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One Dimensional Viscous Shock Analysis

Abstract

The objective of this research is to predict the continuous structure of a shock wave. This

structure is analyzed using the governing conservation equations from fluid dynamics in the

steady wave reference frame. This paper will study the effects of non-reactive mixtures of

helium molecules to evaluate the effect of mass diffusion across a shock. The helium model

will act as the framework for a reactive model using Arrhenius kinetics to understand the

effect of diatomic molecule dissociation across a shock wave. The study provides a numerical

solution to the system of ordinary differential equations to determine the shock thickness.

Ultimately, the study finds that a M = 2.55 shock through helium at ambient conditions

T = 300 K and ρ = 1.615 kg/m3 results in a shock thickness of 10−4 mm.
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Nomenclature

x̂ laboratory frame position - m

x wave frame position - m

t̂ laboratory frame time - s

t wave frame time - s

û laboratory frame fluid velocity -
m
s

u wave frame velocity - m
s

U wave speed - m
s

ρ molar concentration - kmol
m3

ρ density - kg
m3

T temperature - K

τ viscous shear stress - Pa

p pressure - Pa

e internal energy - kJ
kmol

e internal energy - kJ
kg

h enthalpy - kJ
kmol

h enthalpy - kJ
kg

q heat flux - W
m2

k thermal conductivity - W
m K

Pr Prandtl number

α thermal diffusivity - m2

s

D mass diffusivity - m2

s

ν kinematic viscosity - m2

s

R universal gas constant - kJ
kmol K

µ dynamic viscosity - Pa s

i species index

j reaction index

N number of species

J number of reactions

a species a

b species b

Yi mass fraction

ji mass diffusion flux- kg
m2 s

Mi molar mass - kg
kmol

ω̇i molar production rate - kmol
m3 s

νij net stoichiometric coefficients

ν ′ij stoichiometric coefficients of

products

ν ′′ij stoichiometric coefficients of

reactants

rj reaction rate - kmol
m3 s

kj Arrhenius rate -(
kmol
m3

)(1−∑J
j=1 ν

′
j) /s

aj collision frequency factor(
kmol
m3

)(1−∑J
j=1 ν

′
j) /s /Kβ

βj temperature dependency

exponent

E j activation energy - kJ
kmol

Kc,j equilibrium constant -(
kmol
m3

)(∑N
i=1 ν

′
i−

∑N
i=1 ν

′′
j )

G0
j Gibbs free energy - kJ

kmol

cp constant pressure specific heat -
kJ

kg K

cv constant volume specific heat -
kJ

kg K

γ ratio of specific heats

λ mean free path - m
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1 Introduction

This study aims to advance the understanding of shock wave structure and its interaction

with reactive systems. Shock waves have applications in fields such as propulsion, detonation

physics, and high-speed flow analysis; therefore, a simplified example is explored to take a

tentative step toward future goals. The ultimate purpose is to analyze the dissociation

of diatomic molecules across a viscous shock structure. The dissociation of molecules is

important across the shock structure because it is the reaction process that occurs when

extreme temperatures cause molecular bonds to break. Understanding how these bonds

respond within a shock wave is important as technology advances.

1.1 Research Objectives

For this paper, a simplified model will be studied utilizing an inert gas, helium, separated into

two separate species, species a and species b. Both species share the same fluid properties

such as density, temperature, velocity, specific heat, specific gas constant thermal conduc-

tivity, and dynamic viscosity. However, splitting the inert gas into two species allows for an

analysis of the structure and mass diffusion across the shockwave.

The study will examine a left-moving wave with a speed of 1226.017 m/s and will be ana-

lyzed in the wave reference frame. The wave speed can be visualized between the laboratory

frame and the shock frames in Figure 1.

(a) Bound observer in laboratory
reference frame, viewing left moving

wave.

(b) Observer in wave reference frame,
following wave velocity.

Figure 1: Fluid velocities in different reference frames

4



One Dimensional Viscous Shock Analysis

Figure 1 shows the pre and post-shock velocities û1 and û2 in the laboratory reference

frame: meaning a fixed observer watches the shock move from right to left. Whereas, u1 and

u2 are the unshocked and shocked fluid velocities in the wave reference frame: meaning the

observer travels with the shock. Furthermore, Figure 1 shows the transformations between

the two reference frames, with the respective directional changes. Furthermore, the shock

thickness is shown across the density profile, where ρ is the shock density.

The Navier-Stokes equations will be used to exhibit the internal structure of a shock wave.

To solve the differential equations, a steady-state assumption was made. After assuming a

steady state, the conservation equations were manipulated into one ordinary differential

equation with one variable. Then, utilizing the pre-shock state as a boundary condition, the

differential equation could be solved to model the structure of the shock. Once one property

was solved, the others could be calculated by substituting into the original conservation

equations. The mixture models are also used to calculate the mass diffusion and reaction

properties of a shock wave.

In this study an inert mode will be used, forcing the species molar production rate to

zero, meaning there is no reaction in the system. The system of differential equations will

first be analyzed in a phase plane, giving the boundary conditions. After utilizing the phase

plane, the system can be further simplified to solve using first-order methods.

1.2 Literature Review

Here we review the literature of viscous shock waves. There are both theoretical and exper-

imental studies that outline the structure of a shock wave. Using these studies we can build

our model.

Early theoretical studies on the structure of shock waves were conducted by researchers

such as Vincenti and Kruger [1], Liepmann and Roshko [2], and Zeldovich [3]. While each of

these works addresses a slightly different aspect of the problem, they are all grounded in the

same fundamental principle: the shock structure must satisfy the Navier-Stokes equations
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at all points within its domain.

Vincenti and Kruger computed a model to analyze a shock structure of a right mov-

ing wave at M = 1.7. Their chosen medium was a non-inert gas argon, such that they

could discover how close their results matched with the experimental results of Talbot and

Sherman from 1959 [4]. Ultimately discovering that the their theoretical results match the

experimental.

Thompson [5] also outlines the importance of the shock structure. The inviscid, assump-

tion presupposes that the velocity and temperature gradients are infinite at the shock front,

inducing infinite viscous stress and heat flux from the shock. To avoid the infinite viscous

stress and heat flux, the extended shock layer reduces the velocity and temperature gra-

dients. The internal shock layer is comparable to a boundary layer; in that both regions

are characterized by large viscous stress and high heat flux bounded by external regions

considered inviscid.

Liepmann and Roshko offer a more nuanced distinction between the two, and enforce

the importance of the shock structure. The essential difference between the shock wave and

the boundary layer lies in particle behavior. When a streamline enters a shock wave, it

emerges downstream. Whereas when a streamline enters a boundary layer, it remains in

a region of shear. Therefore, flowing through a shock wave, the particle transforms from

one thermodynamic state to another. This distinction is widely accepted and mirrors the

analyses found in [6, 7].

Zel’dovich expands this analysis of a shock wave structure into molecular reactions. Even-

tually analyzing the molecular dissociation and ionization of diatomic molecules across these

waves. This research will set out the groundwork of the mathematical foundation of the work

done by Zel’dovich. Meaning this paper will dive into a simplified version of Zel’dovich’s

problem, with no reaction.

Further experimental data show the existence of a viscous shock layer. In a study con-

ducted by Sherman [8] to determine shock wave structures and relaxation periods, he found
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the experimental data followed the Navier-Stokes approximations while including losses due

to viscosity and heat. Sherman’s experiment utilized a shock holder, a type of shock-

producing device that consists of a thin-walled circular cylinder or cone frustum immersed

into the uniform portion of a wind tunnel jet. Using this apparatus with the addition of

temperature-sensitive resistance wires connected to a thermocouple, the system could an-

alyze the temperature distribution across a shock. Figure 2 shows the dimensionless wire

temperature, tw, along the dimensionless wind tunnel length, y.

Figure 2: Comparison of various theories for a monotomic gas (helium). M = 1.61,
Sherman [8].
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2 Governing Equations

2.1 Mixture Model

To analyze the reactions occurring within a shock wave, a mixture model must be established.

The Dalton model [9] is used. We will adopt the following rules for mixture properties:

p =
2∑

i=1

pi, 1 =
2∑

i=1

Yi, ρ =
2∑

i=1

ρi =
2∑

i=1

ρi
Mi

, e =
2∑

i=1

Yiei, (1)

0 =
2∑

i=1

ji, h =
2∑

i=1

Yihi, cp =
2∑

i=1

Yicpi, cv =
2∑

i=1

Yicvi, (2)

T = Ti. V = Vi (3)

The subscript i indicates that the property is a specific species property rather than the

whole mixture. Here p is mixture pressure, Yi is the species mass fraction,Mi is the molecular

mass, e is the mixture internal energy h is the enthalpy, cp is the mixture specific heat at

constant pressure and cv is the mixture specific heat at constant volume. Furthermore,

pi, ρi, ρi, ei, hi, cpi, cvi, Ti, and Vi are species pressure, density, molar concentration,

internal energy, enthalpy, constant pressure specific heat, constant volume specific heat,

temperature, and volume.

2.2 Unsteady Conservative Form

The first step in analyzing the system is presenting the conservation equations and their

different forms. The forms of all governing equations are standard and can be obtained

from [10, 11, 1]. To express the conservation of mass, linear momentum, and energy in
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conservative form and in the laboratory reference frame they are written as follows:

∂ρ

∂t̂
+

∂

∂x̂
(ρû) = 0, (4)

∂

∂t̂
(ρû) +

∂

∂x̂

(
ρû2
)
+

∂

∂x̂
(p− τ) = 0, (5)

∂

∂t̂

(
ρ

(
e+

û2

2

))
+

∂

∂x̂

(
ρû

(
e+

û2

2
+
p

ρ

)
+ (τ û− q)

)
= 0. (6)

Here, x̂, t̂ and û represent the position, time, and velocity of a particle in the laboratory

reference frame. The variable q denotes the heat flux, while τ represents the shear stress.

These forms are conservative because the quantities that are conserved are within the time

derivative; i.e. mass, linear momenta, and energy.

The evolution of chemical species is given by,

∂

∂t̂
(ρYi) +

∂

∂x̂
(ρYiû+ ji) =Miω̇i. (7)

Here ji is the mass diffusion flux of species i, and ω̇i is the species molar production rate.

The species molar production rate ω̇i can be further expanded as,

ω̇i =
2∑

j=1

νijrj. (8)

Here rj is given by the law of mass action, and νij is the stoichiometric coefficient for each

species, per reaction. The law of mass action is then expanded as,

rj = kj

2∏
i=1

ρ
ν′ij
i

(
1− 1

Kc,j

2∏
i=1

ρ
νij
i

)
. (9)

The reaction rate, kj, given by the Arrhenius kinetics rule, ρ is the molar concentration and

Kc,j is the equilibrium constant.

kj = ajT
βj exp

(
−E j

RT

)
. (10)
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Here aj is the collision frequency factor, β is a dimensionless parameter whose value is set

by experiments, and E j is the activation energy needed for the reaction to occur. The

equilibrium constant Kc,j is defined as

Kc,j =

(
p0

RT

)∑2
i=1 νij

exp

(−∆G0
j

RT

)
. (11)

The reference pressure is defined as p0, and −∆G0
j is the standard change in Gibbs free

energy across the reactions. Expanding the heat flux, mass diffusion, and viscous shear

stress as seen in Eq. (5) and Eq. (6), one obtains:

q = −k∂T
∂x̂

+
2∑

i=1

jihi, ji = −ρD∂Yi
∂x̂

, τ =
4

3
µ
∂û

∂x̂
. (12)

The thermal conductivity of the fluid particle is k. Additionally, D is the mass diffusivity

and µ is the dynamic viscosity. The thermal equation of state is defined using the mixture

models in combination with the ideal gas law.

pi = ρiRT = ρRT
Yi
Mi

= RT
ρi
Mi

= ρiRiT. (13)

Therefore the mixture pressure is:

p = RT
2∑

i=1

ρi = RT
2∑

i=1

ρYi
Mi

= RT
2∑

i=1

ρi
Mi

. (14)

Here R is the universal gas constant.

2.3 Unsteady Non-Conservative Form

The conservative equations can be transformed into their non-conservative counterparts by

simple calculus. Using the product rule to expand, the mass, linear momenta, energy, and

species reaction equations can be simplified into the following:
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∂ρ

∂t̂
+ û

∂ρ

∂x̂
+ ρ

∂û

∂x̂
= 0, (15)

ρ
∂û

∂t̂
+ ρû

∂û

∂x̂
+

∂

∂x̂
(p− τ) = 0, (16)

ρ

(
∂e

∂t̂
+ û

∂e

∂x̂

)
+
∂q

∂x̂
+
∂û

∂x̂
(p− τ) = 0, (17)

ρ
∂Yi

∂t̂
+ ρû

∂Yi
∂x̂

+
∂ji
∂x̂

=Miω̇i. (18)

2.4 Galilean Transformation

The wave reference frame is chosen for the analysis of the inert helium because it simplifies

the analysis making it easier to calculate changes in thermodynamic properties. To convert

the laboratory reference frame to the steady wave frame, Galilean transformations are used:

x = x̂+ Ut̂, t = t̂. (19)

Here x and t are the position and time within the wave reference frame, while x̂ and t̂ are

the position and time in the laboratory reference frame. In this study, the wave moves to

the left, therefore the distance traveled by the shock Ut̂ is added to the lab frame position

to get into the wave reference frame. The position of the shock at x = 0 within the wave

frame. Using the transformation in Eq. (19), we find how the derivatives are represented

under the coordinate transformation.

dx =
∂x

∂x̂
dx̂+

∂x

∂t̂
dt̂ = dx̂+ U dt̂, (20)

dt =
∂t

∂x̂
dx̂+

∂t

∂t̂
dt̂ = dt̂. (21)

By scaling dx by dt, we can derive the transformation for the velocities.
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dx

dt
=
dx̂

dt̂
+ U, (22)

u = û+ U. (23)

Here we are taking the particle velocity in the wave frame u = dx/dt and the particle velocity

in the laboratory frame as û = dx̂/dt̂. Furthermore, a generic dependent variable ψ can be

defined such that it has a representation in the original space, ψ(x̂, t̂), and the transformed

space, ψ(x, t). These two points must map to the same space, such that:

ψ(x̂, t̂) = ψ(x, t). (24)

Therefore the derivative of ψ can be expressed as the following:

dψ =
∂ψ

∂x̂

∣∣∣∣
t̂

dx̂+
∂ψ

∂t̂

∣∣∣∣
x̂

dt̂ =
∂ψ

∂x

∣∣∣∣
t

dx+
∂ψ

∂t

∣∣∣∣
x

dt. (25)

Using the expressions of the wave frame derivatives found in Eq. (20) and Eq. (21), the

expression can be simplified to:

dψ =
∂ψ

∂x̂

∣∣∣∣
t̂

dx̂+
∂ψ

∂t̂

∣∣∣∣
x̂

dt̂ =
∂ψ

∂x

∣∣∣∣
t

dx+
∂ψ

∂t

∣∣∣∣
x

dt, (26)

=
∂ψ

∂x

∣∣∣∣
t

(dx̂+ U dt̂) +
∂ψ

∂t

∣∣∣∣
x

dt̂, (27)

=
∂ψ

∂x

∣∣∣∣
t

dx+

(
∂ψ

∂t

∣∣∣∣
x

+ U
∂ψ

∂x

∣∣∣∣
t

)
dt̂. (28)

Now we consider Eq. (28) for constant x̂, causing dx̂ = 0, and we divide by dt̂.

∂ψ

∂t̂

∣∣∣∣
x̂

=
∂ψ

∂t

∣∣∣∣
x

+ U
∂ψ

∂x

∣∣∣∣
t

. (29)
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Simplifying further the partial with respect to t̂ becomes

∂

∂t̂

∣∣∣∣
x̂

=
∂

∂t

∣∣∣∣
x

+ U
∂

∂x

∣∣∣∣
t

. (30)

Furthermore, to analyze the steady state solution of a reaction, for constant t, dt = 0,

therefore Eq. (28) reduces to:

∂

∂x̂

∣∣∣∣
t̂

=
∂

∂x

∣∣∣∣
t

. (31)

Eq. (31) is ultimately the transformation that can be used to redefine the governing equations

from the laboratory frame to the wave reference frame. The result is invariant, meaning

changing between the reference frames does not change the governing equations.

2.5 Steady Conservative Form

To convert the governing equations from unsteady to steady, time must remain constant.

Therefore, all partial derivatives with respect to the independent variable t go to 0. Further-

more, all partial derivatives with respect to x become total derivatives, as described:

d

dx
(ρu) = 0, (32)

d

dx

(
ρu2 + p− τ

)
= 0, (33)

d

dx

(
ρu

(
e+

u2

2
+
p

ρ

)
+ τu− q

)
= 0, (34)

d

dx
(ρYiu+ ji) =Miω̇i. (35)

2.6 Steady Non-Conservative Form

Similarly to steady conservative forms of the governing equations, to transform the unsteady

non-conservative governing equations into their steady counterparts, the time is taken to be
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constant. The system can therefore be written as,

u
dρ

dx
+ ρ

du

dx
= 0, (36)

ρu
du

dx
+

d

dx
(p− τ) = 0, (37)

ρu
de

dx
+
dq

dx
+
du

dx
(p− τ) = 0, (38)

ρu
dYi
dx

+
dji
dx

=Miω̇i. (39)

3 Inert Shock Wave Structure

The inert gas is used to stop all reactions in the study. Which in turn, further simplifies

the conservation equations in combination with the steady-state assumption. With these

assumptions, the steady wave structure and mass diffusion flux are calculated.

3.1 Boundary Conditions

The necessary boundary conditions need to be established to analyze the shock properties,

such as velocity temperature, and density. The boundary conditions will be defined using

the wave frame boundary conditions. Therefore, the boundary conditions in the wave frame

can be defined as the post-shock state through the following parameters in Table 1

Table 1: Boundary conditions of shock properties

Property Variable Value Units

velocity u1 1226.017 m/s
density ρ1 1.615 kg/m3

temperature T1 209.44 K

Figure 3 shows the relationship that the density of the fluid experiences across a shock.
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Figure 3: Sketch of steady wave structure for density

In Figure 3, ρ is the mixture density across the boundary. This study will only look into

the steady-state solution across the applied x limits which simplifies the governing equations

into one-dimensional ordinary differential equations.

3.2 Parameters

An inert gas is can be used to study the mass diffusion across the shock structure. Helium

was chosen because it is the simplest gas for this model. The thermodynamic properties of

helium can be found in Table 2 below:

Table 2: Properties of the helium at post-shock boundary condition [9]

Variable Value Units

cv 3.116 kJ/kg/K
cp 5.1931 kJ/kg/K
R 2.0771 kJ/kg/K
γ 5/3
µ 3.674× 10−7 Pa s
k 0.002544 W/m/K
α 3.033× 10−6 m2/s

In Table 2, the values below the dotted line represent the calculated properties given the

assumption that the Prandtl number, Pr = 3/4.
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3.3 Inert Shock Computations

For the simplified limits, the reaction rate, ω̇, equals zero and the species properties are taken

to be the same. The shock takes place under steady-state conditions, and the governing

equations for the viscous shock with diffusion and no reaction are as follows.

d

dx
(ρu) = 0, (40)

ρu
du

dx
+

d

dx
(p− τ) = 0, (41)

d

dx

(
ρu

(
h+

u2

2

)
+ τu− q

)
= 0, (42)

d

dx
(ρYiu+ ji) = 0, (43)

q =− k
dT

dx
+

2∑
i=1

jihi, (44)

ji =− ρDdYi
dx

, (45)

τ =
4

3
µ
du

dx
, (46)

cp = Yacpa + Ybcpb, h =ho + cpT, (47)

cv = Yacva + Ybcvb, e =eo + cvT, (48)

p =ρRT (49)

3.3.1 Phase Plane Nodes

The first step in solving the inert shock wave structure was calculating the boundary condi-

tions. By simplifying the governing equations, a system of two ordinary differential equations

can be used to create a phase plane. This phase plane has its equilibrium points at the at the

boundary conditions for the shock wave. Therefore, the properties of the shock as x→ −∞

and x → ∞ can be solved algebraically. Starting with linear momenta, Eq. (41) the first

differential equation can be solved for du/dx

16
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ρu
du

dx
+

d

dx
(p− τ) = 0, (50)

d

dx

(
ρu2 + p− τ

)
= 0. (51)

After applying the product rule, the conservative form of the linear momenta equation re-

mains. τ can then be substituted into the equation to achieve:

d

dx

(
ρu2 + p− 4

3
µ
du

dx

)
= 0. (52)

Once in the conservative form, the differential equation can be integrated and the boundary

conditions can be applied as x→ ∞: which yields

ρ1u
2
1 + p2 −

4

3
µ
du

dx︸ ︷︷ ︸
=0

= C1, (53)

d

dx

(
ρu2 + p− 4

3
µ
du

dx

)
= ρ1u

2
1 + p2. (54)

After slight algebraic rearranging, Eq. (54) becomes:

du

dx
=

3

4µ

(
ρ1u

2
1 + p2 −

(
ρu2 + p

))
. (55)

For the second differential equation, the temperature gradient will be calculated from the

heat flux. Starting with the energy and heat flux equations:

d

dx

(
ρu

(
h+

u2

2

)
+ τu+ k

dT

dx

)
= 0. (56)
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At this stage, we can integrate the differential equation and apply the boundary conditions

as x→ ∞,

ρ1u1(h2 + u21
2

)
+ τ2︸︷︷︸

=0

u1 + k
dT

dx︸︷︷︸
=0

 = C2 (57)

Here τ2 is the shear stress in the far field which is zero. Using the boundary conditions set

from the linear momenta equation in Eq. (54), τ can be solved in terms of the pressure,

density and velocity,

τ = ρu2 + p−
(
ρ1u

2
1 + p2

)
(58)

Eq. (57) and Eq. (58) can be combined to create the final differential equation needed to

describe the phase plane. The set of differential equations used to describe the phase plane

are below,

du

dx
=

3

4µ

(
ρ1u

2
1 + p1 −

(
ρu2 + p

))
, (59)

dT

dx
=
ρ1u1 (h1 + u21/2)− ρu (h+ u2/2) + (ρ1u

2
1 + p1 − (ρu2 + p))u

k
. (60)

The method to determine the stability nodes is outlined by Goodwine [12]. To calculate

the different stability nodes of the shock system, Eq. (59) and Eq. (60) were algebraically set

to zero to solve all equilibrium points. Once the stability nodes are found, the eigenvalues are

used to determine the stability around each equilibrium point. The post-shock equilibrium is

a saddle point node, due to the eigenvalues of the differential equations being both positive

and negative. Whereas, the pre-shock equilibrium node is a sink stability point; meaning

that both eigenvalues were negative. Using this method, Figure 4 was created to show the

direction of the phase equilibrium.
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Figure 4: Phase plane of shock with equilibrium points.

The phase plane nodes were then tabulated in Table 3.

Table 3: Boundary conditions of shock properties

Equilibria Variable Value Units

pre-shock
u 1226.017 m/s
T 209.44 K
ρ 0.0988 kg/m3

p 43.0 kPa

post-shock
u 750 m/s
T 300 K
ρ 0.1615 kg/m3

p 100.6 kPa

3.3.2 Shock Structure

The viscous shock analysis by Powers [13] to include mixture properties acts as the baseline

analysis for a viscous shock wave. The study was then modified to include the mass diffusion

analysis. First, we will simplify the governing equation by establishing constraints.

ja + jb = 0, (61)
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Eq. (61) imposes that the total diffusive mass flux of the system is zero. This restriction

allows the heat flux to be simplified to:

q = −kdT
dx

+ jaha + jbhb, (62)

= −kdT
dx

+ jaha − jahb, (63)

= −kdT
dx

+ ja(ha − hb), (64)

= −kdT
dx

(65)

Furthermore, because both species a and species b are helium, they have the same specific

heats,

cpa = cpb (66)

The specific heat of the mixture can also be simplified similarly. The mixture cp can be

written,

cp = Yacpa + Ybcpb (67)

cp = Yacpa + Ybcpa (68)

cp = cpa (Ya + Yb)︸ ︷︷ ︸
=1

(69)

cp = cpa (70)

The same analysis is true with specific heat at constant volume. With these assumptions,

Eq. (46) and Eq. (65) can be substituted into Eq. (42) to get a new form of the energy

equation:

d

dx

(
ρu

(
h+

u2

2

)
+

4

3
µ
du

dx
u+ k

dT

dx

)
= 0. (71)

The thermal conductivity, k, can then be rewritten in terms of the mixture specific heat
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and Prandtl number, Pr, then inserted into the energy equation.

k =
µcp
Pr

, (72)

d

dx

(
ρu

(
h+

u2

2

)
+

4

3
µ
du

dx
u+

µcp
Pr

dT

dx

)
= 0. (73)

Substituting Eq. (47) into (73), the temperature can be rewritten in terms of both static

and stagnation enthalpies.

d

dx

(
ρu

(
h+

u2

2

)
+

4

3
µ
d

dx

(
u2

2

)
+
µcp
Pr

d

dx

(
h− ho
cp

))
= 0. (74)

Further simplifying the derivative of the constant, −ho/cp which equals zero;

d

dx

(
ρu

(
h+

u2

2

)
+

4

3
µ
d

dx

(
u2

2

)
+

µ

Pr

dh

dx

)
= 0. (75)

Taking Pr to be 3/4, we can further integrate and apply the boundary condition as x→ −∞.

ρu

(
h+

u2

2

)
+

4

3
µ
d

dx

(
h+

u2

2

)
= C1. (76)

Eq. (76) is a first order ordinary differential equation with the solution:

h+
u2

2
=

C1

ρ1u1
+ C2 exp

(
−3ρ1u1x

4µ

)
. (77)

Applying boundary conditions, to suppress infinite growth as x → −∞, C2 must equal 0.

Furthermore, C1 can be expressed as the following:

C1 = ρ1u1

(
h1 +

u21
2

)
. (78)

Substituting these constants into Eq. (77) yields;
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h+
u2

2
= h1 +

u21
2
. (79)

Applying the caloric equation of state Eq. (49)

cpT +
u2

2
= cpT1 +

u21
2
, (80)

T = T1 +
u21 − u2

2cp
. (81)

The linear momentum equation, Eq. (41), can be rewritten:

ρ1u1
du

dx
+

d

dx

(
p− 4

3
µ
du

dx

)
= 0. (82)

Integrating and applying the mass conservation equation, applying boundary as x→ −∞;

ρ1u
2
1 + p1 = C1. (83)

Then apply ideal gas law, Eq. (49), along with Eq. (81) to arrive at

ρ1u1u
(ρ1u1

u

)
︸ ︷︷ ︸

=ρ

R

(
T1 +

u21 − u2

2cp

)
︸ ︷︷ ︸

=T︸ ︷︷ ︸
=p

−4

3
µ
du

dx
= ρ1u

2
1 + ρ1RT1︸ ︷︷ ︸

=p1

. (84)

This differential equation can be simplified to:

du

dx
=

−ρ1u21 − ρ1RT1 +
ρ1u1

u

(
u2 +R

(
T1 +

u2
1−u2

2(γ−1)/(γR)

))
4
3
µ

. (85)

Using the equilibrium points from Subsection 3.3.1, the solution could be numerically inte-

grated from the post-shock to the pre-shock state. The shock had to be integrated in this

direction due to the equilibrium stability. The shock is then modeled below in Figure 5

through the: speed, temperature, density, and Mach number.
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(a) fluid speed (b) fluid temperature

(c) fluid density (d) fluid Mach number

Figure 5: Viscous shock structure of helium for various thermodynamic properties.

The thickness of the shock wave can be refined using an approximation of the mean free

path.

λ ≈ 7.8895× 10−8

ρ
[m]. (86)

Here λ is the mean free path between particles in a fluid. The shock thickness is then

estimated using the following formula:

lshock ≈
8γµ

3(γ + 1)ρ1(u1 − u2)
. (87)

lshock is the length of the shockwave and the rest of the parameters are known. Substituting

in the known parameters the length of the shock is determined to be 1.3126× 10−4mm.
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3.3.3 Mass Diffusion Across Shock

To analyze the mass diffusion across the shock, the solution of Eq. (43) must be found. For

the mass diffusion analysis, we will define the boundary conditions as such:

Table 4: Boundary conditions for mass red-blue helium mass diffusion

Property Parameter Value Units
x x1 −∞ m
u u1 1226.017 m/s
ρ ρ1 1.615 kg/m3

ja ja1 0 kg/m2/s
Ya Ya1 0

Once the boundary conditions are established Eq. (43) can be integrated.

ρ1u1Ya + ja = C1 (88)

At x → −∞, Ya and ja equal zero, which means C1 = 0. In combination with Fick’s law in

Eq. (45) the species equation becomes,

ρ1u1Ya − ρDdYa
dx

= 0. (89)

For this analysis mass and momentum diffusion are assumed to be equal, therefore:

D =
µ

ρ
. (90)

Further simplifying Eq. (89) into

ρ1u1Ya −
dYa
dx

= 0, (91)

dYa
dx

=
ρ1u1Ya
µ

. (92)
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We can take Ya(0) = 1 to get,

Ya(x) = exp

(
ρ1u1
µ

x

)
. (93)

Finally, the mass fraction of species a can be plotted across the boundary. Eq. (6) shows

the mass diffusion across the shock boundary. Eqs. (40 – 93) describes the thermodynamics

and dynamics across the shock structure in one simplified differential equation. However, to

describe the equilibrium of the model in a phase plane, it is necessary to come up with a set

of two differential equations.

Utilizing the same numerical integration methods as for the shock structure, the mass

diffusion can be calculated. The mass diffusion due to the shock as outlined in Section 3.3,

can be found in Figure 6 below:

Figure 6: Mass fraction of species a across the boundary with no reaction.

4 Discussion

4.1 Phase Plane Nodes

The vector field created by the phase equilibrium in Figure 4 shows the two equilibrium points

in the shock system: the pre-shock and post-shock state. The pre-shock equilibrium point is

the sink point, where the velocity, u = 1226.017 m/s, and the temperature, T = 209.44 K.
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To integrate from the sink to the saddle point, the post-shock solution, the initial condition

needs to be set off the saddle point then integrated along the solution trajectory towards the

sink point. This method integrates from the post-shock solution to the pre-shock solution;

however, due to the stability of the pre-shock equilibria, integration from that state to the

final stage is impractical. The phase plane is necessary to understand the stability of the

equilibrium points and is utilized in the direction of the integration. This is why all solution

results are plotted with x < 0. For the dissociation problem, the system of differential

equations may end up being a phase plane or even a phase volume depending on the .

4.2 Shock Structure

Figure 5 illustrates the shock structure given across the variable thermodynamic properties.

As fluid particles hit the shock, the speed and Mach number decrease rapidly across the shock

thickness of around 1.3126× 10−4mm. Temperature and density of the fluid experience the

opposite effect, greatly increasing throughout the shock thickness.

4.3 Mass Diffusion

Figure 6 shows the mass diffusion of the fluid particles across the shock. For the pre-shock

solution, the mass fraction of species a was zero, and fully diffused by the post-shock state.

This phenomenon is consistent with the boundary conditions established with the mass

diffusion and reaffirms the shock thickness of 1.3126× 10−4mm.

5 Conclusion

The structure of a viscous shock was determined using purely analytical methods. Utilizing

the governing conservation equations, a single ordinary differential equation was solved to

find the post-shock solution. Solving for the shock solution via the conservation equations

enforces continuity across the shock wave. This allows for the determination of the shock
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due to viscosity effects. The shock was then found to be 1.3126 × 10−4mm thick. Finally,

the structure found is consistent with experiments and other theories on the subject.
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