)
d2L

(N)
i

dx2
(x). (B.6)

The derivatives of the Lagrange interpolating polynomials,
dL

(N)
i

dx
(x) and

d2L
(N)
i

dx2 (x)

are evaluated at the nodes xp, p = 0, ..., N according to the algorithm in [43]. The

distribution of error in the function, first derivative, ε′ (x), and second derivative,

ε
′′
(x) , defined as follows:

ε (x) =

∣∣∣∣∣ex −
N∑

i=0

f(xi)L
(N)
i (x)

∣∣∣∣∣ , (B.7)

ε′ (x) =

∣∣∣∣∣ex −
N∑

i=0

f(xi)
dL

(N)
i

dx
(x)

∣∣∣∣∣ , (B.8)

ε′′ (x) =

∣∣∣∣∣ex −
N∑

i=0

f(xi)
d2L

(N)
i

dx2
(x)

∣∣∣∣∣ , (B.9)

are plotted for various values of N for both a Chebyshev and uniform grid distri-

bution in Figures B.1, B.2, and B.3. As the value of N increases, the uniform grid

exhibits a larger error at the endpoints than the Chebyshev grid. It is for this

reason that a Chebyshev grid is preferred for numerically solving the problems.
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(e) 17 node Chebyshev grid (f) 17 node uniform grid

Figure B.1. Interpolation error in approximating y = ex.
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Figure B.2. Interpolation error in approximating the first derivative of y = ex.
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(e) 17 node Chebyshev grid (f) 17 node uniform grid

Figure B.3. Interpolation error in approximating the second derivative of y = ex.
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APPENDIX C

SEPARATION OF VARIABLES SOLUTION FOR TWO-DIMENSIONAL HEAT

CONDUCTION PROBLEM

The two-dimensional steady-state heat conduction equation,

∂2T

∂x2
+ Γ2∂2T

∂y2
= 0, (C.1)

and the following boundary conditions,

∂T

∂x
(0, y) = β

√
ΓT (0, y), (C.2)

∂T

∂x
(1, y) = −β

√
ΓT (1, y), (C.3)

∂T

∂y
(x, 0) = − 1

Γ
, (C.4)

∂T

∂y
(x, 1) = − β√

Γ
T (x, 1) , (C.5)

can be solved by the method of separation of variables. We will assume that T (x, y)

can be expressed as the product of two one-dimensional functions, i.e.

T (x, y) = F (x) G (y) . (C.6)

Substituting Eq. (C.6) into the governing equation, (C.1) , we have

d2F

dx2
G + Γ2d2G

dy2
F = 0, (C.7)

or

1

F

d2F

dx2
= −Γ2

G

d2G

dy2
. (C.8)
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Since the left-hand side of Eq. (C.8) is a function of x only and the right-hand side

is a function of y only, both sides must be equal to a constant which we will call σ2.

Eq. (C.8) becomes

1

F

d2F

dx2
= −Γ2

G

d2G

dy2
= −σ2, (C.9)

or

d2F

dx2
= −Fσ2, (C.10)

and

d2G

dy2
=

(σ

Γ

)2

G. (C.11)

Employing Eq. (C.6) , the boundary conditions in Eqs. (C.2 − C.5) become the

following

dF

dx
(0) = β

√
ΓF (0), (C.12)

dF

dx
(1) = −β

√
ΓF (1), (C.13)

F (x)
dG

dy
(0) = − 1

Γ
, (C.14)

dG

dy
(1) = − β√

Γ
G (1) . (C.15)

The solution to Eq. (C.10) is

F (x) = c1 sin σx + c2 cos σx, (C.16)

and the solution to Eq. (C.11) is

G (y) = c3 sinh
σ

Γ
y + c4 cosh

σ

Γ
y, (C.17)

where c1, c2, c3, c4 and σ are unknown constants to be determined by enforcing

the boundary conditions, Eqs. (C.12 − C.15) . Substituting the expression for F (x)

from Eq. (C.16) into the first boundary condition for F (x), Eq. (C.12) , yields the

following for c1 in terms of c2,

c1 =
β
√

Γ

σ
c2. (C.18)
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Substituting F (x) into the second boundary condition for F (x), Eq. (C.13) , yields

the following,

c1σ cos σ − c2σ sin σ = −β
√

Γc1 sin σ − β
√

Γc2 cos σ, (C.19)

or making use of Eq. (C.18) , we have after simplifying

σ2 sin σ − 2βσ
√

Γ cos σ − β2Γ sin σ = 0. (C.20)

Eq. (C.20) can also be written as

tan σ = 2

(
σ/β

√
Γ
)

(
σ

β
√

Γ

)2

− 1
, (C.21)

so that the discrete values of σ, denoted σk, k = 1, ...,∞, which satisfy Eq. (C.20) can

be graphically represented as the intersections of the two curves, Figure C.1, from

the left and right sides of Eq. (C.21) respectively. Eq. (C.21) is an nonlinear function

for σ with an infinite number of solutions, σk, k = 1, ...,∞, where σk → (k − 1)π

in the limit as k → ∞, as can be seen from Figure C.1. The function F (x) which

satisfies Eq. (C.10) and the boundary conditions is

F (x) =
∞∑

k=1

ck

(
β
√

Γ

σk

sin σkx + cos σkx

)
. (C.22)

Now turning to the boundary condition on G (y) , Eq. (C.5) , it will be enforced

by substituting the expression for G (y) from Eq. (C.17) into this equation to arrive

at the following expression,

c3
σ

Γ
cosh

σ

Γ
+ c4

σ

Γ
sinh

σ

Γ
= − β√

Γ

(
c3 sinh

σ

Γ
+ c4 cosh

σ

Γ

)
. (C.23)

Solving Eq. (C.23) for c3 in terms of c4 yields the following

c3 = −σ sinh σ
Γ

+ β
√

Γ cosh σ
Γ

σ cosh σ
Γ

+ β
√

Γ sinh σ
Γ

c4, (C.24)
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Figure C.1. Eigenvalues, σk, located at the intersection of two curves for β = 1,

Γ = 1.

so that G (y) becomes

G (y) = c4

(
cosh

σk

Γ
y − hk (β, Γ) sinh

σk

Γ
y
)

, k = 1, ...,∞, (C.25)

where

hk (β, Γ) =
σk sinh σk

Γ
+ β

√
Γ cosh σk

Γ

σk cosh σk

Γ
+ β

√
Γ sinh σk

Γ

. (C.26)

The temperature distribution which satisfies the governing equation, Eq. (C.1) , and

three of the boundary conditions, Eqs. (C.2) , (C.3) and (C.5) , is

T (x, y) =
∞∑

k=1

ck

(
β
√

Γ

σk

sin σkx + cos σkx

)(
cosh

σk

Γ
y − hk (β, Γ) sinh

σk

Γ
y
)

.

(C.27)

The fourth boundary condition, Eq. (C.4) , can be enforced by substituting the

expression for T (x, y) from Eq. (C.27) into this equation and then solving for the

unknown coefficients, ck, k = 1, ...,∞, i.e.

∞∑
k=1

ck

(
β
√

Γ

σk

sin σkx + cos σkx

)
hk (β, Γ) σk = 1. (C.28)

The coefficients, ck, in Eq. (C.28) can be found by enforcing that the inner product

of this equation with respect to each of the x-direction modal functions be equal to
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zero, i.e.

∞∑
k=1

ckhk (β, Γ) σk

∫ 1

0

(
β
√

Γ

σk

sin σkx + cos σkx

) (
β
√

Γ

σj

sin σjx + cos σjx

)
dx

(C.29)

=

∫ 1

0

(
β
√

Γ

σj

sin σjx + cos σjx

)
dx, j = 1, ...,∞.

Observing that if k = j then
∫ 1

0

(
β
√

Γ
σk

sin σkx + cos σkx
) (

β
√

Γ
σj

sin σjx + cos σjx
)

dx =

0, Eq. (C.29) becomes

ckhk (β, Γ) σk

∫ 1

0

(
β
√

Γ

σk

sin σkx + cos σkx

)2

dx (C.30)

=

∫ 1

0

(
β
√

Γ

σk

sin σkx + cos σkx

)
dx, k = 1, ...,∞,

so that the coefficients, ck, are

ck =

∫ 1

0

(
β
√

Γ
σk

sin σkx + cos σkx
)

dx

hk (β, Γ) σk

∫ 1

0

(
β
√

Γ
σk

sin σkx + cos σkx
)2

dx
, k = 1, ...,∞, (C.31)

or upon simplifying

ck =

(
4β

√
Γ (1 − cos σk) + 4σk sin σk

)
/hk (β, Γ)(

2σk

(
β
√

Γ + β2Γ + σ2
k − β

√
Γ cos 2σk

)
+ (σ2

k − β2Γ) sin 2σk

) ,(C.32)

k = 1, ...,∞.
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APPENDIX D

INTEGRATION BY PARTS IN TWO-DIMENSIONS FOR INCORPORATION

OF BOUNDARY CONDITIONS IN THE GALERKIN METHOD OF

WEIGHTED RESIDUALS

In order to incorporate the boundary conditions into the KL Galerkin approxi-

mation, we use integration by parts. In two dimensions, we will start with the two

functions F (x, y) and G(x, y). Using the chain rule, the product F (x, y)G(x, y) is

differentiated in the following manner,

∂ (FG)

∂x
=

∂F

∂x
G + F

∂G

∂x
. (D.1)

Then integrating both sides and rearranging terms yields,∫ 1

0

∫ 1

0

F
∂G

∂x
dxdy =

∫ 1

0

∫ 1

0

∂ (FG)

∂x
dxdy −

∫ 1

0

∫ 1

0

G
∂F

∂x
dxdy. (D.2)

We can simplify Eq. (D.2) further to yield,∫ 1

0

∫ 1

0

F
∂G

∂x
dxdy =

∫ 1

0

[F (1, y) G (1, y) − F (0, y) G (0, y)] dy −
∫ 1

0

∫ 1

0

G
∂F

∂x
dxdy,

(D.3)

and in like manner∫ 1

0

∫ 1

0

F
∂G

∂y
dxdy =

∫ 1

0

[F (x, 1) G (x, 1) − F (x, 0) G (x, 0)] dx −
∫ 1

0

∫ 1

0

G
∂F

∂y
dxdy.

(D.4)

Eqs. (D.3) and (D.4) are used in the heat conduction problem to incorporate the

boundary conditions into the KL Galerkin approximation.
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APPENDIX E

GAUSSIAN QUADRATURE AT ARBITRARY NODAL POINTS

The integrals in this work are evaluated by using Gauss-Legendre quadrature

which is able to integrate polynomials of degree 2N + 1 using N + 1 nodes. Since

the spatial discretization of the governing equations has been accomplished by rep-

resenting the solution as a sum of Lagrange interpolating polynomials, the approxi-

mate solution can be integrated exactly by using Gauss-Legendre quadrature with a

sufficient number of nodes. If we have a polynomial fN(x) of degree N for example,

then the Gauss-Legendre integration rule is∫ 1

−1

fN(x)dx =
N∑

i=1

wif
N(xi). (E.1)

There are well known routines for calculating the weights, wi, and the abscissas, xi,

for example [60].

Since, in the current work, the nodal distribution for the pseudospectral solver

was chosen to be a Chebyshev distribution, xj, rather than a Legendre distribution,

xi, it is necessary to find the weights, wj, such that∫ 1

−1

fN(x)dx =
N∑

j=1

wjf
N(xj). (E.2)

This is accomplished by recalling the approximation for fN(x) in terms of Lagrange

interpolating polynomials, i.e.

fN(x) =
N∑

j=1

fN(xj)L
(N)
j (x). (E.3)
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Eq. (E.3) is used to evaluate fN(x) at the Gauss-Legendre nodes, xi, as follows

fN(xi) =
N∑

j=1

fN(xj)L
(N)
j (xi). (E.4)

Substituting Eq. (E.4) into Eq. (E.1) yields the following∫ 1

−1

fN(x)dx =
N∑

i=1

wi

N∑
j=1

fN(xj)L
(N)
j (xi), (E.5)

or after reversing the order of summation over i and j, we have∫ 1

−1

fN(x)dx =
N∑

j=1

[
N∑

i=1

wiL
(N)
j (xi)

]
fN(xj). (E.6)

Clearly, Eq. (E.6) yields the weights, wj, for Gaussian integration using the Cheby-

shev nodes, xj, i.e.

wj =
N∑

i=1

wiL
(N)
j (xi). (E.7)
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APPENDIX F

CROCCO’S THEOREM AND THE VORTICITY TRANSPORT EQUATION

F.1 Crocco’s Theorem

It is common, especially in texts on compressible flow, to present what is known

as Crocco’s theorem. The many different versions presented in many standard

texts are non-uniform and often of unclear validity. Its utility is confined mainly

to providing an alternative way of expressing the linear momentum principle which

provides some insight into the factors which influence fluid motion. In special

cases, it can be integrated to form a more useful relationship, similar to Bernoulli’s

equation, between fundamental fluid variables. The heredity of this theorem is

not always clear, though, as we shall see it is nothing more than a combination of

the linear momentum principle coupled with some definitions from thermodynam-

ics. Here we will first present a result valid for inviscid flows for the evolution of

stagnation enthalpy, which is closely related to Crocco’s theorem. Next we will

show how the restrictions can be relaxed so as to obtain what we call the extended

Crocco’s theorem. We then show how this reduces to a form which is similar to a

form presented in many texts.
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F.1.1 Stagnation enthalpy variation

First consider the inviscid form of the linear momentum equation with no body

force in Cartesian index notation,

∂vi

∂t
+ vj

∂vi

∂xj

= −1

ρ

∂p

∂xi

. (F.1)

Next, we make use of the following vector identity

vj
∂vi

∂xj

=
∂

∂xi

(vjvj

2

)
− εijkvjωk, (F.2)

where the vorticity, ωk, is defined as

ωk = εkmn
∂vn

∂xm

, (F.3)

and the alternating unit tensor εijk of rank three is defined to be

εijk =


1 if ijk = 123, 231, or 312,

0 if any two indices are identical,

−1 if ijk = 321, 213, or 132,

(F.4)

so that Eq. (F.1) becomes

∂vi

∂t
+

∂

∂xi

(vjvj

2

)
− εijkvjωk = −1

ρ

∂p

∂xi

. (F.5)

Taking the dot product with vi, and rearranging, we get

∂

∂t

(vivi

2

)
+ vi

∂

∂xi

(vjvj

2

)
= εijkvivjωk − 1

ρ
vi

∂p

∂xi

. (F.6)

Since εijk is antisymmetric and vivj is symmetric, their tensor inner product is zero,

so we get

∂

∂t

(vivi

2

)
+ vi

∂

∂xi

(vjvj

2

)
= −1

ρ
vi

∂p

∂xi

. (F.7)

Now recall the Gibbs relation from thermodynamics, which in effect defines the

entropy s,

Tds = de − p

ρ2
dρ, (F.8)
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where e is the specific internal energy. The definition of enthalpy, h, is

h = e +
p

ρ
. (F.9)

Differentiating the equation for enthalpy, we get

dh = de +
1

ρ
dp − p

ρ2
dρ. (F.10)

Eliminating de in favor of dh in the Gibbs equation gives

Tds = dh − 1

ρ
dp. (F.11)

If we choose to apply this relation to the motion following a fluid particle, we can

say then that

T
ds

dt
=

dh

dt
− 1

ρ

dp

dt
. (F.12)

Expanding, we get

T

(
∂s

∂t
+ vi

∂s

∂xi

)
=

∂h

∂t
+ vi

∂h

∂xi

− 1

ρ

(
∂p

∂t
+ vi

∂p

∂xi

)
. (F.13)

Rearranging, we get

T

(
∂s

∂t
+ vi

∂s

∂xi

)
−

(
∂h

∂t
+ vi

∂h

∂xi

)
+

1

ρ

∂p

∂t
= −1

ρ
vi

∂p

∂xi

. (F.14)

We then use the above identity to eliminate the pressure gradient term from the

linear momentum equation in favor of enthalpy, entropy, and unsteady pressure

terms,

∂

∂t

(vivi

2

)
+ vi

∂

∂xi

(vjvj

2

)
= T

(
∂s

∂t
+ vi

∂s

∂xi

)
−

(
∂h

∂t
+ vi

∂h

∂xi

)
+

1

ρ

∂p

∂t
. (F.15)

Rearranging slightly, noting that vivi = vjvj, we get

∂

∂t

(
h +

1

2
vjvj

)
+ vi

∂

∂xi

(
h +

1

2
vjvj

)
= T

(
∂s

∂t
+ vi

∂s

∂xi

)
+

1

ρ

∂p

∂t
. (F.16)
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If we define, as is common, the total enthalpy ho as

ho = h +
1

2
vjvj, (F.17)

we can then state

∂ho

∂t
+ vi

∂ho

∂xi

= T

(
∂s

∂t
+ vi

∂s

∂xi

)
+

1

ρ

∂p

∂t
, (F.18)

or

dho

dt
= T

ds

dt
+

1

ρ

∂p

∂t
. (F.19)

We can use the first law of thermodynamics written in terms of entropy, which for

this inviscid flow reduces to the isentropic relation

ds

dt
= 0, (F.20)

to eliminate the entropy derivative and arrive at

ρ
dho

dt
=

∂p

∂t
. (F.21)

Thus we see that the time rate of change of the total enthalpy of a fluid particle in

the absence of viscous effects is influenced only by an unsteady pressure field.

F.1.2 Extended Crocco’s theorem

With a slight modification of the preceeding analysis, we arrive at what we will

call the extended Crocco’s theorem. Begin once more with the linear momentum

equation, Eq. (F.5). Now assume we have a functional representation of enthalpy

in the form

h = h (s, p) . (F.22)

Then we get

dh =
∂h

∂s

∣∣∣∣
p

ds +
∂h

∂p

∣∣∣∣
s

dp. (F.23)
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We also thus deduce from the Gibbs relation dh = Tds + (1/ρ) dp that

∂h

∂s

∣∣∣∣
p

= T,
∂h

∂p

∣∣∣∣
s

=
1

ρ
. (F.24)

Now, since we have h = h (s, p) , we can take its derivative with respect to each and

all of the coordinate directions to obtain

∂h

∂xi

=
∂h

∂s

∣∣∣∣
p

∂s

∂xi

+
∂h

∂p

∣∣∣∣
s

∂p

∂xi

. (F.25)

Substituting known values for the thermodynamic derivatives, we get

∂h

∂xi

= T
∂s

∂xi

+
1

ρ

∂p

∂xi

. (F.26)

We can use this to eliminate directly the pressure gradient from the linear momen-

tum equation, Eq. (F.5) to obtain

∂vi

∂t
+

∂

∂xi

(vjvj

2

)
− εijkvjωk = T

∂s

∂xi

− ∂h

∂xi

. (F.27)

Rearranging slightly, we get the extended Crocco’s theorem:

∂vi

∂t
+

∂

∂xi

(
h +

vjvj

2

)
= T

∂s

∂xi

+ εijkvjωk. (F.28)

Again, employing the total enthalpy, ho = h+ 1
2
vjvj, we write the extended Crocco’s

theorem as

∂vi

∂t
+

∂ho

∂xi

= T
∂s

∂xi

+ εijkvjωk. (F.29)

F.1.3 Traditional Crocco’s theorem

For a steady, inviscid flow, the extended Crocco’s theorem reduces to what is

usually called Crocco’s theorem:

∂ho

∂xi

= T
∂s

∂xi

+ εijkvjωk, (F.30)

∇ho = T∇s + v × ω, (F.31)
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where ω is the vorticity vector. If the flow is further required to be homeoentropic,

we get

∂ho

∂xi

= εijkvjωk. (F.32)

We then find that surfaces on which ho is constant are parallel to both the velocity

and vorticity vector fields. Taking the dot product with vi, we get

vi
∂ho

∂xi

= viεijkvjωk, (F.33)

vi
∂ho

∂xi

= εijkvivjωk, (F.34)

= 0, (F.35)

and likewise taking the dot product with ωi, we get

ωi
∂ho

∂xi

= ωiεijkvjωk, (F.36)

ωi
∂ho

∂xi

= εijkωivjωk, (F.37)

= 0. (F.38)

For a local coordinate system which has component s aligned with the velocity

vector vi, and the other two directions n, and b, mutually orthogonal, we have

vi = (vs, 0, 0)T . Eq. (F.35) then reduces to

(vs, 0, 0) ·


∂ho

∂s

∂ho

∂n

∂ho

∂b

 = 0. (F.39)

Forming this dot product yields

vs
∂ho

∂s
= 0. (F.40)

For vs 6= 0, we get that

ho = C (n, b) . (F.41)

135



On a particular streamline, the function C (n, b) will be a constant, so we see that

the stagnation enthalpy is constant along a streamline and varies from streamline

to streamline. Upon integrating Eq. (F.32), it is evident that, if the flow is steady,

homeoentropic, and irrotational, the total enthalpy will be constant throughout the

flowfield:

ho = C. (F.42)

We also note that in the steady state limit, the stagnation enthalpy equation,

Eq. (F.21), gives an identical expression as Crocco’s theorem evaluated along a

streamline, Eq. (F.35).

F.2 Vorticity transport equation

Here we will take the curl of the linear momenta principle, Eq. ( F.1), to obtain

a relationship, the vorticity transport equation, which shows how the vorticity field

evolves in an inviscid fluid. Subsequently, the reduction of the vorticity transport

equation in the limit of steady state and for a two-dimensional flow is presented.

First we recall some useful vector identities:

(v · ∇)v = ∇
(v · v

2

)
+ ω × v, (F.43)

∇× (a × b) = (b · ∇) a− (a · ∇)b + a (∇ · b) − b (∇ · a) , (F.44)

∇× (∇φ) = 0, (F.45)

∇ · (∇× v) = ∇ · ω = 0. (F.46)

We start now with the linear momentum principle for a general inviscid fluid

with no body force:

∂v

∂t
+ (v · ∇)v = −1

ρ
∇p. (F.47)
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We expand the term (v · ∇)v and then apply the curl operator to both sides to get

∇×
(

∂v

∂t
+ ∇

(v · v
2

)
+ ω × v

)
= −∇×

(
1

ρ
∇p

)
. (F.48)

This becomes, via the linearity of the various operators,

∂

∂t
(∇× v)︸ ︷︷ ︸

ω

+ ∇×
(
∇

(v · v
2

))
︸ ︷︷ ︸

=0

+ ∇× ω × v = −∇×
(

1

ρ
∇p

)
. (F.49)

Using our vector identity for the term with two cross products we get

∂ω

∂t
+ (v · ∇) ω︸ ︷︷ ︸

= dω
dt

− (ω · ∇)v+ω(∇ · v︸ ︷︷ ︸)
=− 1

ρ
dρ
dt

− v(∇ · ω)︸ ︷︷ ︸
=0

= −∇×
(

1

ρ
∇p

)
. (F.50)

Rearranging, we have

dω

dt
− ω

ρ

dρ

dt
= (ω · ∇)v −∇×

(
1

ρ
∇p

)
, (F.51)

1

ρ

dω

dt
− ω

ρ2

dρ

dt
=

(
ω

ρ
· ∇

)
v − 1

ρ
∇×

(
1

ρ
∇p

)
, (F.52)

d

dt

(
ω

ρ

)
=

(
ω

ρ
· ∇

)
v − 1

ρ
∇×

(
1

ρ
∇p

)
. (F.53)

Now consider the term ∇×
(

1
ρ
∇p

)
. In Einstein notation, we have

εijk
∂

∂xj

(
1

ρ

∂p

∂xk

)
= εijk

(
1

ρ

∂2p

∂xj∂xk

− 1

ρ2

∂ρ

∂xj

∂p

∂xk

)
, (F.54)

=
1

ρ
εijk

∂2p

∂xj∂xk︸ ︷︷ ︸
=0

− 1

ρ2
εijk

∂ρ

∂xj

∂p

∂xk

, (F.55)

= − 1

ρ2
∇ρ ×∇p. (F.56)

Multiplying both sides by ρ,we write the final general form of the vorticity transport

equation as

ρ
d

dt

(
ω

ρ

)
= (ω · ∇)v︸ ︷︷ ︸

A

+
1

ρ2
∇ρ ×∇p︸ ︷︷ ︸

B

. (F.57)

Here we see that the evolution of vorticity scaled by the density is affected by two

physical processes, namely
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• A: bending and stretching of vortex tubes,

• B: non-barotropic, also known as baroclinic, effects (if a fluid is barotropic,

then p = p (ρ) and ∇p = dp
dρ
∇ρ thus ∇ρ ×∇p = ∇ρ ×

(
dp
dρ

)
∇ρ = 0.).

Another variation of the vorticity transport equation can be found by starting

with the vorticity transport equation in the form of Eq. (F.53). Then, from the

Gibbs equation in the form of Eq. (F.26) we solve for the pressure gradient in terms

of gradients in enthalpy and entropy:

1

ρ
∇p = ∇h − T∇s. (F.58)

Eliminating the pressure gradient term in Eq. (F.53) using the Gibbs equation yields

the following form of the vorticity transport equation

d

dt

(
ω

ρ

)
=

(
ω

ρ
· ∇

)
v − 1

ρ
∇× (∇h − T∇s) (F.59)

Now consider the term ∇×(∇h − T∇s) . Employing the vector identity ∇×(∇φ) =

0, this term reduces to −∇× (T∇s) . In Einstein notation, we have

−εijk
∂

∂xj

(
T

∂s

∂xk

)
= −εijk

(
T

∂2s

∂xj∂xk

+
∂T

∂xj

∂s

∂xk

)
, (F.60)

= −Tεijk
∂2s

∂xj∂xk︸ ︷︷ ︸
=0

− εijk
∂T

∂xj

∂s

∂xk

, (F.61)

= −∇T ×∇s. (F.62)

The vorticity transport equation can be written in the following form:

d

dt

(
ω

ρ

)
=

(
ω

ρ
· ∇

)
v +

1

ρ
(∇T ×∇s) , (F.63)

or by multiplying both sides by ρ, we write the final general form of the vorticity

transport equation as

ρ
d

dt

(
ω

ρ

)
= (ω · ∇)v + ∇T ×∇s. (F.64)
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Both forms of the vorticity transport equation, Eqs. (F.53) and (F.63), were first

published by Vazsonyi [61], and are sometimes referred to as the vorticity transport

equation of Vazsonyi.
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APPENDIX G

TAYLOR-MACCOLL SIMILARITY SOLUTION

A brief description of the geometry, governing equations and numerical technique

for the solution to the axisymmetric, inviscid, non heat conducting, supersonic flow

of a calorically perfect, ideal gas over a cone at zero angle of inclination to a uniform

freestream flow, i.e. Taylor-Maccoll flow, [54], is presented here. The geometry of

the problem is shown in Figure G.1 , where M∞ is the freestream Mach number, θC ,

and θS are the cone and shock angles respectively, r∗ and θ are the two coordinate

directions, and u∗
r and u∗

θ are the dimensional components of velocity in the r∗ and

θ directions, respectively.

The steady-state continuity, r∗− and θ− momenta, and energy equations in

semi-conservative form for an axisymmetric problem are

1

r∗2
∂

∂r∗
(
r∗2ρ∗u∗

r

)
+

1

r∗ sin θ

∂

∂θ
(ρ∗u∗

θ sin θ) = 0, (G.1)

1

r∗2
∂

∂r∗
(
r∗2ρ∗u∗2

r

)
+

1

r∗ sin θ

∂

∂θ
(ρ∗u∗

ru
∗
θ sin θ) +

∂p∗

∂r∗
=

ρ∗u∗2
θ

r∗
, (G.2)

1

r∗2
∂

∂r∗
(
r∗2ρ∗u∗

ru
∗
θ

)
+

1

r∗ sin θ

∂

∂θ

(
ρ∗u∗2

θ sin θ
)

+
1

r∗
∂p∗

∂θ
= −ρ∗u∗

ru
∗
θ

r∗
, (G.3)

1

r∗2
∂

∂r∗

(
ρ∗r∗2

(
e∗ +

v∗·v∗

2
+

p∗

ρ∗

)
u∗

r

)
(G.4)

+
1

r∗ sin θ

∂

∂θ

(
ρ∗u∗

θ

(
e∗ +

v∗·v∗

2
+

p∗

ρ∗

)
sin θ

)
= 0,
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Figure G.1. Schematic of the supersonic flow about a cone.

where p∗ is the pressure, ρ∗ is the density, e∗ is the internal energy, and v∗ is the

velocity vector. We will study solutions for which ∂
∂r∗ = 0, so that Eqs. (G.1 − G.4)

become

d

dθ
(ρ∗u∗

θ sin θ) = 0, (G.5)

d

dθ
(ρ∗u∗

ru
∗
θ sin θ) − ρ∗u∗2

θ sin θ = 0, (G.6)

1

sin θ

d

dθ

(
ρ∗u∗2

θ sin θ
)

+
dp∗

dθ
+ ρ∗u∗

ru
∗
θ = 0, (G.7)

d

dθ

(
ρ∗u∗

θ

(
e∗ +

v∗·v∗

2
+

p∗

ρ∗

)
sin θ

)
= 0; (G.8)

in addition, the shock is assumed to have no curvature so no vorticity is generated

at the shock boundary. The r∗ momentum equation, Eq. (G.6) , after reduction via

the continuity equation (G.5) can be written as

u∗
θ −

du∗
r

dθ
= 0. (G.9)

We note that for this flow the vorticity,

ω∗ = ∇× v∗, (G.10)
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reduces to

ω∗ =


0

0

1
r∗

(
u∗

θ − du∗
r

dθ

)
 , (G.11)

and thus from Eq. (G.9) , we conclude that ω∗ = 0; the flow is irrotational. The

energy equation, Eq. (G.8) , can be written in the following form

d

dθ
(ρ∗u∗

θh
∗
o sin θ) = 0, (G.12)

where

h∗
o = e∗ +

v∗·v∗

2
+

p∗

ρ∗ . (G.13)

Making use of the continuity equation, Eq. (G.5) , Eq. (G.12) becomes

dh∗
o

dθ
= 0, (G.14)

which, after integration, holds that the total enthalpy, h∗
o, is constant for the flow

field. We also note that a standard Rankine-Hugoniot jump analysis shows that h∗
o

is also constant across the oblique shock so that the stagnation enthalpy maintains

the same value in the pre- and post-shock flow field. It is also well known, however,

that the stagnation pressure and density suffer a jump over the oblique shock.

Since the definition of the enthalpy is

h∗ = e∗ +
p∗

ρ∗ , (G.15)

Eq. (G.13) can also be expressed as

h∗
o = h∗ +

v∗·v∗

2
, (G.16)

Since the flow is assumed to be calorically perfect, we have

h∗ = cpT
∗, (G.17)
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where cp is the specific heat at constant pressure. And for the ideal gas, we have

p∗ = ρ∗R∗T ∗, (G.18)

where R∗ is the specific gas constant. Combining Eq. (G.17) and Eq. (G.18) , we

have the following expression for h∗

h∗ =
γ

γ − 1

p∗

ρ∗ , (G.19)

where γ is the ratio of specific heats.

We now show that the flow is isentropic by starting with the following definition

of entropy

T ∗ds∗ = dh∗ − 1

ρ∗dp∗, (G.20)

which can be expressed as

T ∗ds∗

dt
=

dh∗

dt
− 1

ρ∗
dp∗

dt
, (G.21)

where d
dt

= ∂
∂t

+ v∗ · ∇ is the substantial derivative, which for the current problem

becomes

T ∗u
∗
θ

r∗
ds∗

dθ
=

u∗
θ

r∗
dh∗

dθ
− 1

ρ∗
u∗

θ

r∗
dp∗

dθ
, (G.22)

or, for u∗
θ 6= 0,

T ∗ds∗

dθ
=

dh∗

dθ
− 1

ρ∗
dp∗

dθ
. (G.23)

Taking the derivative of Eq. (G.15) with respect to θ yields

dh∗

dθ
=

de∗

dθ
+

1

ρ∗
dp∗

dθ
− p∗

ρ∗2
dρ∗

dθ
, (G.24)

and taking derivatives of Eq. (G.13) with respect to θ yields

dh∗
o

dθ
=

de∗

dθ
+

1

ρ∗
dp∗

dθ
− p∗

ρ∗2
dρ∗

dθ
+ v∗ · dv∗

dθ
= 0, (G.25)

so that substituting Eq. (G.25) into Eq. (G.24) yields

dh∗

dθ
= −v∗ · dv∗

dθ
= −u∗

r

du∗
r

dθ
− u∗

θ

du∗
θ

dθ
, (G.26)
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Substituting Eq. (G.26) into Eq. (G.23) , yields

T ∗ds∗

dθ
= −u∗

r

du∗
r

dθ
− u∗

θ

du∗
θ

dθ
− 1

ρ∗
dp∗

dθ
. (G.27)

Next, by making use of Eq. (G.5), the θ momentum equation, Eq. (G.7) , can be

written in the following form

1

ρ∗
dp∗

dθ
+ u∗

θ

du∗
θ

dθ
+ u∗

θu
∗
r = 0, (G.28)

and substituting this into Eq. (G.27) yields

T ∗ds∗

dθ
= u∗

r

(
u∗

θ −
du∗

r

dθ

)
. (G.29)

Finally, employing Eq. (G.9) , Eq. (G.29) becomes

ds∗

dθ
= 0, (G.30)

which holds that the entropy is constant throughout the flow field. We can therefore

use the following isentropic relationship between p∗ and ρ∗

p∗

p∗o
=

(
ρ∗

ρ∗
o

)γ

, (G.31)

where p∗o and ρ∗
o are the post-shock stagnation pressure and density.

Substituting Eq. (G.31) into Eq. (G.19) yields the following equation for en-

thalpy,

h∗ =
γp∗oρ

∗γ−1

(γ − 1) ρ∗γ
o

, (G.32)

so that the expression for the total enthalpy in Eq. (G.16) becomes

h∗
o =

1

2

(
u∗2

r + u∗2
θ

)
+

γp∗oρ
∗γ−1

(γ − 1) ρ∗γ
o

. (G.33)

Recalling that h∗
o is a constant and differentiating Eq. (G.33) with respect to θ

yields

γp∗oρ
∗γ−1

ρ∗γ
o ρ∗

dρ∗

dθ
+ u∗

ru
∗
θ + u∗

θ

du∗
θ

dθ
= 0, (G.34)

144



and substituting for 1
ρ

dρ∗
dθ

from the continuity equation, Eq. (G.5) , Eq. (G.34) be-

comes

u∗
ru

∗
θ + u∗

θ

du∗
θ

dθ
− γp∗oρ

∗γ−1

u∗
θρ

∗γ
o

(
2u∗

r + u∗
θ cot θ +

du∗
θ

dθ

)
= 0. (G.35)

Substituting γp∗oρ∗γ−1

ρ∗γ
o

from Eq. (G.33) into Eq. (G.35) yields the following

(γ − 1)

2

(
2h∗

o − u∗2
r − u∗2

θ

) (
2u∗

r + u∗
θ cot θ +

du∗
θ

dθ

)
(G.36)

= u∗2
θ

(
u∗

r +
du∗

θ

dθ

)
,

or upon rearranging we have

du∗
θ

dθ
=

u∗2
θ u∗

r − (γ−1)
2

(2h∗
o − u∗2

r − u∗2
θ ) (2u∗

r + u∗
θ cot θ)

(γ−1)
2

(2h∗
o − u∗2

r − u∗2
θ ) − u∗2

θ

. (G.37)

The velocities, u∗
r and u∗

θ are nondimensionalized as follows

ur = u∗
r/

√
2h∗

o, (G.38)

uθ = u∗
θ/

√
2h∗

o, (G.39)

so that Eqs. (G.9) and (G.37) become

dur

dθ
= uθ, (G.40)

and

duθ

dθ
=

u2
θur − (γ−1)

2
(1 − u2

r − u2
θ) (2ur + uθ cot θ)

(γ−1)
2

(1 − u2
r − u2

θ) − u2
θ

(G.41)

respectively. The dimensionless density can be found as a function of ur and uθ by

substituting Eq. (G.32) into Eq. (G.33) to yield the following

ρ =
(
1 − u2

r − u2
θ

) 1
γ−1 , (G.42)

where

ρ = ρ∗/ρ∗
o. (G.43)
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The dimensionless pressure can then be found by the isentropic relation in Eq. (G.31) ,

i.e.

p = ργ, (G.44)

where

p = p∗/p∗o. (G.45)

To solve the system of first order ODEs, Eqs. (G.40) and (G.41), initial conditions

for ur and uθ are specified immediately downstream of the shock at θ = θS, denoted

by urS and uθS as a function of ur∞, M∞, θS, and γ from

urS = ur∞, (G.46)

and

uθS = ur∞ tan (θS − δ) , (G.47)

where

δ = tan−1

(
2

( M2
∞ sin2 θS − 1

M2∞ (γ + cos 2θS) + 2

)
cot θS

)
. (G.48)

Eq. (G.46) is the Rankine-Hugoniot condition which demands that the component

of velocity in the direction tangent to the shock does not change across the shock,

while Eq. (G.47) comes from both the geometry of the problem, Figure G.1, and

Eq. (G.46) . The expression for the post-shock angle of the fluid velocity, δ, with

respect to the pre-shock fluid velocity in Eq. (G.48) is a well known result of the

Rankine-Hugoniot jump conditions across an oblique shock.

The numerical solution procedure is summarized by specifying M2
∞, ur∞, γ, and

θC and then by iterating on the value for θS until the condition that uθ (θC) =

0 is satisfied for the desired cone angle, θC . For a particular guess of θS, the

values of urS, and uθS, are specified from Eqs. (G.46) and (G.47) , then the system

of ODEs in Eqs. (G.40) and (G.41) are integrated form θS to θC . In order to
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integrate Eqs. (G.40) and (G.41) using a standard ODE solver, it is necessary that

the integration proceed in the direction of increasing θ rather than decreasing θ so

that the following change of variables is needed

θ = θS − θ̂, (G.49)

so that

d

dθ
= − d

dθ̂
, (G.50)

is substituted into Eqs. (G.40) and (G.41) and the resulting system of ODEs is

integrated from θ̂ = 0 to θ̂ = θS − θC . If uθ (θC) does not equal zero, another

guess is made for θS until uθ (θC) = 0 is satisfied within a tolerance of 10−16 for the

current problem. Once the solution for ur

(
θ̂
)

and uθ

(
θ̂
)

where θ̂ ∈ [0, θS − θC ] is

found, ur (θ) and uθ (θ) are found as a function of θ from Eq. (G.49) , and ρ (θ) and

p (θ) are then taken from Eqs. (G.42) and (G.44) respectively. For verification of

the pseudospectral solver, the velocity components u and w in the radial and axial

directions respectively are needed, and can be found from the following equations

u =

√
2γp∗oρ∗∞

(γ − 1) ρ∗
op

∗∞
(ur (θ) sin θ − uθ (θ) cos θ) , (G.51)

w =

√
2γp∗oρ∗∞

(γ − 1) ρ∗
op

∗∞
(ur (θ) cos θ + uθ (θ) sin θ) . (G.52)
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