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TWO-DIMENSIONAL VISCOUS COMPACTION IN COMPRESSIBLE

GRANULAR MATERIALS

Abstract

by

Michael T. Cochran

A set of equations modeling compaction behavior in a two phase mixture of inert

granular high explosive and interstitial gas, is discussed and solved numerically in

two dimensions. This model treats both phases as compressible, viscous fluids using

modified Navier Stokes equations, and standard constitutive relations. One dimen-

sional limits, such as shock tubes and piston-driven problems compare favorably to

analytical solutions and experimental data of Sandusky, et al.[1], respectively. The

model also includes explicit intraphase transfer of mass, momenta, and energy to

describe the interactions between the two phases, while at the same time conserv-

ing mass, momenta, and energy, and maintaining frame invariance. The equations

are then solved using simple two-dimensional extensions of these cases, and the re-

sults are compared to the one-dimensional data, with good agreement. Finally, a

forcing term, in the form of a concentrated energy source, is used to demonstrate

two-dimensional behavior. Compaction is shown to develop in these test problems.
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CHAPTER 1

INTRODUCTION

1.1 Physical System

The focus of this study is on two-dimensional continuum mixture models of

material which, at the microscale level, is composed of solid grains and gas-filled

cavities. The behavior of the material varies markedly from a simple homogeneous

solid. The cavities are assumed to make a continuously joined region through which

the gas can move. In general, mass, momentum and energy may pass from one phase

to the other, though mass transfer is not considered here. The system is insulated,

and must globally conserve these quantities, except when a forcing function injects

mass, momentum or energy into the system.

It is well known that heterogeneous, porous, energetic, materials can behave in

dramatically different ways than do equivalent solid homogeneous energetic mate-

rials. Particularly, porous media will show a greater tendency toward detonation

with even modest stimuli [2]. These stimuli can come in many forms ranging from

physical impact, to injection of energy. In many cases deflagration-to-detonation

(DDT) can be triggered by a compaction wave, that is, a wave propagating through

the material which causes the solid volume fraction to increase toward unity. Figure

1.1 shows a schematic of compaction induced by a piston driving into the porous ma-

terial. A compaction wave travels through the ambient porous material, and leaves

behind it a region that is almost completely solid. That is, all of the gas phase
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has been squeezed into smaller pockets at a higher density, and the solid volume

fraction, the ratio of the volume taken up by the solid to that of the total volume

of the system, approaches unity. The compaction wave speed Uc is observed to be

greater than the piston speed Up. The porous medium has a significantly increased

tendency to detonation. It is not well understood what, exactly, causes this. Some

of the plausible explanations suggested by Luebcke, et al. [3] are adiabatic shear,

intergranular friction, and adiabatic compression of trapped gases, although there

is no general consensus on the causes. These phenomena can be particularly prob-

lematic in the storage of granular explosive materials, given the relative instability

of the granular form as discussed in Gonthier and Powers [2].

Compacted
   material

Compaction
     zone

Ambient
     region

     1 φ   = soss φφ

Up

U   > Uc       p

Figure 1.1. Schematic of compaction phenomena induced by a piston

1.2 Previous Research

In a series of studies spearheaded by Sandusky and co-workers in the mid-1980’s

[4, 1] the behavior of various granular materials was studied in experiments involving
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a number of stimuli such as gas-driven and piston-driven compaction. These results

have served as benchmarks with which much of the modeling work of subsequent

researchers has been compared.

Baer and Nunziato [5] (BN) introduced a general theory for compaction in porous

materials that they formulated assuming the continuum theory of mixtures. They

drew from the previous work of Krier and Gokhale [6], and Butler, et al. [7]. BN

has been the basis for much of the current work in the field. Powers, et al. [8] use a

slightly modified version of BN to study steady state compaction waves in a single

phase limit of a porous material. In a series of articles, Powers, et al. [9, 10] use a one-

dimensional, two-phase model to show that inclusion of compaction work, as done

by BN, violates the conservation of energy in the one phase solid limit. Gonthier and

Powers [11] solve the full two phase system with a reactive solid, using a correction

of the BN model. As well, they show relaxation to steady state for the unsteady

one-dimensional problem. In a series of papers by Bdzil, et al.[12, 13], hereafter

known as BMSKS, the authors further develop the model by making certain re-

ductions, and performing a thorough analysis of various constitutive relations used

in the BN model. They offer additional suggestions for improving the BN model.

Chinnayya, et al. [14] continue the work by investigating the chemistry of reaction,

and generalize into two dimensions. Powers [15] expands the BMSKS model by

explicitly including diffusion of momenta and energy in one-dimensional chemically

inert two phase material. In a different formulation, Papalexandris [16] offers a

different model including the spatial gradient of the volume fraction as another in-

dependent variable. The predictive value of this model is unclear since no numerical

studies have yet been done with this model. Lowe and Greenaway [17] investigate

the impact of grain size on compaction phenomena. In particular, they use a simple

quadratic approximation for the functional form of the intergranular stress. As with

3



Papalexandris [16], the predictive power of this formulation is not clear, since the

numerical results for the fine grained material have no comparison with experiment,

although the prediction for coarser material matches well with Sandusky [1]. Lowe

and Longbottom [18] study the effects of grain size, and distribution, on compaction

behavior. Much of their work is done using a microscale code that tracks the be-

havior of each particle in the simulation, whereas most work in this field uses some

form of an averaged continuum model. They suggest that the compaction behavior

is more dependent on the morphology of the porous bed and on the packing dis-

tribution, rather than the size of the individual grains. Gonthier [19] shows that

the structure of compaction waves has a dependence on both initial density and on

impact strength/speed. The modes of viscoelastic, and viscoplastic deformation are

both important in the combustion of granular materials at different densities.

1.3 Model

This study uses BMSKS as its base, with diffusive extensions offered by Powers

[15]. BMSKS does a thorough analysis of the BN model and offers some modifica-

tions [12].

The BMSKS model describes a region of granular material, with the intergran-

ular pores forming an interconnected region of gas. Ref. [12] develops a set of seven

partial differential equations which describe the evolution in both time and space of

compaction phenomena. The model assumes a continuum approximation, meaning

each phase occupies every point simultaneously. The phase variables are actually

local averages that exist over a volume large enough to include enough grains, which

are usually on the order of 100 microns in size, and pores, to allow for meaningful

averages.

Of particular note, the system formally conserves mass, momenta, and energy of
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the entire system, though these quantities can freely pass between the two phases.

The BMSKS equation set has been formulated to assure the system is hyperbolic.

The major advantages of BMSKS is the thorough analysis of the second law of

thermodynamics, and consequent assurance of it, and its use of thermodynamically

consistent equations of state for the solid with an explicit dependence on volume

fraction.

BMSKS is a general formulation of the equation set. Following the choices of

Powers [15], the following parameters, using the nomenclature of BMSKS, have

been assigned these values for this study: w = 1, b = 0, v = 1, f = 1, a = 0, and

α = 0. These choices assure second law satisfaction, Galilean frame invariance,

assign dissipation from interphase drag to the gas, assign all compaction work to

the solid, assign all energy from reaction to the gas, and ignore dissipation from

interphase mass transport.

Since BMSKS does not require the phases to be in pressure equilibrium, but

instead relates pressures through a dynamic compaction equation, it also introduces

a fundamental asymmetry. This in turn introduces a so-called nozzling term into

the system in order to satisfy the second law of thermodynamics, and meet the

requirements of a plausible, but ad hoc, physical argument given in BMSKS. A

consequence of this is that there is no way to cast the system into fully conservative

form.

Powers [15] systematically builds on a suggestion of BMSKS [13], that a straight-

forward way to solve the equations, without relying on complicated numerical meth-

ods, is to include simple diffusion to simulate grain-scale physics. In the study

presented by this paper, the problem of diffusion has been addressed by including

Fourier heat transfer and assuming the phases behave as Newtoninan fluids. This

accounts for diffusion of momentum and energy in both phases. This has the added
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benefit of providing a minimum length scale, independent of the grain size, for phys-

ical phenomena. Powers [15] does this by systematically introducing the modes of

diffusion. He selects the values for the diffusion coefficients, to assure the length

scales to be sufficiently large to include a number of grains. The values chosen are

significantly higher than those which are generally encountered in the literature for

single phase materials. The use of explicitly formulated diffusion, as well, eliminates

the necessity to rely on numerical diffusion to smear numerical noise in the vicinity

of shocks and other discontinuities. The major disadvantage of numerical diffusion

is that it is reliant on both grid sizes, and the particular numerical technique chosen.

Physical diffusion, however, is independent of both method, and grid refinements.

Aside from the explicit inclusion of diffusion, this model differs from BMSKS in

two other important ways. First, the equations are cast in general three-dimensional

form, although this study focuses on geometries in one and two dimensions. Second,

the equations of state are relatively simple, and are thermodynamically consistent,

while at the same time having sufficient non-linearity to capture behavior observed

in experiment. The constitutive models chosen are in no way unique; any such

equations which satisfy frame invariance, material indifference, and are a reasonable

approximation to experimental data could have been chosen.

1.4 Scope

Much of the past and current research has focused on one-dimensional limits

of two-phase materials. This thesis contains a full two-dimensional analysis of the

system presented in Powers [15] and investigates a range of geometries as well.

After an introduction of the system of equations, and the development of the

numerical method, in Chapters 2 and 3 respectively, the accuracy of the numerical

method will be verified in Chapter 4, by comparison to calorically perfect, ideal gas
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shock tube results in one dimension, as well as those from a simple piston-driven

one-dimensional cylinder. The convergence of the system will also be shown.

The bulk of the examples, found in Chapter 5, will be two-dimensional extensions

of the BMSKS proposed by Powers [15]. There will first be examples of simple two-

dimensional extensions of shock tubes and piston problems. Then there will be a set

of problems with an extra forcing term in the energy equations. This will initiate

compaction behavior in the system. There will be investigation of these problems

in different geometries, as well.

Finally, there will be a brief discussion of the results in Chapter 6, and mention

of areas for future work.
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CHAPTER 2

GOVERNING EQUATIONS

2.1 Nearly Conservative Form

The following set of seven equations (and one inequality) is the nearly conserva-

tive form of the governing equations for the BMSKS model used in this study:

∂

∂t
(ρsφs) + ∇ · (ρsφsus) = C, (2.1)

∂

∂t
(ρgφg) + ∇ · (ρgφgug) = −C, (2.2)

∂

∂t
(ρsφsus) + ∇ ·

(

ρsφsusu
T
s + φs(psI − τ s)

)

= M, (2.3)

∂

∂t
(ρgφgug) + ∇ ·

(

ρgφgugu
T
g + φg(pgI − τ g)

)

= −M, (2.4)

∂

∂t

(

ρsφs

(

es +
1

2
usu

T
s

))

+

∇ ·

(

ρsφsus

(

es +
1

2
usu

T
s

)

+ φsus · (psI − τ s) + φsqs

)

= E + Se, (2.5)

∂

∂t

(

ρgφg

(

eg +
1

2
ugu

T
g

))

+

∇ ·

(

ρgφgug

(

eg +
1

2
ugu

T
g

)

+ φgug · (pgI − τ g) + φgqg

)

= −E + Se, (2.6)

∂

∂t
(ρs) + ∇ · (ρsus) = −

ρsF

φs

, (2.7)

∂

∂t
(ρsφsηs + ρgφgηg) + ∇ · (ρsφsusηs + ρgφgugηg) ≥ −∇ ·

(

φsqs

Ts

+
φgqg

Tg

)

. (2.8)
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Equations (2.1)–(2.6) describe the evolution of mass, linear momenta, and en-

ergy, and are slightly augmented versions of the compressible, viscous, Navier-Stokes

equations, as shown later. Equation (2.7) accounts for compaction, that is changes

in volume fractions in the materials, and Equation (2.8) is the second law of ther-

modynamics for the mixture. Scalar quantities found in Equations (2.1–2.8) are

ρ, φ, p, e, η, and T . These represent intrinsic density, volume fraction, pressure,

energy, entropy, and temperature, respectively. The subscripts s and g denote prop-

erties of the solid phase and the gas phase, respectively. The vector quantities u

and q represent the velocity and the heat fluxes, while τ is the viscous stress tensor

for each phase.

The terms C,M and E account for interphase transfer of mass, momentum and

energy between the gas and solid phases. The term F represents a source term for

material compaction. Equations (2.5)–(2.6) include an external forcing function, Se

which provides energy to the system, and is a function of the spatial coordinates.

Equation (2.7) models the compaction within, and between the phases. Though

no rigorous basis exists for the form of F , the form chosen allows for volume fraction

evolution due to both mass transfer and stress/pressure disequilibrium. As well, it

is useful in assuring that the system is well posed. Later, it will become evident

that the system is not formally conservative because the form of M is such that the

system cannot be cast in a fully conservative form.

Regardless of the form chosen for C,M and E , Equations (2.1)–(2.6) are con-

structed to formally conserve mixture mass, momentum and energy as long as Se

is set to zero. By making this choice, and defining the following mixture variables

(shown by subscript m) and relative velocities (shown by subscript r):

ρm ≡ ρsφs + ρgφg, (2.9)

9



um ≡
ρsφsus + ρgφgug

ρsφs + ρgφg

, (2.10)

urs ≡ us − um, (2.11)

urg ≡ ug − um, (2.12)

pm ≡ φs

(

ps +
1

3
ρsurs · urs

)

+ φg

(

pg +
1

3
ρgurg · urg

)

, (2.13)

em ≡
ρsφs

(

es + urs·urs

2

)

+ ρgφg

(

eg + urg ·urg

2

)

ρsφs + ρgφg

, (2.14)

τm ≡ φs

(

τ s − ρs

(

ursu
T
rs −

1

3
(urs · urs)I

))

+

φg

(

τ g − ρg

(

urgu
T
rg −

1

3
(urg · urg)I

))

, (2.15)

qm ≡ φs

(

ρsurs

(

es +
urs · urs

2

)

+ urs · (psI − τ s) + qs

)

+

φg

(

ρgurg

(

eg +
urg · urg

2

)

+ urg · (pgI − τ g) + qg

)

, (2.16)

it is a straightforward process to show that summing the individual mass, momentum

and energy equations, and substituting Equations (2.9)–(2.16) into Equations (2.1)–

(2.6) yields the following set of equations:

∂

∂t
(ρm) + ∇ · (ρmum) = 0, (2.17)

∂

∂t
(ρmum) + ∇ ·

(

ρmumuT
m + pmI − τm

)

= 0, (2.18)

∂

∂t

(

ρm

(

em +
um · um

2

))

+

∇ ·
(

ρmum

(

em +
um · um

2

)

+ um · (pmI − τm) + qm

)

= 0. (2.19)

These are the classical compressible Navier-Stokes equations for fluid flow.

The form of M is such that the equations cannot be cast in a fully conservative

system. The forms chosen for C,M, E and F are given by BMSKS as:

C = C(ρs, ρg, Ts, Tg, φs), (2.20)
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M = pg∇φs − δ(us − ug) +
1

2
(us − ug)C, (2.21)

E = H(Tg − Ts) − pgF + us · M +
(

es −
us · us

2

)

C, (2.22)

F =
φsφg

µx

(ps − βs − pg). (2.23)

Equations (2.20)–(2.23) are specified by BMSKS as the transport equations for

interphase phenomena, chosen to assure frame invariance and to satisfy the second

law. Since this study deals only with chemically inert materials, the term C is set

to zero.

Equation (2.21) contains a gradient operator, pg∇φ in the first term. Elsewhere,

all terms to which the gradient operator is applied remain on the left hand side

of Equations (2.1)–(2.6). This means that Equations (2.1)–(2.7) are not formally

conservative. Computationally, this does not cause any problems for the viscous

system considered here. For inviscid counterparts, computational issues remain as

discussed by BMSKS [12] and others.

2.2 Non-Conservative Form

For the model used, it is necessary that the entire volume be filled with either

gas or solid. There are no voids, nor are there any non-interacting portions of the

volume,

φs + φg = 1. (2.24)

Consequently,

∂φs

∂t
= −

∂φg

∂t
and ∇φs = −∇φg. (2.25)

By successively eliminating terms of mass from the momentum and energy equa-

tions, eliminating momentum terms from the energy equations, and directly invok-
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ing the interphase transport equations (Equations (2.20)–(2.23)), as well as invoking

Equation (2.25), it is possible to cast the system into a fully nonconservative form.

Here, d/dts ≡ ∂/∂t+ us · ∇, and d/dtg ≡ ∂/∂t+ ug · ∇:

dρs

dts
= −ρs∇ · us −

ρsF

φs

, (2.26)

dρg

dtg
= −ρg∇ · ug +

ρgF

φg

+
C

φg

(

ρg

ρs

− 1

)

+
ρg

φg

(us − ug) · ∇φg, (2.27)

ρsφs

dus

dts
= −φs∇ps + φs∇ · τ s + τ s · φs − δ(us − ug) +

1

2
(ug − us)C+,

(pg − ps)∇φs (2.28)

ρgφg

dug

dtg
= −φg∇pg + φg∇ · τ g + τ g · φg + δ(us − ug) +

1

2
(ug − us)C, (2.29)

ρsφs

des

dts
= −psφs∇ · us + φsτ s : ∇us − psF + H(Tg − Ts) −

φs∇ · qs − qs · ∇φs, (2.30)

ρgφg

deg

dtg
= −pgφg∇ · ug + φgτ g : ∇ug − pgF + H(Tg − Ts) −

φg∇ · qg − qg · ∇φg +

δ(us − ug) · (us − ug) − (es − eg)C + pg(us − ug), (2.31)

dφs

dts
= F +

C

ρs

. (2.32)

2.3 Constitutive Relations

Closure of the system, Equations (2.1)–(2.7), requires specifying a certain num-

ber of constitutive (non-axiomatic) equations as follows:

ps = ρ2
s

∂ψs

∂ρs

∣

∣

∣

∣

Ts,φs

, (2.33)

pg = ρ2
g

∂ψg

∂ρg

∣

∣

∣

∣

Tg

, (2.34)

ηs = −
∂ψs

∂Ts

∣

∣

∣

∣

ρs,φs

, (2.35)

12



ηg = −
∂ψg

∂Tg

∣

∣

∣

∣

ρg

, (2.36)

es = ψs + Tsηs, (2.37)

eg = ψg + Tgηg, (2.38)

βs = ρsφs

∂ψs

∂φs

∣

∣

∣

∣

ρs.Ts

, (2.39)

ψs = ψ̂(ρs, Ts) +B(φs), (2.40)

ψg = ψg(ρg, Tg), (2.41)

τ s = 2µs

(

(∇us)
T + ∇us

2
−

1

3
(∇ · us)I

)

, (2.42)

τ g = 2µg

(

(∇ug)
T + ∇ug

2
−

1

3
(∇ · ug)I

)

, (2.43)

qs = −ks∇Ts, (2.44)

qg = −kg∇Tg. (2.45)

The following new parameters appear in Equations (2.33)–(2.45): coefficient of

viscosity, µ; the compaction viscosity, µc; coefficient of thermal conductivity, k;

interphase drag parameter, δ; and interphase heat transfer coefficient, H. In this

study, all of these values are considered constants, but the model does not necessarily

require this restriction; any or all of these parameters could have a dependence on

the state of the system. Helmholtz free energy, ψ, and the configuration stress for

the solid, βs, are new variables to the system.

Equations (2.33)–(2.38) are definitions of canonical thermodynamic relationships

for pressure, energy, and entropy. Equations (2.42)–(2.43) are statements of the

standard Newtonian relations between viscous stresses and strain rate for isotropic

compressible fluids which satisfy Stokes’ assumption. Equations (2.44)–(2.45) state

Fourier’s law of heat transfer. Equations (2.40)–(2.41) are classical (as yet unspec-

ified) equations of state for the solid and gas. The free energy associated with

configurational stresses appears as the new variable B(φ), and Equation (2.39) is

13



the definition given by BMSKS for the configurational stress.

Though the equations of state (Equations (2.40)–(2.41)) are in general terms,

it is necessary to define specific forms for numerical studies. This study, following

Powers [15], employs a standard virial equation of state for the gas of the following

form:

ψg(ρg, Tg) = cvgTg

(

1 − ln

(

Tg

Tgo

)

+ (γg − 1)

(

ln

(

ρg

ρgo

)

+ bg(ρg − ρgo)

))

. (2.46)

In Equation (2.46), cvg is the constant specific heat at constant volume for the

gas; bg is the virial coefficient; γg is the ratio of specific heats for the gas; and ρgo

and Tgo are the initial, reference, states for the system.

Using Equation (2.46) with Equation (2.34), Equation (2.36) and Equation (2.38)

yields the following forms for gas pressure, gas entropy and energy:

pg = (γg − 1)cvgρgTg(1 + bgρg), (2.47)

ηg = cvg

(

ln

(

Tg

Tgo

)

− (γg − 1)

(

ln

(

ρg

ρgo

)

+ bg(ρg − ρgo)

))

, (2.48)

eg = cvgTg. (2.49)

The case of the solid is slightly more complicated. Powers [15] uses a modified

Tait equation to account for compaction. The form was stated incorrectly; Schwen-

deman [20], however, offers a corrected form which gives the following for ψs:

ψs(ρs, Ts, φs) = cvsTs

(

1 − ln
(

Ts

Tso

)

+ (γs − 1)ln
(

ρs

ρso

))

+ εsρso

γsρs
+ q

+ (pso−pgo)(2−φso)2

ρsoφsoln( 1

1−φso
)

ln

(

(

2−φso

2−φs

)

(1−φs)
1−φs
2−φs

(1−φso)
1−φso
2−φso

)

.

(2.50)
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As with the gas, cvs and γs represent the constant of specific heat at constant

volume, and the ratio of specific heats of the solid. The constants ρso, Tso, φso, pso

and pgo are the initial states of solid density, solid temperature, solid volume fraction,

solid pressure and gas pressure respectively. The remaining parameters are εs, which

is a factor used to match experimental data, and q, which is the chemical energy

of the solid. In this study, q is always equal to zero. Applying Equation (2.50) to

Equation (2.33), Equation (2.35), Equation (2.37) and Equation (2.39) gives the

following forms for solid pressure, entropy and energy and solid configuration stress:

ps = (γs − 1)cvsρsTs −
1

γs

ρsoεs, (2.51)

ηs = cvs

(

ln

(

Ts

Tso

)

− (γs − 1)ln

(

ρs

ρso

))

, (2.52)

es = cvsTs+
εsρso

γsρs

+q+
(pso − pgo)(2 − φso)

2

ρsoφsoln
(

1
1−φso

) ln

(

(

2 − φso

2 − φs

)

(1 − φs)
1−φs
2−φs

(1 − φso)
1−φso
2−φso

)

, (2.53)

βs = (pso − pgo)
ρsφs

ρsoφso

(

2 − φso

2 − φs

)2 ln
(

1
1−φs

)

ln
(

1
1−φso

) . (2.54)

Table 2.1 reports the values for all of the parameters in the governing and con-

stitutive Equations (2.1)–(2.54).

2.4 Characteristics

In order to find necessary boundary and initial conditions for a well posed prob-

lem, it is necessary to perform a characteristic analysis of the system. The method

described here, closely follows the discussion and results of Powers [15]. The limit

of a one-dimensional system leads to greatly simplified analysis, and will be done

here.
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TABLE 2.1

PARAMETER VALUES USED IN THIS STUDY

Parameter Units Value

µg Ns/m2 1.0 × 100

µs Ns/m2 1.0 × 103

kg W/m/K 1.0 × 103

ks W/m/K 1.0 × 100

γg −− 2.7 × 100 || 1.35 × 100

γs −− 5.0 × 100

cvg J/kg/K 2.4 × 103

cvs J/kg/K 1.5 × 103

Tgo K 3.0 × 102

Tso K 3.0 × 102

ρgo kg/m3 1.0 × 100

ρso kg/m3 1.9 × 103

ρ̂go kg/m3 1.1 × 100

ρ̂so kg/m3 2.0 × 103

φso −− 7.3 × 10−1

µc Ns/m2 1.0 × 103

δ kg/m3/s 1.0 × 108

H W/m3/K 1.0 × 1010

C kg/m3/s 0
q J/kg 0
bg m3/kg 1.1 × 10−3

εs J/kg 8.98 × 106

ao W/m3 1 × 1014

bo m−2 1 × 106
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In one dimension, the system Equations (2.1)–(2.7) (using appropriate constitu-

tive relations, Equations (2.33)–(2.45)) can be cast in the form:

A ·
∂w

∂t
+ B ·

∂w

∂x
= c. (2.55)

Here, w is an n × 1 vector of dependent variables, c is also an n × 1 vector

representing the right hand sides of Equations (2.1)–(2.7). Finally, A and B are

n× n vectors which are functions of x, t, and w.

Following the standard method of Zauderer [21], one must find curves in x − t

space such that dx/dt = λ, along which Equation (2.55) becomes a set of ordinary

differential equations. To do so, it is necessary to solve a generalized eigenvalue

problem:

m · (λA − B) = 0, (2.56)

where m and λ are generalized eigenvectors and generalized eigenvalues respectively.

Since m is a general, non-zero, vector, Equation (2.56) is only satisfied if

|λA − B| = 0. (2.57)

If all generalized eigenvalues are real, and n linearly independent generalized

eigenvectors exist, then the system is hyperbolic. If there is a lack of linearly inde-

pendent generalized eigenvectors, but the generalized eigenvalues are still real, then

the system is parabolic. An elliptic system is one for which all of the generalized

eigenvalues are complex. Although it is not easy to formulate problems which are

well posed in the sense of Hadamard, generally, hyperbolic systems are well posed

provided that initial conditions exist on a curve that is not a characteristic for the

system. Parabolic systems require a mixture of initial and boundary conditions, and
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elliptic systems do not generally evolve in time, so require boundary conditions on

all geometric boundaries.

2.4.1 No Diffusion

For the case of an inviscid thermally insulated system, that is ks = kg = µs =

µg = 0, it is well known that the system of Equations (2.1)–(2.7) is hyperbolic. Baer

and Nunziato [5] show that the dimension for this system is n = 7, from which:

λ = us, us, us ± cs, ug, ug ± cg. (2.58)

Here, the isentropic sound speeds of the solid and gas, cs and cg respectively, are

introduced as:

cs =

√

∂ps

∂ρs

∣

∣

∣

∣

ηs,φs

, cg =

√

∂pg

∂ρg

∣

∣

∣

∣

ηg

. (2.59)

Though there are only six distinct eigenvalues, it is possible to find seven linearly

independent eigenvalues for these eigenvectors. This means that the system of

equations is hyperbolic, and is well posed as an initial value problem.

2.4.2 Energy Diffusion

Permitting energy diffusion, that is ks 6= 0 and kg 6= 0, but not momentum diffu-

sion (µs = µg = 0), though still not physically meaningful, generates an interesting

result.

By including Fourier heat conduction, the dimension of the system rises to n = 9.

Powers [15], after detailed analysis, reports that the generalized eigenvalues are:
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λ =



































us

us ±

√

∂ps

∂ρs

∣

∣

∣

Ts,φs

+ ∂ps

∂Ts

∣

∣

∣

ρs,φs

(

Ts

ρ2
scvs

∂ps

∂Ts

∣

∣

∣

ρs,φs

− ∂Ts

∂ρs

∣

∣

∣

ηs,φs

)

ug ±

√

∂pg

∂ρg

∣

∣

∣

Tg

+ ∂pg

∂Tg

∣

∣

∣

ρg

(

Tg

ρ2
gcvg

∂pg

∂Tg

∣

∣

∣

ρg

− ∂Tg

∂ρg

∣

∣

∣

ηg

)

. (2.60)

These five generalized eigenvalues are all real and distinct. While there are five

corresponding generalized eigenvectors, for the generalized eigenvalues, there are not

enough generalized eigenvectors to transform the entire system into characteristic

form. Therefore the system with energy, but not momentum diffusion, is parabolic.

With proper selection of boundary conditions on Ts and Tg, the boundary/initial

condition problem is well posed. With five initial conditions, and four boundary

conditions (of Dirichlet, Neumann, or mixed form) on solid and gas temperatures,

there are enough conditions for the full set of nine equations to be well posed.

2.4.3 Momentum and Energy Diffusion

For the physically important scenario where the system has both momentum and

energy diffusion, through Fourier heat transfer and viscous stress, the dimension rises

to n = 11. Seeking, again, the generalized eigenvalues, and generalized eigenvectors,

it is possible to show that there are three real generalized eigenvalues:

λ = us, us, ug. (2.61)

Even though not all of the eigenvalues are distinct, there are three generalized

eigenvectors. This means that the system cannot be cast into characteristic form,

and thereby be hyperbolic; it is, however, parabolic. Therefore, by specifying eight

initial conditions (one on each of two boundaries for Ts, Tg, us, and ug) of appro-

priate Dirichlet, Neumann or mixed form, and three initial conditions on the other
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variables, it is reasonable to suppose that there are enough conditions for a well

posed system of eleven equations.

2.5 Boundary Conditions

Boundary conditions must be well chosen in order to assure that the problem

is solvable. For many of the problems solved in this study, the boundaries were

thermally insulated, and satisfied a no-slip condition along geometrical edges. For

the one-dimensional case with a domain of length L, that means that,

us(0, t) = us(L, t) = ug(0, t) = ug(L, t) = 0, (2.62)

∂Ts

∂x
(0, t) =

∂Ts

∂x
(L, t) =

∂Tg

∂x
(0, t) =

∂Tg

∂x
(L, t). (2.63)

By extension, for two-dimensional cases with no-slip, thermally insulated bound-

aries, the conditions are:

us(y = 0, t) = us(y = H, t) = ug(y = 0, t) = ug(y = H, t) = 0, (2.64)

vs(x = 0, t) = vs(x = L, t) = vg(x = 0, t) = vg(x = L, t) = 0, (2.65)

∂Ts

∂x
(x = 0, t) =

∂Ts

∂x
(x = L, t) =

∂Tg

∂x
(x = 0, t) =

∂Tg

∂x
(x = L, t), (2.66)

and

∂Ts

∂y
(y = 0, t) =

∂Ts

∂y
(y = H, t) =

∂Tg

∂y
(y = 0, t) =

∂Tg

∂y
(y = H, t). (2.67)
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Here, vs and vg are the vertical components of velocity, and H is the height of the

domain.

For the rest of the problems, most boundaries had periodic boundary conditions,

which required that the velocity be the same at the top and the bottom of the

domain:

us(y = 0, t) = us(y = H, t) and ug(y = 0, t) = ug(y = H, t). (2.68)
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CHAPTER 3

NUMERICAL METHOD

3.1 Equation Forms

Before solving the system of equations (Equations (2.1)–(2.7)), they were first

cast into the following form:

∂g

∂t
+ ∇ · Γ = f . (3.1)

This is the nearly conservative form of Equations (2.1)–(2.7) with appropriate forcing

terms.

The independent variables appear in Equation (3.1) through g, which is a 9×1

vector made up of the following components:

g ≡





















































g1

g2

g3

g4

g5

g6

g7

g8

g9





















































≡





















































ρsφs

ρsφsus

ρsφsvs

ρsφs

(

es + 1
2
(u2

s + v2
s)
)

ρs

ρgφg

ρgφgug

ρgφgvg

ρgφg

(

eg + 1
2
(u2

g + v2
g)
)





















































. (3.2)
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From these relations, and using Equation (2.24), the physical variables are de-

fined as:

ρs = g5, (3.3)

us = g2/g1, (3.4)

vs = g3/g1, (3.5)

φs = g1/g5, (3.6)

es =
g4

g1

−
1

2

(

g2
2 + g2

3

g2
1

)

, (3.7)

ρg = g6/(1 − g1/g5), (3.8)

ug = g7/g6, (3.9)

vg = g8/g6, (3.10)

φg = 1 − (g1/g5), (3.11)

eg =
g9

g6

−
1

2

(

g2
7 + g2

8

g2
6

)

. (3.12)

The term Γ is actually a 9 × 2 matrix containing the terms associated with the

divergence operator in Equation (3.1):

Γ =









































ρsφsus

(

ρsφsusu
T
s + φs(psI − τ s)

)

(

ρsφsus

(

es + 1
2
usu

T
s

)

+ φsus · (psI − τ s) + φsqs

)

ρsus

ρgφgug

(

ρgφgugu
T
g + φg(pgI − τ g)

)

(

ρgφgug

(

eg + 1
2
ugu

T
g

)

+ φgug · (pgI − τ g) + φgqg

)









































. (3.13)

The full expansion of Equation (3.13) is given in Equation (3.14) using consti-

tutive relations Equations (2.33)–(2.45).
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Γ =

























































































































ρsφsus ρsφsvs

ρsφsu
2
s + psφs − φsτs11 ρsφsusvs − φsτs12

ρsφsusvs − φsτs21 ρsφsv
2
s + psφs − φsτs22

(

ρsφsus

(

es + 1
2
(u2

s + v2
s)
)

+ psφsus

(

ρsφsvs

(

es + 1
2
(u2

s + v2
s)
)

+ psφsvs

−φs(usτs11 + vsτs12) + φsqs1) −φs(usτs21 + vsτs22) + φsqs2)

ρsus ρsvs

ρgφgug ρgφgvg

ρgφgu
2
g + pgφg − φgτg11 ρgφgugvg − φgτg12

ρgφgugvg − φgτg21 ρgφgv
2
g + pgφg − φgτg22

(

ρgφgug

(

eg + 1
2
(u2

g + v2
g)
)

+ pgφgug

(

ρgφgvg

(

eg + 1
2
(u2

g + v2
g)
)

+ pgφgvg

−φg(ugτg11 + vgτg12) + φgqg1) −φg(ugτg21 + vgτg22) + φgqg2)

























































































































.

(3.14)

The expanded forms of τ and q, which appear in Γ are:

τ s = 2µs













∂us
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τ g = 2µg
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qg =













−kg
∂Tg

∂x

−kg
∂Tg

∂y













. (3.18)

The forcing functions give an f vector:
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The gradient term in M does not provide any difficulties formulating the prob-

lem. Merely split the gradient form of pg∇φs into pg
∂φs

∂x
and pg

∂φs

∂y
and put the re-

sulting expressions in the appropriate terms for Mx and My as in Equation (3.19).

In this case,
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Mx = pg

∂φs

∂x
− δ(us − ug) +

1

2
(us + ug)C, (3.20)

and

My = pg

∂φs

∂y
− δ(vs − vg) +

1

2
(vs + vg)C. (3.21)

The expansion of E is

E = H(Tg − Ts) − pgF + usMx + vsMy +

(

es −
u2

s + v2
s

2

)

C. (3.22)

Using Equations (3.20)–(3.22) the full expansion of f, setting C to zero, as it was

for all of this study, and including Se is
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. (3.23)

3.2 Numerical Method

FEMLAB [22] is a commercially available partial differential equation (PDE)

solver, and was used exclusively for all problems solved in this study. FEMLAB uses

the method of lines to solve the problem. The spatial domain is first discretized into

a large number of finite elements, reducing the system to a large system of ordinary
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differential equations (ODE’s). The time advancement algorithm is a version of

the differential/algebraic equation (DAE) solver called DASPK. This solver uses

variable-order, variable-step-size backward differentiation formulas to generate a

linear system at each time step.

The resulting linear system is of the form A · x = b. The solver used in all

problems in this study is called UMFPACK, which is the most robust linear solver

that FEMLAB uses. In these problems, A is a sparse, non-diagonal square matrix.

UMFPACK is a direct solver employing an LU factorization of the matrix A. Al-

though FEMLAB does have the capability to use adaptive meshes, all meshes used

in this study were fixed.

3.3 Meshes and Grid Resolution

FEMLAB selects its own mesh sizes based on the geometry of the domain, and

various internal parameters. The operator of the code is free to refine any or all of

the domain to use a finer mesh. The mesh FEMLAB generates is not uniform, so

in order to determine approximate spacing, and size of mesh points, the following

relation was employed to determine the characteristic numerical length, Lc,

Lc ∼

√

Atot

N
. (3.24)

Here, Atot is the total domain of the area, and N is the number of elements in

the calculation. This approximation is based on the following assumptions:

1. Elements are uniformly distributed across the domain.

2. All elements are shaped as equilateral triangles.

3. The characteristic length is the length of one side of the average sized element.

It is apparent in Chapter 4 that the characteristic length of the elements is

sufficiently small to capture the physical scales of the problem.
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CHAPTER 4

VERIFICATION

4.1 One-Dimensional Shock Tube

The classical shock tube problem has two domains in which the material is

initially at rest and at a uniform temperature. The domains are, however at different

pressures and densities. Upon initiation the system is set in motion. A shock then

propagates into the lower density region, and a material discontinuity, as well as

a rarefaction zone travel into the higher density region. For a calorically perfect,

ideal, inviscid gas, an analytic solution exists, as found in Shapiro [23].

All models in these studies included diffusion effects, both of energy and of

momentum, within each phase. For the purposes of this verification problem, the

coefficients for both gases were selected such that the Prandtl number, Pr = γµcv/k,

is roughly unity in order to assure that energy and momentum diffused at nearly

the same rate.

Figure 4.1 shows the temperature profile at 60 µs for a shock tube with two ideal,

calorically perfect gases. Interphase transport is neglected, but physical diffusion

of energy and momentum remain. In order to visualize both waves in the same

graph by keeping the waves near one another, γg is artificially inflated to a value

of γg = 2.70. As seen in Figure 4.1 the predicted results match remarkably well

with the analytic solution. The only major difference is that the predicted results

have finite wave thicknesses in the shock and rarefaction zones. This is due to the
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physical diffusion, which is of sufficient magnitude to make numerical noise effects,

such as Gibbs phenomena, and dispersion, unnoticeable.
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Figure 4.1. Temperature profiles for shock tube at t = 60 µs

4.2 Convergence and Resolution

4.2.1 Error Norm

As an estimate of the convergence rates of the solver, an approximation of the

local error, given as:

el =
|ρe

s max − ρs max|

ρe
s max

(4.1)

is used. Here, ρs max is the maximum value of the solid density for the solution

to the equation set for a given mesh and ρe
s max is the maximum value of the solid

density for the solution to a highly resolved mesh, numbering 32,768 nodes. For the
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purposes of these calculations, this is taken to be the exact solution to the problem.

It is clear from Figure 4.2 that the error of Equation (4.1) is converging to zero at

a uniform rate of about O(∆x2.7), which is a faster convergence than the expected

second order. It was necessary to do a simple point convergence test on these meshes,

since the exact location of the node points shifted with each change in the mesh. It

was therefore difficult to find a way to compare all points across the entire geometry

to develop a domain convergence test, which is a better approximation of the error,

and would give a better estimate of the convergence of the system.
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Figure 4.2. Numerical convergence of solid density
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4.2.2 Shock Thickness

By assuming that all of the terms in Equation (2.4) are roughly equal in mag-

nitude, it is possible to approximate the shock thickness of the wave. Take, for

example, in the one-dimensional steady limit:

φgρgu
2
g ∼ τg = φg

4

3
µg

dug

dx
. (4.2)

The following approximation for the derivative:

dug

dx
≈
ug2 − ug2

Θ
, (4.3)

where ug1 and ug2 are pre- and post-shock velocities respectively, when substituted

into Equation (4.2), after some rearrangement, gives the following estimate for the

shock thickness, Θ:

Θ ∼
µg

ρg

ug2 − ug1

u2
g2

. (4.4)

The shock thickness for the gas, then, is approximately 1 cm in length. As seen in

Figure 4.2, the meshes used were clearly in the convergent range, and somewhat less

than the minimum length scale, indicating that the shock structures are resolved.

4.3 Piston-Driven Problems

The other major class of problems examined, which has benchmark solutions, is

that of piston-driven shocks. In this scenario, the bed of material has one boundary

into which a piston drives. This squeezes the material and establishes a wave that

travels ahead of the piston face. The piston motion is modeled in the following way:

up(t) = umax
p

[

1 − exp

(

t

trise

)]

. (4.5)
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The rise time of the piston is represented by trise and the maximum piston velocity

is umax
p .

To accomplish this, mathematically, the governing equations (Equation (2.1)–

Equation (2.7) were transformed as:

x̂ = x− umax
p

(

t+ trise

[

exp

(

t

trise

)

− 1

])

. (4.6)

Performing the transformation gives the new velocities as:

ûs = us − umax
p

[

1 − exp

(

t

trise

)]

, (4.7)

ûg = ug − umax
p

[

1 − exp

(

t

trise

)]

. (4.8)

The resultant accelerations are, then:

dûs

dts
=
dus

dts
−
umax

p

trise

[

exp

(

−
t

trise

)]

, (4.9)

dûg

dtg
=
dug

dtg
−
umax

p

trise

[

exp

(

−
t

trise

)]

. (4.10)

In effect, this means that the reference frame is attached to the accelerating

piston face, and the domain experiences a non-Galilean transformation. The tube is

sufficiently long that there were no effects at the right end of the domain. The result

is that there is an effective body force introduced into the right side of Equation

(2.3) and Equation (2.4). After solving, the inverse transformation is used to bring

the results into the laboratory frame.

33



4.4 Compaction Wave

Solving the piston problem with no heat transfer nor drag, yields the results

shown in Figure 4.3, which shows the solid volume fraction (φs). The velocity

of the piston is 100 m/s, and there is a compaction wave traveling ahead of the

piston face at a speed of approximately 380 m/s. Experimental data, and previous

numerical work, show this phenomenon. Generally, these works show a compaction

wave traveling at 400m/s ahead of the 100m/s piston. The characteristic numerical

length (Equation (3.24)) is 5.77×10−3 m, which is within the convergent range, and

fine enough to capture the smallest physical length scales of the problem (Equation

(4.4)) which is approximately 1 cm.

The predicted compaction wave speed is somewhat greater than that seen in the

literature [1]. This is likely due to the difficulty of estimating the precise location

of the wave front, given the finite thickness of the wave. The prediction, however,

is within roughly 10% of the reported value.

Figure 4.4 shows the evolution of the wave front, both in time and in space. This

plot shows the displacement of the wavefront. As shown, the system has relaxed to

a steady state, since the wave is propagating at a uniform speed, as indicated by

the strong linear fit to the data in Figure 4.4.

Of further interest, Figure 4.5 shows the variation of the compaction wave speed,

Uc with the piston speed Up for a range of piston speeds. The experimental data

from Sandusky [1] is also shown. For many of the piston speeds, the code shows

slightly higher compaction wave speeds, although the scatter of the data indicates

that the numerical results are still in good agreement with the experimental results.
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Figure 4.3. Solid volume fraction for a piston at t = 60 µs

4.5 Stability

A simple demonstration of the stability of the system and the solver was per-

formed, and is discussed here. A stable problem will return to equilibrium after

a slight perturbation. To test the stability, a concentrated energy source, of mag-

nitude 104 W/m3, was imposed on a piston problem, in a region through which

the wave had already passed. This source was applied for 3 µs. By examining the

time derivative of the gas temperature at the source location, it was obvious that

the temperature was relaxing back to the post wave values. Figure 5.1 shows the

time derivative of the temperature. This plot shows the first derivative is nega-
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tive, and that the second derivative is decreasing. These two facts, negative first

derivative and decreasing second derivative, are hallmarks of a system relaxing to

an equilibrium value.
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CHAPTER 5

RESULTS

5.1 Two-Dimensional Shock Tube

The simplest two-dimensional extension is to use a long narrow tube, with peri-

odic boundary condition along the long edges. The consequent results are essentially

a one-dimensional shock tube. These results are for ideal, non-interacting gases in

a thermally insulated tube with impermeable walls. (i.e. the exact same conditions

as used in the one-dimensional case of Section 4.1.)

Figure 5.1 shows a contour plot of the solid temperature for the shock tube.

Figure 5.2 shows a cross section view of the solid and gas temperatures. Note the

similarities in Figure 5.2 and Figure 4.1. The characteristic numerical length, from

Equation (3.24), for these two-dimensional results is approximately 4 mm. Again,

the minimum physical length scale is around 1 cm, as calculated in Equation (4.4).

The solid temperature results from the fully two-dimensional problem with periodic

boundary conditions, and the one-dimensional shock tube are indistinguishable even

though the results are from a fully two-dimensional code. There is no mechanism

driving the y components of velocity or momentum, hence the similarity to the

one-dimensional code.

The next logical step is to impose a no-slip boundary condition on all sides of

the domain. The results of the solid temperature from such a shock tube are shown

in Figure 5.3. Compare Figure 5.1 and Figure 5.3. There are subtle but important
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Figure 5.1. Solid temperature for two-dimensional shock tube with periodic bound-
ary conditions at t = 60 µs

differences. First, there is noticeable curvature in the y direction, in the temperature

profile caused by the no-slip condition. As well, the post shock temperature does

not stay constant in the x direction as it does for the case with periodic boundary

conditions.

A cross section of the domain, (Figure 5.4), through the center of the shock tube

(y = 0.005 m, 0 m < x < .05 m), shows the profile for gas temperature at 60 µs for

both the periodic and the no slip conditions. The profile of the temperature for the

periodic boundary condition shows the classic profile for a one-dimensional shock
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Figure 5.2. Temperature profiles at the centerline for two-dimensional shock tube
at t = 60 µs

tube, such as sharp wave fronts, and constant temperatures in the domains through

which the the waves have passed. When the no slip boundary condition is imposed,

the leading edge of the shock becomes slightly more diffuse, and the temperatures

in the domain through which the waves have passed are not constant.

When drag and heat transfer are included in the system, the effects are almost

negligible on the solid phase. Due to the much greater density of the solid phase,

the gas equilibrates to the solid phase with very little effect to the solid. Figure 5.5

shows the relative difference in the solid temperature profiles defined as:
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Figure 5.3. Solid temperature for two-dimensional shock tube with no-slip boundary
conditions at t = 60 µs

Td =
Ts − Tsd

To

. (5.1)

Here, Ts is the solid temperature for the simple shock tube. Tsd is the tempera-

ture for the same shock tube when diffusion is included, Td is the relative difference

of the two, and To is the initial temperature.
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Figure 5.4. Comparison of gas temperature profiles through the center of the domain
for no slip and periodic boundary conditions at t = 60 µs

5.2 Two-Dimensional Piston

For the two-dimensional piston, periodic boundary conditions were introduced

at y = 0 m, 0 m < x < 0.5 m and y = 0.05 m, 0 m < x < 0.5 m, but no

further modifications occurred in the forcing functions of the phases (Equations

(4.9)–(4.10)), since there was no acceleration in the vertical direction.

As done in Section 5.1 for the simple shock tube, here is a similar comparison

of gas temperatures for the piston-driven problem, both for a piston with periodic

boundary conditions (Figure 5.6), and for the problem with no-slip boundary con-
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Figure 5.5. Relative difference in solid temperature with and without diffusion of
energy and momenta t = 60 µs

ditions (Figure 5.7). This latter case is not as physically meaningful since there is

necessarily slip along the cylinder at the physical piston face, but this exercise gives

meaningful insight into the two-dimensional piston problem.

As with the case of the shock tube problem, there are similarities between the

speeds of the wave fronts, but there are obvious boundary layer effects in the case

with no-slip conditions. This seems to indicate that there are no significant under-

lying problems with the two-dimensional extension of the equation set.
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Figure 5.6. Gas temperature for the piston-driven problem with periodic boundary
conditions at t = 600 µs

5.3 Forcing Function

In order to generate meaningful results for the system, a specific choice was made

for Se,

Se = ao e
−bo( (x−xo)2+(y−yo)2). (5.2)

Equation (5.2) is a narrow two-dimensional Gaussian curve. The amplitude

factor ao has units of W/m3, which is energy per unit volume. The steepness of

the curve is affected by bo, which has units of m−2, and xo and yo have units of m

45



 x [m]

y 
[m

]

34
0 340

330 32
0 30031
0

350

35
0

0 0.1 0.2 0.3 0.4 0.5
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Values in K

Figure 5.7. Gas temperature for the piston-driven problem with no-slip boundary
conditions at t = 600 µs

and determine the placement of the center of the energy source. Figure 5.8 shows a

cross section of the forcing function. It is radially symmetrical and centered at the

center of the physical domain.

For some of the simulations, where the length of the domain was much larger

than the height, altered form of Equation (5.2) was used. These alteration provides

a planar forcing function as follows:

Se = ao e
−bo( (x−xo)2). (5.3)
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Figure 5.8. Initial profile of source term S

Since the physical domains for these simulations are on the order of centimeters,

it is necessary to choose bo, in Equation (5.2) sufficiently large to give a concentrated

source. In this case, bo ∼ 106 m−2. Furthermore, in order to assure compaction,

it was found, after testing several values, that it was necessary to choose ao ∼

1014 W/m3. This leads to solid volume fractions close to unity.

5.4 Simple Geometry

The simplest problem is to subject two calorically perfect ideal gases to the

source term that appears in the energy equations. Obviously, there will no longer
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be conservation of energy, but mass is still conserved. It is worth noting that the

heat source causes an initial, and marked decrease in density of the two phases.

In order to demonstrate the physics of the problem, the source function is first

applied to a circular region far from any edges to ascertain the behavior of the sys-

tem independent of geometric considerations. Figure 5.9 and Figure 5.10 show the

density cross sections for two calorically perfect ideal, non-interacting gases. These

cross sections include the center of the physical domain, and send out disturbances

in a radially symmetrical way. There is uniform radial pulse traveling outward for

the two gases at the rates of 5000 m/s and 3333 m/s. The sound speeds (c) for

these two ideal gases were calculated as:

c =
√

γRT =
√

γcvT (γ − 1). (5.4)

For the ideal gas, with the smaller ratio of specific heats, the temperature dif-

ference between the pre- and post- wave values was in the range of ∼ 103K, so

the acoustic speed calculated from Equation (5.4) was difficult to approximate. As

well, it was not clear where the wave front was, due to its finite thickness. Nonethe-

less, the predicted wave speed for the other gas was in good agreement with the

calculated value. The wave speed observed was approximately 3333 m/s, while the

calculation predicted a wave speed of approximately 3000 m/s.

5.5 Long Slender Region

The first geometry studied is a long slender region, subjected to the energy source

on one end, with periodic boundary conditions along the long sides of the region.

In this way, a wave results, and travels down the tube. Figure 5.12 shows two ideal

calorically perfect gases subjected to the energy source. They attain wave speeds of

approximately 6300 and 3000 m/s. When the no-slip condition is imposed, there
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Figure 5.9. Ideal gas density for a concentrated energy source: higher ratio of specific
heats at t = 60 µs

is no significant effect on the wave speeds measured at the center of the channel,

though there is a marked overall effect, as shown in comparison of the contour

plots of gas density in Figure 5.11 and Figure 5.12. (The representation of the

physical domain has been altered to allow for better visualization of the data. In

particular, the aspect ratio of height to width has been made approximately one.)

The differences in these two are mainly in the form of boundary layer effects on the

trailing low density region in the tube.

A cross section plot of the gas density (Figure 5.13), across the long axis of the
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Figure 5.10. Ideal gas density for a concentrated energy source: lower ratio of
specific heats at t = 60 µs

region, is provided to give a better sense of the densities encountered in this study.

5.6 Annulus

For a more geometrically interesting problem an annulus was chosen. Figure

5.14 shows a contour plot of the initial forcing function. In this case, the annulus is

subjected to a concentrated energy source, which induces compaction.

These results are for the problem where drag, compaction, and heat transfer are

all present. Notice, again, the significant decrease in density of phases at the site of

the energy source in Figure 5.15.
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Figure 5.11. Gas density for a concentrated energy source with periodic boundary
conditions at t = 50 µs

Notice in Figure 5.16 that the energy source has caused the volume fraction of

the solid (φs) to approach unity.

Physically, this means that the solid-gas matrix has squeezed in on itself leaving

a nearly solid region with small pockets of denser gas. As well, the compaction zone

has traveled uniformly outward from the initiation point. At the geometric edges of

the region, the no-slip boundary condition has caused these waves to attach to the

walls. This is most evident in Figure 5.17 which shows the kinetic energy per unit

volume of the system, where kinetic energy, Ek is given by:
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Figure 5.12. Gas density for a concentrated energy source with periodic boundary
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Ek =
1

2
ρsφs

(

u2
s + v2

s

)

+
1

2
ρgφg

(

u2
g + v2

g

)

(5.5)

The gas and solid velocities have equilibrated, due to the inclusion of drag.
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Figure 5.13. Gas density for a concentrated heat source with no-slip at t = 50 µs
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CHAPTER 6

DISCUSSION AND FUTURE WORK

6.1 Discussion

The results shown here are an important development in compaction research,

since most previous studies deal only in one-dimensional behavior. Several test

problems were solved in two dimensions; unfortunately, there has been very little

research done for such problems, so almost no data exist to which it is possible to

compare these results. However, the one-dimensional limits of the test problems

compare well with analytical and experimental results, and the two-dimensional

problems show good agreement to these one-dimensional limits.

This model explicitly formulates diffusion of energy and momentum in both

phases, providing the following advantages. First, such a formulation eliminates

unwanted numerical problems without requiring restrictively fine meshes. Second,

these results were solved using the basic solvers of commercially available software.

Third, it is possible to specify a finite physical length scale which limits the physical

length scales for which small scale phenomena occur, and consequently dictates the

numerical length scale of the problem.

The model is well posed with initial and boundary conditions, and is converging

at a uniform rate. The numerical results for a one-dimensional shock tube compare

well to the analytical solution. As well, the numerical solution to the piston-driven

compaction is in good agreement with experimental data. It is also apparent that
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the equation set used is sufficiently general to model two-dimensional problems,

since the full two-dimensional solutions compare well to the one-dimensional limits.

6.2 Future Work

There is still some question as to formulating constitutive models, such as for

compaction, based on theory, rather than ad hoc curve fitting to experimental data.

This still remains a rich field for future research. Also, it would be a straightforward

extension to introduce chemical reaction into the problem by including a non-zero

form of C. Incorporating the current work of Lowe and Greenaway [17], which is

on the effects of particle size on compaction behavior, into the full two-dimensional

analysis is of particular interest to the author since the current model does not

account for the physical structure of the solid matrix..

The equations presented here are general enough to allow for a fully three di-

mensional study of the phenomena. It would also be of interest to explore the effects

of wall reflections by allowing the shocks to reach geometry edges. There are also

many different forcing functions to explore, such as mass or heat sinks, fluxes of mo-

mentum or energy, and extension of one-dimensional the piston problem into more

complicated geometries.

59



REFERENCES

[1] H. W. Sandusky and T. P. Liddiard. Dynamic compaction of porous beds.
Naval Surface Weapons Center Report 83-256, December 1985.

[2] K. A. Gonthier and J. M. Powers. A numerical investigation of transient deto-
nation in granulated material. Shock Waves, 6(4):183–195, 1996.

[3] P. E. Luebcke, P. M. Dickson, and J. E. Field. Deflagration-to-detonation
transtion in granular pentaerythritol tetranitrate. Journal of Applied Physics,
79(7):3499–3503, 1996.

[4] H. W. Sandusky and R. R. Bernecker. Compressive reaction in porous beds of
energetic materials. Naval Surface Weapons Center Eighth Detonation Sympo-
sium, 1985.

[5] M. R. Baer and J. W. Nunziato. A two-phase mixture theory for the
deflagration-to-detonation transition (DDT) in reactive granular materials. In-
ternational Journal of Multiphase Flow, 12(6):861–886, 1986.

[6] H. Krier and S. S. Gokhale. Modeling of convective mode combustion
through granulated propellant to predict detonation transition. AIAA Journal,
16(2):177–183, 1978.

[7] P. B. Butler, M. F. Lembeck, and H. Krier. Modeling of shock development
and transition to detonation initiated by burning in porous propellant beds.
Combustion and Flame, 46(1):75–93, 1982.

[8] J. M. Powers, D. S. Stewart, and H. Krier. Analysis of steady compaction waves
in porous materials. Journal of Applied Mechanics, 56(15):15–24, 1989.

[9] J. M. Powers, D. S. Stewart, and H. Krier. Theory of two-phase detonation,
Part I: Modeling. Combustion and Flame, 80(3-4):264, 1990.

[10] J. M. Powers, D. S. Stewart, and H. Krier. Theory of two-phase detonation,
Part II: Structure. Combustion and Flame, 80(3-4):280, 1990.

[11] K. A. Gonthier and J. M. Powers. A high resolution numerical method for a two-
phase model of deflagration to detonation transition. Journal of Computational
Physics, 163(2):376–433, 2000.

[12] J. B. Bdzil, R. Menikoff, S. F. Son, A. K. Kapila, and D. S. Stewart. Two-
phase modeling of deflagration-to-detonation transition in granular material: A
critical examination of modeling issues. Physics of Fluids, 11(2):378–402, 1999.

60



[13] A. K. Kapila, R. Menikoff, J. B. Bdzil, S. F. Son, and D. S. Stewart. Two-
phase modeling of deflagration-to-detonation transition in granular material:
Reduced equations. Physics of Fluids, 13(10):3002–3024, 2001.

[14] A. Chinnayya, E. Daniel, and R. Saurel. Modeling detonation waves in hetero-
geneous energetic materials. Journal of Computational Physics, 196(2):490–538,
2004.

[15] J. M. Powers. Two-phase viscous modeling of compaction of granular materials.
Physics of Fluids, 16(8):2975–2990, 2004.

[16] M. V. Papalexandris. A two-phase model for compressible granular flows based
on the theory of irreversible processes. Journal of Fluid Mechanics, 517:103–
112, 2004.

[17] C. A. Lowe and M. W. Greenaway. Compaction processes in granular beds
composed of different particle sizes. Journal of Applied Physics, 98(12):547,
2005.

[18] C. A. Lowe and A. W. Longbottom. Effect of particle distribution on the
compaction behavior of granular beds. Physics of Fluids, 18(6):066101, 2006.

[19] K. A. Gonthier. Predictions for weak mechanical ignition of strain hardened
granular explosive. Journal of Applied Physics, 95(7):3482–3494, 2004.

[20] D. W. Schwendeman, C. W. Wahle, and A. K. Kapila. The Reimann problem
and a high-resolution Godunov method for a model of compressible two-phase
flow. Journal of Computational Physics, 212(2):490–526, 2006.

[21] E. Zauderer. Partial Differential Equations of Applied Mathematics. Wiley,
New York, 1989.

[22] COMSOL. FEMLAB User’s Guide and Introduction, 2003.

[23] A. H. Shapiro. The Dynamics and Thermodynamics of Compressible Flow.
Kreiger, Malabar, Florida, 1953.

61


