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A NUMERICAL INVESTIGATION OF THE EVOLUTION OF
SELF-PROPAGATING DETONATION IN ENERGETIC GRANULAR SOLIDS

Abstract
by
Keith Alan Gonthier

Two-phase continuum equations are numerically solved to predict the evolution of
self-propagating detonation in an energetic granular solid. Deflagration-to-detonation
transition (DDT) is considered whereby combustion is induced by weak, planar me-
chanical shock due to low velocity piston impact (~ 100 m/s). A new high-resolution
numerical method is formulated for solving the non-strictly hyperbolic system of
unsteady model equations. The numerical method, which is based on Godunov’s ap-
proach, is able to accurately capture strong shocks without the generation of spurious
oscillations, and can accurately resolve fine-scale detonation structure. The method
is shown to be convergent, and the convergence rate is determined based on compar-
isons of numerical predictions with known theoretical results for several test problems.
The numerical simulations predict most experimentally observed features character-
istic of piston-initiated DDT in granular explosives. Experimentally observed time
scales, wave speeds, and pressure magnitudes are correctly predicted. Several classes
of steady two-phase detonation wave structures are predicted to evolve: Chapman-
Jouguet (C'J) and weak detonation structures having a lead shock in the gas and an
unshocked solid, CJ structures having a lead shock in the solid and an unshocked
gas, and CJ structures having a shock in both the gas and solid. Which structure

evolves is found to depend on the material compaction rate, the interphase drag rate,
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and the ambient mixture density. The results indicate that the CJ wave speed is
not the unique wave speed for a self-propagating two-phase detonation. Numerically

predicted structures agree well with results given by a strictly steady-state detonation

wave analysis.
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INTRODUCTION AND REVIEW

This study addresses the theory and modeling of detonation in granulated reac-
tive solids. The main focus is on an analysis of detonation waves which evolve due
to compression of the granulated solid by a moving piston. Since the solid reacts to
form mostly gaseous products having distinct properties, we model these syétems as
consisting of two phases: gas and solid. In this chapter, we first briefly discuss prac-
tical motivations for the study of detonation in granulated material, introduce the
model problem considered, and describe a two-phase detonation within the context
of the model. Next, we survey relevant experimental, theoretical, and modeling re-
search, and discuss basic concepts of detonation theory. Lastly, we define the specific

objectives of this study, and outline the plan of this dissertation.

1.1 Motivation and Problem Description

Detonation is a rapid combustion process induced by the passage of a strong shock
through a reactive material. The combustion process is self-sustaining, provided that
the energy released by chemical reaction is sufficient to support the propagation of
the shock through the material. Typical pressures generated by the detonation of
energetic solids are near 20 GPa, and detonation wave speeds are near 7000 m/s.
Though the energy per unit mass of these materials is comparable to ordinary solid
fuels, the energy release rates are extremely fast resulting in energy fluxes at the det-
onation front near 1 x 10° GW/m?. Various aerospace, mining, and defense related
applications have evolved which utilize the large power generated by the detonation

of energetic solids to perform specific tasks. However, with their use come hazards



associated with the storage and handling of these materials.

Considerable research has been conducted during the past three decades address-
ing the evolution of detonation in granulated energetic material. This research has
largely been motivated by concerns over the accidental detonation of damaged high-
explosives or propellants in response to weak mechanical shock or thermal insult [2].
Here, damaged material refers to cast solid material which has been inadvertently
fractured; thus, local granulated regions exist within the material.

Relative to granulated explosives, cast solid explosives are less susceptible to det-
onation by weak mechanical shock as only strong shocks provide sufficient ehergy to
initiate chemical reaction. In contrast, experiments have shown that weak mechan-
ical shock is often sufficient to trigger detonation in granulated explosives 79, 42].
In these systems, chemical reaction is initiated by the formation of local regions
of intense thermal energy concentration, commonly termed “hot spots.” Possible
heating mechanisms include shock-void interaction, granule fracture, friction between
granules, and adiabatic compression of gas trapped within the interstices of granules
[56, 77). Once reaction is initiated, and if the burning material is strongly confined
(e.g., by the walls of the vessel containing the explosive), then the pressure-dependent
reaction rate will accelerate, and the pressure of the combustion gases will quickly
rise. The high gas pressurization rate may be sufficient to induce the formation of a
relatively strong shock. If so, additional hot spots will form as the shock propagates,
which will trigger additional reactive centers, which will in turn further strengthen
the shock. Detonation results.

Experiments have also shown that granulated regions in damaged cast solid propel-
lants can accelerate normal combustion rates by several orders of magnitude {43, 98];
this is of particular concern to the solid rocket propulsion community. In granulated
regions, where the surface area of unburnt solid propellant is high, flame spread is

significantly enhanced by the permeation of hot combustion gases through the gran-



ulated material; this mode of flame spread is commonly termed convective burning.
The hot gases ignite the unburnt propellant granules, resulting in an increase in the
total burning surface area; consequently, the production rate of combustion gases
increases which leads to an increase in gas pressure. If the gas pressurization rate
is sufficiently high to induce the formation of a shock, the propellant can undergo a
transition to detonation in a manner similar to that described above. This sequence
of events is a plausible scenario for the accidental detonation of solid propellants used
in rocket motors which may have been damaged prior to, or during, motor operation.

Devices also exist which utilize the power generated by detonation to perform
specific tasks within controlled environments. One such device is the Super*Zip sep-
aration joint which is regularly used on the Space Shuttle to release spacecraft from
the Shuttle’s cargo bay [13]. This device uses a detonating explosive cord as a mech-
anism to achieve planar separation. Since explosively actuated devices often play
critical roles in space-related missions, one must strive for fail-proof designs. As such,
detailed modeling could be a useful tool in optimizing the design of these devices.

Many questions exist concerning the evolution of detonation in granulated mate-
rial: What are the most important heating mechanisms induced by weak mechanical
shock? How do these mechanisms interact with the chemistry of the solid to initi-
ate chemical reaction? Following initiation of reaction, what are the most important
physical processes responsible for transition to detonation? How do the properties of
the granulated region, such as the granule size distribution, affect localized heating,
initiation of chemical reaction, and transition to detonation? What major factors
influence the distance required for transition to detonation? How much granulation
is necessary to effect transition to detonation? How much confinement is necessary
to effect transition to detonation?

In this study, we continue a long-standing effort to address these and other ques-

tions. Specifically, we consider a paradigm problem for the initiation of detonation in
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Figure 1.1: Schematic of the model problem.

damaged high-explosives by weak, planar mechanical shock. This problem, which is
well-characterized by experiments [42, 79, 80, 105], involves the low velocity impact
of a moving piston, having velocity v,, with a stationary bed of granular explosive.
A simple schematic of the model problem is given in Fig. 1.1. In this figure, transi-
tion to detonation has already occurred, and the resulting detonation wave, composed
of a thin lead shock followed by a thick reaction zone, is propagating to the right at
speed D, where D >> v,, and is supersonic with respect to both the ambient gas and
solid. As will be shown, the lead shock may be in the gas and/or solid depending on
the relative rates of the various physical processes occurring within the reaction zone
structure. In this study, we model shocks as discontinuities since the time scales as-
sociated with diffusive processes, which define a shock structure, are large compared
to the time scales associated with detonation. Adiabatic compression of the ambient
material by the lead shock provides sufficient energy to initiate chemical reaction.
Due to reaction, solid particle mass, momentum, and energy are converted into gas
mass, momentum, and energy. This conversion process sustains propagation of the
wave through the material by means of acoustic energy transmission from the point
of local reaction, through the subsonic region of the reaction zone, and to the lead

shock. Other processes occurring within the reaction zone include momentum and



energy exchange between the gas and solid due to drag interaction, thermal energy
exchange between the gas and solid due to convective heat transfer, and material
compaction due to mechanical stresses. At the end of the reaction zone, all of the
solid is completely consumed by reaction. The reaction rate determines both-the time
required for complete reaction and the length of the reaction zone; a typical reaction
time predicted by this study is 1 us, and a typical reaction zone length is 10 mm.
For this study, we adopt a common terminology, and collectively term the sequence
of events, whereby the low speed combustion wave initiated by weak mechanical shock
(i.e., for approximately v, < 700 m/s) accelerates and undergoes a transition to
detonation, as deflagration-to-detonation transition (DDT). This terminology is also
commonly used to describe the transition process resulting from thermal energy input.
The transition process whereby detonation is directly initiated by strong mechanical
shock (i.e., for approximately v, > 700 m/s) is commonly termed shock-to-detonation
transition (SDT). Though a distinction is often made in the literature between DDT
and SDT, these processes are not mutually exclusive as a key component of DDT is
the formation of a strong shock within the material due to the accelerating combustion

wave, and the subsequent transition to detonation in a manner similar to SDT.

1.2 Literature Review

In this section, we survey selected experimental, theoretical, and modeling work

relevant to this study.
1.2.1 Experimental

A number of experimental studies have been conducted for the purpose of iden-
tifying a mechanism for DDT in granulated energetic material. The earliest experi-
ments are those of Griffiths and Groocock [43], and Bernecker and Price [14, 15, 97).
More recent experiments include those of Baer et al. [7], Bernecker and co-workers

[16, 17, 105], Campbell, McAfee, and co-workers {24, 79, 80, 81], Green et al. [42],



and Leubcke et al. [75].

In these experiments, explosive granules (~ 10 to 300 um in diameter) are placed
into a thick-walled steel tube which provides the confinement necessary for deto-
nation. Typically, the inner diameter of the tube (~ 30 mm) is small compared
to its length (~ 300 mm). Commonly tested solid high-explosives include HMX (cy-
clotetramethylene tetranitramine; Cy Hs NgOs), RDX (cyclotrimethylene trinitramine;
C3HgNsOs), and PETN (pentaerythritol tetranitrate; Cs HgNyO12). These secondary
high-explosives are often used in various military and aerospace applications. The
explosive granules are compressed into the tube in such a way as to locaily maintain
a nearly uniform solid volume fraction. Here, solid volume fraction is defined as the
ratio of the volume occupied by the explosive granules to the total volume (Solid
Volume Fraction = Solid Volume/Total Volume). The ends of the tube are sealed
to provide additional confinement, and combustion is initiated at one end. Though
various methods have been used to initiate combustion, the two most commonly
used methods are 1) thermal energy input supplied by a chemical ignition device
[7, 14, 15, 16, 17, 24, 43, 75, 81, 97], and 2) mechanical energy input supplied by
driving a piston into the granular explosive bed [42, 79, 80, 105]. Transition to det-
onation is observed to depend on the chemical reactivity of the particular explosive,
the initial solid volume fraction of the granular bed, the extent of confinement, and
the piston velocity (for piston impact experiments).

Here, we primarily focus on experimental results for piston-initiated DDT. In
these experiments, the piston, which is constrained to move within the tube, is fired
at the explosive test bed using a driver explosive. It is possible to record piston
velocities, mixture pressures, and solid volume fractions during DDT, and to track
the propagation of strong compression waves within the granular bed. Typical piston
velocities used in experiments are near 100 m/s, and ambient solid volume fractions

are near 0.70.
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Figure 1.2: Results of a typical piston-initiated DDT experiment.

The transient events observed during a typical piston-initiated DDT experiment
are qualitatively shown in the distance-time plane of Fig. 1.2. The piston impacts
the explosive test bed at time t,, and generates a compaction wave, labeled ¢, which
propagates away from the piston at nearly constant speed (~ 400 m/s). Across the
compaction wave, the solid volume fraction increases from its ambient value to near
0.90 (for ambient solid volume fractions near 0.70). Weakly exothermic chemical
reaction is initiated due to local heating mechanisms as the material is compacted.
Following an induction period, during which chemical reaction slowly intensifies, a
burn front, labeled b, is seen to form near the piston surface; this occurs at time
tinp- Subsequently, the reaction rate increases near the piston surface, and the pres-
sure of the gaseous reaction products rapidly increases due to confinement provided
by the piston, the wall of the tube, and the low permeability of the compacted ma-
terial. The resulting high gas pressurization rate causes the burn front to strengthen
and accelerate. As the burn front accelerates through the compacted material, the

material is further compacted resulting in the formation of an inert solid plug (i.e.,




solid volume fraction near unity), labeled s, slightly ahead of the burn front. The
mechanism responsible for the formation of this plug is not clearly understood, but is
believed to be associated with the coalescence of compression waves generated by the
accelerating burn front [79, 109, 111). The width of the solid plug rapidly increases
with time as compression waves originating from behind the plug impinge upon the
rear of the plug; these waves are labeled cp. Finally, a shock is generated at the
front of the plug which initiates both a right-propagating detonation, labeled D, and
a left-propagating detonation (referred to as a retonation), labeled R. For the case
shown here, the propagation speed of the resulting detonation decreases slightly as
the detonation overtakes the initial compaction front and propagates into the less
dense ambient material.

A similar sequence of events has been observed in recent DDT experiments whereby
combustion was directly initiated by gasless pyrotechnic ignitors [81, 75]. The pur-
pose of these experiments was to identify the role of convective burning in DDT by
eliminating pre-pressurization of the explosive bed due to gases generated by standard
chemical ignitors. Results of these experiments, which support the earlier results ob-
tained by Campbell [24], show that convective burning is restricted to a short region
near the point of ignition. In these experiments, the high gas pressure generated by
convective burning during the early stage of DDT was sufficient to choke the flow
of gas through the bed, resulting in the formation and propagation of a compaction
wave; subsequently, transition to detonation was seen to occur in a manner similar

to that described above for piston-initiated DDT.

1.2.2 Theoretical and Modeling

Though experiments have provided much information about DDT in granular
explosives, it is necessary to model the physical processes involved, and the cou-
pling between these processes, in order to identify and better understand important

mechanisms responsible for transition to detonation. To this end, a number of two-
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phase models have been formulated for analyzing the combustion of granular energetic
solids. Most models are based on principles of continuum mixture theory; details of
the theory are given in Chapter 2.

Relevant modeling studies include those of Krier and co-workers [22, 23, 41, 52, 60,
61, 62, 63, 92, 94, 95], Kuo, Summerfield, and co-workers [64, 65, 66, 67], Nunziato,
Baer and co-workers [4, 5, 6, 7, 86|, Saurel and co-workers [106, 107], and more
recently those of Son, Bdzil, and co-workers [10, 59, 109, 110]. Reviews of other
relevant literature can be found in many of these references. The work of Kuo et al.
primarily addressed low speed, low pressure combustion, while the work of Krier et
al., Nunziato et al., Saurel et al., and Son et al. addressed high speed, high pressure
combustion associated with DDT. Also, Stewart et al. [111] recently formulated a
simplified model for predicting DDT in granulated reactive material using a modified
single phase state variable approach.

The two-phase continuum models used to study DDT are posed as coupled time-
dependent systems of partial differential equations which track the evolution of mass,
momentum, and energy of an inert gas and reactive solid particles in one spatial di-
mension. Some models include an additional partial differential equation to account
for dynamic compaction of the solid particles [5, 94], while other models use an alge-
braic stress relation to account for compaction [22, 23]. Physical processes accounted
for by most models include 1) convective transport in both the gas and solid, 2) mass,
momentum, and energy transfer from the solid to the gas due to chemical reaction, 3)
momentum and energy exchange between the gas and solid due to drag interaction,
4} thermal energy exchange between the gas and solid due to convective heat transfer,
and 5) material compaction due to a stress imbalance between the gas pressure, solid
pressure, and an intragranular stress. Though the various two-phase models have
common features, they often differ in the functional forms of the evolution equations

and constitutive models. These differences have been the focus of some debate; rele-



vant issues are discussed in detail by Powers et al. [94] and are not considered in this
dissertation.

A number of difficulties exist in the numerical modeling of DDT in these systems,
of which accurately capturing strong shocks is the most challenging. To -this end,
traditional higher-order numerical methods (i.e., Lax-Wendroff methods) fail since
they produce spurious oscillations near shocks, and are unstable as a consequence.
Traditional lower-order methods (i.e., first-order upwind methods), while stable, are
overly diffusive resulting in significantly smeared shocks; as such, the physical phe-
nomena which are to be modeled within the reaction zone can be overwhelmed by
the artificially large shock structure. Commonly used numerical methods for simu-
lating DDT are based on the explicit use of artificial viscosity, and it is likely that
this added numerical diffusion adversely affects their ability to accurately resolve fine
scale detonation structure. Furthermore, the optimal amount of artificial viscosity
needed to reasonably capture shocks is largely problem specific, and must be chosen
by the modeler based on a trial and error procedure. Numerical methods used to
simulate DDT must also be capable of handling mathematical stiffness which arises
due to the disparate time scales associated with gas and solid convection, combustion,
interphase drag, interphase heat transfer, and material compaction.

For certain conditions, this study has identified length scales associated with var-
ious physical phenomena occurring within the reaction zone structure which are as
small as 30 um. This poses an additional problem for numerical modeling as it would
require approximately 1000 computational cells within a 10 mm reaction zone to ac-
curately resolve such fine-scale structure. Obviously, the computational costs for such
well-resolved simulations are prohibitively expensive.

Numerical simulations based on the two-phase continuum models have been mod-
estly successful in predicting most experimentally observed features of DDT including

1) the formation and propagation of a lead compaction wave, 2) the initiation and
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subsequent acceleration of a burn front in the compacted material, and 3) the final
transition to detonation. Also, some simulations have predicted the formation of a
secondary compacted region reminiscent of the inert solid plug [5, 23, 109]). The pre-
dicted gas pressures, densities, and velocities at the end of the reaction zone,.as well
as the predicted compaction and detonation wave speeds, reasonably match experi-
mental results.

However, much of the two-phase modeling effort has concentrated on predicting
the transient events leading to detonation, with little emphasis given to an analysis
of the fully-developed detonation structures; as such, detonation structures pfedict.ed
by DDT simulations are not well-characterized. Here, detonation structure refers to
the spatial variation in all two-phase variables, such as gas and solid density, veloc-
ity, pressure, etc., within the reaction zone. Furthermore, many DDT simulations
are performed using coarse computational grids which place approximately 6-15 com-
putational cells within the reaction zone; as such, fine-scale structures within the
reaction zone are not accurately resolved. Results of these unsteady analyses have
provided a weak foundation for the development of a steady two-phase detonation
theory.

An analysis of detonation structure is of both practical and theoretical impor-
tance. From a practical perspective, it is the physical phenomena occurring within
the detonation wave which are responsible for the peak stresses and wave speeds,
and thus the power generated by detonation. From a theoretical perspective, one
cannot understand all implications of a DDT theory without a careful examination of
fully-resolved two-phase detonation structure. Also, an analysis of planar two-phase
detonation structure provides the theoretical base necessary for the attack of more
complicated multiple-dimensional problems.

A significant advancement in the theory of steady two-phase detonation is due to

Powers, Stewart, and Krier [91, 92, 94, 95]. In their investigations, Powers, Stew-
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art, and Krier formulated a new unsteady, two-phase continuum model appropriate
for describing detonation in granulated material. Their model is based on principles
of continuum mixture theory, and is believed to be an improvement over previous
existing two-phase continuum models used to predict detonation in granulated mate-
rial. Reference [94] gives a complete description of modeling improvements. Powers,
Stewart, and Krier then used their model to analyze steady two-phase detonation
structures admitted by the steady form of the model equations. A key contribu-
tion of their work was in placing two-phase detonation theory within the context of
classical one-phase detonation theory [34]. As such, it is appropriate to briefiy intro-
duce relevant concepts from one-phase detonation theory before proceeding with a
discussion of their results.

One-phase detonations are modeled by the reactive Euler equations of gas dy-
namics. Assuming a steady, one-dimensional detonation having a lead discontinuous
shock followed by a zone of exothermic chemical reaction, the equations reduce to an
autonomous system of ordinary differential equations expressed in a reference frame
attached to the lead shock. Thus, the steady one-phase detonation problem is posed
as an initial value problem, where the initial conditions are given by the shocked gas
state.

The simplest theory, referred to as Chapman-Jouguet (CJ) theory, is based on
an analysis of complete reaction end states, which are equilibria of the ordinary dif-
ferential equations. Thus, results of this analysis are independent of reaction zone
structure. For fixed ambient conditions, C'J theory predicts no equilibrium end states
for wave speeds less than a minimum critical value. For a unique value of wave speed
equal to this minimum value, referred to as the C'J wave speed, there is predicted
a single equilibrium end state called the CJ state. For all wave speeds larger than
the C'J wave speed, the theory predicts two equilibrium end states: a strong state

and a weak state. The strong state has higher pressure than the C'J state, and the
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weak state has lower pressure. The gas velocity relative to the wave front is sonic for
the CJ state, subsonic for strong states, and supersonic for weak states. As such,
steady detonations terminating at either a C'J or weak state are not susceptible to
degradation by rarefaction waves originating from behind the detonation which prop-
agate at the local acoustic speed relative to the local flow velocity. The CJ theory
hypothesizes that the CJ state is the unique end state for a steady self-propagating
detonation, though self-propagating detonations terminating at weak states cannot be
ruled out solely based on an equilibrium end state analysis. Here, a self-propagating
detonation refers to one in which the energy released by combustion is sufficient to
sustain propagation of the wave in the absence of external energy input. Strong det-
onations, being susceptible to degradation by rarefaction waves, require the support
of a moving piston so that no rarefactions exist between the piston and the detona-
tion end state; as such, a region of constant state exists between the piston and the
end of the reaction zone. Strong detonations are not self-propagating. In fact, if the
piston supporting a strong detonation was suddenly stopped, a rarefaction would be
produced which would propagate to the detonation and weaken it to either a CJ or
weak detonation.

Though the equilibrium analysis identifies C'J, strong, and weak detonation end
states, one must consider detonation structure in order to determine whether a path
exists connecting the shocked gas state to these end states. The simple Zeldovich
[131], von Neumann {121], Doering [29] (ZND) theory, developed during the 1940’s,
considers the structure of a one-phase detonation wave resulting from a one-step,
irreversible, exothermic chemical reaction (A — B). Based on ZND theory, it can be
shown that all self-propagating detonations having a lead shock propagate at the CJ
speed, as no path exists leading from the shocked gas state to the weak state. Though
weak detonations with a lead shock are not admitted by ZND theory, Fickett and

Davis [34] show that they can be readily obtained by relaxing the simple restrictions
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of the theory. For example, replacing the one-step, irreversible, exothermic chemical
reaction with a two-step, irreversible chemical reaction (4 — B — C), where the
first step is exothermic and the second step is endothermic, gives the possibility of
obtaining weak detonations. In summary, ZND theory demonstrates how detonation
structure can place constraints on the existence of steady detonation waves.

We now return to a discussion of the two-phase detonation theory developed by
Powers, Stewart, and Krier. As shown in their work, the problem of determining
steady two-phase detonation structure requires the solution of an autonomous sys-
tem of four ordinary differential equations subject to initial conditions at the deto-
nation front. In order to define the initial conditions, it is first necessary to specify
the ambient state of the material, the detonation wave speed, and whether the gas
and/or solid is shocked. The appropriate shocked state at the detonation front is
then obtained from two-phase Rankine-Hugoniot relations. In their study, both an
equilibrium end state analysis and a detonation structure analysis of the governing
ordinary differential equations were performed.

The equilibrium end state analysis identified two-phase equivalents to the CJ,
strong, and weak states predicted by one-phase theory. As in one-phase theory, the
two-phase CJ state is predicted for a unique value of detonation wave speed. No
equilibrium solutions are predicted for wave speeds less than this value. Two-phase
strong and weak states are predicted for wave speeds in excess of this value. Once
again, the strong state has higher pressure than the C'J state, and the weak state has
lower pressure.

The steady structure analysis for two-phase detonations is considerably more com-
plicated than for one-phase detonations. The added complexity is due to the presence
of two phases, and interactions between the phases. In their analysis, Powers, Stew-
art, and Krier identified paths leading to both the C'J and strong end states for

detonations having a lead shock in the gas and an unshocked solid; paths leading to
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the weak state were not identified. Moreover, they defined parametric conditions for
the existence of this class of CJ detonations. Though only shocked gas/unshocked
solid structures were predicted, it is likely that other steady structures exist which
terminate at CJ, strong, or weak states, possibly having solid shocks, or even-multiple
shocks. However, due the complexity of the steady two-phase model, the identification
of other steady structures is largely a trial and error process.

A comprehensive study of two-phase detonation structure should include both
a steady and unsteady analysis. One could numerically solve the unsteady DDT
problem, carefully examine the structure of the resulting fully-developed deﬁonation
waves, and compare the results to predictions obtained by the steady analysis. As
such, one could determine if the steady structures identified by Powers, Stewart,
and Krier evolve from DDT events, and identify other, more complicated, steady
structures not predicted by the steady analysis. Also, an unsteady analysis can
provide information about the stability of two-phase detonations. No such analyses

have been reported in the two-phase detonation literature.

1.3 Objectives of this Study

The primary objective of this dissertation is-to predict and analyze two-phase det-
onation structures by numerically simulating piston-initiated DDT, and to compare
the predicted structures with results given by a steady-state detonation analysis. A
secondary objective is to classify new steady detonation structures. We only consider
detonations which are ultimately self-propagating; therefore, we specify piston veloc-
ities (~ 100 m/s) well below those required for piston-supported strong detonations
(~ 2000 m/s). The steady analysis is a minor extension of the work performed by
Powers, Stewart, and Krier [91, 95], whereas the unsteady analysis is a major new

extension of their work. Specific objectives of the steady analysis are:

1. To predict all self-propagating two-phase detonation structures.
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2. To define parametric conditions for the ezxistence of these structures.

Specific objectives of the unsteady analysis are:

1. To develop a modern high-resolution numerical method which can accurately
resolve the fine scale structure of a two-phase detonation. =

2. To determine if the detonation structures identified by the steady analysis evolve
from a physically relevant ambient state.

3. To determine how DDT and detonation structure are affected by system param-
eters.

The development of a new high-resolution numerical method is a major contribution
of this dissertation.

The model used in this study is a variant of the unsteady, two-phase continuum
model formulated by Powers, Stewart, and Krier [91, 94]. We have modified their
model to include an additional evolution equation for an ignition variable, and have
incorporated an intragranular stress relation which is better suited for describing dy-
namic compaction of granular explosives {93]. The equation for the ignition variable
is used to model the induction period observed prior to the onset of full-scale com-
bustion in piston-initiated DDT experiments. The use of such an equation is not
standard in DDT modeling, though similar equations have been used to control the
heat of reaction during the induction period {8, 59, 110]. The continuum model is
representative of other two-phase continuum models commonly used to predict deto-
nation in granulated material [5, 23], and is able to predict most events characteristic
of DDT. Whenever possible, comparisons of model predictions with experimental data
are given in this dissertation.

The plan of this dissertation is as follows. First, the unsteady model is presented
in Chapter 2. The modeling approach is discussed, and the dimensional model equa-
tions are given. As this study considers detonation initiated by a moving piston,

the model equations are transformed to a reference frame that moves with the pis-
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ton. The equations are non-dimensionalized, and the non-dimensional parameters are
discussed.

Next, a characteristics analysis of the non-dimensional model equations is given in
Chapter 3. The purpose of this analysis is to classify the model equations, and.to pro-
vide the mathematical framework needed for the construction of the high-resolution
numerical method for solving the unsteady model equations. The equations are shown
to admit discontinuous solutions, such as shocks and contact discontinuities, which
are also discussed in this chapter.

The high-resolution numerical method is formulated in Chapter 4. The method is
upwind, does not require the explicit use of artificial viscosity, can accurately capture
shocks with minimal smearing, and can accurately resolve disparate time-scales associ-
ated with rate-dependent processes. The method is based on Godunov’s methodology
[40] which requires the solution of a two-phase Riemann problem at each computa-
tional cell boundary in order to advance the solution in time. Rather than exactly
solving the two-phase Riemann problem, an approximate solution is used for increased
computational efficiency. The approximate solution is constructed based on the ex-
act solution of the linear two-phase Riemann problem. As such, the exact solution
of the linear problem is first obtained, and its wave structure is analyzed. Such an
analysis has not been previously reported for this class of DDT models. The initial
and boundary conditions used in this study are also discussed in this chapter.

In Chapter 5, the numerical method is validated against three test problems for
which analytical sclutions are available: 1) an inert two-phase shock tube problem;
2) the evolution of an inert shock in both the gas and solid due to compression of the
granular material by a moving piston; and 3) the evolution of an inert compaction
wave due to compression of the granular material by a moving piston. Numerical
convergence is demonstrated for each test problem, and the spatial convergence rate

is determined. The reader who is primarily interested in the predictions of the physical
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system can bypass Chapters 4 and 5 without difficulty.

The steady analysis of two-phase detonation is given in Chapter 6. The steady
problem is mat-hematically posed as an initial value problem, and the technique used
to put the equations into a simplified form suitable for analysis is given. -Detona-
tion end states are analyzed, and detonation structure is investigated by numerically
integrating the reduced system of ordinary differential equations. Two classes of self-
propagating detonation structures are identified leading to states predicted by the
end state analysis: 1) CJ structures having a single lead shock in the gas and an
unshocked solid, and '2) weak structures having a single lead shock in the gaé and an
unshocked solid. The first class of structures has been previously predicted by Pow-
ers, Stewart, and Krier [91, 95]; the second class of structures has not been previously
predicted. Existence criteria for each of these classes are determined based on the
results of a parametric study.

The unsteady analysis of two-phase detonation is given in Chapter 7. For this anal-
ysis, we predict the evolution of detonation resulting from piston-initiated DDT, and
analyze the effect of material compaction, interphase drag, and ambient mixture den-
sity (defined later) on DDT and detonation structure. The predicted fully-developed
detonation structures are compared with results given by the steady analysis. In ad-
dition to predicting the evolution of C'J and weak structures identified by the steady
analysis, we also predict the evolution of fully-developed CJ structures having an
unshocked gas and a single lead shock in the solid, as well as fully-developed CJ
structures having a shock in both the gas and solid. Previous DDT studies have not
clearly demonstrated the existence of such structures.

Conclusions and recommendations for additional study are given in Chapter 8.

18



TWO-PHASE CONTINUUM MODEL

Modeling the detonation of granulated energetic material is complicated by is-
sues common to one-phase combustion modeling (.e., multi-dimensionality, complex
reaction kinetics, compressibility, etc.), and is further complicated due to the simul-
taneous existence of multiple phases, interactions between phases, and the motion of
phase interfaces. Due to these complexities, modeling approaches have been devel-
oped which bypass the discrete nature of the flow enabling the dynamics of systems
containing a large number of particles to be predicted. One such approach involves
averaging the classical continuum equations for each phase over a representative vol-
ume of the mixture; a set of macroscopic multi-phase equations expressed in terms
of averaged variables results [21, 30, 47, 48]. A second approach, which eliminates
the need for formal averaging, uses principles of continuum mixture theory to for-
mulate a set of macroscopic multi-phase equations [90, 116, 117, 126]. Both of these
approaches, which are based on a hydrodynamic description of multi-phase granular
flow, enable one to obtain tractable models which can be used as tools for engineering
applications.

The two-phase continuum model used in this study, which is based on principles of
continuum mixture theory, is described in this chapter. First, the dimensional model
equations are given in Section 2.1. Second, since this study addresses the evolution
of detonation resulting from compression of the material by a moving piston, the
dimensional model equations are transformed to the accelerating reference frame of
the piston in Section 2.2. Lastly, the model equations are non-dimensionalized in

Section 2.3, and the non-dimensional parameters are discussed.
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2.1 Model Equations

The model used in this study is a variant of the model formulated by Powers et al.
[91, 94] using principles of continuum mixture theory. This theory treats the phases
as overlapping continua; as such, each phase is assumed to simultaneously Ogéﬁpy the
entire region located within, and including, the system boundaries. Associated with
each phase are variables describing its thermodynamic state (i.e., density, pressure,
temperature, internal energy, etc.), velocity, and volume fraction. Here, the volume
fraction of a particular phase is defined as the ratio of the volume occupied .by that
phase to the total volume. These variables are not the same as those corresponding to
a single phase system, but are loosely interpreted as “averaged” quantities which are
representative of the mixture’s local microstructural properties. Evolution equations,
which are intuitive extensions of the classical continuity, momentum, and energy
equations for a single phase system, are postulated governing changes in the mass,
momentum, and energy of each phase. Also, an evolution equation is postulated for
the volume fraction. Forcing terms in the mass, momentum, and energy equations for
each phase account for interactions between phases including drag, heat transfer, and
chemical reaction resulting in phase change. Forcing terms in the evolution equation
for volume fraction account for changes in volume fraction due to both material
compaction and chemical reaction.

In general, the constitutive relations for each phase, and the phase interaction

terms, are posed based on the following axioms [11, 90].

1. Phase Separation. This axiom asserts that the thermodynamic state of a par-
ticular phase depends only on the properties of that phase. In other words,
the thermodynamic state of a particular phase is independent of the thermody-
namic states of other phases. However, the phase interaction terms can depend

on the properties and thermodynamic state of all phases.
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2. Conservation. This axiom requires that the mass, momentum, and energy of
the mixture be conserved. Though the phase interaction processes partition the
mass, momentum, and energy of the mixture between the various phases, the

net effect of these processes must maintain giobal conservation. -

3. Dissipation. This axiom requires that the change in mixture entropy due to
any thermo-mechanical process (i.e., the phase interaction processes) be non-

decreasing.

4. Frame Indifference. This axiom requires that the constitutive relations for each
phase, and the phase interaction terms, be invariant under a Galilean coordinate

transformation.

Though these axioms constrain the construction of multi-phase continuum models,
they still allow for a wide variety of models. As such, models formulated using these
axioms are not unique; differences in both the functional form of the model equations
and the constitutive relations exist. Furthermore, Powers et al. {94] have shown that
two-phase continuum models commonly used to predict detonation in granulated
material, including the model used in this study, fail to satisfy the dissipation axiom
in special cases. The problem of posing models which satisfy the dissipation axiom
under all conditions is currently unresolved.

Implicit to the continuum mixture approach, though not often stated, is the as-
sumption that a suitable representative elementary volume (REV) can be defined
about every point within the mixture at every instant in time. The REV defines a
volume, AV (here we use over-hats “&” to identify dimensional quantities), about
a point, P, for which the local microscopic properties of the mixture (i.e., phase
density, volume fraction, etc.) can be averaged (Fig. 2.1). In order to obtain sta-
tistically meaningful averages, it is required that the characteristic length associated

with the REV be much larger than the characteristic length associated with the lo-
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Figure 2.1: REV for a granular material.

cal microscopic structure. Furthermore, it is required that the characteristic length
associated with the REV be much smaller than the characteristic length associated
with macroscopic variations in the flow quantities. In other words, the REV should
be insensitive to small changes in AV. This definition of a REV for a multi-phase
mixture is analogous to the definition of a fluid particle in fluid mechanics.

This idea is illustrated in Fig. 2.1 for a dynamically evolving system of solid parti-
cles having radius 100 um. These particles are similar in size to the particles consid-
ered in this study. If, at a fixed instant in time, the volume fraction of the particles
contained within AV is computed, and if the computation is repeated while contin-
uously increasing AV, then a result similar to that shown in this figure is obtained.
Here, microscopic effects dominate for approximately AV < 10~12 m3, where this
value is close to the volume of a single particle. For approximately AV > 10~12 m?,
there exist many solid particles within the volume enabling statistically meaningful
solid volume fractions to be computed. However, the computed result may become in-
creasingly sensitive to small changes in AV as the volume approaches the characteris-
tic volume (length) associated with macroscopic flow variations. Based on predictions
of this study for the spatial variation in solid volume fraction within the reaction zone
of a typical two-phase detonation (reaction zone length ~ 10 mm), inhomogeneous

effects associated with this macroscopic variation in volume fraction will occur for
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approximately AV > 10~° m3. Consequently, the two-phase continuum mixture ap-
proach is appropriate for REV’s within the range 1 x 10712 m® < AV < 1 x 10~ m2.
If a suitable REV cannot be identified at every point within the mixture at every in-
stant in time, then the continuum mixture approach is invalid and other modeling
techniques should be considered. This same result holds when using the formal aver-
aging approach to derive macroscopic multi-phase equations.

The continuum model used in this study assumes the existence of reactive, spher-
ical solid particles and an inert gas, both having fixed composition. This assumption
is largely made for the sake of simplicity, as the solid particles will genera.ily be of
non-spherical shape, and the actual composition of the the reaction products, which
is dependent upon many factors including the local pressure and temperature, may
consist of a combination of solid, liquid, and gas species. Due to the large stresses
generated by detonation (~ 10 GPa), we assume that each phase is compressible.
Diffusive transport processes within each phase are ignored since the time scales as-
sociated with these processes (~ 1 s) are much larger than the time scales associated
with detonation (~ 1 us). Gravitational body forces are also ignored in this study
since the magnitude of this force per unit volume (~ 10* N/m?) is negligible com-
pared to the force per unit volume characteristic of detonation (~ 10'®* N/m?). Mass,
momentum, and energy exchange between the gas and solid are modeled, as is dy-
namic compaction of the granular bed resulting from a mechanical stress imbalance.
This study does not consider the effects of lateral boundaries on the two-phase flow;
as such, the flow is assumed one-dimensional (in a macroscopic sense).

The dimensional model equations are given by the following:
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In these equations, the subscripts “1” and “2” denote quantities associated with the

gas and solid, respectively. Quantities labeled with subscript “o” are associa.téd with
the ambient state. The independent variables are time ¢ and position #. Dependent
variables are as follows: the phase density g; (¢ = 1, 2), defined as the mass of phase %
per unit volume occupied by that phase; the phase pressure P;; the phase temperature
T:; the particle velocity 4;, measured with respect to a stationary reference frame;
the specific internal energy é;; the volume fraction ¢;; the radius of the spherical solid
particles 7; the number of particles per unit volume #; the intragranular stress f ; and
an ignition variable I which is discussed in a following paragraph. In Eqgs. (2.1-2.9),
H(I — I,) is the Heaviside unit step function, and Iy, &, m, B, h, fic, k1, and Ty
are constant parameters which are described below. Equations (2.1-2.16) constitute
a system of sixteen equations in sixteen unknowns; thus, the system of equations
is mathematically closed and, in principle, can be solved provided that appropriate
initial and boundary conditions are supplied. The initial and boundary conditions
used in this study are discussed in Chapter 4.

Equations (2.1), (2.2), and (2.3) are evolution equations for the mass, momentum,
and total energy of the gas. Equations (2.4), (2.5),and (2.6) are evolution equations
for the mass, momentum, and total energy of the solid. Equations (2.7-2.9) are
evolution equations for the solid volume fraction, the particle number density, and
the ignition variable, respectively.

The forcing terms in Eqs. (2.1) and (2.4) account for the exchange of mass from
the solid to the gas due to combustion. Here, mass exchange is modeled as a single,
irreversible process (solid — inert gas), and all chemical reaction is assumed to occur
on the particle surface. Combustion initiation occurs for I > I,, where [, is a

constant ignition parameter. The combustion rate is modeled by a burn law which
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depends upon the gas pressure. The use of Such a burn law is motivated by strand burn
experiments. In these experiments, a cylindrical strand of solid propellant or explosive
is burned within a pre-pressurized vessel. Combustion is initiated at one end of the
strand, and a combustion wave develops which propagates along the length of the
strand at nearly constant speed. The burn rate is inferred from the combustion wave
speed, which is found to vary with initial pressure [125]. Values for the combustion
rate parameters @ and m are correlated to match the burn rate data.

The forcing terms in Egs. (2.2) and (2.5) account for two forms of momentum
exchange between the gas and solid. First, the gas is gaining that momentum asso-
ciated with the solid which is being converted into gas due to combustion. Second,
there is an exchange of momentum due to solid particle-gas drag interaction. The
drag interaction is modeled by a drag law which states that the drag is proportional
to the difference in velocity between the phases, and inversely proportional to the
particle radius. In the drag law, B is defined as a drag coefficient.

The forcing terms in Eqs. (2.3) and (2.6) account for the exchange of energy
between the gas and solid. Energy exchange associated with combustion, and with
particle-gas drag work, are accounted for, as is thermal energy exchange between the
gas and solid. The thermal energy exchange rate is assumed to be proportional to
the temperature difference between the gas and the solid, and inversely proportional
to the cube root of the particle radius; here, k is defined as a heat transfer coefficient.

Equation (2.7) is a dynamic compaction equation governing changes in solid vol-
ume fraction due to both compaction and combustion of the granular bed. This
equation predicts that, in the absence of combustion, the solid volume fraction, ¢.,
will equilibrate to a value such that the solid pressure, P, equals the sum of the gas
pressure, P, and the intragranular stress, f; the equilibration rate is governed by
the parameter [, which is referred to as the compaction viscosity. The use of this

equation was first proposed by Baer and Nunziato [5]. Though this equation is not
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standard in multi-phase modeling, it does allow for the modeling of rate-dependent
material compaction which is known to be important in the evolution of detonation
in granulated material. Additionally, the use of this equation insures that the char-
acteristic wave speeds associated with the model equations are real [91, 94],-and that
solutions of the governing partial differential equations are hyperbolic waves. The
characteristic wave speeds of some two-phase models, particularly models which as-
sume pressure equilibrium between the phases, have been shown to be imaginary, and
are thus unable to properly model discontinuous solutions [30, 99].

Equation (2.8) expresses that the total number of particles in the systeni is con-
served. Though not considered in this study, it is possible to model the coalescence
and break-up of particles by including appropriate inhomogeneous terms in this equa-
tion.

Equation (2.9) is an ad hoc evolution equation for the ignition variable I. For this
study, 0 < I <1, where I, = 0 for the ambient state, and I;, = 0.5. This equation is
used to model the observed induction period occurring prior to the onset of full-scale
combustion in piston-initiated DDT experiments {7, 24, 42, 79, 80, 105]. The forcing
term in this equation models the ignition variable as an increasing function of pressure
and temperature of the gas and solid. Consequently, in agreement with experiments,
higher temperatures and pressures result in a decrease in the induction time. In this
equation, I::; and T} are ignition rate constants. Similar equations have been used
in other two-phase combustion models as “switches” for controlling the amount of
chemical energy released by combustion during the induction period [8, 59, 110].

Equations (2.10) and (2.11), and Eqgs. (2.12) and (2.13) are functional dependen-
cies for the thermal and caloric equations of state for the gas and the solid, respec-
tively. At this juncture, we choose not to specify exact forms for the state relations
as the formulation of the numerical method in Chapter 4 does not require us to do

so. Furthermore, different state relations are used for various problems in this dis-
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sertation, the exact forms of which are given where appropriate. Equation (2.14) is a
functional dependency for the intragranular stress which is assumed to be a monoton-
ically increasing function of solid volume fraction. Equation (2.15) is the definition of
the local particle number density expressed in terms of the solid volume fraction and
the particle radius, and Eq. (2.16) is a mixture saturation condition (i.e., no voids
are present within the mixture).

The phase interaction terms in Eqgs. (2.1-2.6) have been constructed such that,
for an isolated system, when Eqs. (2.1) and (2.4), Egs. (2.2) and (2.5), and Eqs.
(2.3) and (2.6) are respectively summed, homogeneous differential equa.tioné for the

mixture mass, momentum, and total energy are obtained:
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Consequently, the total mass, momentum, and energy of the mixture are conserved.

In addition to mixture conservation constraints, it is desirable to construct the
phase interaction terms such that, for a thermally isolated mixture, the change in
total entropy of the mixture due to any thermodynamic process is non-negative. This
is the basis of the dissipation axiom discussed at the beginning of this chapter. It is

proposed that the mixture entropy satisfy the following evolution equation [90):
.. ..  .,. O (n i ma oma oA
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where 5, and §, are the specific entropy of the gas and solid, respectively. An
expression for Eq. (2.20) can be obtained using the Gibbs relation for each phase
(Tid3; = dé; — (P,/p?)dp, i = 1,2] with Egs. (2.3) and (2.6); the resulting expression

is given by Powers et al. [94] and is not repeated here. This analysis enables the
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contribution of each thermodynamic process (i.e., mass transfer, momentum transfer,
energy transfer, and compaction) to be identified. Powers et al. [94] have shown that
many commonly used two-phase combustion models may not satisfy Eq. (2.20) under
all circumstances. It is difficult to to construct physically relevant forms for the phase
interaction terms which identically satisfy Eq. (2.20).

The phase interaction terms have also been constructed so that the ambient state
of the material is an equilibrium state. Other reasons for having chosen these specific
forms for the phase interaction terms are to achie<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>