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Abstract

This report describes how using the Navier-Stokes equations to numerically calculate a

shock wave will more accurately depict a realistic and observed shock wave. Earlier related

inviscid shock capturing studies that have attempted to numerically calculate the shock wave

and downstream field surrounding a blunt body re-entering the atmosphere have exhibited

an instability known as the carbuncle phenomenon, which is not observed in nature. The

use of high order shock-capturing methods has induced this instability in which the shock

wave exhibits non-physical behavior. This study provides a new approach at calculating a

numerical solution of the blunt body re-entry problem. Instead of using the Euler equations,

the Navier-Stokes equations will be used, thus including physical damping in the problem.

With the Navier-Stokes equations, the physical properties of the flow around the blunt body

will be preserved in the numerical solution providing a solution in greater harmony with that

seen in nature. In order to obtain this solution, the spatial and temporal resolution must

be sufficiently fine to capture the shock. Since the shock wave is so thin, in the nanometer

scale, the grid size in the domain surrounding the blunt body must be sufficiently small to

capture the shock and not have the solution become unstable. The numerical solutions were

calculated using OpenFOAM, a free, open source software system where the blunt body was

a cylinder of radius 0.1 mm so that the computations are manageable.

2



1 Introduction

This report will describe how behavior of flow around a blunt body re-entering the atmo-

sphere was predicted through numerical methods. An image of a blunt body under re-entry

conditions is shown in Figure 1, which has a shock wave, boundary layer (not readily visi-

ble), and wake physically present during re-entry [1]. Many real engineering devices require

Figure 1: Shadowgraph image of sphere at M = 1.53, where a shock wave, boundary layer,
and wake are present in the flow; figure from [1].

this information in order to better their performance, such as the Galileo Probe shown in

Figure 2 [2]. The Galileo Probe was an atmospheric probe used to gather data from the

planet Jupiter and return this information to Earth after re-entering the Jovian atmosphere.

This device entered Jupiter’s atmosphere without braking beforehand, and had to undergo

extreme heating and pressurization. The probe was decelerated from 47.5 km/s to less than

1 km/s within the first hundred seconds of re-entry, and withstood a peak stagnation-point

heating rate of 30 kW/cm2 as it entered Jupiter’s atmosphere to gather data [3]. It is im-

portant for this space vehicle, along with every space vehicle undergoing re-entry, to predict

the behavior for blunt body re-entry problems, as the information is useful to create an op-
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Figure 2: Galileo Probe, which was active in 1997; figure from [2].

timal geometry of a blunt body re-entry vehicle. If the velocity, temperature, and pressure

experienced by a re-entry vehicle can be successfully predicted with numerical calculations,

then this can ensure the health and safety of astronauts and equipment used to enter the

atmosphere.

Most researchers aiming to numerically calculate the shock wave surrounding the blunt

body during re-entry have used Euler equations to describe the flow. These equations by

definition do not include physical damping, and as a result instabilities with their calculations

have arisen near the shock wave. One problem that earlier studies have encountered is the

carbuncle phenomenon, which is an instability that does not represent the physical solution

to the problem. This carbuncle instability arises when using a specific numerical method,

such as Roe’s scheme, to solve the Euler equations in time [4]. For sufficiently high Mach

numbers, using this type of method will result in major fluctuations, or “wiggles,” in the

calculated shock wave, which are not physically observed.

To remove the carbuncle instability, researchers often add artificial dissipation to the

Euler equations. This method of suppressing the carbuncle instability is a poor method of

correcting the instability as it is a post-dictive strategy rather than a predictive strategy. As

4



a result, using numerical methods that lead to the carbuncle instability will be of no use as

a predictive tool for blunt body re-entry. Since the model cannot predict the behavior of a

realistic blunt body, it must rather change the solution to match re-entry that is observed.

This strategy is also not robust, as the artificial dissipation added can change from each

different condition of re-entry used as well as with each computational grid, so the equations

cannot be applied to a wide range of re-entry cases.

In this report, a different approach will be taken to numerically predicting the solution

to a blunt body re-entry problem. Instead of using the Euler equations, this study will use

the compressible Navier-Stokes equations, thus reintroducing the physical damping ignored

by the Euler equations. The goal of using the Navier-Stokes equations instead of the Euler

equations is to more accurately represent the physical conditions and relationships that

exist in nature, and thus get a more accurate solution that does not have the numerical

instabilities seen in earlier works. This report will discuss the strategy for using the Navier-

Stokes equations, and display the results that accurately depict realistic shock waves from

using these equations.

2 Physical Description of Problem

In order to develop a numerical method that successfully predicts the solution to a blunt body

re-entry problem, an understanding of the physical problem and the expected solution in

nature must be made. One key component of the motion deals with the gas particles flowing

around the blunt body as it is in atmospheric re-entry, as the collisions with the molecules and

the body tell a lot about the shape and formation of the shock wave surrounding the body.

As the blunt body strikes the gas molecules in the atmosphere, the molecules interact with

the surface and are ejected off the surface. When the blunt body first enters the atmosphere,

the gas has a fairly low density, so the gas molecules that are ejected by the surface of

the blunt body do not frequently collide with incoming particles, and the interaction of the
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body with the atmosphere can be described by the free molecular flow approximation [3].

However, when the blunt body descends deeper into the atmosphere where the gas becomes

more dense, the collisions of ejected molecules and incoming molecules are too frequent to

be ignored, and the flow is better modeled as a continuum. These interactions of particles

represent the physical damping in the system that is seen in the Navier-Stokes equations.

When a blunt body enters the atmosphere, it reaches velocities that are much larger than

the speed of sound in the atmosphere, and because of the hypersonic speed a strong bow

shock envelopes the blunt body, as shown in Figure 3 [3]. The energy contained within a gas

Figure 3: Flowfield over planetary entry vehicle; figure from [3].

molecule that is passing through this bow shock is large. As a result of this high energy and

many collisions of particles, a sonic line and shock layer form in this region, along with the

creation of chemical reactions between the shock and the body. This region also contains a

subsonic region in which the speed of the flow is below the speed of sound. This subsonic

region alters for the geometry used for the blunt body, showing that the geometry directly
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affects the shock wave produced by supersonic flow [5]. However, the shock wave changes

only slightly with a change in body shape, while the shape of the shock wave has a strong

dependency on the Mach number of the flow.

3 Prior Research

3.1 Analytical Strategies

Many attempts towards a solution have been attempted in the past decades, each making

different assumptions that affect the ease of computation along with the error and conver-

gence of the solution. The oldest known strategy to solve the blunt body problem is through

potential flow approximations, which originated in 1947 [6]. This analytical strategy consists

of gathering data for subsonic flow around a specific blunt body geometry, then using this

air flow and relating it to the actual flow desired, such as the hypersonic flow with a shock

wave [7]. This strategy offers an analytical solution, but has shortcomings in that it can only

approximate the flow of the air around the blunt body, and cannot predict surface pressures,

which is pertinent information for the survival of a re-entry vehicle.

A second analytical strategy is using a Taylor series approximation, created in 1948, in

which the detached shock must be known or assumed so that variables such as pressure,

density, and velocity can be found using the oblique shock relations [8]. With these variables

known, the derivative of these variables can be found by substituting in the equations of mo-

tion, which is of the form of a Taylor series. This strategy becomes accurate for axisymmetric

flow when using enough terms in the Taylor series so that the solution converges, as shown

by Figure 4 [7]. However, this method is not robust for all shock wave forms, as the flow

approximation was shown to diverge at the nose of the blunt body for some shock shapes,

such as a paraboloidal shock wave [7]. For this case the nose of the axisymmetric flow will

never converge to an accurate solution, which is a major problem when computing the flow

variables during re-entry. Although the Taylor series approximation is seen to succeed as a
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Figure 4: Variation of stream function along axis behind shock wave with a Mach number
of M = 2 and γ = 7/5; figure from [7].

qualitative tool for seeing the way that the flow moves, the method is not robust enough to

give a consistently accurate solution.

Some approximate methods can be based on simplifying assumptions that represent the

more complex mathematical model in order to be able to compute the solution [5]. One

assumption is to approximate the flow as incompressible, which originated in 1953 [9]. This

is a valid assumption for blunt bodies moving at very high supersonic speeds. At these

speeds, where the Mach number is large, the density only varies slightly between the shock

wave and surface of the body, leading to the assumption of an incompressible flow. After

making the assumption of an incompressible solution, a numerical solution can be calculated

for flow in a stream of near infinite Mach number. This gives fairly accurate results and

remains stable with a reasonable step size, but has error due to the lack of incorporation

of compressibility [7]. A different analytical strategy with a different assumption uses the
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Newtonian approximation, which originated in 1948 [10]. The Newtonian theory states that

fluid particles lose their normal component of momentum during collisions with the surface

of the blunt body, so this strategy numerically computes the solution of the flow under

this assumption [7]. This computation converges very slowly for axisymmetric flow, and is

inadequate for computing the pressure of the air in the flow. Although these strategies are

sufficient to present a rough estimate of the solution and to form premises about the flow, a

better computational strategy is necessary in order to find a sufficiently accurate and robust

solution to the supersonic flow.

A very early attempt at a shock-capturing method was completed by Evans and Harlow

[11]. In their computation, the gas was represented by Lagrangian mass points that were

numerically computed with the Euler equations, and the flow region adjacent to the front of

the blunt body cylinder was studied. This solution provided a good qualitative presentation

of the formation of a shock wave, but many inaccuracies arose from the computation. The

flow near the cylinder face was poorly represented by the computation, and as a result had

to be drawn in approximately. The coarse mesh created inaccuracies with some physically

observed instances of a shock formation, as the detached shock was significantly away from

the observed location. Although this research provided the grounds for a new strategy for

capturing a shock wave, it also introduced more inaccuracies and problems with its solution.

Another strategy towards calculating the flow of a shock wave around a blunt body

was through a shock-fitting technique, which was attempted by Moretti and Abbott [12].

This technique consisted of prescribing the body geometry to control the computation, and

assuming a shock shape in order to fit to the body in computation [12]. The points along

the shock and the body were computed differently than the points along the interior of the

flow region, and the solution was calculated in time from unsteady flow to settle to steady

flow [12]. Although this provided seemingly more accurate results than that of the initial

shock-capturing techniques, some drawbacks still existed with the solution. One weakness

of the shock-fitting technique is that the shock shape was assumed for the computation, so
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if the shape is not known prior to calculation then the technique will be hard to implement.

Another weakness is that the shock wave was assumed to act as a discontinuity for ease of

computation, which could render results inaccurate if the shock wave location was shifted in

any way, and does not relate the flow in front and behind the shock [12].

The MacCormack method marked a new type of solution that would provide a different

approach at solving the blunt body re-entry problem [13]. This method focused on using

the Navier-Stokes equations instead of the typical Euler equations, and performing viscous

calculations of the blunt body flow [13]. Although this method closely resembles the strategy

used in this research, problems still arose from the calculations. One problem with this

solution is that some points were skipped over for ease of computation, and the mesh was

relatively coarse [13]. As a result, the solution could be inaccurate and instabilities could

appear if a finer mesh is used. Although this strategy has been famously applied to this

problem, various complexities with the method rendered it not adequate as a universal

solution strategy.

3.2 Instabilities

When calculating the shock wave in supersonic flow, earlier research has uncovered a variety

of instabilities [7]. One of the instabilities arises from the initial value problem used when

calculating the shock wave. One numerical method used to calculate the shock wave requires

the information in front of the shock in order to calculate the rest of the flow. If the

hydrodynamic properties are known at the shock, such as the pressure, density, and entropy,

then a system of hydrodynamical equations can be solved for the rest of the flow, including

the shock [8]. This treats the problem as an initial value problem; if the initial values before

the shock occurs are known, then the flow behind the shock can be solved for and thus the

solution to the flow can be found. However, this method of calculating the shock has been

found to be unstable based on the initial conditions given. This means that for only a small

error in the initial value, the error grows rapidly throughout the mesh as the solution is
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calculated in geometric progression. This is shown by Figure 5 [7]. If many steps are taken

Figure 5: Variation of stream function along axis behind shock wave with a Mach number
of M = 2 and γ = 7/5; figure from [7].

between the shock and the body, or a fine mesh size is used, then this instability can destroy

the accuracy of the entire solution.

The most prominent instability found when calculating the flow over a supersonic blunt

body is known as the carbuncle phenomenon, and is found when using the Euler equations

to calculate the numerical solution with some well known methods such as Roe’s method

[14]. This instability is known to be purely a numerical instability, as using different numer-

ical methods results in the appearance or disappearance of the carbuncle instability. This

is shown in Figure 6, as one numerical method (Roe’s scheme) gives rise to the carbuncle

instability while the other creates a stable and physically accurate solution [4]. One observa-

tion that shows how the carbuncle is numerically based is the reliance on the grid with the

solution. The carbuncle instability is more likely to appear when the shock wave is located

on a grid line, as well as when the grid cells are very elongated along a direction normal to

the shock [4]. When the shock is being captured by the flow field, the main cause of the

carbuncle instability is the shock strength. Consequently, when a shock-fitting technique is
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Figure 6: Physically acceptable result of temperature in shock (left) compared with result
with carbuncle instability when using Roe’s scheme; figure from [4].

used, where the shape of the shock can be assumed prior to calculation, the instability dis-

appears. However, when a shock-capturing technique is used the carbuncle can appear when

higher order methods are in use [14]. The carbuncle’s appearance has also been attributed

to the imbalance of dissipation throughout the flow of the solution [15].

Some methods are successful in consistently keeping the carbuncle phenomenon from

appearing, most involving the addition of artificial damping. These obtain an accurate

solution when using the Euler equations to numerically solve for the flow, but cost the

solution reliability since they include effects not seen in nature. An example of one of these

sorts of methods is the HLLE method, which adds strong artificial damping to the system

[4]. Although this method will obtain a correct solution when using the Euler equations,

the boundary layer will be significantly broadened if using the Navier-Stokes equations to

solve for the supersonic flow. Even if the solution was accurate to the physical model, the
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computation added artificial damping that is not seen in nature, and there is no physical

justification for adding artificial damping [14]. Thus, artificial damping is not a robust

enough fix to cover variations of the same shock problem.

4 Navier-Stokes Equations

The compressible Navier-Stokes equations for an isotropic Newtonian fluid were used in order

to numerically predict the solution of the blunt body re-entry problem. The set of equations,

using 19 equations to solve for 19 unknowns, are shown below:

dρ

dt
= −ρ∇ · v (1)

ρ
dv

dt
= −∇P + ∇ · τ (2)

ρ
de

dt
= −∇ · q − P∇ · v + τ : ∇v (3)

τ = µ(∇v + ∇vT ) − 2

3
µ(∇ · v)I (4)

q = −k∇T (5)

P = ρRT (6)

e = cvT (7)

In these equations, the following variables were used: ρ is the density in kg/m3 (scalar), t is

the time in s (scalar), v is the velocity in m/s (vector), P is the pressure in N/m2 (scalar),

τ is the viscous stress in N/m2 (symmetric tensor), e is the specific internal energy in J/kg

(scalar), q is the heat flux vector in W/m2 (vector), µ is the first coefficient of viscosity in

Ns/m2 (scalar), T is the temperature in K (scalar), I is the identity matrix, k is the thermal

conductivity in W/m/K (scalar), R is the universal gas constant for air in J/(kg K) (scalar),

and cv is the specific heat at constant volume in J/(kg K) (scalar). Equation (1) describes the

conservation of mass, Equation (2) represents Newton’s second law, Equation (3) represents

the first law of thermodynamics, Equation (4) gives the stress-strain rate relationship for
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isotropic Newtonian fluids which satisfy Stokes’ assumption, and Equation (5) displays the

definition of heat flux [16]. Equations (6) and (7) are the thermal and caloric equations of

state, respectively, for a calorically perfect ideal gas. These equations were discretized and

solved by advancing discretely in time to find the steady-state solution to the blunt body

re-entry problem.

5 Numerical Approach

5.1 Boundary Conditions

To calculate the flow field in blunt body re-entry, a geometry was created with certain

boundary conditions specified. Figure 7 displays the geometry of the mesh used in the nu-

merical computation, with boundary conditions specified. The inflow boundary had Dirichlet

Figure 7: Geometry of mesh used for numerical solution, with boundary conditions specified
at each face.

boundary conditions for the pressure, temperature, and velocity, where each was set to the

respective ambient value. The outflow boundaries had Neumann boundary conditions with

zero gradient, as the air flow was assumed to retain the conditions past the mesh as the air

flows past the blunt body. The inner cylinder, which represents the blunt body, was set to a
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no-slip condition, as the velocity was fixed at zero. The inner cylinder also had an adiabatic

condition. The initial conditions were also set in this mesh, as the field of data points in

the mesh were initially set to the ambient values of pressure, temperature, and velocity,

which would assume that the blunt body was instantaneously placed in the supersonic flow.

Although this initial condition is not physically plausible, this condition helped to achieve

the steady state solution at a faster rate while still using the same computational strategy.

Since the mesh only covers the domain in front of the blunt body, only the shock wave and

boundary layer were computed, and the wake created from re-entry was omitted.

5.2 One-Dimensional Solution

To estimate the thickness of the shock that would be seen in the solution, a one dimensional

shock problem with the same conditions was calculated in Mathematica. The equations

used are shown below:

ρu = ρouo (8)

τxx = τxxo + ρu2 + P − ρou
2

o − Po (9)

qx − qxo + τxxouo − τxxu = ρouo

(

eo +
u2

o

2

)

+ Pouo − ρu

(

e +
u2

2

)

− Pu (10)

P = ρRT (11)

e = cvT (12)

qx = −k
dT

dx
(13)

τxx =
4

3
µ

du

dx
(14)

From this model, the shock thickness could be estimated by calculating a one-dimensional

shock with the same parameters as the two-dimensional blunt body problem, which were

specified to be:

• cv = 717.625 J/(kg K)
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• R = 287 J/(kg K)

• µo = 1.488 × 10−5 kg/(m s)

• ko = 0.0263 W / (m K)

• µ = 1.488 × 10−5 kg/(m s)

• M = 3.5

• Tamb = 300 K

• Pamb = 100 Pa

• γ = 7

5

• Pr = 0.72

The resulting shock thickness could be assumed to be the shock thickness in the blunt body

re-entry problem. Figure 8 shows a plot of temperature with respect to distance in the

one-dimensional shock problem. From this plot, the shock thickness could be estimated to

be of the order of 10−4 m. This approximation led to the choice of spatial resolution and

size of the blunt body to use for the shock calculation.

5.3 Discretization and Numerical Schemes

In order to capture the shock in the calculation, ten or more data points were needed within

the viscous shock in order to fully capture the shock. To do this, the mesh size used was

1 × 10−6 m, which was a conservatively fine mesh in order to capture the shock. Equation

(15) shows how the time step used was approximated:

∆t ∼ ∆x2

ν
, (15)
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Figure 8: Temperature with respect to distance for one-dimensional shock problem.

where ν is the kinematicy viscosity ν = µ/ρ of the fluid, which is known to be of the order

of ν ∼ 10−5 m2/s. The time step used was ∆t = 1 × 10−11 s. In order to compute at an

efficient rate, the cylinder must be small enough so that minimum data points are used in

the computation. With this in mind, the cylinder was chosen to have a radius of r = 1×10−4

m. This allowed there to be 100 points in one direction to cover the length of the shock.

Figure 9 shows the geometry with the grids exposed. When calculating the solution to the

Navier-Stokes equations to find a solution to the blunt body re-entry problem, a first order

upwind numerical scheme was used to numerically solve the solution. The end time for the

solution was tfinal = 1 × 10−6 s, in which the solution was predicted to reach steady state.
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Figure 9: Grids used in geometry, with a zoomed in section near the blunt body boundary.

6 Results

6.1 Re-entry Condtions

The re-entry parameters from the one-dimensional solution were also applied to the two-

dimensional solution. These parameter values model conditions that might be expected in

the upper atmosphere. The ambient pressure was kept at a relatively low value that more

resembled the ambient pressure in the stratosphere, known to have an ambient pressure

about 1000 times less than that at sea level which is 101325 Pa [17]. This low pressure was

used so that the thickness of the shock would be larger, which is beneficial for the numerical

solution to resolve the shock. Equation (16) shows how the derived parameter of blunt body

velocity was found with these parameter values,

uamb = M
√

γRT , (16)

in which the velocity was found to be uamb = 1215.16 m/s.
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6.2 Plots of results

The results for velocity of magnitude |v| =
√

u2 + v2 and pressure at steady state are shown

in Figure 10. The velocity magnitude field has a resolved shock around the blunt body, and

the velocity diminishes to zero around the boundary of the inner cylinder. The maximum

pressure occurs at the front of the blunt body cylinder, and dissipates as the flow leaves

the mesh. The results for temperature and density at steady state are shown in Figure 11.

Figure 10: Velocity (left) and pressure (right) surrounding blunt body at t = 1 × 10−6 s.

The maximum temperature and density occurs at the front of the blunt body cylinder, and

dissipates as the flow leaves the mesh.

7 Conclusion

The results show that using the Navier-Stokes equations instead of the commonly used

Euler equations to calculate blunt body re-entry cures the carbuncle problem. The figures

of pressure, velocity, temperature, and density all compare accurately to what is seen in

nature, displaying how instabilities were removed by calculating the solution with viscosity.

A fine space and time grid were required to compute the solution, as the grid points needed

to be fine enough to resolve the flow physics. If this criteria was achieved, then the carbuncle

19



Figure 11: Temperature (left) and density (right) surrounding blunt body at t = 1× 10−6 s.

instability, or “wiggles” seen in the shock wave, were successfully removed from the numerical

calculation.

8 Future Work

Future work with this study consists of many different parametric studies using this com-

putation strategy. Different parameters will be varied such as Mach number and ambient

pressure to see if the computation strategy will remain robust and accurate for calculating

blunt body re-entry. The geometry of the blunt body and mesh surrounding it could also be

changed, along with adding high temperature physics and seeing its effects on the solution.

While changing all of these different variables, the different solutions could be investigated to

see if instabilities other than the carbuncle phenomenon arise from using the Navier-Stokes

equations instead of the Euler equations. Other modes of oscillations could be possible when

using the Navier-Stokes equations, so the numerical error can be further studied to make

sure that the results are repeatable and robust. From this research, a clear strategy for

computing the blunt body re-entry problem can be formed and thus forming a repeatable

method for calculation.
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