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Research Overview

1 Introduction

This report provides an overview of the process taken to create the recent paper of Pow-

ers, et al.1 This report will document the strategy for computing supersonic flow data, the

post-processing of this data, and the paper and associated presentation slides. This research

presents a remedy for numerical anomalies in computations of supersonic flow. This rem-

edy adds physical diffusion to the equations that will be discretized for computation of the

supersonic flow.

2 Computations

2.1 Parameters

In order to numerically calculate the viscous shock, conditions for our computations had to

first be chosen. The parameters for our computations were chosen to closely resemble those

used by Kopriva2. Kopriva solved a blunt body problem while resolving a viscous shock.

Kopriva employed the conditions used by Tewfik and Giedt3. In order to achieve results

from conditions that closely resembles those used by Kopriva, his parameters are shown in

Table 1. After finding these values, the parameters ambient pressure P∞, ambient velocity

u∞, ambient density ρ∞, and dynamic viscosity µ can be calculated.

These values are compared with those used in the computations by Gnoffo4 and Hejran-

1Powers, J. M., Bruns, J. D., Jemcov, A., January 2015, “Physical diffusion cures the carbuncle problem,”
AIAA Paper 2015-0579.

2Kopriva, D. A, 1993, Spectral solution of the viscous blunt-body problem, AIAA Journal, 31(7): 1235-
1242.

3Tewfik, O. K, and Giedt, W. H, 1960, Heat transfer, recovery factor, and pressure distributions around
a circular cylinder normal to a supersonic rarefied- air stream, Journal of the Aerospace Sciences, 27(10):
721-729.

4Gnoffo, P. A., 1980, Complete supersonic flowfields over blunt bodies in a generalized orthogonal coor-
dinate system, AIAA Journal, 18(6): 611-612.
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Table 1: Parameters used by Tewfik and Giedt3 and Kopriva2.

Description Symbol Value

Radius of circular cylinder r 6.1468× 10−3 m

Mach number M 5.73

Reynolds number Re 2050

Ambient temperature T∞ 39.667 K

Prandtl number Pr 0.77

Heat capacity ratio γ 1.4

far.5 Gnoffo’s calculations use the same Reynolds number and Mach number, but employ a

geometry that is different than a circular cylinder. γ = 1.285 and Pr = 0.685 in his study.

Hejranfar’s calculations, however, used the same radius, Mach number, Reynolds number,

and ambient temperature as Kopriva.

To make our computations less costly, the Reynolds number was reduced to Re = 50 by

reducing the radius to r = 1.5× 10−4 m. We know that u∞ can be found from

u∞ = a∞M∞, (1)

u∞ =
√
γRT∞M∞, (2)

u∞ =
√

(1.4)(287.7 J/kg K)(39.667 K)(5.73), (3)

from which we find that u∞ = 724.27 m/s. After this, the dynamic viscosity can be calculated

from Sutherland’s law, given by

µ∞ = µo

(
To + C

T + C

)(
T

C

)3/2

, (4)

where values found from an article by Montgomery6 show that To = 273.16 K, µo = 1.8325×
5Hejranfar, K., Esfahanian, V., and Najafi, M., 2009, On the outflow conditions for spectral solutions of

the viscous blunt-body problem, Journal of Computational Physics, 228(11): 3936-3972.
6Montgomery, R. B., 1947, Viscosity and thermal conductivity of air and diffusivity of water vapor in air,

Journal of Meteorology, 4(6): 193-196.
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10−5 kg/(m s), and C = 120 K. We selected the dynamic viscosity to have a constant value

of µ∞ = 2.3648× 10−6 Pa s. After this, we can use this value in the equation for Reynolds

number to get the a value for ρ:

ρ∞r =
Reµ∞
u∞,

(5)

ρ∞(1.5× 10−4 m) =
(50)(2.3648× 10−6 Pa s)

724.27 m/s.
(6)

With these numbers substituted, we find that

ρ∞ = 1.088× 10−3 kg/m3.

From this the ambient pressure can be calculated:

P∞ = ρRT, (7)

P∞ = (1.088× 10−3 kg/m3)(287.7 J/kg/K)(39.667 K), (8)

P∞ = 12.42 Pa. (9)

2.2 Computation Strategy

With these parameters specified, the next step was to calculate the supersonic flow using

the numerical strategy outlined by Powers, et al.1 and presentation found in the appendix.

The flow was calculated for a variety of grids, and a number of different fields were studied.

An error convergence studied was carried out when all of the flows were computed.
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3 Appendix

The next pages display the text of the paper by Powers et al.1. Following this, the presen-

tation slides are displayed.
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The supersonic flow of a calorically perfect ideal gas past a two-dimensional blunt body

was investigated. An unphysical anomaly known as the carbuncle phenomenon has been

predicted by earlier studies of this flow that use so-called high resolution schemes which

employ flux limiters within shock-capturing methods applied to the Euler equations. As

a remedy, this study introduces physical momentum and energy diffusion via a simple

discretization of the ordinary Navier-Stokes equations, employed on a sufficiently fine grid

to capture viscous shocks. To check if this cures the anomaly, flow over a cylinder of

radius a = 150 microns of viscous air with freestream Mach number M1 = 5.73, pressure

p1 = 12.4272 Pa, and temperature T1 = 39.667 K was simulated. The numerical solution was

calculated with first order spatial and fourth order temporal discretizations, and it was

seen that physical diffusion, appropriately resolved, removes the carbuncle phenomenon.

I. Introduction

For over two decades, anomalous solutions have been predicted by so-called high resolution schemes
which employ flux limiters within shock-capturing methods applied to the Euler equations in simulating the
supersonic flow of a gas over a blunt body. This aberration, often described as the “carbuncle phenomenon,”
was first predicted by Peery and Imlay1 and has been widely reported in the literature; representative samples
include contributions from Quirk,2 Robinet, et al.,3 Srinivasan, et al.,4 Kitamara, et al.,5 and MacCormack.6

The carbuncle phenomenon often appears as a high amplitude incongruity in the neighborhood of the shock’s
axis of symmetry. Dumbser, et al.7 used a robust matrix stability analysis to demonstrate that above a
threshold Mach number M , a wide variety of high resolution schemes applied to the Euler equations display
“unconditional instability with exponential error growth,” independent of both the time-advancement scheme
and chosen Courant-Fredrichs-Lewy (CFL) number. This matrix stability analysis was extended by Chauvat,
et al.8 As the carbuncle phenomenon is not observed in nature, most have hypothesized that it is either an
anomaly of the chosen numerical method, or an inadequacy of the underlying mathematical model, with far
more attention focused on the former than the latter. Elling9 has gone so far as to describe the phenomenon
as “incurable.”

However, a small fraction of studies has recognized that physical diffusion can be offerred as a remedy.
Pandolfi and D’Ambrosio10 considered this but noted for calculations for which the viscous shock was prob-
ably under resolved that “even for unpractically low Reynolds numbers, the solution is still affected by the
carbuncle.” Ismail, et al.11 considered a viscous cure in passing, but discounted it because the carbuncle
“disappears only at very low Reynolds number.” Liou12 also briefly described viscous solutions, but focused
on a different approach. Recently, Ohwada, et al.13 as well as Li, et al.14 have modeled diffusion with a
kinetic theory and demonstrated it provides a remedy for carbuncles. Chandrashkar15 has formally returned

∗Associate Fellow, AIAA, Professor, Department of Aerospace and Mechanical Engineering. powers@nd.edu
†Undergraduate Research Student, Department of Aerospace and Mechanical Engineering. jbruns2@nd.edu
‡Research Assistant Professor, Department of Aerospace and Mechanical Engineering. ajemcov@nd.edu
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to the Navier-Stokes model. Using an intricate hybrid numerical algorithm which introduces switches and a
blending of other methods, coupled with sufficient numerical resolution, he has correctly removed carbuncles.
A related hybrid method with similar complexities is reported by Nishikawa and Kitamura.16 Kopriva17 and
later Hejranfar18 give detailed discussion of viscous blunt body flows in the context of a problem in which the
shock is fixed as an inflow boundary, thus precluding any carbuncle development; their results are validated
against experimental results of Tewfik and Giedt19 and can be compared to the Navier-Stokes solutions of
Gnoffo.20 Additional discussion in the context of a related problem is given by Druguet, et al.21

In this paper, we demonstrate a simpler antidote exists: introduction of physical momentum and energy
diffusion via a simple discretization of the ordinary Navier-Stokes equations, employed on a sufficiently fine
grid to capture viscous shocks. We demonstrate the carbuncle phenomenon and its rectification by solving
two problems. Both employ the same geometry, initial conditions, computational grid, advective flux model
of a Roe-based scheme without an entropy fix, and time-advancement scheme. For the first problem, we
neglect physical diffusion, while for the second we include it. When physical diffusion is neglected, we predict
a carbuncle phenomenon; however, when it is included and sufficiently resolved, no carbuncle is predicted,
in agreement with experiment. Thus, we show that even a simple algorithm employing first order spatial
and fourth order temporal discretizations, sufficiently resolved, fosters no carbuncle phenomena. In short,
we use examples to support two hypotheses which are difficult to discern from the literature:

• The carbuncle phenomenon, induced by many high resolution, nominally high order, shock-capturing

schemes for Euler equations applied to supersonic flow over a blunt body, is cured by inclusion of

properly resolved physical diffusion in a verified and validated Navier-Stokes model, and

• When fine scale physical diffusion structures are resolved, simple low order discretization schemes are

sufficient to capture the continuum flow physics of supersonic flow over a blunt body.

Our stratagem of reintroduction of physical diffusion gives a damping mechanism to suppress instabilities
which we believe to be of numerical origin. Our model of physical diffusion is admittedly simple: a continuum
model with constant properties. Such models induce shock waves of finite thickness with the thickness
proportional to the diffusion parameters. As reviewed by Griffith and Bleakney,22 experimental evidence
exists for a continuum description of shock waves in gases; the continuum theory becomes increasingly
accurate as the shock weakens. However, they note for M > 1.2 “continuous fluid theory may not give as
satisfactory an interpretation as the kinetic theory of gases,” and this notion is commonly used to discount
continuum theories of shock structure in high Mach number environments. Other insist more emphatically,
e.g. Li, et al.,14 that continuum theories are “not valid” to predict shock structure in that only a small
number of molecular collisions are likely within a shock, contrary to the continuum assumption.

Nevertheless, such statements are likely overly conservative for many purposes. As noted by Vincenti
and Kruger,23 “...comparisons with experiment show that the Navier-Stokes solution is accurate for larger
values of [Mach number than] might be expected from purely theoretical considerations.” They go on to note
“It is sometimes said that the test of a good theory is whether its usefulness exceeds its expected range of
validity; the Navier-Stokes equations amply satisfy this condition.” An extensive discussion of viscous shock
waves in the context of experiments, and supporting continuum and non-continuum theories can be found
in Müller and Ruggeri,24 where it is demonstrated that continuum theory actually predicts shock thickness
well for an unexpectedly large range of freestream conditions, with surprisingly good agreement achieved for
1 < M < 11. Visual inspection of their Fig. 12.2 shows the correct trends as M is varied, and a maximum
validation error of ∼ 20% near M = 4. More recent theoretical insights into viscous shock structure has
been given by many sources including Myong25 and Solovchuk and Sheu.26

II. Model

A. Mathematical model

Our general mathematical model, which we restrict to two spatial dimensions, is taken to be

∂ρ

∂t
+ ∇ · (ρu) = 0, (1)

∂

∂t
(ρu) + ∇ ·

(

ρuuT
)

= −∇p + ∇ · τ , (2)
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∂

∂t

(

ρ

(

e +
1

2
u · u

))

+ ∇ ·
(

ρu

(

e +
1

2
u · u

))

= −∇ · q −∇ (pu) + ∇ · (τ · u) , (3)

q = −k∇T, (4)

τ = 2µ

(

∇u + (∇u)T

2
− 1

3
(∇ · u) I

)

, (5)

p = ρRT, (6)

e = cvT. (7)

Here Eqs. (1-3) represent the conservation of mass, linear momenta, and energy, respectively. Equations (4,5)
are constitutive laws for energy and momenta diffusion which assume an isotropic material that obeys
Fourier’s law and a Newtonian stress-strain rate relation for a fluid which obeys Stokes’ assumption. Equa-
tions (6,7) are thermal and caloric state equations for a calorically perfect ideal gas. The independent
variables are time t, and the spatial Cartesian coordinates x and y. Dependent variables are density ρ,
velocity vector u, pressure p, viscous stress tensor τ , specific internal energy e, heat flux vector q, and
temperature T . We take I as the identity matrix. Constant parameters are thermal conductivity k, viscosity
µ, gas constant R, and specific heat at constant volume cv. The flow is initialized at the freestream values
and thus simulates the introduction of a cylinder into an otherwise homogeneous flow at t = 0. For all
calculations, zero gradient conditions are imposed at outflow boundaries. For viscous calculations, no-slip
adiabatic boundary conditions are imposed at the cylinder surface. For inviscid calculations, a zero mass
flux condition is imposed at the cylinder surface. The flow has known freestream properties u1 = (u1, 0)T ,
p1, and T1 and flows over a cylinder of radius a. Parameters which may be derived from the fundamental
parameters include the ratio of specific heats γ = 1 + R/cv, the freestream Mach number M1 = u1/

√
γRT1,

the ambient sound speed, c1 =
√

γRT1, the ambient density ρ1 = p1/R/T1, and the ambient kinematic
viscosity ν1 = µ/ρ1.

We choose the parameters listed in Table 1, which are appropriate for air. Two of the more important
length scales in the problem are the viscous shock thickness and the cylinder radius. Both scales need to
be resolved, and resolution becomes increasingly challenging as their ratio increases. Our choice of a low
ambient pressure of 12.4272 Pa induces a shock thickness of a few microns, moderately smaller than our
cylinder radius of 150 microns. A rough estimate of shock thickness λ can be inferred from Vincenti and
Kruger,23 showing λ ∼ ν1/c1 = 17.19 microns. This modest range of scales allows us to resolve all modeled
physics in a reasonable computational time using ordinary single-processor resources. Had we chosen higher
ambient pressures (thus inducing smaller shock thicknesses) and larger cylinders, the computational resources
necessary for resolving the flow physics would become more demanding. Nearly all of our parameters are
consistent with those employed by Kopriva17 with the exception of cylinder radius, which was chosen to
be smaller in order to reduce the computational costs. With our choices, we thus model a Prandtl number
Pr = µcp/k = 0.77 and Reynolds number, Re = ρ1u1a/µ = 50.

B. Numerical method

All simulations were performed using the public domain software, OpenFOAM.27 A typical calculation took
about three hours on a four core laptop computer. The time-advancement scheme was a fourth-order Runge-
Kutta method. The grids employed consisted of approximately 120, 000 hexahedral finite volume cells. The
horizontal extent of the domain is 0.0005377 m (537.7 microns). A typical cell length scale was 5.377 microns
or smaller, sufficiently small to capture all the continuum flow features. The numerical scheme was of the
Godunov type with the Roe flux difference splitting scheme used for the evaluation of the advective face
fluxes.28 The advective numerical scheme, which had nominal second order accuracy in space, was obtained
by the linear cell-to-face interpolation utilizing the gradients of the primitive fields with a Barth-Jespersen
limiter.29 As with all shock-capturing schemes applied to Euler equations, the asymptotic convergence rate is
less than unity.30 For Navier-Stokes calculations, first order spatial discretization was employed on diffusive
terms, and it is possible to achieve a consistent convergence rate when the grid is sufficiently fine to resolve
the shock structure.
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III. Results

Figure 1 shows the pressure field at t = 2×10−6 s when physical diffusion is neglected (µ = k = 0). At this
time the carbuncle has appeared within the solution. The region indicated within the green triangle attached
to the cylinder surface is essentially the same carbuncle phenomenon predicted in other independent studies.
It is noted that particularities of the carbuncle vary from study to study. There is slip on the cylinder surface
and a crisp shock standing off from the surface. Detailed examination reveals that the inviscid shock jumps
over approximately two cells. Figure 2 shows analogous predictions in the presence of physical diffusion.
Clearly, there is no carbuncle.

In order to find the time in which the viscous shock has relaxed to a fixed state, the relative error of each
Navier-Stokes solution on various grids is plotted with respect to time. Figure 3 shows the relative error of
pressure at a point for three different runs with various grid sizes, using a very fine grid (having an average
∆x ≈ 1 × 10−6 m) as the “true” solution denoted by p∞. The relative error was calculated at the same
point for each run, a point located directly in front of the cylinder. The point is located at the coordinate
(−150.3× 10−6 m, 0 m, 0 m) if the origin is located at the center of the cylinder. From this plot, it is seen
that the error has sufficiently relaxed at a time of t = 5× 10−6 s. Figure 4 shows a plot of the relative error
with respect to the grid size for the same three grids, using the relative error at t = 5 × 10−6 s. A least
squares curve fit reveals that the solution is converging at O(∆x1.38). It is anticipated that had finer grids
been used, the solution would move into the asymptotic convergence regime in which the convergence rate
was O(∆x1).

A simple validation is given by comparing our prediction of shock standoff distance against the curve-
fit formula deduced from experimental data reported by Ambrosio and Wortman.31 Their formula, ∆/a =
0.386 exp(4.67/M2

1
), where ∆ is the standoff distance, results in ∆ = 66.7±1 microns. Our inviscid prediction,

which includes the effect of the carbuncle, is ∆ = 103.5 ± 2 microns; however, it is by no means clear that
the carbuncle has relaxed to a steady state. Our viscous prediction is ∆ = 41 ± 2 microns. Certainly the
viscous approximation is good and agrees better with experiment than the inviscid approximation. The
remaining discrepancies between the viscous approximation and the experiment might be attributable to
either the finite domain size or more likely other neglected physics, such as temperature-dependent specific
heat, viscosity, and thermal conductivity, as well as real gas effects.

IV. Discussion

We note that our remedy of resolving physical viscous shocks is impractical given present computational
resources for problems involving devices with the larger geometries and higher pressures encountered in
typical aerospace engineering applications. An imperfect compromise which also should avoid the carbuncle
phenomenon could be achieved by introducing an artificial strain rate dependency into the viscosity coeffi-
cient in a tensorially invariant fashion that is guaranteed to satisfy a Clausius-Duhem inequality and allow
resolution of enhanced shock thicknesses by ordinary numerical methods. A similar strategy has been em-
ployed in a different context by Bhagatwala and Lele.32 This approach however runs the risk of artificially
filtering high frequency phenomena which have a physical origin, such as in acoustics, shock-boundary layer
instabilities, or combustion instabilities. Whatever the ultimate approach one takes to engineering prob-
lems, there is always value to fully resolved benchmarking exercises which resolve a broad range of the actual
multi-scale physics without resort to artificial viscosity.

V. Conclusions

In summary, when a simple physical diffusion model is introduced into the model of fluid motion and its
effects simulated on a sufficiently fine grid, the carbuncle phenomenon is removed. We speculate that the
carbuncle may arise due to what amounts to what is sometimes called “anti-diffusion,” an effect which has
been shown to exist via construction of the so-called “modified equation” for many shock-capturing schemes
when exercised on Euler equations; see Banks, et al.30
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Table 1. Parameter values for Navier-Stokes simulations of flow over a cylinder.

parameter value units

R 287.7 J/kg/K

cv 719.3 J/kg/K

cp 1007 J/kg/K

p1 12.4272 Pa

T1 39.667 K

u1 724.293 m/s

M1 5.73

γ 7/5

µ 2.3648 × 10−6 Pa s

k 0.003093 W/m/K

a 0.00015 m

ρ1 0.001088 kg/m3

c1 126.404 m/s

ν1 0.002174 m2/s

Re 50

Pr 0.77
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Figure 1: Detail of pressure field with physical diffusion neglected.
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Figure 2: Detail of pressure field with physical diffusion.
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Figure 3: Relative error of the pressure at a single point with respect to time for three different grid
resolutions.

9 of 10

American Institute of Aeronautics and Astronautics



∆x (m)

R
el
a
ti
ve

E
rr
o
r
(∆

p
/
p
∞
)

1

1.38

 

 

0.001

0.01

0.1

1 × 10−6 1 × 10−5

Calculated Points

Best Fit Line

Figure 4: Relative error of the pressure at a single point as a function of ∆x for three different grid resolutions.
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Motivation

We are investigating the supersonic flow of a calorically perfect ideal gas
past a two-dimensional blunt body:

Many common strategies for computing such flows have led to an
anomalous solution referred to as the “carbuncle phenomenon”.

We are trying to find a simple antidote that will avoid such
numerical anomalies.

In contrast to most artificial viscosity-based methods, our
approach will use physical diffusion.

A physically based strategy can also insure fidelity with what is
observed in nature.
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Flawed solutions in earlier studies

Anomalous solutions have been predicted by so-called high
resolution schemes which employ limiters within shock-capturing
methods applied to the Euler equations in simulating supersonic
flow.

This unphysical anomaly, described as the “carbuncle
phenomenon,” was first predicted by Peery and Imlay (1988) and
has been widely reported in the literature.

Although many researchers, such as Quirk (1994), describe
complicated methods for eliminating the carbuncle phenomenon,
others, such as Elling (2009), describe the phenomenon as
“incurable.”
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What does the carbuncle look like?

The carbuncle does not appear
in nature; it is a spurious
solution of numerical origin.

Dumbser (2004) demonstrated
that when simulating the
Euler equations with common
high resolution methods, above
a threshold Mach number M ,
the solution displays
unconditional instability with
exponential error growth. Robinet, et al., Journal of Fluid Me-

chanics, 2000.
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Prior solutions

To remove the carbuncle instability, artificial dissipation is often
employed within the discretized Euler equations.

This is a post-dictive strategy of no use as a predictive tool.
This is not a robust approach to a solution as the dissipation added
varies from problem to problem and method to method.

A small fraction of studies have recognized that physical diffusion
can be offered as a remedy.

Ismail (2009) considered a viscous cure, but discounted it because
the carbuncle “disappears only at very low Reynolds number.”
Ohwada (2013) and Li, et al (2011) have modeled diffusion with a
kinetic theory and demonstrated it provides a remedy, albeit
expensive, for carbuncles.
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Quirk’s cure to the carbuncle

Quirk (1994) examined the carbuncle phenomenon brought upon
by the subtle flaws of the Godunov-type methods.

He used artificial dissipation, specifically showing that Einfeldt’s
HLLE (Harten, Lax, van Leer and Einfeldt) scheme cured the
carbuncle.

He also used an adaptive Riemann solver, which would choose the
type of upwinding scheme that matched the local flow data so that
the Riemann solver would give reliable results.
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Quirk’s results

Quirk’s strategy cures the
carbuncle phenomena by
adding artificial dissipation.

Although this solution is
sufficient for this case, Quirk’s
strategy is not robust.

His solution strategy must be
altered for different geometries
and flow conditions, and
different upwinding schemes
must be chosen for different
conditions to maintain
reliability.

Quirk, International Journal for

Numerical Methods in Fluids, 1994.
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Our strategy

We will solve two problems to demonstrate the carbuncle
phenomenon and its rectification.

We will neglect physical diffusion for the first problem.
Then, we will introduce physical momentum and energy diffusion
via discretization of the ordinary Navier-Stokes equations, employed
on a sufficiently fine grid to capture viscous shocks.

Both problems employ the same geometry, initial conditions,
computational grid, numeric flux model, and time-advancement
scheme.

The Riemann solver used in numeric flux formulation is based on
Roe flux difference splitting without entropy fix.

Re-introduction of physical diffusion provides damping mechanism
to suppress spurious solutions which we believe to be of numerical
origin.

It will be seen that physical diffusion, appropriately resolved, cures

the carbuncle problem.
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Goals

We thus aim to show:

The carbuncle phenomenon, induced by many high resolution,

nominally high order, shock-capturing schemes for Euler equations

applied to supersonic flow over a blunt body, is cured by inclusion

of properly resolved physical diffusion in a verified and validated

Navier-Stokes model, and

When fine scale physical diffusion structures are resolved, simple

low order discretization schemes are sufficient to capture the

continuum flow physics of supersonic flow over a blunt body.
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Navier-Stokes equations
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Parameters

parameter value units

R 287.7 J/kg/K
cv 719.3 J/kg/K
cp 1007 J/kg/K
p1 12.4272 Pa
T1 39.667 K
u1 724.293 m/s
M1 5.73
γ 7/5

µ 2.3648 × 10−6 Pa s
k 0.003093 W/m/K
a 0.00015 m

ρ1 0.001088 kg/m3

c1 126.404 m/s

ν1 0.002174 m2/s
Re 50
Pr 0.77

Similar to experiments of Tewfik and Giedt (1960) and calculations of
Kopriva (1993), but at lower Re.
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Numerical method: OpenFOAM

A solver based on a reconstruction-evolution-projection algorithm
was developed using the public domain software OpenFOAM TM.

The time-advancement scheme was a fourth-order Runge-Kutta
method.

A first order spatial discretization was employed.

Numerous grids were employed, most studies used approximately
120,000 cells.

A typical cell length scale was ∼5 microns.
The estimated shock thickness of ∼ ν1

c1

= 17.2 microns, showing that
a typical cell length is small enough to resolve the shock.

Typical calculation time was 3 hours on a four-core AMD
processor.
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Pressure with physical diffusion neglected: carbuncle!
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Pressure with physical diffusion: no carbuncle!
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Temperature with physical diffusion
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Density with physical diffusion
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Velocity along the centerline
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Temperature along the centerline
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Pressure along the centerline
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Convergence at a point

The relative residual of pressure at a single point for each Navier-Stokes
solution was calculated to find when the viscous shock relaxed to a fixed
state and the convergence rate of the method.

This point has with coordinates (−150.3 × 10−6 m, 0 m, 0 m),
directly in front of the cylinder.

The relative residual was found for several grid sizes ranging from
1.95 microns to 7.75 microns using the same time step.
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Time-relaxation of the residual in pressure
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Residual convergence
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The residual is clearly converging, but is not yet within the asymptotic
convergence regime where convergence is first order for our scheme.
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Conclusions

When a simple physical diffusion model is introduced into the
model of fluid motion and its effects simulated on a sufficiently fine
grid, the carbuncle phenomenon is removed.

Our remedy does not require sophisticated numerical discretization
strategies; it simply requires resolution of all modeled physics.

The carbuncle may arise due to what amounts to what is
sometimes called anti-diffusion, an effect which has been shown to
exist via construction of the so-called modified equation for many
shock-capturing schemes when exercised on Euler equations.

Higher Reynolds number flows can be simulated with larger
computational resources.

The technique of adding physical viscosity is not yet a realistic
method for large scale design problems.
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