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Abstract

This report focuses on numerical solutions to shock tube problems in which anomalous

behavior is demonstrated in a van der Waals gas. This study aims to explain the physics and

provide solutions outlining the phenomenon of discontinuous rarefactions and continuous

compressions in regions where isentropes are non-convex in pressure and specific volume

space. In this work, the primary solution procedure involves the Richtmyer two-step Lax-

Wendroff method to solve the Euler equations governing gas dynamics. For three unique

sets of initial conditions, the gas behavior in each regime is identified and analyzed, and

the speed of sound is connected to solutions in which anomalous behavior is predicted. It is

found that discontinuous rarefactions and isentropic compressions may occur in certain gases

near the vicinity of the vapor dome which entails a reversal of the speed of sound’s relation

to the state variables, and the second law of thermodynamics is ultimately not violated.
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1 Introduction

In this report, anomalous wave behavior exhibited by a van der Waals gas will be ex-

plored. The convexity of isentropes in the pressure-specific volume plane will be connected

to numerical solutions of standard Sod shock tube problems [1] with van der Waals as the

coupled equation of state. A mathematical feature of a function known as convexity will

be shown to play a large role in the wave form of solutions, allowing for the possibility of

discontinuous rarefactions (often coined “rarefaction shocks” in the literature) and isentropic

compressions.

To solve Sod shock tube problems, the Euler equations will be introduced as governing

equations. A Sod shock tube problem is one in which a diaphragm separates two given initial

conditions (typically one of high pressure and one of low pressure), and the diaphragm is sud-

denly removed such that waves propagate in both directions. The release of the diaphragm

may produce shock waves and rarefaction fans in typical compressible aerodynamics. The

Euler equations are a system of non-linear conservation laws for mass, momentum, and en-

ergy that explain the flow in the shock tube. A system of conservation laws differs from scalar

conservation laws in that dependent variables of each particular equation depend on other

dependent variables in the system; thus, solutions for each variable in question (i.e. mass,

momentum, and energy in this case) need to be updated simultaneously to provide a solution.

For this work, the second-order Richtmeyer two-step Lax-Wendroff method is used to form

solutions, and a comparison to first-order Lax-Friedrichs and an exact solution will explain

its efficacy in practice. Numerical effects of the first-order Lax-Friedrichs and second-order

Lax-Wendroff methods will be analyzed, and reasoning will be provided for the choice of

discretization method before mentioned.

Ultimately, emphasis will be placed on three specific cases of solutions to van der Waals

shock tube problems. In the first case, the initial conditions governing the shock-tube prob-

lem are located in pressure-specific volume space where isentropes are fully convex. In the
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second case, initial conditions lie in the regime where isentropes are fully non-convex, and

the third case is a mixed case in which part of the solution space is convex and the other

non-convex.

For the remainder of this report, the underlying theory for anomalous wave behavior in

the inviscid, compressible, van der Waals gas will be investigated. New concepts such as the

fundamental derivative of gas dynamics will be calculated from the adiabatic sound speed

in Section 2, the concept of convexity will be explored in Section 3, and implications of the

fundamental derivative curve in pressure and specific volume space will be examined on wave

dynamics through numerical solutions in Sections 6, 7, and 8 to the governing equations in

Section 4.

2 Literature Review

In an investigation of derivatives of isentropes in the pressure and specific volume, P − v,

plane as they apply to single-phase gases and phase transitions, Bethe [2] theorized the

possibility that ∂2P/∂v2|s < 0, where s is the specific entropy, could be found for single-

phase gases with values of δ = R/cv less than 0.06, or cv/R values of 17.5 or greater where

R is the specific gas constant R = R̂/M (R̂ = 8.314 J/mol/K), M is the molecular mass,

and cv is the specific heat at constant volume. However, he noted that such large values of

cv/R in a gas are nearly impossible in nature. Thus, for all gases, the claim was made that

∂2P/∂v2|s > 0. Zel’dovich [3] conveyed this phenomenon as well; however, he believed that

certain gases could demonstrate this behavior. Lambrakis and Thompson [4] were among the

first to investigate these particular fluids, and found that a number of fluids in fact possess

δ values of less than 0.06. Fluids that exhibit this particular behavior are recognized in the

literature as Bethe-Zel’dovich-Thompson fluids, or BZT fluids, coined after the pioneers of

the primary discovery.
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The adiabatic sound speed, c, is well known to be given by the following formula [5],

c2 = −v2
(
∂P

∂v

)
s

. (1)

Thompson [6], introduced a relation to ∂2P/∂v2|s and the sound speed that provides context

to the anomalous phenomenon. His relation known as the fundamental derivative, G, of gas

dynamics is given in Eq. (2) by,

G =
v3

2c2

(
∂2P

∂v2

)
s

. (2)

Note, the value of the scaling factor v3/2c2 is always positive. This is of particular importance

as the sign of G directly depends on the second derivative of pressure along the isentrope.

Later, Colonna and Guardone [5] in a molecular investigation of non-classical gas dynamics

provided an exactly equivalent definition of the fundamental derivative given by:

G = 1− v

c

(
∂c

∂v

)
s

. (3)

The exact analysis in this paper could have been computed using Eq. (3); however, analysis

here is focused on Eq. (2). As summarized by Colonna and Guardone [5], the reason for

which large cv gases demonstrate negative second derivatives of pressure with respect to

specific volume is seen in Eq. (4). From thermodynamics, one has

(
∂T

∂v

)
s

= −T
cv

(
∂P

∂T

)
v

. (4)

As cv increases, the closer ∂T/∂v|s approaches 0. This entails that temperature, T , variance

with specific volume is minimized and tends towards an isentrope. Thus, for equations

of state such as van der Waals where isotherms are non-convex in the vicinity of the vapor

dome, one could expect non-convex isentropes for high specific heat at constant volume gases.

Certain gases with δ < 0.06 are provided in Tab. 1 [5], along with important information
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regarding critical constants. Not surprisingly, BZT fluids are typically heavier hydrocarbons

and fluorocarbons that possess a large number of degrees of freedom, N = 2/δ, due its large

size, mass, and potential kinetic and rotational energy present in the molecule. Another way

of demonstrating the necessary condition for a particular fluid to possess a viable G < 0

region is such that its number of degrees of freedom exceeds 35.

Table 1. A summary of BZT gases exhibiting δ = R/cv < 0.06 and thus a region in which
∂2P/∂v2|s < 0 for a single-phase vapor.

Fluid M [g/mol] Pc [Pa] Tc [K] δ N

Toluene 92.14 3990000 591.8 0.0452 44.3

Octane 114.20 2430000 568.8 0.0273 73.3

Decane 142.29 2060000 617.7 0.0205 97.5

Dodecane 170.34 1770000 658.2 0.0164 121.6

D4 296.62 1330000 586.5 0.0157 127.6

PP5 462.00 1710000 565.2 0.0156 128.5

PP10 574.00 1580000 632.2 0.0128 156.2

For this report, the gas of interest is Perfluoroperhydrofluorene (C13F22), or PP10. Any

particular gas in Tab. 1 could have been chosen; however, the large region in which G < 0

for PP10 makes the gas favorable for good numerical results.

Many authors have investigated the effects of the G < 0 region on aerodynamic quantities

such as lift and drag, as well as in Rankine cycles [7 - 9]. The primary idea in this regime

is to reduce elements of wave drag by reducing shock wave interactions while maintaining

large temperature drops required for Rankine cycles. With much of the work in this area

stemming from the past few decades, many of the useful benefits from the G < 0 region are

continuing to be explored by those hoping to take advantage of favorable wave dynamics on

a system.
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3 Convexity

In this section, I will repeat my analysis of convexity [10] to provide context for the

following shock tube problems. It is useful to define a convex function as one in which its

epigraph, or the region above the curve, is a convex set. A set is said to be convex if a line

segment can connect any two points in the set and remain entirely within the set [11]. Some

convex examples are given in Fig. 1(a) and Fig. 1(b).

x

f(
x
)

(a) f(x) = |x|
x

f(
x
)

(b) f(x) = e−x

Figure 1: Examples of convex functions in two dimensions.

Note in Fig. 1(a) and Fig. 1(b) that there are no two points in the epigraph (given by the

red shaded region) of each curve that may be connected with a line that exits the set (the

black line segments are included to illustrate this point). Thus, both of these functions are

convex. A non-convex function displays the opposite properties. An example of a non-convex

function is given in Fig. 2.

As shown in Fig. 2, a line may be drawn that enters the region below the curve to

connect two points within the epigraph. This defines the function as non-convex. To describe

convexity through the use of an equation, it is useful to examine the curvature of a planar
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 x

 f
(x

)

Figure 2: A non-convex, cubic function f(x) = x3

curve [12] given by,

κ =
f ′′(x)

(1 + f ′(x)2)3/2
, (5)

where the term of importance is the second derivative of the function, f ′′(x). At any point

 x

 f
(x

)

(a) f ′′(e−x) = e−x, Convex
x

f(
x
)

(b) f ′′(x3) = 6x, Non-Convex

Figure 3: Second derivatives of convex and non-convex functions.
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should the second derivative of the function be negative, it is a non-convex function. To

examine this property, the second derivatives of two of the before-mentioned examples are

given in Fig. 3(a) and 3(b). Thus, any function with a negative second derivative will be

considered non-convex. A given convexity plays a large role in wave formation and motion.

Change of convexity is the cause of splitting of wave forms into fans and discontinuities, as

will be seen through the examination of shock tube problems.

4 Governing Equations

The Euler equations are given with mass conservation as Eq. (6), linear momentum con-

servation as Eq. (7), and energy conservation as Eq. (8). The coupled van der Waals equation

of state [13] is given in Eq. (9), and the caloric equation of state is given by Eq. (10) with a

relation for density to specific volume in Eq. (11):

∂ρ

∂t
+∇ · (ρu) = 0, (6)

∂(ρu)

∂t
+∇ · (ρuu + P ) = 0, (7)

∂(ρe+ 1/2ρu · u)

∂t
+∇ · ρu

(
e+

1

2
u · u +

P

ρ

)
= 0, (8)

P (T, v) =
RT

v − b
− a

v2
, (9)

e = cvT − aρ, (10)

v =
1

ρ
, (11)

where ρ is the density, u is the vector velocity of the fluid, and e is the specific internal energy.

Note, for a van der Waals gas with constant cv, the specfiic heat at constant pressure, cP ,

is not a constant; hence, the gas is not calorically perfect. Further, in this analysis, we will

restrict ourselves to the one-dimensional case. As a result, we possess six equations in one-
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dimension with six unknowns (namely density, momentum, energy, temperature, velocity,

and pressure), granting the ability to solve the system. In Eq. (9), the values of a and b are

constants that modify the typical ideal gas equation to account for finite molecular volume

of fluid particles and inter-molecular interactions between particles, and are chosen such that

the experimentally observed critical point is a point of inflection for the critical isotherm in

the P − v plane. In canonical form for a standard van der Waals gas, the constants a and b

are given by

a =
27

64

R2T 2
c

Pc
, (12)

and

b =
1

8

RTc
Pc

, (13)

where in Eq. (12) and Eq. (13), Tc and Pc are the critical temperature and critical pressure,

respectively. Values of a and b can be computed for each fluid in Tab. 1, and for PP10,

values of a and b are 22.3889 m3/kg and 0.0007244 Pa m6/kg2, respectively.

To compute the adiabatic sound speed, the following approach was taken [13], starting

from the differential Gibbs equation, one has

T ds = de+ P dv. (14)

To rewrite dv in terms of dρ, Eq. (11) is differentiated to yield dv = −1/ρ2 dρ. Substituting

this relation into Eq. (14), one finds

T ds = de− P

ρ2
dρ. (15)

In our case, BZT vapors may be modeled as simple compressible substances with e = e(ρ, P ),

de may be expressed as

de =

(
∂e

∂ρ

)
P

dρ+

(
∂e

∂P

)
ρ

dP. (16)
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Substituting Eq. (16) into Eq. (15), taking ds = 0, and solving for ∂P/∂ρ|s produces

(
∂P

∂ρ

)
s

=
−
(
∂e
∂ρ

)
P

+ P
ρ2(

∂e
∂P

)
ρ

. (17)

It can be shown that the adiabatic sound speed is the square root of the left-hand side of

Eq. (17). Using Eq. (10) and substituting temperature for pressure by Eq. (9), the adiabatic

sound speed for the van der Waals gas is found as

c =

√
2abcv − a(cv −R)v + P (cv +R)v3

cv(v − b)v
. (18)

Note, if a and b are taken to 0, the ideal gas solution is recovered. With the adiabatic sound

speed as computed in Eq. (18), it is possible to now calculate the fundamental derivative of

gas dynamics by Eq. (2). Starting from Eq. (14) and integrating for a van der Waals fluid,

one finds,

s− so = cv ln

(
T

To

)
+R ln

(
v − b
vo − b

)
, (19)

where To, vo, and so are arbitrary reference states. Eq. (9) can be solved for temperature

(also known as the thermal equation of state) and substituted into Eq. (19) for s(P, v).

Rearranging, one produces P (s, v). The equation is given by

P (s, v) =

(
RTo
vo − b

)
exp

(
s− so
cv

)(
vo − b
v − b

)1+R/cv

− a

v2
. (20)

Note, if the gas is calorically perfect and ideal under an isentropic process, Eq. (20) reduces

to Pvγ = constant, where γ is the ratio of specific heats cP/cv. Eq. (2) requires ∂2P/∂v2|s,

and Eq. (20) is in the form necessary to compute the derivatives. Carrying out this process,

substituting back in for P and ρ by Eq. (19) and Eq. (9) with v = 1/ρ, and substituting
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Eq. (18) for the scaling factor, the fundamental derivative for van der Waals is found as

G(P, ρ) =
cv

(
b− 1

ρ

)(
−6aρ4 + (cv+R)(2cv+R)ρ2(P+aρ2)

c2v(−1+bρ)2

)
(−2Pρ(cv +R) + 2aρ3(cv −R− 2bcvρ))

. (21)

In the calorically perfect ideal gas limit, the fundamental derivative reduces to

G =
γ + 1

2
, (22)

For calorically perfect ideal gases, G must be greater than unity. In regions where 0 < G

< 1, non-ideal effects due to the van der Waals equation of state are found [5], but are not

important for this study, as compression shocks and rarefaction fans are predicted in this

range of G.

As discussed, the G = 0 curve is of particular importance for wave dynamics. Substituting

our parameters for PP10 from Tab. 1, with R given by R̂/M where R̂ is the universal gas

constant, and calculating the necessary unit conversions, a curve for G = 0 is produced and

is shown in Fig. 4. As seen in Fig. 4, isentropes nearly coincide with isotherms for large cv

gases. As also demonstrated in Fig. 4, there is a change of convexity of the isentropes and

isotherms outside of the G = 0 curve to within the G = 0 curve. Isentropes and isotherms

under the G = 0 curve experience a non-convex shape that is particularly important in the

formation of a wave form.

5 Shock Capturing Methods

For the remainder of this paper, solutions will be provided to shock tube problems gov-

erned by the Euler equations and different sets of initial conditions. The Euler equations are

conservation laws of the form:

∂u

∂t
+
∂f(u)

∂x
= 0, (23)
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0.0100.0080.0060.0040.0020

v (m3/kg)

2.0 × 106

3.0 × 106

1.0 × 106

P
 (

P
a
)

G = 0
Critical Isentrope

Isotherms
Critical Point

Figure 4: A plot of G = 0, PP10’s critical isentrope, and a family of isotherms.

where u is the conserved variable, and f(u) is the flux of the conserved variable. The

convexity of the flux function indicates changes in the shape of a wave form, and more in-

depth analysis of this phenomenon in the scalar sense is given in Davies [10]. One first-order

approach to solving conservation laws of this form is the Lax-Friedrichs finite differencing

method [14], provided as:

un+1
j =

1

2
(unj−1 + unj+1)−

∆t

2∆x
(f(u)nj+1 − f(u)nj−1). (24)

The Lax-Friedrichs method is a forward differencing scheme in time and a central-differencing

scheme in space that is rudimentary, but useful for shock tube problems. For a sample Lax-

Friedrichs code in the scalar case, one can refer to Davies [10]. Often common among

first-order methods, the Lax-Friedrichs method is rather dissipative near discontinuities as

14



is demonstrated in Fig. 5.

For the purpose of this paper, the numerical viscosity inherent to Lax-Friedrichs hides

important results. For initial conditions in which we should expect anomalous behavior of

waves (i.e. discontinuous rarefactions/compressions, isentropic compressions/rarefactions, or

some combination), it is important that a distinction can be made between physically contin-

uous wave forms and numerically induced dissipation. To address this issue, the second-order

Richtmyer two-step Lax-Wendroff method is useful. The two-step Lax-Wendroff method is

given as [14],

u
n+1/2
j+1/2 =

1

2
(unj + unj+1)−

∆t

2∆x
(f(unj+1)− f(unj )),

un+1
j = unj −

∆t

∆x
(f(u

n+1/2
j+1/2 )− f(u

n+1/2
j−1/2 )).

(25)

The two-step Lax-Wendroff method estimates the value of u at the half step unj+1/2, and uses

this to perform central differencing about the j+1/2 spatial grid point to gather a value for u

at the n+1/2 time step. A similar process is used for the unj−1/2 point, as a central-difference

is simply taken about j − 1/2. A full time step is then taken by taking a step of ∆t with a

central difference at the j grid point. Common among nominally second order methods, the

two-step Lax-Wendroff method demonstrates oscillations near discontinuities. Though some

numerical dissipation is present, it is not nearly as prevalent as it is in nominally first-order

methods, and for this reason, solutions in this paper are limited to the Lax-Wendroff method.

An air (R = 287 J/kg/K, cv = 717.5 J/kg/K), ideal gas, Sod shock tube problem with

left side initial conditions, PL = 500000 Pa and vL = 0.3876 m3/kg and right side initial

conditions PR = 101325 Pa and vR = 0.8163 m3/kg is provided to demonstrate a comparison

between the Lax-Friedrichs method, Lax-Wendroff method, and an exact solution. This

comparison is shown in Fig. 5.

As is common among all shock capturing methods, the two-step Lax-Wendroff method

converges at less than first order due to large differences in solutions at discontinuity loca-

tions. An L1 error analysis comparing numerical solutions to the exact solution in Fig. 5 was
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Lax-Wendroff Solution

Lax-Friedrichs Solution

Exact Solution

Figure 5: A plot comparing the Lax-Friedrichs method, Lax-Wendroff method, and an
exact solution of an ideal gas Sod shock tube problem with ∆x = 1× 10−3 m,

∆t = 1× 10−6 s at t = 0.0005 s.

completed on the two-step Lax-Wendroff method. The result of this error analysis is given

in Fig. 6. In Fig. 6, the exponent of ∆x indicates the order of convergence of the method.

The L1 error was taken by summing the scaled density error over the entire domain, and

dividing by the grid size. This is represented by Eq. (26):

L1 ρ Error =

Ngrid−1∑
i=1

|ρexact,i − ρLW,i|
ρexact,i

 1

Ngrid − 1
. (26)

In Eq. (26), ρexact indicates density of the exact solution, ρLW indicates the density of the

numerical solution, and Ngrid represents the number of grid points in the domain. For each

grid, the number of points in the exact solution was adjusted such that it corresponded in

size to the numerical solution.

For the remainder of this report, solutions are run at a grid size of ∆x = 3× 10−5 m for

a total of 33333 points over the domain. The value of ∆t was determined by the maximum
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Average Error = 0.17821

 

x
0.5998

Figure 6: Scaled L1 density error as a function of grid size.

expected wave speed for the given problem. As BZT gases are typically slower propagating

gases, the expected wave speed is low. For stability, ∆t was encoded as ∆x/(1000 m/s), as

the maximum wave speed to “outrun” the grid is projected to be much less than 1000 m/s.

A different, perhaps better, approach for future implementation involves scanning the grid

for the largest value of the wave speed, u + c, and setting the value of ∆t accordingly. The

Lax-Wendroff code used to create the results here is given in Appendix A.

6 The Convex Case

The first case of particular interest is the case in which G > 0. For all cases, the wave

motion is driven by a reservoir of high pressure and density that drives the flow when a

“diaphragm” is released that allows for the interaction between both sets of initial conditions.

The values for the initial conditions in this case and the cases to follow are provided in Tab 2,

and important parameters regarding the PP10 gas necessary for shock tube initial conditions

is provided in Tab. 3. The left-side initial pressure is given as PL, and the specific volume is
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given by vL. The right side initial conditions are also provided and are given with subscript

R. In this particular example, both initial conditions are located in the regime where G > 0.

A graphical depiction is given in Fig. 7. As predicted by the literature, typical behavior of

gas dynamics should be expected in this region of P −v space. Solutions for the set of initial

conditions described above are provided in Fig. 8.

0.0100.0080.0060.0040.0020

v (m3/kg)

2.0 × 106

3.0 × 106

1.0 × 106

P
 (

P
a
)

G = 0
Critical Isentrope

Isotherms
Critical Point

Figure 7: A plot of G = 0, PP10’s critical isentrope, a family of isotherms, and two points
representing initial conditions separated by a diaphragm for the convex case.

Table 2. A summary of initial conditions used for solutions to Sod shock tube problems.

Case PL (Pa) vL (m3/kg) PR (Pa) vR (m3/kg)

Convex I.C.’s 2.5×106 0.0022 2.0×106 0.0035

Non-Convex I.C.’s 1.74×106 0.0027 1.5×106 0.0035

Mixed-Convexity I.C.’s 2.0×106 0.0022 1.5×106 0.0035

In Fig. 8, it becomes apparent the rightwards progressing wave form propagates as a
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(a) Density (b) G

(c) Pressure (d) Temperature

(e) Entropy near the compression shock

(m
/s
)

(f) Speed of Sound

Figure 8: The shock tube problem with initial conditions located in the convex isentrope
region for t = 0.005 s.
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discontinuous compression, or shock wave, and the leftwards propagating wave holds the

shape of a continuous or isentropic compression. This is as expected, as the theory for G < 0

agrees with observed behavior in general gas dynamics.

Table 3. A summary of gas values, PP10, for initial conditions in the shock tube.

R (J/kg·K) cv (J/kg·K) a (m5/kg·s) b (m3/kg)

14.4843 1131.588 22.3889 0.0007244

7 The Non-Convex Case

The non-convex case introduces initial conditions such that both sets are located under

0.0100.0080.0060.0040.0020

v (m3/kg)

2.0 × 106

3.0 × 106

1.0 × 106

P
 (

P
a
)

G = 0
Critical Isentrope

Isotherms
Critical Point

Figure 9: A plot of G = 0, PP10’s critical isentrope, a family of isotherms, and two points
representing initial conditions separated by a diaphragm for the non-convex case.

the G = 0 curve. In this region of P − v space, anomalous behavior is predicted. The set of

initial conditions as provided is presented graphically in Fig. 9.
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(a) Density (b) G

(c) Pressure (d) Temperature

(e) Entropy near the rarefaction shock

(m
/s
)

(f) Speed of Sound

Figure 10: The shock tube problem with initial conditions located in the non-convex
isentrope region for t = 0.005 s.
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As the initial conditions are located above the critical isotherm, it can be stated with

certainty that the fluid is a single-phase vapor. Solutions to the non-convex case are presented

in Fig. 10. As is seen in Fig. 10, the rightwards progressing wave traverses as a continuous

or isentropic compression, and the leftwards traveling wave progresses as a discontinuous

rarefaction. Note that the contact discontinuity remains intact, and only impacts the density

and temperature solutions as expected. Based off of the presented behavior, we can say

with certainty that the speed of sound’s relation with state variables has reversed from

normally expected gas behavior. To ensure the second law’s satisfaction, a plot of entropy

is provided in Fig. 10(e). In order to satisfy the second law of thermodynamics, it must

be seen that entropy remains constant, or increases in order to demonstrate plausibility in

nature. As demonstrated in Fig. 10, this is the case. Note, Fig. 10(e) was generated as an

exact solution to the Rankine-Hugoniot jump conditions [2], as the discretization required

to visually demonstrate an entropy increase on the order of 10−4 with the two-step Lax-

Wendroff method is impractical. Largely this is the case due to the weak nature of the

rarefaction shocks, as the differences in pressure in the G < 0 range are relatively small in

comparison to the convex region. Due to the large mass of the fluid and smaller differences

in pressure, velocities and sound speeds are typically low, and entropy changes are present,

but small.

8 The Case of Mixed Convexity

The last set of initial conditions of interest is the case of mixed convexity. This set of

initial conditions is given by the left-side initial conditions positioned in the convex region,

or G > 0 region, and the right-side initial conditions positioned in the G < 0 regime. A

graphical depiction is presented in Fig. 11. In this regime, we should expect the pressure to

drive the flow into the non-convex region where G < 0. In this particular case, we should

expect some combination of ideal compressible flow and anomalous behavior, as one wave
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Figure 11: A plot of G = 0, PP10’s critical isentrope, a family of isotherms, and two points
representing initial conditions separated by a diaphragm for the mixed convexity case.

will be traversing away from the anomalous region, and the other wave will traverse into

it. The behavior demonstrated from this particular set of initial conditions is provided in

Fig. 12. Note, the contact discontinuity is visible in both density and temperature solutions,

yet it is absent in the pressure solution as expected. The fundamental derivative changes

sign at around x = 0.2 m, and this is apparent in the pressure, temperature, and density

solutions. As the sign of the fundamental derivative changes, the waveform progresses from

a discontinuous compression, or shock wave, into an isentropic or continuous compression

marked by the anomalous zone. The left-traveling wave traverses as a continuous rarefaction

typical of general gas behavior. It thus becomes obvious that the sign of the fundamental

derivative plays an indisputable role in the form of a real gas waveform. Assuming that

left-side initial conditions are greater in magnitude than right-side conditions, a summary of

gas behavior as it relates to the sign of the fundamental derivative is provided in Tab. 4 for
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(a) Density (b) G

(c) Pressure (d) Temperature

(e) Entropy near the split shock

(m
/s
)

(f) Speed of Sound

Figure 12: The shock tube problem with mixed convex and non-convex isentrope located
initial conditions for t = 0.005 s.
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reference.

Table 4. A summary of wave formation as it relates to the sign of the fundamental
derivative, G, assuming the left initial condition is at higher P , ρ, and T .

Sign of G Left-Traveling Wave Right-Traveling Wave

G > 0 Continuous Rarefaction Shock Wave

G < 0 Discontinous Rarefaction Isentropic Compression

Straddling I.C.’s Continuous Rarefaction Split Shock, Isentropic Compression Wave

The speed of sound’s relations to the state variables reverses at the same x = 0.2 m

location. This explains the split in the wave form, as characteristics are converging into an

infinitesimally small shock wave in the convex region, but diverge with the speed of sound’s

decrease in the non-convex region. For the entropy as given in in Fig. 12(e), the Rankine-

Hugoniot jump equations predict an increase in entropy of 0.0023J/kg/K, and the numerical

method demonstrates an entropy increase of 0.0024 J/kg/K.

9 Discussions and Conclusions

Solutions to shock tube problems for the van der Waals gas in the BZT region are pre-

sented and analyzed. As agrees with the literature, anomalous behavior is seen in regions

where the fundamental derivative is negative, as the speed of sound’s relation to the state

variables of P , T , and ρ is reversed and behaves opposite of what is generally predicted in

typical gas dynamics. Some famous works [15 - 17], perhaps in a restriction to the ideal gas,

note an impossibility of rarefaction shock waves due to their instability as it relates to the

speed of sound. Though described in many different ways, it is mainly explained that state

information behind the rarefaction wave must propagate faster than the wave speed of the

rarefaction shock and result in the destruction of the wave form. However, it has been shown

that rarefaction shock waves are stable and possible in regions where the speed of sound’s

relation to state variables is reversed, as is the case in the BZT region. As was shown, for
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initial conditions located in the convex region, typical gas dynamics remained. For the case

of non-convex initial conditions in which the magnitude of the left-side dominated, an isen-

tropic compression propagated rightwards, and a discontinuous rarefaction was seen moving

leftwards, and in the case of mixed convexity, a split shock and continuous compression was

demonstrated with expected behavior elsewhere.

Future work in this category may be extended to BZT flows over an aerodynamic body

such as the classic wedge problem. For this experiment, the methods as before described

could be extended to two-dimensions for application. As a result, analysis may be extended

to oblique shock waves and expansions and their effects which may continue to reverse

typical thinking and encourage practical application of rarefaction shock waves and isentropic

compressions in practice.
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Appendix A

A FORTRAN 90 code used for the Richtmyer two-step Lax-Wendroff method to solve the

inviscid, compressible Euler equations is provided below:

program EulerEquation

use caloricequationofstateLW

use thermalequationofstateLW

use pressuresLW

implicit none

real (kind=8):: dx,dt,ttot,xtot,pi,&

gam,rhoR,PR,PL,rhoL,v0,cv,Tc,Pc,&

R,a,b,o,vL,vR,r12,rm12,m12,&

mm12,e12,em12,p12,pm12

integer:: N,K,i,j,eos,savestep,Nhold

real*8,allocatable:: x(:),ti(:),rho(:,:),m(:,:),P(:,:),&

e(:,:),T(:,:)

open(12,file=’initialconditions.in’)

read(12,100) dx

dt=dx/1000

read(12,100) ttot

read(12,100) xtot

read(12,100) pi

N=ttot/dt

K=xtot/dx

read(12,101) savestep

read(12,100) o
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read(12,100) gam

read(12,100) vL

rhoL=1/vL

read(12,100) PR

read(12,100) PL

read(12,100) vR

rhoR=1/vR

read(12,100) v0

read(12,100) cv

read(12,100) R

read(12,100) a

read(12,100) b

! read(12,100) Pc

! read(12,100) Tc

100 format(19x,f12.7)

101 format(19x,i10)

if (savestep == 0) then

allocate(x(K))

allocate(ti(N))

allocate(rho(K,2))

allocate(m(K,2))

allocate(P(K,2))

allocate(T(K,2))

allocate(e(K,2))

! allocate(u(K,2))
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else

allocate(x(K))

allocate(ti(N))

allocate(rho(K,N))

allocate(m(K,N))

allocate(P(K,N))

allocate(T(K,N))

allocate(e(K,N))

! allocate(u(K,N))

end if

do i=1,K

x(i)=-0.5+dx*(i-1)

end do

do i=1,N

ti(i)=-0+dt*(i-1)

end do

Nhold = N ! To set limits for do loops

if (savestep == 0) then

N=2

else

continue

end if
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do j=1,K

if (x(j).lt.0) then

rho(j,1)=rhoL

m(j,1)=rhoL*v0

P(j,1)=PL

call teos(rho(j,1),P(j,1),R,a,b,T(j,1))

call ceos(dt,dx,m(j,1),DBLE(0.0),P(j,1),&

DBLE(0.0),rho(j,1),&

DBLE(0.0),DBLE(0.0),DBLE(0.0),&

DBLE(0.0),cv,R,a,b,0,e(j,1))

else

rho(j,1)=rhoR

m(j,1)=rhoR*v0

P(j,1)=PR

call teos(rho(j,1),P(j,1),R,a,b,T(j,1))

call ceos(dt,dx,m(j,1),DBLE(0.0),&

P(j,1),DBLE(0.0),rho(j,1),&

DBLE(0.0),DBLE(0.0),DBLE(0.0),&

DBLE(0.0),cv,R,a,b,0,e(j,1))

end if

end do

do i=1,N

rho(K,i)=rhoR

m(K,i)=rhoR*v0
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P(K,i)=PR

call teos(rho(K,i),P(K,i),R,a,b,T(K,i))

call ceos(dt,dx,m(K,i),&

DBLE(0.0),P(K,i),DBLE(0.0),rho(K,i),&

DBLE(0.0),DBLE(0.0),&

DBLE(0.0),DBLE(0.0),cv,R,a,b,0,e(K,i))

! u(K,i)=m(K,i)/rho(K,i)

end do

do i=1,N

rho(1,i)=rhoL

m(1,i)=rhoL*v0

P(1,i)=PL

call teos(rho(1,i),P(1,i),R,a,b,T(1,i))

call ceos(dt,dx,m(1,i),&

DBLE(0.0),P(1,i),DBLE(0.0),rho(1,i),&

DBLE(0.0),DBLE(0.0),&

DBLE(0.0),DBLE(0.0),cv,R,a,b,0,e(1,i))

! u(1,i)=m(1,i)/rho(1,i)

end do

do i=1,Nhold-1

do j=2,(K-1)
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if (savestep==0) then

r12=(1.0d0/2.0d0)*(rho(j,1)+rho(j+1,1))-&

(dt/2.0d0)/(dx)*(m(j+1,1)-m(j,1))

rm12=(1.0d0/2.0d0)*(rho(j,1)+rho(j-1,1))-&

(dt/2.0d0)/(dx)*(m(j,1)-m(j-1,1))

m12=(1.0d0/2.0d0)*(m(j,1)+m(j+1,1))-dt/(2.0d0*dx)*&

((m(j+1,1)*m(j+1,1)/rho(j+1,1)+P(j+1,1))-&

(m(j,1)*m(j,1)/rho(j,1)+P(j,1)))

mm12=(1.0d0/2.0d0)*(m(j,1)+m(j-1,1))-&

dt/(2.0d0*dx)*((m(j,1)*m(j,1)/rho(j,1)+P(j,1))-&

(m(j-1,1)*m(j-1,1)/rho(j-1,1)+P(j-1,1)))

e12=(1.0d0/2.0d0)*(e(j,1)+e(j+1,1))-&

dt/(2.0d0*dx)*(((m(j+1,1)/rho(j+1,1))*&

(e(j+1,1)+P(j+1,1)))-&

((m(j,1)/rho(j,1))*(e(j,1)+P(j,1))))

em12=(1.0d0/2.0d0)*(e(j,1)+e(j-1,1))-&

dt/(2.0d0*dx)*(((m(j,1)/rho(j,1))*&

(e(j,1)+P(j,1)))-&

((m(j-1,1)/rho(j-1,1))*(e(j-1,1)+P(j-1,1))))

call pressure(rm12,mm12,em12,cv,R,a,b,pm12)

call pressure(r12,m12,e12,cv,R,a,b,p12)

rho(j,2)=rho(j,1)-dt/dx*(m12-mm12)

m(j,2)=m(j,1)-dt/dx*((m12*m12/r12+p12)-&
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(mm12*mm12/rm12+pm12))

call ceos(dt,dx,m12,mm12,p12,pm12,r12,rm12,&

e12,em12,e(j,1),cv,R,a,b,1,e(j,2))

call pressure(rho(j,2),m(j,2),e(j,2),cv,R,a,b,P(j,2))

call teos(rho(j,2),P(j,2),R,a,b,T(j,2))

else

r12=(1.0d0/2.0d0)*(rho(j,i)+rho(j+1,i))

r12=r12-(dt/2.0d0)/(dx)*(m(j+1,i)-m(j,i))

rm12=(1.0d0/2.0d0)*(rho(j,i)+rho(j-1,i))

rm12=rm12-(dt/2.0d0)/(dx)*(m(j,i)-m(j-1,i))

m12=(1.0d0/2.0d0)*(m(j,i)+m(j+1,i))-&

dt/(2.0d0*dx)*(m(j+1,i)*&

m(j+1,i)/rho(j+1,i)+P(j+1,i)-&

(m(j,i)*m(j,i)/rho(j,i)+P(j,i)))

mm12=(1.0d0/2.0d0)*(m(j,i)+m(j-1,i))-&

dt/(2.0d0*dx)*(m(j,i)*m(j,i)/rho(j,i)+P(j,i)-&

(m(j-1,i)*m(j-1,i)/rho(j-1,i)+P(j-1,i)))

e12=(1.0d0/2.0d0)*(e(j,i)+e(j+1,i))-&

dt/(2.0d0*dx)*((m(j+1,i)/rho(j+1,i))*&

(e(j+1,i)+P(j+1,i))-&

(m(j,i)/rho(j,i))*(e(j,i)+P(j,i)))

em12=(1.0d0/2.0d0)*(e(j,i)+e(j-1,i))-&

dt/(2.0d0*dx)*((m(j,i)/rho(j,i))*(e(j,i)+P(j,i))-&

(m(j-1,i)/rho(j-1,i))*(e(j-1,i)+P(j-1,i)))
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call pressure(rm12,mm12,em12,cv,R,a,b,pm12)

call pressure(r12,m12,e12,cv,R,a,b,p12)

rho(j,i+1)=rho(j,i)-dt/dx*(m12-mm12)

m(j,i+1)=m(j,i)-dt/dx*&

(m12*m12/r12+p12-mm12*mm12/rm12+pm12)

call ceos(dt,dx,m12,mm12,p12,pm12,r12,rm12,&

e12,em12,e(j,i),cv,R,a,b,1,e(j,i+1))

end if

end do

if (savestep==0) then

rho(:,1)=rho(:,2)

m(:,1)=m(:,2)

e(:,1)=e(:,2)

P(:,1)=P(:,2)

T(:,1)=T(:,2)

else

continue

end if

end do

open(7,file="rhoOutput.txt")

do i=1,K
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write(7,*) x(i), rho(i,N)

end do

close(7)

! open(7,file="VelocityOutput.txt")

! do i=1,K

! write(7,*) x(i), u(i,N)

! end do

! close(7)

open(7,file="PressureOutput.txt")

do i=1,K

write(7,*) x(i), P(i,N)

end do

close(7)

open(7,file="TemperatureOutput.txt")

do i=1,K

write(7,*) x(i), T(i,N)

end do

close(7)

end program EulerEquation

The modules presented in the code are given by:
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module thermalequationofstateLW

contains

subroutine teos(rho,P,R,a,b,T)

implicit none

real (kind=8), intent(in) :: rho

real (kind=8), intent(in) :: P

real (kind=8), intent(in) :: R

real (kind=8), intent(in) :: a

real (kind=8), intent(in) :: b

real (kind=8), intent(out) :: T

T=(-1)*((-1+b*rho)*(P+a*rho**2))/(R*rho)

end subroutine teos

end module thermalequationofstateLW

module caloricequationofstateLW

contains

subroutine ceos(dt,dx,m12,mm12,p12,pm12,&

r12,rm12,e12,em12,em,cv,R,a,b,v,e)

implicit none

real (kind=8), intent(in) :: dt

real (kind=8), intent(in) :: m12

real (kind=8), intent(in) :: mm12
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real (kind=8), intent(in) :: p12

real (kind=8), intent(in) :: pm12

real (kind=8), intent(in) :: r12

real (kind=8), intent(in) :: rm12

real (kind=8), intent(in) :: dx

real (kind=8), intent(in) :: e12

real (kind=8), intent(in) :: em12

real (kind=8), intent(in) :: em

real (kind=8), intent(in) :: cv

real (kind=8), intent(in) :: R

real (kind=8), intent(in) :: a

real (kind=8), intent(in) :: b

integer, intent(in) :: v

real (kind=8), intent(out) :: e

if (v==0) then

e=r12*(cv/R)*(1/r12-b)*&

(p12+a*r12**2)-a*r12**2+(0.5)*r12*(m12/r12)**2

else

e=em-dt/dx*(((m12/r12)*(e12+p12))-((mm12/rm12)*(em12+pm12)))

end if

end subroutine ceos
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end module caloricequationofstateLW

module pressuresLW

contains

subroutine pressure(rho,m,e,cv,R,a,b,Pres)

implicit none

real (kind=8), intent(in) :: rho

real (kind=8), intent(in) :: m

real (kind=8), intent(in) :: e

real (kind=8), intent(in) :: cv

real (kind=8), intent(in) :: R

real (kind=8), intent(in) :: a

real (kind=8), intent(in) :: b

real (kind=8), intent(out) :: Pres

Pres=(R/cv)*(1/(1-rho*b))*&

((e-(1./2.)*m*m/rho)+a*rho**2)-a*rho**2

end subroutine pressure

end module pressuresLW

The file of initial conditions is provided as:

dx = 3.0d-6
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ttot = 5.0d-3

xtot = 1.0d0

pi = 3.14159265d0

savestep = 0

o = 0

gam = 1.4d0

vL = 0.0022d0

PR = 2000000.0d0

PL = 2500000.0d0

vR = 0.0035d0

v0 = 0.0d0

cv = 1131.5875d0

R = 14.484d0

a = 22.3889d0

b = 0.0007244d0

41


