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A NUMERICAL INVESTIGATION OF THE EVOLUTION OF - .·­

SELF-PROPAGATING DETONATION IN ENERGETIC GRANULAR SOLIDS 

Abstract 

by 

Keith Alan Gonthier 

Two-phase continuum equations are numerically solved to predict the evolution of 

self-propagating detonation in an energetic granular solid. Defiagration-to-detonation 

transition (DDT) is considered whereby combustion is induced by weak, planar me­

chanical shock due to low velocity piston impact("-' 100 mfs). A new high-resolution 

numerical method is formulated for solving the non-strictly hyperbolic system of 

unsteady model equations. The numerical method, which is based on Godunov's ap­

proach, is able to accurately capture strong shocks without the generation of spurious 

oscillations, and can accurately resolve fine-scale detonation structure. The method 

is shown to be convergent, and the convergence rate is determined based on compar­

isons of numerical predictions with known theoretical results for several test problems. 

The numerical simulations predict most experimentally observed features character­

istic of piston-initiated DDT in granular explosives. Experimentally observed time 

scales, wave speeds, and pressure magnitudes are correctly predicted. Several classes 

of steady two-phase detonation wave structures are predicted to evolve: Chapman­

Jouguet (CJ) and weak detonation structures having a lead shock in the gas and an 

unshocked solid, C J structures having a lead shock in the solid and an unshocked 

gas, and C J structures having a shock in both the gas and solid. Which structure 

evolves is found to depend on the material compaction rate, the interphase drag rate, 
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and the ambient mixture density. The results indicate that the C J wave speed is 

not the unique wave speed for a self-propagating two-phase detonation. Numerically 

predicted structures agree well with results given by a strictly steady-state detonation 

wave analysis. 
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INTRODUCTION AND REVIEW 

This study addresses the theory and modeling of detonation in granulated reac­

tive solids. The main focus is on an analysis of detonation waves which evolve due 

to compression of the granulated solid by a moving piston. Since the solid reacts to 

form mostly gaseous products having distinct properties, we model these systems as 

consisting of two phases: gas and solid. In this chapter, we first briefly discuss prac­

tical motivations for the study of detonation in granulated material, introduce the 

model problem considered, and describe a two-phase detonation within the context 

of the model. Next, we survey relevant experimental, theoretical, and modeling re­

search, and discuss basic concepts of detonation theory. Lastly, we define the specific 

objectives of this study, and outline the plan of this dissertation. 

1.1 Motivation and Problem Description 

Detonation is a rapid combustion process induced by the passage of a strong shock 

through a reactive material. The combustion process is self-sustaining, provided that 

the energy released by chemical reaction is sufficient to support the propagation of 

the shock through the material. Typical pressures generated by the detonation of 

energetic solids are near 20 GPa, and detonation wave speeds are near 7000 m/ s. 

Though the energy per unit mass of these materials is comparable to ordinary solid 

fuels, the energy release rates are extremely fast resulting in energy fluxes at the det­

onation front near 1 x 105 GWfm2• Various aerospace, mining, and defense related 

applications have evolved which utilize the large power generated by the detonation 

of energetic solids to perform specific tasks. However, with their use come hazards 
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associated with the storage and handling of these materials. 

Considerable research has been conducted during the past three decades address­

ing the evolution of detonation in granulated energetic material. This research has 

largely been motivated by concerns over the accidental detonation of damag~d high­

explosives or propellants in response to weak mechanical shock or thermal insult (2]. 

Here, damaged material refers to cast solid material which has been inadvertently 

fractured; thus, local granulated regions exist within the material. 

Relative to granulated explosives, cast solid explosives are less susceptible to det­

onation by weak mechanical shock as only strong shocks provide sufficient energy to 

initiate chemical reaction. In contrast, experiments have shown that weak mechan­

ical shock is often sufficient to trigger detonation in granulated explosives [79, 42]. 

In these systems, chemical reaction is initiated by the formation of local regions 

of intense thermal energy concentration, commonly termed "hot spots." Possible 

heating mechanisms include shock-void interaction, granule fracture, friction between 

granules, and adiabatic compression of gas trapped within the interstices of granules 

[56, 77]. Once reaction is initiated, and if the burning material is strongly confined 

(e.g., by the walls of the vessel containing the explosive), then the pressure-dependent 

reaction rate will accelerate, and the pressure of the combustion gases will quickly 

rise. The high gas pressurization rate may be sufficient to induce the formation of a 

relatively strong shock. If so, additional hot spots will form as the shock propagates, 

which will trigger additional reactive centers, which will in turn further strengthen 

the shock. Detonation results. 

Experiments have also shown that granulated regions in damaged cast solid propel­

lants can accelerate normal combustion rates by several orders of magnitude [43, 98]; 

this is of particular concern to the solid rocket propulsion community. In granulated 

regions, where the surface area of unburnt solid propellant is high, flame spread is 

significantly enhanced by the permeation of hot combustion gases through the gran-
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ulated material; this mode of flame spread is commonly termed convective burning. 

The hot gases ignite the unbumt propellant granules, resulting in an increase in the 

total burning surface area; consequently, the production rate of combustion gases 

increases which leads to an increase in gas pressure. If the gas pressurizati.Qn rate 

is sufficiently high to induce the formation of a shock, the propellant can undergo a 

transition to detonation in a manner similar to that described above. This sequence 

of events is a plausible scenario for the accidental detonation of solid propellants used 

in rocket motors which may have been damaged prior to, or during, motor operation. 

Devices also exist which utilize the power generated by detonation to perform 

specific tasks within controlled environments. One such device is the Super*Zip sep­

aration joint which is regularly used on the Space Shuttle to release spacecraft from 

the Shuttle's cargo bay [13]. This device uses a detonating explosive cord as a mech­

anism to achieve planar separation. Since explosively actuated devices often play 

critical roles in space-related missions, one must strive for fail-proof designs. As such, 

detailed modeling could be a useful tool in optimizing the design of these devices. 

Many questions exist concerning the evolution of detonation in granulated mate­

rial: What are the most important heating mechanisms induced by weak mechanical 

shock? How do these mechanisms interact with the chemistry of the solid to initi­

ate chemical reaction? Following initiation of reaction, what are the most important 

physical processes responsible for transition to detonation? How do the properties of 

the granulated region, such as the granule size distribution, affect localized heating, 

initiation of chemical reaction, and transition to detonation? What major factors 

influence the distance required for transition to detonation? How much granulation 

is necessary to effect transition to detonation? How much confinement is necessary 

to effect transition to detonation? 

In this study, we continue a long-standing effort to address these and other ques­

tions. Specifically, we consider a paradigm problem for the initiation of detonation in 
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Figure 1.1: Schematic of the model problem. 

damaged high-explosives by weak, planar mechanical shock. This problem, which is 

well-characterized by experiments [42, 79, 80, 105], involves the low velocity impact 

of a moving piston, having velocity vp, with a stationary bed of granular explosive. 

A simple schematic of the model problem is given in Fig. 1.1. In this figure, transi-

tion to detonation has already occurred, and the resulting detonation wave, composed 

of a thin lead shock followed by a thick reaction zone, is propagating to the right at 

speed D, where D :» vp, and is supersonic with respect to both the ambient gas and 

solid. As will be shown, the lead shock may be. in the gas and/or solid depending on 

the relative rates of the various physical processes occurring within the reaction zone 

structure. In this study, we model shocks as discontinuities since the time scales as­

sociated with diffusive processes, which define a shock structure, are large compared 

to the time scales associated with detonation. Adiabatic compression of the ambient 

material by the lead shock provides sufficient energy to initiate chemical reaction. 

Due to reaction, solid particle mass, momentum, and energy are converted into gas 

mass, momentum, and energy. This conversion process sustains propagation of the 

wave through the material by means of acoustic energy transmission from the point 

of local reaction, through the subsonic region of the reaction zone, and to the lead 

shock. Other processes occurring within the reaction zone include momentum and 
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energy exchange between the gas and solid due to drag interaction, thermal energy 

exchange between the gas and solid due to convective heat transfer, and material 

compaction due to mechanical stresses. At the end of the reaction zone, all of the 

solid is completely consumed by reaction. The reaction rate determines both-t.he time 

required for complete reaction and the length of the reaction zone; a typical reaction 

time predicted by this study is 1 p.s, and a typical reaction zone length is 10 mm. 

For this study, we adopt a common terminology, and collectively term the sequence 

of events, whereby the low speed combustion wave initiated by weak mechanical shock 

(i.e., for approximately Vp < 700 mf s) accelerates and undergoes a transition to 

detonation, as deflagration-to-detonation transition (DDT). This terminology is also 

commonly used to describe the transition process resulting from thermal energy input. 

The transition process whereby detonation is directly initiated by strong mechanical 

shock (i.e., for approximately Vp > 700 m/ s) is commonly termed shock-to-detonation 

transition (SDT). Though a distinction is often made in the literature between DDT 

and SDT, these processes are not mutually exclusive as a key component of DDT is 

the formation of a strong shock within the material due to the accelerating combustion 

wave, and the subsequent transition to detonation in a manner similar to SDT. 

1.2 Literature Review 

In this section, we survey selected experimental, theoretical, and modeling work 

relevant to this study. 

1.2.1 Experimental 

A number of experimental studies have been conducted for the purpose of iden­

tifying a mechanism for DDT in granulated energetic material. The earliest experi­

ments are those of Griffiths and Groocock [43], and Bernecker and Price {14, 15, 97]. 

More recent experiments include those of Baer et al. [7], Bernecker and co-workers 

(16, 17, 105], Campbell, McAfee, and co-workers (24, 79, 80, 81], Green et al. [42], 
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and Leubcke et al. [75]. 

In these experiments, explosive granules ("' 10 to 300 p,m in diameter) are placed 

into a thick-walled steel tube which provides the confinement necessary for deto­

nation. Typically, the inner diameter of the tube {"' 30 mm) is small ~p~ed 

to its length ("' 300 mm). Commonly tested solid high-explosives include HMX (cy­

clotetramethylene tetranitramine; C4H 8N80 8), RDX (cyclotrimethylene trinitramine; 

OaH6N606), and PETN (pentaerythritol tetranitrate; CsHsN,.Ot2)· These secondary 

high-explosives are often used in various military and aerospace applications. The 

explosive granules are compressed into the tube in such a way as to locally maintain 

a nearly uniform solid volume fraction. Here, solid volume fraction is defined as the 

ratio of the volume occupied by the explosive granules to the total volume (Solid 

Volume Fraction = Solid Volume/Total Volume). The ends of the tube are sealed 

to provide additional confinement, and combustion is initiated at one end. Though 

various methods have been used to initiate combustion, the two most commonly 

used methods are 1) thermal energy input supplied by a chemical ignition device 

(7, 14, 15, 16, 17, 24, 43, 75, 81, 97], and 2} mechanical energy input supplied by 

driving a piston into the granular explosive bed (42, 79, 80, 105]. Transition to det­

onation is observed to depend on the chemical. reactivity of the particular explosive, 

the initial solid volume fraction of the granular bed, the extent of confinement, and 

the piston velocity {for piston impact experiments). 

Here, we primarily focus on experimental results for piston-initiated DDT. In 

these experiments, the piston, which is constrained to move within the tube, is fired 

at the explosive test bed using a driver explosive. It is possible to record piston 

velocities, mixture pressures, and solid volume fractions during DDT, and to track 

the propagation of strong compression waves within the granular bed. Typical piston 

velocities used in experiments are near 100 m/ s, and ambient solid volume fractions 

are near 0. 70. 
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Figure 1.2: Results of a typical piston-initiated DDT experiment. 

D 

The transient events observed during a typical piston-initiated DDT experiment 

are qualitatively shown in the distance-time plane of Fig. 1.2. The piston impacts 

the explosive test bed at time t0 , and generates a compaction wave, labeled c, which 

propagates away from the piston at nearly constant speed ("" 400 mfs). Across the 

compaction wave, the solid volume fraction increases from its ambient value to near 

0.90 (for ambient solid volume fractions near 0.70). Weakly exothermic chemical 

reaction is initiated due to local heating mechanisms as the material is compacted. 

Following an induction period, during which chemical reaction slowly intensifies, a 

burn front, labeled b, is seen to form near the piston surface; this occurs at time 

t1ND · Subsequently, the reaction rate increases near the piston surface, and the pres­

sure of the gaseous reaction products rapidly increases due to confinement provided 

by the piston, the wall of the tube, and the low permeability of the compacted ma­

terial. The resulting high gas pressurization rate causes the burn front to strengthen 

and accelerate. As the burn front accelerates through the compacted material, the 

material is further compacted resulting in the formation of an inert solid plug (i.e., 
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solid volume fraction near unity), labeled s, slightly ahead of the burn front. The 

mechanism responsible for the formation of this plug is not clearly understood, but is 

believed to be associated with the coalescence of compression waves generated by the 

accelerating bum front [79, 109, 111]. The width of the solid plug rapidly ~creases 

with time as compression waves originating from behind the plug impinge upon the 

rear of the plug; these waves are labeled cp. Finally, a shock is generated at the 

front of the plug which initiates both a right-propagating detonation, labeled D, and 

a left-propagating detonation (referred to as a retonation), labeled R. For the case 

shown here, the propagation speed of the resulting detonation decreases slightly as 

the detonation overtakes the initial compaction front and propagates into the less 

dense ambient material. 

A similar sequence of events has been observed in recent DDT experiments whereby 

combustion was directly initiated by gasless pyrotechnic ignitors [81, 75). The pur­

pose of these experiments was to identify the role of convective burning in DDT by 

eliminating pre-pressurization of the explosive bed due to gi).Ses generated by standard 

chemical ignitors. Results of these experiments, which support the earlier results ob­

tained by Campbell [24), show that convective burning is restricted to a short region 

near the point of ignition. In these experiments, the high gas pressure generated by 

convective burning during the early stage of DDT was sufficient to choke the flow 

of gas through the bed, resulting in the formation and propagation of a compaction 

wave; subsequently, transition to detonation was seen to occur in a manner similar 

to that described above for piston-initiated DDT. 

1.2.2 Theoretical and Modeling 

Though experiments have provided much information about DDT in granular 

explosives, it is necessary to model the physical processes involved, and the cou­

pling between these processes, in order to identify and better understand important 

mechanisms responsible for transition to detonation. To this end, a number of two-
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phase models have been formulated for analyzing the combustion of granular energetic 

solids. Most models are based on principles of continuum mixture theory; details of 

the theory are given in Chapter 2. 

Relevant modeling studies include those of Krier and co-workers (22, 23, 41,Ji2, 60, 

61, 62, 63, 92, 94, 95], Kuo, Summerfield, and co-workers [64, 65, 66, 67], Nunziato, 

Baer and co-workers (4, 5, 6, 7, 86], Saurel and co-workers [106, 107], and more 

recently those of Son, Bdzil, and co-workers [10, 59, 109, 110]. Reviews of other 

relevant literature can be found in many of these references. The work of Kuo et al. 

primarily addressed low speed, low pressure combustion, while the work of Krier et 

al., Nunziato et al., Saurel et al., and Son et al. addressed high speed, high pressure 

combustion associated with DDT. Also, Stewart et al. [111] recently formulated a 

simplified model for predicting DDT in granulated reactive material using a modified 

single phase state variable approach. 

The two-phase continuum models used to study DDT are posed as coupled time­

dependent systems of partial differential equations which track the evolution of mass, 

momentum, and energy of an inert gas and reactive solid particles in one spatial di­

mension. Some models include an additional partial differential equation to account 

for dynamic compaction of the solid particles [5, 94], while other models use an alge­

braic stress relation to account for compaction [22, 23]. Physical processes accounted 

for by most models include 1) convective transport in both the gas and solid, 2) mass, 

momentum, and energy transfer from the solid to the gas due to chemical reaction, 3) 

momentum and energy exchange between the gas and solid due to drag interaction, 

4) thermal energy exchange between the gas and solid due to convective heat transfer, 

and 5) material compaction due to a stress imbalance between the gas pressure, solid 

pressure, and an intragranular stress. Though the various two-phase models have 

common features, they often differ in the functional forms of the evolution equations 

and constitutive models. These differences have been the focus of some debate; rele-
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vant issues are discussed in detail by Powers et al. (94] and are not considered in this 

dissertation. 

A number of difficulties exist in the numerical modeling of DDT in these systems, 

of which accurately capturing strong shocks is the most challenging. To -tills .end, 

traditional higher·order numerical methods (i.e., Lax·Wendroff methods) fail since 

they produce spurious oscillations near shocks, and are unstable as a consequence. 

Traditionallower·order methods (i.e., first-order upwind methods), while stable, are 

overly diffusive resulting in significantly smeared shocks; as such, the physical phe­

nomena which are to be modeled within the reaction zone can be overwhelmed by 

the artificially large shock structure. Commonly used numerical methods for simu­

lating DDT are based on the explicit use of artificial viscosity, and it is likely that 

this added numerical diffusion adversely affects their ability to accurately resolve fine 

scale detonation structure. Furthermore, the optimal amount of artificial viscosity 

needed to reasonably capture shocks is largely problem specific, and must be chosen 

by the modeler based on a trial and error procedure. Numerical methods used to 

simulate DDT must also be capable of handling mathematical stiffness which arises 

due to the disparate time scales associated with gas and solid convection, combustion, 

interphase drag, interphase heat transfer, and material compaction. 

For certain conditions, this study has identified length scales associated with var­

ious physical phenomena occurring within the reaction zone structure which are as 

small as 30 J.Lm. This poses an additional problem for numerical modeling as it would 

require approximately 1000 computational cells within a 10 mm reaction zone to ac­

curately resolve such fine-scale structure. Obviously, the computational costs for such 

well-resolved simulations are prohibitively expensive. 

Numerical simulations based on the two-phase continuum models have been mod­

estly successful in predicting most experimentally observed features of DDT including 

1) the formation and propagation of a lead compaction wave, 2) the initiation and 
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subsequent acceleration of a burn front in the compacted material, and 3) the final 

transition to detonation. Also, some simulations have predicted the formation of a 

secondary compacted region reminiscent of the inert solid plug [5, 23, 109]. The pre­

dicted gas pressures, densities, and velocities at the end of the reaction zon~as well 

as the predicted compaction and detonation wave speeds, reasonably match experi­

mental results. 

However, much of the two-phase modeling effort has concentrated on predicting 

the transient events leading to detonation, with little emphasis given to an analysis 

of the fully-developed detonation structures; as such, detonation structures predicted 

by DDT simulations are not well-characterized. Here, detonation structure refers to 

the spatial variation in all two-phase variables, such as gas and solid density, veloc­

ity, pressure, etc., within the reaction zone. Furthermore, many DDT simulations 

are performed using coarse computational grids which place approximately 6-15 com­

putational cells within the reaction zone; as such, fine-scale structures within the 

reaction zone are not accurately resolved. Results of these unsteady analyses have 

provided a weak foundation for the development of a steady two-phase detonation 

theory. 

An analysis of detonation structure is of both practical and theoretical impor­

tance. From a practical perspective, it is the physical phenomena occurring within 

the detonation wave which are responsible for the peak stresses and wave speeds, 

and thus the power generated by detonation. From a theoretical perspective, one 

cannot understand all implications of a DDT theory without a careful examination of 

fully-resolved two-phase detonation structure. Also, an analysis of planar two-phase 

detonation structure provides the theoretical base necessary for the attack of more 

complicated multiple-dimensional problems. 

A significant advancement in the theory of steady two-phase detonation is due to 

Powers, Stewart, and Krier [91, 92, 94, 95). In their investigations, Powers, Stew-
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art, and Krier formulated a new unsteady, two-phase continuum model appropriate 

for describing detonation in granulated material. Their model is based on principles 

of continuum mixture theory, and is believed to be an improvement over previous 

existing two-phase continuum models used to predict detonation in granula~ mate­

rial. Reference (94] gives a complete description of modeling improvements. Powers, 

Stewart, and Krier then used their model to analyze steady two-phase detonation 

structures admitted by the steady form of the model equations. A key contribu­

tion of their work was in placing two-phase detonation theory within the context of 

classical one-phase detonation theory [34]. As such, it is appropriate to briefly intro­

duce relevant concepts from one-phase detonation theory before proceeding with a 

discussion of their results. 

One-phase detonations are modeled by the reactive Euler equations of gas dy­

namics. Assuming a steady, one-dimensional detonation having a lead discontinuous 

shock followed by a zone of exothermic chemical reaction, the equations reduce to an 

autonomous system of ordinary differential equations expressed in a reference frame 

attached to the lead shock. Thus, the steady one-phase detonation problem is posed 

as an initial value problem, where the initial conditions are given by the shocked gas 

state. 

The simplest theory, referred to as Chapman-Jouguet (CJ) theory, is based on 

an analysis of complete reaction end states, which are equilibria of the ordinary dif­

ferential equations. Thus, results of this analysis are independent of reaction zone 

structure. For fixed ambient conditions, C J theory predicts no equilibrium end states 

for wave speeds less than a minimum critical value. For a unique value of wave speed 

equal to this minimum value, referred to as the C J wave speed, there is predicted 

a single equilibrium end state called the C J state. For all wave speeds larger than 

the C J wave speed, the theory predicts two equilibrium end states: a strong state 

and a weak state. The strong state has higher pressure than the C J state, and the 
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weak state has lower pressure. The gas velocity relative to the wave front is sonic for 

the C J state, subsonic for strong states, and supersonic for weak states. As such, 

steady detonations terminating at either a C J or weak state are not susceptible to 

degradation by rarefaction waves originating from behind the detonation w~ prop­

agate at the local acoustic speed relative to the local flow velocity. The C J theory 

hypothesizes that the C J state is the unique end state for a steady self-propagating 

detonation, though self-propagating detonations terminating at weak states cannot be 

ruled out solely based on an equilibrium end state analysis. Here, a self-propagating 

detonation refers to one in which the energy released by combustion is sufficient to 

sustain propagation of the wave in the absence of external energy input. Strong det­

onations, being susceptible to degradation by rarefaction waves, require the support 

of a moving piston so that no rarefactions exist between the piston and the detona­

tion end state; as such, a region of constant state exists between the piston and the 

end of the reaction zone. Strong detonations are not self-propagating. In fact, if the 

piston supporting a strong detonation was suddenly stopped, a rarefaction would be 

produced which would propagate to the detonation and weaken it to either a CJ or 

weak detonation. 

Though the equilibrium analysis identifies C J, strong, and weak detonation end 

states, one must consider detonation structure in order to determine whether a path 

exists connecting the shocked gas state to these end states. The simple Zeldovich 

(131], von Neumann [121], Doering (29] (ZND) theory, developed during the 1940's, 

considers the structure of a one-phase detonation wave resulting from a one-step, 

irreversible, exothermic chemical reaction (A-+ B). Based on ZND theory, it can be 

shown that all self-propagating detonations having a lead shock propagate at the C J 

speed, as no path exists leading from the shocked gas state to the weak state. Though 

weak detonations with a lead shock are not admitted by ZND theory, Fickett and 

Davis (34] show that they can be readily obtained by relaxing the simple restrictions 
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of the theory. For example, replacing the one-step, irreversible, exothermic chemical 

reaction with a two-step, irreversible chemical reaction (A ~ B ~ C), where the 

first step is exothermic and the second step is endothermic, gives the possibility of 

obtaining weak detonations. In summary, ZND theory demonstrates how detpnation 

structure can place constraints on the existence of steady detonation waves. 

We now return to a discussion of the two-phase detonation theory developed by 

Powers, Stewart, and Krier. As shown in their work, the problem of determining 

steady two-phase detonation structure requires the solution of an autonomous sys­

tem of four ordinary differential equations subject to initial conditions at the deto­

nation front. In order to define the initial conditions, it is first necessary to specify 

the ambient state of the material, the detonation wave speed, and whether the gas 

and/or solid is shocked. The appropriate shocked state at the detonation front is 

then obtained from two-phase Rankine-Hugoniot relations. In their study, both an 

equilibrium end state analysis and a detonation structure analysis of the governing 

ordinary differential equations were performed. 

The equilibrium end state analysis identified two-phase equivalents to the C J, 

strong, and weak states predicted by Qne-phase theory. As in one-phase theory, the 

two-phase OJ state is predicted for a unique value of detonation wave speed. No 

equilibrium solutions are predicted for wave speeds less than this value. Two-phase 

strong and weak states are predicted for wave speeds in excess of this value. Once 

again, the strong state has higher pressure than the C J state, and the weak state has 

lower pressure. 

The steady structure analysis for two-phase detonations is considerably more com­

plicated than for one-phase detonations. The added complexity is due to the presence 

of two phases, and interactions between the phases. In their analysis, Powers, Stew­

art, and Krier identified paths leading to both the C J and strong end states for 

detonations having a lead shock in the gas and an unshocked solid; paths leading to 
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the weak state were not identified. Moreover, they defined parametric conditions for 

the existence of this class of C J detonations. Though only shocked gas/unshocked 

solid structures were predicted, it is likely that other steady structures exist which 

terminate at C J, strong, or weak states, possibly having solid shocks, or even-ntultiple 

shocks. However, due the complexity of the steady two--phase model, the identification 

of other steady structures is largely a trial and error process. 

A comprehensive study of two--phase detonation structure should include both 

a steady and unsteady analysis. One could numerically solve the unsteady DDT 

problem, carefully examine the structure of the resulting fully-developed detonation 

waves, and compare the results to predictions obtained by the steady analysis. As 

such, one could determine if the steady structures identified by Powers, Stewart, 

and Krier evolve from DDT events, and identify other, more complicated, steady 

structures not predicted by the steady analysis. Also, an unsteady analysis can 

provide information about the stability of two--phase detonations. No such analyses 

have been reported in the two--phase detonation literature. 

1.3 Objectives of this Study 

The primary objective of this dissertation is.to predict and analyze two-phase det­

onation structures by numerically simulating piston-initiated DDT, and to compare 

the predicted structures with results given by a steady-state detonation analysis. A 

secondary objective is to classify new steady detonation structures. We only consider 

detonations which are ultimately self-propagating; therefore, we specify piston veloc­

ities ("' 100 m/ s) well below those required for piston-supported strong detonations 

("' 2000 m/s). The steady analysis is a minor extension of the work performed by 

Powers, Stewart, and Krier [91, 95], whereas the unsteady analysis is a major new 

extension of their work. Specific objectives of the steady analysis are: 

1. To predict all self-propagating two-phase detonation structures. 
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2. To define parametric conditions for the existence of these structures. 

Specific objectives of the unsteady analysis are: 

1. To develop a modem high-resolution numerical method which can accurately 
resolve the fine scale structure of a two-phase detonation. - -:-· 

2. To determine if the detonation structures identified by the steady analysis evolve 
from a physically relevant ambient state. 

3. To determine how DDT and detonation structure are affected by system param­
eters. 

The development of a new high-resolution numerical method is a major contribution 

of this dissertation. 

The model used in this study is a variant of the unsteady, two-phase continuum 

model formulated by Powers, Stewart, and Krier [91, 94). We have modified their 

model to include an additional evolution equation for an ignition variable, and have 

incorporated an intragranular stress relation which is better suited for describing dy­

namic compaction of granular explosives (93). The equation for the ignition variable 

is used to model the induction period observed prior to the onset of full-scale com­

bustion in piston-initiated DDT experiments. The use of such an equation is not 

standard in DDT modeling, though similar equations have been used to control the 

heat of reaction during the induction period [8, 59, 110). The continuum model is 

representative of other two-phase continuum models commonly used to predict deto­

nation in granulated material [5, 23}, and is able to predict most events characteristic 

of DDT. Whenever possible, comparisons of model predictions with experimental data 

are given in this dissertation. 

The plan of this dissertation is as follows. First, the unsteady model is presented 

in Chapter 2. The modeling approach is discussed, and the dimensional model equa­

tions are given. As this study considers detonation initiated by a moving piston, 

the model equations are transformed to a reference frame that moves with the pis-
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ton. The equations are non-dimensionalized, and the non-dimensional parameters are 

discussed. 

Next, a characteristics analysis of the non-dimensional model equations is given in 

Chapter 3. The purpose of this analysis is to classify the model equations, and_.to pro­

vide the mathematical framework needed for the construction of the high-resolution 

numerical method for solving the unsteady model equations. The equations are shown 

to admit discontinuous solutions, such as shocks and contact discontinuities, which 

are also discussed in this chapter. 

The high-resolution numerical method is formulated in Chapter 4. The method is 

upwind, does not require the explicit use of artificial viscosity, can accurately capture 

shocks with minimal smearing, and can accurately resolve disparate time-scales associ­

ated with rate-dependent processes. The method is based on Godunov's methodology 

{40] which requires the solution of a two-phase Riemann problem at each computa­

tional cell boundary in order to advance the solution in time. Rather than exactly 

solving the two-phase Riemann problem, an approximate solution is used for increased 

computational efficiency. The approximate solution is constructed based on the ex­

act solution of the linear two-phase Riemann problem. As such, the exact solution 

of the linear problem is first obtained, and its wave structure is analyzed. Such an 

analysis has not been previously reported for this class of DDT models. The initial 

and boundary conditions used in this study are also discussed in this chapter. 

In Chapter 5, the numerical method is validated against three test problems for 

which analytical solutions are available: 1) an inert two-phase shock tube problem; 

2) the evolution of an inert shock in both the gas and solid due to compression of the 

granular material by a moving piston; and 3) the evolution of an inert compaction 

wave due to compression of the granular material by a moving piston. Numerical 

convergence is demonstrated for each test problem, and the spatial convergence rate 

is determined. The reader who is primarily interested in the predictions of the physical 
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system can bypass Chapters 4 and 5 without difficulty. 

The steady analysis of two-phase detonation is given in Chapter 6. The steady 

problem is mathematically posed as an initial value problem, and the technique used 

to put the equations into a simplified form suitable for analysis is given . .J;>..etona~ 

tion end states are analyzed, and detonation structure is investigated by numerically 

integrating the reduced system of ordinary differential equations. Two classes of self­

propagating detonation structures are identified leading to states predicted by the 

end state analysis: 1) C J structures having a single lead shock in the gas and an 
. . 

unshocked solid, and 2) weak structures having a single lead shock in the gas and an 

unshocked solid. The first class of structures has been previously predicted by Pow­

ers, Stewart, and Krier [91, 95); the second class of structures has not been previously 

predicted. Existence criteria for each of these classes are determined based on the 

results of a parametric study. 

The unsteady analysis of two-phase detonation is given in Chapter 7. For this anal­

ysis, we predict the evolution of detonation resulting from piston-initiated DDT, and 

analyze the effect of material compaction, interphase drag, and ambient mixture den­

sity (defined later) on DDT and detonation structure. The predicted fully-developed 

detonation structures are compared with results given by the steady analysis. In ad­

dition to predicting the evolution of C J and weak structures identified by the steady 

analysis, we also predict the evolution of fully-developed C J structures having an 

unshocked gas and a single lead shock in the solid, as well as fully-developed C J 

structures having a shock in both the gas and solid. Previous DDT studies have not 

clearly demonstrated the existence of such structures. 

Conclusions and recommendations for additional study are given in Chapter 8. 
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2 

TWO-PHASE CONTINUUM MODEL -·- . 

Modeling the detonation of granulated energetic material is complicated by is­

sues common to one-phase combustion modeling (i.e., multi-dimensionality, complex 

reaction kinetics, compressibility, etc.), and is further complicated due to the simul­

taneous existence of multiple phases, interactions between phases, and the motion of 

phase interfaces. Due to these complexities, modeling approaches have been devel­

oped which bypass the discrete nature of the flow enabling the dynamics of systems 

containing a large number of particles to be predicted. One such approach involves 

averaging the classical continuum equations for each phase over a representative vol­

ume of the mixture; a set of macroscopic multi-phase equations expressed in terms 

of averaged variables results (21, 30, 47, 48). A second approach, which eliminates 

the need for formal averaging, uses principles of continuum mixture theory to for­

mulate a set of macroscopic multi-phase equations (90, 116, 117, 126). Both of these 

approaches, which are based on a hydrodynamic description of multi-phase granular 

flow, enable one to obtain tractable models which can be used as tools for engineering 

applications. 

The two-phase continuum model used in this study, which is based on principles of 

continuum mixture theory, is described in this chapter. First, the dimensional model 

equations are given in Section 2.1. Second, since this study addresses the evolution 

of detonation resulting from compression of the material by a moving piston, the 

dimensional model equations are transformed to the accelerating reference frame of 

the piston in Section 2.2. Lastly, the model equations are non-dimensionalized in 

Section 2.3, and the non-dimensional parameters are discussed. 
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2.1 Model Equations 

The model used in this study is a variant of the model formulated by Powers et al. 

(91, 94] using principles of continuum mixture theory. This theory treats the phases 
--

as overlapping continua; as such, each phase is assumed to simultaneously occupy the 

entire region located within, and including, the system boundaries. Associated with 

each phase are variables describing its thermodynamic state (i.e., density, pressure, 

temperature, internal energy, etc.), velocity, and volume fraction. Here, the volume 

fraction of a particular phase is defined as the ratio of the volume occupied .by that 

phase to the total volume. These variables are not the same as those corresponding to 

a single phase system, but are loosely interpreted as "averaged" quantities which are 

representative of the mixture's local microstructural properties. Evolution equations, 

which are intuitive extensions of the classical continuity, momentum, and energy 

equations for a single phase system, are postulated governing changes in the mass, 

momentum, and energy of each phase. Also, an evolution equation is postulated for 

the volume fraction. Forcing terms in the mass, momentum, and energy equations for 

each phase account for interactions between phases including drag, heat transfer, and 

chemical reaction resulting in phase change. Forcing terms in the evolution equation 

for volume fraction account for changes in volume fraction due to both material 

compaction and chemical reaction. 

In general, the constitutive relations for each phase, and the phase interaction 

terms, are posed based on the following axioms [11, 90]. 

1. Phase Separation. This axiom asserts that the thermodynamic state of a par­

ticular phase depends only on the properties of that phase. In other words, 

the thermodynamic state of a particular phase is independent of the thermody­

namic states of other phases. However, the phase interaction terms can depend 

on the properties and thermodynamic state of all phases. 

20 



2. Conseroation. This axiom requires that the mass, momentum, and energy of 

the mixture be conserved. Though the phase interaction processes partition the 

mass, momentum, and energy of the mixture between the various phases, the 

net effect of these processes must maintain global conservation. 

3. Dissipation. This axiom requires that the change in mixture entropy due to 

any thermo-mechanical process (i.e., the phase interaction processes) be non­

decreasing. 

4. Frame Indifference. This axiom requires that the constitutive relations ·for each 

phase, and the phase interaction terms, be invariant under a Galilean coordinate 

transformation. 

Though these axioms constrain the construction of multi-phase continuum models, 

they still allow for a wide variety of models. As such, models formulated using these 

axioms are not unique; differences in both the functional form of the model equations 

and the constitutive relations exist. Furthermore, Powers et al. (94] have shown that 

two-phase continuum models commonly used to predict detonation in granulated 

material, including the model used in this study, fail to satisfy the dissipation axiom 

in special cases. The problem of posing models which satisfy the dissipation axiom 

under all conditions is currently unresolved. 

Implicit to the continuum mixture approach, though not often stated, is the as­

sumption that a suitable representative elementary volume (REV) can be defined 

about every point within the mixture at every instant in time. The REV defines a 

volume, LlV (here we use over-hats "i" to identify dimensional quantities), about 

a point, P, for which the local microscopic properties of the mixture (i.e., phase 

density, volume fraction, etc.) can be averaged (Fig. 2.1). In order to obtain sta­

tistically meaningful averages, it is required that the characteristic length associated 

with the REV be much larger than the characteristic length associated with the lo-
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Figure 2.1: REV for a granular material. 
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cal microscopic structure. Furthermore, it is required that the characteristic length 

associated with the REV be much smaller than the characteristic length associated 

with macroscopic variations in the flow quantities. In other words, the REV should 

be insensitive to small changes in .6.V. This definition of a REV for a multi-phase 

mixture is analogous to the definition of a fluid particle in fluid mechanics. 

This idea is illustrated in Fig. 2.1 for a dynamically evolving system of solid parti­

cles having radius 100 JJm. These particles are similar in size to the particles consid­

ered in this study. If, at a fixed instant in time, the volume fraction of the particles 

contained within .6. V is computed, and if the computation is repeated while contin­

uously increasing .6. V, then a result similar to that shown in this figure is obtained. 

Here, microscopic effects dominate for approximately .6. V < 10-12 m3 , where this 

value is close to the volume of a single particle. For approximately .6.V > 10-12 m3 , 

there exist many solid particles within the volume enabling statistically meaningful 

solid volume fractions to be computed. However, the computed result may become in­

creasingly sensitive to small changes in .6. V as the volume approaches the characteris­

tic volume (length) associated with macroscopic flow variations. Based on predictions 

of this study for the spatial variation in solid volume fraction within the reaction zone 

of a typical two-phase detonation (reaction zone length IV 10 mm), inhomogeneous 

effects associated with this macroscopic variation in volume fraction will occur for 
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approximately AV > 10-9 m3• Consequently, the two-phase continuum mixture ap­

proach is appropriate for REV's within the range 1 x 10-12 m3 ~ AV ~ 1 x 10-9 m3 • 

If a suitable REV cannot be identified at every point within the mixture at every in­

stant in time, then the continuum mixture approach is invalid and other -ll)odeling 

techniques should be considered. This same result holds when using the formal aver-

aging approach to derive macroscopic multi-phase equations. 

The continuum model used in this study assumes the existence of reactive, spher­

ical solid particles and an inert gas, both having fixed composition. This assumption 

is largely made for the sake of simplicity, as the solid particles will generally be of 

non-spherical shape, and the actual composition of the the reaction products, which 

is dependent upon many factors including the local pressure a.nd temperature, may 

consist of a combination of solid, liquid, and gas species. Due to the large stresses 

generated by detonation ("" 10 GPa), we assume that each phase is compressible. 

Diffusive transport processes within each phase are ignored since the time scales as­

sociated with these processes (,..., 1 s) are much larger than the time scales associated 

with detonation (,.._, 1 ps). Gravitational body forces are also ignored in this study 

since the magnitude of this force per unit volume ("" 103 N/m3) is negligible com­

pared to the force per unit volume characteristic of detonation(""' 1013 N/m3
). Mass, 

momentum, and energy exchange between the gas and solid are modeled, as is dy­

namic compaction of the granular bed resulting from a mechanical stress imbalance. 

This study does not consider the effects of lateral boundaries on the two-phase flow; 

as such, the flow is assumed one-dimensional (in a macroscopic sense) . 

The dimensional model equations are given by the following: 

! [P14>1] +:X [Pl¢1ul) = (~) iJ24>2aPf'H(I- Ii9 ), 

! [Pl4>1 u1] + :x [iJ1 <P1 u~ + P14>1] 

A (3) A A. -p-mH(/ l ) 13-¢1¢2 (- - ) = u2 f P2'1'2a 1 - ig + -r- u2 - u1 , 
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~ [P-24>2] + :X [P-24>2112] = - (~) P-2¢-zO.Pi H(I- Ii9 ), 

~ [P-24>2112] + ! [P-24>211~ + P2t1>2] 

= -112 (~) f>24>2aPiH(I- Ii9 )- /3¢1
; (112- 111), 

P2 = P2(P2, '1'2), 

e2 = e2(P2, 1'2), 

24 

-... (2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 



.. 3t/J2 
n = 4 ""3' 1rT 

(2.15) 

(2.16) 

In these equations, the subscripts "1" and "2" denote quantities associated with the 

gas and solid, respectively. Quantities labeled with subscript "o" are associated with 

the ambient state. The independent variables are time i and position x. Dependent 

variables are as follows: the phase density Pi (i = 1, 2), defined as the mass of phase i 

per unit volume occupied by that phase; the phase pressure A; the phase temperature 

Ti; the particle velocity ili, measured with respect to a stationary reference frame; 

the specific internal energy ~; the volume fr~tion tPii the radius of the spherical solid 

particles f; the number of particles per unit volume n; the intra.granular stress j; and 

an ignition variable I which is discussed in a following paragraph. In Eqs. (2.1-2.9), 

H(I- Ii9 ) is the Heaviside unit step function, and Ii9 , a, m, {3, h, fi.c, k1, and T1 

are constant parameters which are described below. Equations (2.1-2.16) constitute 

a system of sixteen equations in sixteen unknowns; thus, the system of equations 

is mathematically closed and, in principle, can be solved provided that appropriate 

initial and boundary conditions are supplied. The initial and boundary conditions 

used in this study are discussed in Chapter 4. 

Equations (2.1), (2.2), and (2.3) are evolution equations for the mass, momentum, 

and total energy of the gas. Equations (2.4), (2.5),and (2.6) are evolution equations 

for the mass, momentum, and total energy of the solid. Equations (2.7-2.9) are 

evolution equations for the solid volume fraction, the particle number density, and 

the ignition variable, respectively. 

The forcing terms in Eqs. (2.1) and (2.4) account for the exchange of mass from 

the solid to the gas due to combustion. Here, mass exchange is modeled as a single, 

irreversible process (solid~ inert gas), and all chemical reaction is assumed to occur 

on the particle surface. Combustion initiation occurs for I ~ Ii9 , where Iig is a 

constant ignition parameter. The combustion rate is modeled by a burn law which 
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depends upon the gas pressure. The use of such a bum law is motivated by strand burn 

experiments. In these experiments, a cylindrical strand of solid propellant or explosive 

is burned within a pre-pressurized vessel. Combustion is initiated at one end of the 

strand, and a combustion wave develops which propagates along the leng$. of the 

strand at nearly constant speed. The bum rate is inferred from the combustion wave 

speed, which is found to vary with initial pressure {125]. Values for the combustion 

rate parameters a and m are correlated to match the burn rate data. 

The forcing terms in Eqs. (2.2) and (2.5) account for two forms of momentum 

exchange between the gas and solid. First, the gas is gaining that momentum asso­

ciated with the solid which is being converted into gas due to combustion. Second, 

there is an exchange of momentum due to solid particle-gas drag interaction. The 

drag interaction is modeled by a drag law which states that the drag is proportional 

to the difference in velocity between the phases, and inversely proportional to the 

particle radius. In the drag law, /3 is defined as a drag coefficient. 

The forcing terms in Eqs. (2.3) and (2.6) account for the exchange of energy 

between the gas and solid. Energy exchange associated with combustion, and with 

particle-gas drag work, are accounted for, as is thermal energy exchange between the 

gas and solid. The thermal energy exchange rate is assumed to be proportional to 

the temperature difference between the gas and the solid, and inversely proportional 

to the cube root of the particle radius; here, h is defined as a heat transfer coefficient. 

Equation (2.7) is a dynamic compaction equation governing changes in solid vol­

ume fraction due to both compaction and combustion of the granular bed. This 

equation predicts that, in the absence of combustion, the solid volume fraction, ¢2, 

will equilibrate to a value such that the solid pressure, P2 , equals the sum of the gas 

pressure, P1, and the intragranular stress, j; the equilibration rate is governed by 

the parameter fie which is referred to as the compaction viscosity. The use of this 

equation was first proposed by Baer and Nunziato [5). Though this equation is not 
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standard in multi-phase modeling, it does allow for the modeling of rate-dependent 

material compaction which is known to be important in the evolution of detonation 

in granulated material. Additionally, the use of this equation insures that the char­

acteristic wave speeds associated with the model equations are real [91, 94),-and .that 

solutions of the governing partial differential equations are hyperbolic waves. The 

characteristic wave speeds of some two-phase models, particularly models which as­

sume pressure equilibrium between the phases, have been shown to be imaginary, and 

are thus unable to properly model discontinuous solutions [30, 99]. 

Equation (2.8) expresses that the total number of particles in the system is con­

served. Though not considered in this study, it is possible to model the coalescence 

and break-up of particles by including appropriate inhomogeneous terms in this equa­

tion. 

Equation (2.9) is an ad hoc evolution equation for the ignition variable/. For this 

study, 0 :5 I < 1, where / 0 = 0 for the ambient state, and fig = 0.5. This equation is 

used to model the observed induction period occurring prior to the onset of full-scale 

combustion in piston-initiated DDT experiments [7, 24, 42, 79, 80, 105]. The forcing 

term in this equation models the ignition variable as an increasing function of pressure 

and temperature of the gas and solid. Consequently, in agreement with experiments, 

higher temperatures and pressures result in a decrease in the induction time. In this 

equation, k1 and T1 are ignition rate constants. Similar equations have been used 

in other two-phase combustion models as "switches" for controlling the amount of 

chemical energy released by combustion during the induction period [8, 59, 110}. 

Equations (2.10) and (2.11), and Eqs. (2.12) and (2.13) are functional dependen­

cies for the thermal and caloric equations of state for the gas and the solid, respec­

tively. At this juncture, we choose not to specify exact forms for the state relations 

as the formulation of the numerical method in Chapter 4 does not require us to do 

so. Furthermore, different state relations are used for various problems in this dis-
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sertation, the exact forms of which are given where appropriate. Equation (2.14) is a 

functional dependency for the intragranular stress which is assumed to be a monoton­

ically increasing function of solid volume fraction. Equation (2.15) is the definition of 

the local particle number density expressed in terms of the solid volume fraGt_ion. and 

the particle radius, and Eq. (2.16) is a mixture saturation condition {i.e., no voids 

are present within the mixture). 

The phase interaction terms in Eqs. (2.1-2.6) have been constructed such that, 

for an isolated system, when Eqs. {2.1) and (2.4), Eqs. {2.2) and (2.5), and Eqs. 

(2.3) and (2.6) are respectively summed, homogeneous differential equations for the 

mixture mass, momentum, and total energy are obtained: 

(2.17) 

(2.18) 

(2.19) 

Consequently, the total mass, momentum, and energy of the mixture are conserved. 

In addition to mixture conservation constraints, it is desirable to construct the 

phase interaction terms such that, for a thermally isolated mixture, the change in 

total entropy of the mixture due to any thermodynamic process is non-negative. This 

is the basis of the dissipation axiom discussed at the beginning of this chapter. It is 

proposed that the mixture entropy satisfy the following evolution equation [90]: 

{} [ A A.. A A A,._ A ] 8 [ A A.. A A A A.. A A 1 > 0 at Pl'f'tSt + P2'f'282 +ox Pt'f't'UtSt + P2'f'282'U2 - , (2.20) 

where 81 and 82 are the specific entropy of the gas and solid, respectively. An 

expression for Eq. (2.20) can be obtained using the Gibbs relation for each phase 

[fidsi = dei - (iV Pf)dpi, i = 1, 2) with Eqs. (2.3) and (2.6); the resulting expression 

is given by Powers et al. [94] and is not repeated here. This analysis enables the 
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contribution of each thermodynamic process (i.e., mass transfer, momentum transfer, 

energy transfer, and compaction) to be identified. Powers et al. [94] have shown that 

many commonly used two--phase combustion models may not satisfy Eq. (2.20) under 

all circumstances. It is difficult to to construct physically relevant forms for ~e phase 

interaction terms which identically satisfy Eq. (2.20}. 

The phase interaction terms have also been constructed so that the ambient state 

of the material is an equilibrium state. Other reasons for having chosen these specific 

forms for the phase interaction terms are to achieve some degree of analytical sim­

plicity, and to enable a steady two--phase detonation wave to be predicted. In spite 

of their relative simplicity, it is shown in Reference {95] that these forms do predict 

the same trends as more complicated empirical relations. 

Equations (2.10-2.13) can be used to define expressions for the gas sound speed, 

c., and the solid sound speed, ~. To this end, we solve Eqs. (2.11) and (2.13) for T1 

and T2 , respectively, and substitute the results into Eqs. (2.10) and (2.12) to obtain 

the following functional dependencies: 

/>1 = Pl(iit, el), 

/>2 = P2(P2, e2). 

(2.21) 

(2.22) 

As shown in Appendix A, the gas and solid sound speed can be expressed in terms 

of thermodynamic derivatives obtained from these relations: 

(2.23) 

A2 = a/>2 _ f>2r a/>21 
C2- {)A - A 2 + {)A ) 

P2 .2 P2 P2 4h 
(2.24) 

where f 1 and f 2 are the Griineisen coefficients for the gas and solid, and are defined 

by 

(2.25) 
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Lastly, the construction of the numerical method in Chapter 4 requires that Eqs. 

(2.7) and (2.9) be expressed in divergence form. To this end, Eq. (2.4) is multiplied 

by <Pz, Eq. (2.7) is multiplied by fo2<P2, and the two resulting expressions are added to 

obtain - .:• ~ a [A -J,.2] a [ A A -J,.2] ai P2.,z + ax P2'l£2"'2 

= h~~<P~ (P2 - P1 - J)- 2 (~) h<P~O.PiH(I- Ii9 ). 
J.l.c r 

(2.26) 

Similarly, Eq. (2.4) is multiplied by I, Eq. (2.9) is multiplied by fo2<Pz, and the two 

resulting expressions are added to obtain 

~ [fo2t/>2I] + ! ffo2t/>2u2I] 

= krht/>2 (1 - I) [PI tPt + ~2tP2 - f>t~tPlo - P2o<Pzo]2 exp [- A TI A l (2.27) 
P1otP1o + P2o<Pzo Tt tPt + T2t/>2 

- (~) P2<PziaPi H(I- Ii9 ) . 

As noted by LeVeque (72], spurious wave speeds for discontinuities may be in­

troduced when manipulating partial differential equations in this manner. However, 

this is not a problem here since the solid mass equation, which can be derived from 

first principles, is used to express Eqs. (2.7) and (2.9) in the form of Eqs. (2.26) 

and (2.27), respectively. In fact, it is shown in the following chapter that Eqs. (2.7) 

and (2.9) are already in standard characteristic form, and that the characteristics are 

solid particle paths. Furthermore, the corresponding characteristic fields are linearly 

degenerate; consequently, discontinuities in these characteristic fields propagate at 

speed u2• This result is also obtained by the formal discontinuity analysis given in 

the following chapter based on integral conservation expressions for Eqs. (2.26) and 

(2.27). 

Equations (2.1-2.6), (2.8), (2.26), and (2.27) form a quasilinear system of nine 

first-order partial differential equations expressed in standard divergence form. 
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Figure 2.2: Schematic of the piston-attached coordinate system. 

2.2 Transformation to the Piston-Attached Coordinate System 

- ~--

As this study models the transient development of planar two-phase detonation 

in response to energy input from a moving piston, it is convenient to transform the 

governing equations to a coordinate system which moves with the piston. The trans­

formation from the laboratory coordinate system to the piston-attached coordinate 

system is illustrated in Fig. 2.2. 

A general transformation of the independent variables (x, i) ~ (e, f) is expressed 

by the following: 

f = f(x, i). (2.28) 

Using this transformation, the following differential operators are derived by direct 

application of the chain rule: 

(2.29) 

a 1 ael a of a I 
ox t = ox t ae f + ax i Of i . 

(2.30) 

If the piston position is a prescribed function of time, Xp(i), then its velocity is given 

by 

~ (tl\ = dx,(i) 
Vp ~J- ~ . 

dt 
(2.31) 
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For the transformation from the laboratory coordinate system to the piston-attached 

coordinate system, we have the following form for Eq. (2.28): 

f=t. (2.32) 

Using these expressions, Eqs. {2.29) and (2.30) reduce to the following, respectively: 

8 A {A) 8 • 8 
8£ = -Vp T --:;: + 8f 1 

:i 8~ 7- i 

8 8 
8xi= 8{+' 

{2.33) 

(2.34) 

Additionally, both the gas velocity, v1, and the solid velocity, v2 , measured relative 

to the piston-attached coordinate system are obtained by differentiating the first 

expression in Eq. (2.32) with respect tot: 

(i = 1,2). (2.35) 

In this expression, t has been replaced in favor of f. 

Equations (2.33-2.35) are used to transform Eqs. (2.1-2.6), (2.8), (2.26), and (2.27) 

into the following equations valid in the piston-attached coordinate system: 

8
8

A [jhcf>t] + 8
A (jhcf>tVt) = (~) folcf>20.PiH(l- lig), 

T 8~ r 
(2.36) 

:f [PtcPlVt] + :e [PtcPtV~ + Plcf>t] 

A (3) A ,~,.~ ApAmH(I 1 ) acP1cf>2 ( A A ) A ,~,. dvp = v2 f P2ona 1 - ig + fJf v2- Vt - Pt'Y'l df, (2.37) 

(2.38) 

{2.39) 
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an. a [A AJ 0 8f + a#, v2n = , 

:f lP2t1>2I1 + :e [P2t1>2v2Il 

(2.40) 

(2.41) 

(2.42) 

(2.43) 

= krP-24>2 (l _ /) [P1tP1 + ~24>2- P1~tP1o- P2otP2o]
2 

exp [- A Tr A l 
P1otP1o + P2otl>2o T1tP1 + T2t/>2 

- (~) iJ2t1>2IaPiH(I- Ii9 ). (2.44) 

Here, the momentum equations, Eqs. (2.37) and (2.40), and the total energy equa­

tions, Eqs. (2.38) and (2.41), contain additional terms which account for the acceler­

ation of the piston-attached coordinate system. The remaining equations, including 

Eqs. (2.10-2.16), Eqs. (2.23), and {2.24), are unaffected by the transformation. 

2.3 Non-Dimensional Model Equations 

The model equations can be non-dimensionalized by redefining both the indepen­

dent and dependent variables in terms of the following dimensionless variables: 
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j 
I=~ ~' 

P2ovm 
i = 1,2 - -... (2.45) 

h ~ 0~ h ifi h 1 Th " 11 . w ere Cvio = -~ are t e spec c eats at constant vo ume. e 10 oWing non-
fllio 

dimensional equations result: 

. (2.46) 

(2.47) 

(2.48) 

8 8 P24>2P'If4 

OT [P24>2] + of. [P2~2v2] = -'11"1 r 
1 

H(I- 7r1o), (2.49) 

! [fJ24>2v2] + :e [P2~2v~ + P2~] 
~~~ ~~ ~ = -7rt H(I- 7r1o)- 1r2-- (v2- vt)- P2~2-, r r dr 

(2.50) 

(2.51) 

34 



(2.52) 

- -;-· (2.53) 

Pt = Pt(Pt, Tt), (2.55) 

e1 = et(Ph Tt), (2.56) 

P2 = P2(P2, T2), (2.57) 

e2 = e2(P2, T2), (2.58) 

f = f(¢>2), (2.59) 
¢>2 

(2.60) n = -, r3 

tPt + tP2 = 1, (2.61) 

2 Pt 8P1 
(2.62) cl = -rt+- , 

Pl 8p1 e1 

2 P2r 8P2 (2.63) C2=-2+a, 
P2 P2 e2 

rl = ..!._ aPll , 
Pt ael Pl 

(2.64) 

r2=..!_8P21 · (2.65) 
P2 8e2 . 

Pl 
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Non-dimensional parameters contained in these equations are defined by the following: 

3 ft ftm~m-1 
1rl = aplo"'2o ' 

Pto 
7rs = -ft-, 

P2o 

The parameters 1r11 1r2, 1r3, 1r7, and 1r8 are ratios of the characteristic time associ-

ated with combustion, interphase drag, interphase heat transfer, material compaction, 

and ignition to the time required for acoustic waves in the ambient solid to propa­

gate a distance of one particle radius. For this investigation, values for chosen these 

parameters vary substantially from case to case; thus, no simplifications are made 

based upon dimensional arguments. The parameters 1r5 and 1r6 are a consequence 

of the different characteristic densities, pressures, and temperatures used to non­

dimensionalize the gas and solid thermodynamic variables. Though the value for 1r5 

is small for this study ("' 0.005), simplifications are not made based on the smallness 

of this parameter because the gas density for detonation conditions is several orders 

of magnitude higher than its ambient value; thus, the characteristic value used here 

for the gas density is misleading. The parameter 1r6 is order one for this study. The 

parameter 1r9 is a non-dimensional ignition parameter, and the parameters 1r4 and 1r1o 

are defined for convenience. 
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3 

CHARACTERISTICS ANALYSIS 

A characteristics analysis of the model equations is given in this chapter. The 

purpose of this analysis is two-fold: 1) to classify the model equations and to charac­

terize the solution behavior; and 2) to form the mathematical framework necessary 

for the construction of the high-resolution numerical method. Furthermore, results of 

this analysis are used to formulate appropriate boundary conditions for the problems 

investigated in this study. In Section 3.1, the model equations are classified, and the 

characteristic fields are identified. In Section 3.2, two-phase Rankine-Hugoniot rela­

tions are derived from the integral form of the model equations, and discontinuities 

admitted by the Rankine-Hugoniot relations are discussed. 

3.1 Mathematical Classification 

The model equations used in this study are most fundamentally posed as a system 

of integro-differential conservation relations: 

(3.1) 

where 

q = [Pt<Pll PI<f>Ivll PI¢1 (e1 + 1), fJ24>2, P2lf>2v2, 

P2<P2 (·· + ~)' P2<Pi. n, P2<P,lr' (3.2) 

( ) [ 
2 ( v~ PI) f q = PI <f>I 11I, P1<JI1 vi + P1<J11, P1<JI1 111 ei + 2 + p

1 
, P2<Jl2v2, 

P2,v: + P,,, P2,"' (·· + ~ + ~) • P2V><Pi. v,n, P2<h"'lr. (3.3) 
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g(q) = [em, Cmt12 + Cd- P1lP1 ~;, Om (e2 + 1) + Cdt12 + Ce 

d~ d~ 
-P1lP1V1 dr, -trsCm, -trsCmv2- trsCd- P2lP2 dr, 

( vi) dvp 
-trsCm e2 + 2 - trsCiit12 - trsCe - fJ2¢>2V2 dr , - -;--

tr7fJ2¢>1¢>i (P2- trsP1- /)- 2trs¢>2Cm, 0, P2lP2C1 -trslCm-]T, (3.4} 

and 

Here, q E lR9 is the vector of conserved quantities, f E lR9 is the flux vector, and 

g E lR9 is the source vector (lR is the set of real numbers). Both f and g are vector 

valued functions of q . The term ~; in Eq. (3.4} is a known function of time. 

Denoting the components of q by q; (j = 1,_. .. , 9), Eq. (3.1) expresses that the 

time rate of change in the conserved quantity q; within the fixed spatial interval 

[6, 6], where 6 < {2, equals the sum of the net flux of q; into the interval, and 

the net production of Q; within the interval. Obviously, the conserved quantities for 

the mass, momentum, and energy of the gas and solid (q1, q2, q3 , q4 , q5 , and q6 , 

respectively) have physical meaning, as does the conserved quantity for the particle 

number density (q8) . However, the conserved quantities P2¢~ and P2¢>2J (q7 and q8 , 

respectively) have no physical meaning, and are treated in a conservative fashion 

solely for utility. 

Assuming that q is continuous on the interval [~1 , ~2), then 
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Substituting this expression into Eq. {3.1}, moving the time derivative inside the 

integral (since both ~1 and ~2 are fixed}, and collecting terms gives 

/,
(2 [aq or(q) ] - +-- g(q) de= 0. e1 ar a~ 

(3.6) 

This equation is generally satisfied only if the integrand identically vanishes. Thus, 

the following quasilinear system of partial differential equations are obtained: 

:~ + ~~q) = g(q). (3.7) 

This is the differential form of the model equations presented in the previous chapter. 

We now perform a standard analysis [130] applicable to systems of first-order 

quasilinear partial differential equations in two independent variables to determine 

the mathematical classification of the model equations. The analysis requires that 

Eq. (3.7) be expressed in the following non-divergence form obtained by carrying out 

the differentiation off with respect to~: 

aq = aq 
ar + A{q) a~ = g(q), 

where A is the 9x9 flux Jacobian matrix defined by 

:: Of 
A= aq· 

If we denote the components off by!; (j = 1, ... , 9), then A is given by 

[ 

aJif8ql aJ1/8q2 · · · 8fif8qgl 
= a12faq1 ahfofh . · · af2f8qg 
A= . . . . . . . . . . 

aJs/8ql aJsfaq2 8fs/8qg 

(3.8) 

(3.9) 

(3.10) 

For the construction of A, it is necessary to first express ¢11 p11 v11 e1 , t/>2, P2, v2, e2, 

n, and I as functions of q. In particular, we have that 
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tPl = 1- q1 ql qz •• = q, -! ( </2 r. P1 = , VI=-, 
q4' 1- q1/q4 ql 2 ql 

t/>2=q1' 
q4 

2 
P2 = q4' 

q1 

I= qg. 
q4 

ql 

qs ··=q·_!(q•)'. Vz=-, (3.11) 
q4 q4 2 q4 

Solving Eqs. {2.56) and (2.58) for T1 and T2 , respectively, and substituting the results 

into Eqs. (2.55) and (2.57) gives the following functional dependencies for P1 and P2 : 

Pt = Pt (Pt(q), et(q)), 

Pz = Pz (P2(q), e2(q)) . 

(3.12) 

(3.13) 

Given the expressions for P1t elt {)2, and e2 in Eq. (3.11), and using the functional 

dependencies of Eqs. (3.12) and (3.13), the derivatives ~p1 
and a;2 

q; }i1U1>Fil q; qi'U'>Fil 

(j,j' = 1, ... , 9), which are needed for the construction of A, can be computed by 

direct application of the chain rule: 

8Ptl = 8Ptl 8ptl + 8Pt 8e11 , (3.14) 
8q · 8p1 8q· 8e1 8q · 

J q;'U'"Jl e1 3 qi'U'J!i) Pl 3 qi'U'fl.il 

oPz oPz OP2 oPz 8ez 
8q · = OP2 8q· + oe2 oq · · (3·15) 

J qi'U'f!il e1 3 qi'U'-Fil P'J J qi'U'>Fil 

E l. . . fi h d . . 8P1 d 8Pt d 8P2 d 8P2 
Xp lClt expressiOnS or t e envatlves B an a 1 an a an a 

PI el el Pl P2 el ez P'J 

can be obtained when the gas and solid state relations are specified. 

After performing the required calculations, the following expression is obtained 

for A: 
0 

q - vr - (Ht - vn r 1 

Vt (q- Ht)- Vt (Ht- vr> rl 

0 
0 
0 
0 
0 
0 
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1 
2Vt- Vtrl 

H1- vrrt 
0 
0 
0 
0 
0 
0 

0 
r1 

Vt + Vtrl 

0 
0 
0 
0 
0 
0 



0 0 0 0 0 0 
-pl'TJdP2 0 0 P1 fJl/ (P2¢2) 0 0 

-VlPtfJl/P2 0 0 V1P1'11/ (P2¢2) 0 0 
0 1 0 0 0 0 

~ - v~ - (H2 - v~) r2 + fJ2 2v2- 'V2r2 r2 -fJ2/¢2 0 0 
V2 (~- v~)- 'V2 (H2- v~) r2 + V2TJ2 H2- v~r2 v2 +v2r2 -V2fJ2/ ¢2 - ·-·- 0 . 0 

-¢2v2 ¢2 0 V2 0 0 
-v2n/ (P24>2) n/ (P2¢2) 0 0 v2 0 

-v2l I 0 0 0 V2 

(3.16) 

In Eq. (3.16), the total enthalpies H1 and H2 are defined by 

(3.17) 

Additionally, the following variables have been introduced for compactness: 

_2 pl 
fJ1 = CJ: - (r 1 + 1) -, 

P1 
{3.18) 

Here, it is noted that for a calorically perfect ideal gas and solid, c'f = 'Yi ~ and 
Pi 

ri = 'Yi - 1 (i = 1, 2), where 'Yi is the specific heat ratio; consequently, fJ1,2 = 0. 

Terms in Eq. (3.16) corresponding to the derivatives of the mass, momentum, and 

energy flux components with respect to the conserved mass, momentum, and energy 

variables for each phase are similar in fon_n to the derivatives given by Glaister [37) 

for a single phase system. 

The classification of Eq. (3.8) requires that the eigenvalues and eigenvectors of A 
be computed. The eigenvalues and right eigenvectors of A, ).(i) (j = 1, ... , 9) and 

r(j), respectively, are solutions of the eigenvalue problem 

(3.19) 

Using matrix notation, the right eigenvalue problem can be concisely expressed as 

AR=RA, (3.20) 

- -
where ii is the 9 x 9 matrix whose columns consist of the right eigenvectors, and A is 
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the 9 x 9 diagonal matrix of eigenvalues, i.e. 

= 0 

[ 

.x<•> 

The eigenvalues are found to be 

.x<•> = v., 

.X(-t) = v2, 

.X(7) = ~~ 

A= - . 

.X<2> = v1 + c~, 

.,X(S) = V2 + C2, 

.,X(S) = V2
1 

0 

and the right eigenvectors are found to be 

0 

.,X(s) = v1 - c11 

.x<s) = v2 - C2, 
A(9) = V2, 

--. 

(3.21) 

(3.22) 

r<•> = [1, v., Hl- cf./r., 0, 0, 0, 0, 0, o]T' (3.23) 

r<2
> = [1, Vt + Ct, Hl + VtCt, 0, 0, 0, 0, 0, of' (3.24) 

r(S) = [11 VI - Cl, Hl - V!Clt 01 01 01 0, 0, of' (3.25) 

r<-t) = [0, 0, 0, 1, v2, H2- ~/f2 1 t/J2, 0, o]T, (3.26) 

r<5> = [0, 0, 0, 1, v2 + c2, H2 + t12C2, ¢2, n/ (P2¢2) , I]T 1 (3.27) 

r<6> = (0, 0, 0, 1, Va - ea, H2 - ~C2, t/J2, n/ (P24>2) , I)T , (3.28) 

(7) _ [ Pl'f11 P11J1 V2 
r - P2<P2 ((v2- v1)2 - en' P2<P2 ((v2- v1)2- q), 

P11J1 (Hl + V1V2- vn O O ...!E._ 1 O o]T (3.29) 
P2tP2((v2-vl)2-c1)' ' 1 t/>2f2' ' ' 1 

r<8> = [0, 0, 0, 0, 0, 0, 0, 1, of' (3.30} 

r<9> = [0, 0, 0, 0, 0, 0, 0, 0, 1]T. (3.31) 

The left eigenvectors of A, }U> (j = 1, ... , 9), are solutions of the eigenvalue 

problem 

(3.32) 

Using matrix notation, the left eigenvalue problem can be concisely expressed as 

LA= Xi, (3.33) 
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-
where Lis the 9x9 matrix whose rows consists of the left eigenvectors, i.e. 

I 
1<1> l = = J(2) 

L- . . 

1(9) 

(3.34) 

- :.--

Solving each of Eqs. (3.20) and (3.33) for A, and equating the resulting expressions 

gives 
----1 --1--
iU.R. =L X:L. 

- --1 
This equation is identically satisfied if we take L = R . Consequently, the left 

eigenvectors are orthonormal to the right eigenvectors since 

where i is the 9 x 9 identity matrix. The left eigenvectors are given by 

1(1) = ~ [ ( Ht - vn rl, Vtrl! -r~, 0, 0, 0, 0, 0, o] ' (3.35) 

1(2) = 2~ [- (Ht- vn r1 + Ct {cl- Vt), Ct- vlrlt r1, 

P1711c1 0 0 _ Pt771Ct 0 oj (3.36) 
P2 (v2- {v1 + c1))' ' ' P2lP2 (v2- (v1 + c1))' ' ' 

1(a) = 2~ [- (H1- vn r1 + Ct (cl + Vt), -Ct- Vtrlt r1, 

_ PtfJtCt O O Pt7]1Ct O o] (3 37) 
fJ2(v2-(v1-ct))' ' 'P2¢>2(v2-(Vt-c1))' ' ' · 

1<4
> = ~ (o, 0, 0, (H2- vi) r2 -1}2, v2r2, -r2, 112/l/J2, 0, o], (3.38) 

1(5) = 2~ [o, 0, 0, -(H2-vi)r2+C2(c2-v2)+1]2, c2-v2r2, 

r2, - 112/¢>2, o, o], (3.39) 

1<6
> = 2~ [o, o, o, -(H2-vnr2+c2(C2+v2)+112, -c2-v2r2, 

r2, - 112 /¢>2, o, o], (3.40) 

1(7) = [0, 0, 0, -l/J2, 0, 0, 1, 0, 0]' (3.41) 
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1<8> = P2~~ (o, 0, 0, (H2- v~) f2- ~- 172, ~r2, -r2, 

'12/4J2, P24J2~Jn, o] ' 
1(9) = [0, 0, 0, -1, 0, 0, 0, 0, 1]. 

(3.42) 

(3.43) 

Each grouping (A, r, 1) (j) (j = 1, ... , 9) is associated with a different mode of wave 

propagation. In particular, (A, r,l)<1>, (A, r, 1)<2>, and (A, r, 1)<3> are associated with the 

propagation of entropy waves, forward traveling acoustic waves, and backward travel­

ing acoustic waves in the gas, respectively; (A, r, 1)<4>, (A, r, 1)<5>, and (A, r, 1)<6> are as­

sociated with the propagation of entropy waves, forward traveling acoustic waves, and 

backward traveling acoustic waves in the solid, respectively; and (A, r, 1)(7), (A, r, 1)<8>, 

and (A, r, 1)<9> are associated with the propagation of infinitesimal disturbances in the 

volume fraction, the particle number density, and the ignition variable, respectively. 

Following Zauderer [130], a system of equations having the form of Eq. (3.8) is 

classified as strictly hyperbolic if for each ~, r, and q, the eigenvalues of A are real 

and distinct; in this case, the right eigenvectors are linearly independent. H the 

eigenvalues are real but not distinct, then the system of equations is non-strictly 

hyperbolic provided that the right eigenvectors are linearly independent. In the event 

that the eigenvalues are real but not distinct, and the right eigenvectors are not 

linearly independent, then the system of equations is parabolic. 

Since the eigenvalues given by Eq. (3.22) are real but not distinct, the model equa­

tions constitute a non-strictly hyperbolic system provided that the right eigenvectors 

(Eqs. (3.23-3.30)] are linearly independent. Linear independence requires that the 

right eigenvector matrix R be non-singular or, equivalently, that its inverse exists [1]. 
--1 -

Inspection ofR (= L), whose rows consist ofthe left eigenvectors [Eqs. (3.35-3.42)] , 

indicates that the right eigenvectors are linearly independent except at the singular 

points ¢2 = 0 and v2 = v1 ± Ct . 

For ¢2 = 0, it is seen that the forward and backward acoustic eigenvectors for 

the solid, r<5> and r<6> respectively, degenerate (upon proper scaling) into the particle 
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number density eigenvector r<8): 

(3.44) 

The time-dependent analysis performed in this study does not formally conjwe~ the 

limit 4>2 ~ 0; rather, the singularity is avoided by terminating combustion when the 

solid volume fraction reaches a specified minimum value. As such, the solid particles 

are assumed to have an inert core of small diameter. It is noted that this complete 

combustion singularity also exists in the steady-state model given in Chapter 6 and, 

within the context of that model, is shown to be inconsequential. 

For v2 = v1 +c1 and v2 = v1 -c., it is seen that the compaction eigenvector r<7> de­

generates (upon proper scaling) into the forward and backward acoustic eigenvectors 

of the gas, r<2> and r<3), respectively: 

(3.45) 

1. [P2tP2 ( ( v2 - v1)
2 

- ci) (7)] (3) 1m r =r . 
t12 -4Va -ca Pl1Jl 

(3.46) 

Inspection of Eqs. (3.36) and (3.37) shows that the sonic singularities, corresponding 

to v2 = v1 ± clt are removed for 1}1 = 0; as mentioned earlier, this condition results 

if a calorically perfect ideal equation of state is used for the gas. In this case, r<7> 

reduces to 

r~~ = [0, o, o, o, o, 1J2/(,P2r2), 1, o, of. 

Thus, for 1J1 =/:- 0, the model equations constitute a non-strictly hyperbolic system 

of equations which contain a parabolic degeneracy on the manifolds ,P2 = 0 and 

v2 = v1 ± c1 in phase space. 

Similar singularities have been identified in the two-phase model proposed by 

Baer and Nunziato [5]; a detailed discussion is given by Embid and Baer [31]. The 

physical interpretation of these singular points is unclear. Em bid and Baer suggest 

that the sonic singularities arise since, at the pore level, two-phase granular flow is 
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analogous to flow in a moving duct of variable cross-sectional area; a choked flow 

condition is reached when the relative flow is sonic. Furthermore, it is suggested 

by Embid and Baer that nonlinear resonant interactions between the compaction 

mode, (.X, r, 1)<7>, and the related gas acoustic mode, (.X, r, 1)<2> or (.X, r, 1)!~), may 

occur near these singular points; such resonant interactions are discussed by Isaacson 

and Temple (53] for a general inhomogeneous system of conservation laws. Based on 

this premise, Embid et al. (32), and Embid and Majda (33] developed and analyzed an 

asymptotic model describing transition to detonation in granulated reactive solids. 

It is demonstrated in Reference (33] that the asymptotic model does predict the 

development of resonant gas acoustic hot spots which may influence the DDT process. 

When the model equations are hyperbolic (i.e., for tP2 ::fi 0 and v2 ::fi v1 ± c1), it is 

possible to express them in characteristic form [130]. As such, the governing partial 

differential equations can be reduced to ordinary differential equations describing the 

evolution of the two-phase system along characteristic curves in the ~-r plane. The 

characteristic form of the governing equations is summarized in Appendix B. 

Having identified the characteristic fields, it is possible to classify them as gen­

uinely nonlinear or linearly degenerate [68, 69, 87). As shown in Appendix C, the 

gas entropy field, (.X, r, 1)<1>, the solid entropy field, (.X, r, 1)<•>, the compaction field, 

(.X,r,1)(7), the number density field, (.X,r,1)<8>, and the ignition field, (.X,r,1)<9>, are 

linearly degenerate fields. The gas acoustic fields, (.X, r, 1)<2> and (.X, r, 1)<3>, and the 

solid acoustic fields, (.X, r, 1)<5> and (.X, r, 1)<6>, are genuinely nonlinear fields provided 
fPPt IJ2P2 

that 7f2 i= 0 and 7fT i= 0, where p.1 and p.2 are the non-dimensional specific 
1-'1 61 1-'2 62 

volume of the gas and solid. Each of these conditions is identical to the require-

ment for genuinely nonlinear acoustic fields for the Euler equations of gas dynamics 

[28, 132]. For the gas and solid equations of state used in this study, ~ ~1 > 0 
P.t 61 

()2p2 
and 7f2 > 0, respectively; consequently, the state relations satisfy the standard 

Jl.2 62 

convexity condition of gas dynamics (28], and the gas and solid acoustic fields are 
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genuinely nonlinear. Both shock waves and rarefaction waves can occur in genuinely 

nonlinear fields. Though neither shocks nor rarefaction waves can occur in linearly 

degenerate fields, contact discontinuities are admitted [72). Discontinuous solutions 

of the model equations are discussed in the following section. - ·-.. 

Lastly, it is mentioned that the initial value problem for strictly hyperbolic systems 

is well-posed (i.e., a unique solution exists which depends continuously on the initial 

data), and the solution behavior is well-characterized [154, 68, 130]. However, the 

same cannot be generally said for non-strictly hyperbolic systems having parabolic 

degeneracies [57, 58, 114). For such systems, a general criterion for well-posedness 

does not exists, and the solution behavior can be very complicated. Some of these 

issues relevant to the solution of the two-phase Riemann problem are discussed in the 

following chapter. 

3.2 Discontinuous Solutions 

Continuous single-valued solutions of hyperbolic equations may not exist for all 

time [54, 68, 123). In order to assure that the solutions remain single-valued, dis­

continuities are introduced at locations where the continuous solutions become multi-

valued; the resulting piecewise continuous solutions are referred to as a weak solutions 

[54). Weak solutions of the two-phase model equations are addressed in this section. 

The analysis given here closely follows that given in Reference [123] for systems of 

conservation laws having the form of Eq. (3. 7) for arbitrary q, f, and g. 

Here, we consider a discontinuity propagating to the right at speed D = ~~ ; a 

simple illustration is given in Fig. 3.1. The discontinuity is located at (,(r), where 

6 < e,(r) < e2. The locations 6 and e2 are assumed fixed for purposes of this anal­

ysis. The differential form of the conservation equations [Eq. (3.7)} is formally valid 

only in regions where q has continuous first derivatives, i.e. in the regions el < e;(r) 

and e:(r) < e2, where e;(r) and e:(r) are the locations immediately to the left and 
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Discontinuity 
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Figure 3.1: Illustration of a propagating discontinuity in the two-phase material. 

right of the discontinuity, respectively. Therefore, it is necessary to consider the more 

fundamental integral form of the equations in order to properly define expressions 

which connect the continuous solutions at the discontinuity. The integral form of the 

equations only requires that q be integrable and, therefore, places no restrictions on 

the differentiability of q. 

To this end, we return to the integral form of model equations given by Eq. (3.1). 

With the assumption that both q and its first derivatives are continuous over the 

intervals 6 :5 ~ < ~,(r) and ~"(r) < ~ :5 ~2, and that their limits are bounded as 

E-+ €,(r) from either side of the discontinuity, Eq. (3.1) can be rewritten as 

d
d re.<r) q(€, r)~+dd re

2 
q(€, r)d€ = f(q({b r))- f(q(€2, r)) 

T le1 T le.<r) 
+ ,e.(r) g(q({, r))~ + re2 g(q({, r))~. 

le1 le.(r) 

(3.47) 

Using Leibnitz's rule, the terms on the left hand side of this equation can be expressed 

as 

where q(E;,r) are the values of q({,r) as~-+ E;(r). Substituting these expressions 

into Eq. (3.47), and taking the limit as 6 ~ c· and 6-+ f:·, results in the following 

(since all of the remaining integrals vanish in this limit): 

[q]~ D = [f)~ , (3.48) 
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where the notation [ ]:!: denotes a jump in the enclosed quantity across the disconti-

nuity, i.e. 

[q]~ = q(e;,r)- q(~i,r), 
- -;. · 

[fJ~ = f(q(e;,r)) -f(q(et,r)). 

Equation (3.48) constitutes a coupled system of nonlinear algebraic equations which 

must be satisfied across any mathematically admissible discontinuity. These algebraic 

jump relations are commonly referred to as Rankine-Hugoniot relations. It is noted 

that the expressions given by Eq. (3.48) are trivially satisfied for q(e;, r) = q(ei, r). 

Substituting the expressions given by Eqs. (3.2) and (3.3) into Eq. (3.48), ex-

panding the resulting expressions, and regrouping terms gives ~he following Ra.nkine­

Hugoniot relations for the two-phase system: 

[PI<PI(vl- D)]~ = 0, 

[P1<fl1 (vt- D)
2 + Pt<Pt]~ = 0, 

[ ( 
(v1 - D)

2 
P1)]+ 

Pt<Pt (vt- D) el + 2 + Pt - = 0, 

[P24>2 (v2- D)e = o, 

(P2<P2 (v2- D)2 + P2<!>2]~ = 0, 

[ ( 
(v2 - D)

2 
P2 )]+ 

P2<P2 (v2- D) e2 + 2 + P2 _ = 0, 

[P2<P~ (v2- D)]~ = 0, 

[n(v2- D)e = o, 

[P2<P21 (v2- D)]~ = 0. 

(3.49) 

(3.50) 

(3.51) 

(3.52) 

(3.53) 

(3.54) 

(3.55) 

(3.56) 

(3.57) 

In order to completely determine the jumps in all gas and solid quantities across a 

discontinuity propagating at speed D, the gas and solid state to either side of the 

discontinuity must be known, and the two-phase Rankine-Hugoniot relations must 

be supplemented by the state relations P1 = Pt(P., e1) and P2 = P2 (P2, e2), and the 
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saturation condition t/>1 + t/>1 = 1. Weak solutions of the model equations satisfy Eq. 

{3.7) in continuous regions, and satisfy Eqs. {3.49-3.58) across discontinuities. 

Weak solutions of hyperbolic systems are not unique. For example, in gas dynam­

ics it is possible to obtain two mathematically correct weak solutions for an e*panding 

gas resulting from certain discontinuous initial data [132): 1) a continuous rarefaction 

wave, and 2) a discontinuous "rarefaction shock." In order to determine the physi­

cally relevant solution, one must appeal to the second law of thermodynamics which 

asserts that the change in entropy resulting from any physically admissible thermo­

dynamic process be non-negative. For the continuous rarefaction, it is determined 

that the gas entropy is constant throughout the wave; consequently, the second law 

of thermodynamics is trivially satisfied for this case. However, for the rarefaction 

shock, it is determined that the change in gas entropy across the shock is negative; 

consequently, the second law is violated and the rarefaction shock is non-physical. 

Thus, it is necessary to supplement the Rankine-Hugoniot relations with a criterion 

for identifying physically admissible discontinuities. One hopes that the use of such a 

criterion will identify a unique solution of the initial-value problem; in practice this 

is usually the case. 

A similar entropy criterion has been proposed Embid and Baer (31) for determining 

physically relevant discontinuities admitted by Eqs. {3.49-3.56). This criterion asserts 

that the entropy of the mixture be non-decreasing across a discontinuity. Using 

an approach similar to that used above to define the two-phase Rankine-Hugoniot 

relations, it is possible to obtain the following entropy criterion from Eq. (2.20): 

{3.58) 

This criterion does not require that the entropy of each phase be non-decreasing across 

a discontinuity. Rather, it only requires that the sum of the change in gas and solid 

entropy be non-decreasing. 

A brief discussion of discontinuities admitted by Eqs. (3.49-3.58) will now be given. 
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To this end, two broad classes of discontinuities are identified: 1) discontinuities 

across which there exists no jump in volume fraction, (i.e., [¢1]~ = [4>2]~ = 0}, 

and 2) discontinuities across which there does exists a jump in volume fraction (i.e., 

[<PI]~ = -[¢2]~ # 0). For purposes of this discussion, it is assumed that the-ignition 

variable is everywhere continuous (i.e., [I]~= 0). 

3.2.1 Discontinuities With a Continuous Volume Fraction 

For 4>2 =<Pi= ¢2 (thus, ¢1 = <Pt = </>1), Eqs. (3.49-3.58) reduce to the following: 

[Pl (v1- D)]~ = 0, 

(pdv1- D)2 + P1)~ = 0, 

~.(v1 -D) (•.+ (v, ~D)'+~)[= 0, 

[P2 (v2- D}e = o, 

[P2 cv2- D)
2 + P2r = o, 

[ ( 
(~- D)

2 P2)]+ 
P2 (v2- D) e2 + 2 + P2 _ = 0, 

r<1>2e = o, 

[n(~- D)]~= 0, 

{I]~ = 0, 

</>1 [p1s1 (v1 -D)]~+ </>2 [P2s2 (v2- D))~ 2: 0. 

(3.59) 

(3.60) 

(3.61) 

(3.62) 

(3.63) 

(3.64) 

(3.65) 

(3.66) 

(3.67) 

(3.68) 

Since Eqs. (3.59-3.61) are decoupled from Eqs. (3.62-3.64), they can be independently 

solved for the jumps in the gas and solid quantities across the discontinuity, respec­

tively, provided that the wave speed, the state to either side of the discontinuity, and 

the state relations P1 = P1(p., e1) and P2 = P2(P2, e2) are specified. Furthermore, 

each set of decoupled equations is identical to the classical Rankine-Hugoniot rela­

tions for a single phase system (28]. Once Eqs. (3.62-3.64) are solved for the jump 

in v2 , then Eq. (3.66) can be solved for the jump inn. The entropy condition, Eq. 

(3.68), is used to determine if the discontinuity is physically admissible. 
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Admissibility Condition 
Type Gas Solid [based on Eq. (3.68)] 

(i) shock continuous D > vt+ct 
(ii) continuous shock D > vi+ct--=-· 
(iii) contact discontinuity continuous D- v- -v+ - 1 - 1 

(iv) continuous contact discontinuity D-v- -v+ - 2- 2 

(v) shock shock D > max[vt +ct,vi +41 
(vi) shock contact discontinuity D = v; = vi > vt + ct 
(vii) contact discontinuity shock D = v} = vt > vi + 4 
(viii) contact discontinuity contact discontinuity D = v} = vt = vi - v+ - 2 

TABLE 3.1: DISCONTINUITIES HAVING A CONTINUOUS VOLUME FRAC­
TION ADMITTED BY THE TWO-PHASE RANKINE-HUGONIOT RELATIONS 

The different types of discontinuities admitted by Eqs. (3.59-3.68) are listed in 

TABLE 3.1. Each of these discontinuities is of classical type since the jump relations 

for the gas and solid are identical to the classical Rankine-Hugoniot relations for 

a single-phase system. Also listed in TABLE 3.1 are admissibility conditions for 

each type of discontinuity based on Eq. (3.68). For the purpose of discussing these 

discontinuities, we assume that the discontinuity is propagating to the right, and that 

the right-hand state is known; similar results hold for a left-propagating discontinuity 

with the state to the left of the discontinuity known. 

First, there exist discontinuities associated with one phase only; as such, quantities 

associated with the second phase remain continuous. These discontinuities include 

compression shocks [types (i) and (ii)] and contact discontinuities {types (iii) and 

(iv)] which are identical to those predicted in gas dynamics. Across a compression 

shock, there exists an increase in the magnitude of all thermodynamic variables, 

and the velocity, of the shocked phase. Quantities associated with a shocked gas are 

nontrivial solutions ofEqs. (3.59-3.61), and quantities associated with a shocked solid 

are nontrivial solutions of Eqs. (3.62-3.66). Results from classical shock wave theory 
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show that the inequalities (pisi(vi- D)]! > 0 {here, i = 1, 2 correspond to shocks 

in the gas and solid, respectively) are satisfied for right-propagating shocks having 

speeds D > vt + ct (28, 132}. Consequently, for shocks in the gas, the first term in 

Eq. {3.68) is positive {since c/>1 is non-negative), and the second term vanishes since 

the solid flow is continuous. A similar result holds for shocks in the solid. 

Contact discontinuities, which separate states having different density and tem­

perature, propagate at speed D = Vi (i = 1, 2); consequently, there is no gas/solid 

mass flux through a gas/solid contact discontinuity. For contact discontinuities in 

the gas, D = v1, Eqs. (3.59) and (3.61) are trivially satisfied, and Eq. (3.60) reduces 

to [P1]:!: = 0. Similarly, for contact discontinuities in the solid, D = v2, Eqs. {3.62), 

{3.64), and {3.66) are trivially satisfied, and Eq. (3.63) reduces to (P2]:!: = 0. Thus, 

pressure and velocity are constant across contact discontinuities. Furthermore, for 

contact discontinuities in the gas, the first term in Eq. (3.68) is trivially satisfied 

since D = v1, as is the second term in this equation since the solid flow is continuous. 

A similar result holds for contact discontinuities in the solid. 

There also exist discontinuities which affect both the gas and solid. In particular, 

it is possible to have compound discontinuities consisting of 1) a shock in each phase 

[type (v)J, 2) a shock in one phase and a contact discontinuity in the other [types 

(vi) and (vii)}, or 3) a contact discontinuity in each phase [type (viii)]. In each case, 

Eq. (3.68) is satisfied since each term in this equation is either zero for a contact 

discontinuity or positive for a shock. Boundary and initial conditions necessary for 

the evolution of these discontinuities are unknown. Though such discontinuities do 

not violate the entropy criterion, the existence of these waves is dependent upon their 

hydrodynamic stability. 

Lastly, since the equations of state used in this study satisfy the convexity con­

dition described in Appendix C, the classical entropy criterion proposed by Lax {69] 

can be used to identify physically inadmissible discontinuities. This criterion asserts 
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Stable Discondnuity Uastable Discontinuity 

D=~ 
dt 

- :--

Figure 3.2: Examples of a stable and unstable discontinuity in the jth characteristic 
field. 

that a discontinuity in the jth characteristic field is physically admissible if 

.xu>< q < e;, ,. ) ) > v ~ .xu>< q < e:, ,. ) ) , {3.69) 

where the _x(j) (j = 1, .. . , 9) are given by Eqs. (3.22). The equality corresponds 

to contact discontinuities occurring in linearly degenerate fields. This criterion is 

based on stability arguments. A discontinuity in the jth characteristic field is deemed 

stable if the characteristics to the left and right of the discontinuity converge into 

the discontinuity; otherwise, the discontinuity is deemed unstable. Based on this 

reasoning, rarefaction shocks are unstable, and compression shocks are stable. This 

idea is illustrated in Fig. 3.2 for a discontinuity in the jth characteristic field. We use 

this entropy criterion with the high-resolution numerical method formulated in the 

following chapter to identify physically inadmissible rarefaction shocks predicted by 

the approximate solution of the two-phase Riemann problem. 

3.2.2 Discontinuities With a Jump in Volume Fraction 

Here, we consider discontinuities for which (4>2)~ ;/; 0. As shown in the following 

chapter, these discontinuities naturally arise from two-phase Riemann problems hav­

ing an initial discontinuity in volume fraction. To analyze these discontinuities, Eq. 

54 



(3.52) is first used to re-express Eq. (3.55) as 

{P24>2 (v;- D)- p~<f>~ (vi- D)} [4>2)~ = 0. 

From this expression it is seen that if [4>2]2: =F 0, then P2 4>2 ( v2-D) = P't <P'tEvi-: D). 

This requirement is satisfied for D = v; = vt = v2; consequently, discontinuities 

for which [4>2]~ =F 0 propagate at the local particle velocity of the solid. Though not 

given here, a similar analysis can be performed to show that discontinuities for which 

[I]~ =F 0 also propagate at the local particle velocity of the solid. 

ForD= t12, Eqs. (3.49-3.58) reduce to the following: 

[Pl<l>l (v1- v2)]~ = 0, 

[Pl<f>t( VI - t12)2 + P1</>1]: = 0, 

[ ( 
(v1 -v2)

2 
P1)]+ Pt4>t ( v1 - v2) e1 + 2 + Pl _ = 0, 

[v2]~ = 0, 

[P2<!>2J~ = 0, 

(pl<f>t(vl - v2) St)~ ~ 0. 

(3.70) 

(3.71) 

(3.72) 

(3.73) 

(3.74) 

(3.75) 

Discontinuities admitted by these relations are of non-classical type since Eqs. (3. 70-

3.74) depend upon volume fraction. Inspection of Eqs. (3.73) and (3.74) indicates 

that a non-classical contact discontinuity is associated with the solid. Though v2 is 

constant across this discontinuity, a jump in P2 is predicted. Furthermore, the change 

in P2 is inversely proportional to the change in 4>2 since ;:: = :~ . This result differs 

from classical theory in that no jump in pressure is predicted across a classical contact 

discontinuity. Given the change in P2 , the jumps in P2 and e2 are constrained by the 

solid state relation P2 = P2(P2, e2) . 

It is seen from Eqs. (3.70-3.72) that the jump in gas quantities across the discon­

tinuity is dependent upon both the wave speed, v2 , and the jump in </>1• A simple 

solution of these equations is obtained if a calorically perfect, ideal equation of state 
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is used for the gas. The solution is given by 

+ p+ -~..-
As ch Pl 1 '1'1 - + d - + a· th ch . "' su , -= = p- = -~... + , v1 = v1 = v1 , an e1 = e1 = e1 . 1ven e ange 1n .,1 

P1 1 '1'1 

across the discontinuity (i.e., :} ), and the gas state to either side of the discontinuity, 

then the gas state to the opposite side is fixed. For instance, given the ideal state 

relation P1 = ('Yl- l)p1e1, we have that 

Here, we have used the result e1 = e1 = et. This solution will not generally exists for 

arbitrary state relations. For this solution, Eq. (3. 75) reduces to (vi - v2)[s1]:!: ~ 0. 

Since the jump in s1 is dependent upon the jump in both p1 and P1, and since the 

quantity (v1-v2 ) may be either positive or negative, this inequality will not be satisfied 

for all possible conditions. If this inequality is not satisfied, then the discontinuity is 

physically inadmissible, and an alternative solution should be considered. 

The gas may also be associated with non-classical shocks and contact discontinu­

ities. The gas shocks are non-trivial solutions of Eqs. (3.70-3.72). Since the shocked 

state is also dependent upon the jump in ¢., Eq. (3.75) will not be satisfied for all 

possible conditions. For non-classical gas contact discontinuities, vi = v2 , Eq. (3.70) 

and (3.72) are trivially satisfied, and Eq. (3.71) reduces to [P1¢ 1]:!: = 0. Equation 

(3. 75) is trivially satisfied in this case. 
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4 

NUMERICAL METHOD 

A high-resolution numerical method for solving the unsteady two-phase model 

equations is formulated in this chapter. Due to the hyperbolicity of the model equa­

tions, a minimum requirement of any numerical method used to solve these equations 

is the ability to accurately capture discontinuities. Several shock-capturing meth­

ods have been developed for solving the Euler equations of gas dynamics which have 

nominally second-order (or higher) spatial accuracy in regions of continuous flow, 

and can accurately capture discontinuities without the generation of spurious oscilla­

tions. Numerical methods having this property are collectively termed high-resolution 

methods. Many of the high-resolution methods for the Euler equations are based on 

Godunov's approach which requires the exact or approximate solution of Riemann 

problems in order to advance the solution in time. The method formulated in this 

chapter is also based on Godunov's approach, and is similar to the well-developed 

methods for the Euler equations. 

This chapter is divided into three sections. In Section 4.1, the upwind numerical 

method used to solve the equations governing nonlinear convection in the gas and 

solid is formulated. Since this transport mechanism is responsible for the evolution of 

discontinuities in the gas and solid, it is important that the upwind method accurately 

predict convection effects. This is especially important for problems involving local 

processes such as combustion, interphase drag, interphase heat transfer, and material 

compaction. Spurious oscillations near discontinuities can greatly affect these local 

processes resulting in severe numerical inaccuracies. In Section 4.2, the numerical 

method used to solve the equations governing the local phase interaction processes is 
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formulated, and the numerical splitting technique used to couple this method with the 

upwind method for non-linear convection is given. Lastly, the initial and boundary 

conditions used in this study are given in Section 4.3. 

4.1 Numerical Solution of Two-Phase Convection 
- :-.. 

In this section, a numerical method for solving the following initial-value problem 

(IVP) for q E R9 is formulated: 

8q 8f(q) -0 
ar + ae - ' 

q(e, o) = Qo(e), 

(4.1) 

(4.2) 

where f: R9 -t R9, e E ( -oo, oo), and 1" E (0, oo). This system of equations, ob­

tained by setting g(q) = 0 in Eq. (3.7), governs nonlinear convection in the gas and 

solid. The initial-boundary-value problem (IBVP) for { E [0, oo) involving the moving 

piston is addressed in Section 4.3. 

A variety of high-resolution numerical methods have been developed for solving 

nonlinear hyperbolic systems of conservation laws having the general form of Eq. ( 4.1). 

These methods are typically based on either 1) the explicit use of artificial viscosity 

[70, 120), 2) flux-corrected transport (FCT) [19, 20, 129], or 3) Godunov's method­

ology {12, 40]. A description of the artificial viscosity and FCT methods is given 

in the cited references, and is not given here. Godunov's methodology, which forms 

the basis of the numerical method used in this study, is discussed in the following 

subsection. The reader is referred to Reference {113] for a comprehensive discussion 

of the merits of these various methods. 

Regardless of the numerical method used to solve Eq. (4.1), it is required that it 

be expressed in the following conservative form so that the correct propagation speeds 

of discontinuities are predicted [72): 

(4.3) 
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Figure 4.1: Computational rectangle in the ~-7" plane. 

Here, it is assumed that the spatial domain is discretized into uniformly spaced nodes 

located at the points ~k (k = 1, 2, ... ). Each node is located at the center of a 

computational cell of width ~~. The location of the left and right boundaries of 

the kth cell are denoted as ~k-t/2 and ~k+1;2 , respectively. The vector quantities 

Q~ and Qi;+l are numerical approximations for qat times 'T" and 'Tn+l = 'T" + ~'T, 
respectively, where ~'Tis a small time increment. The vector quantities Fk±l/2, which 

are dependent upon Q", are numerical approximations for f at the cell boundaries 

~k±l/2 • The three classes of high-resolution methods mentioned above differ only in 

the way Fk+l/2 is defined. Numerical methods which can be expressed in the form of 

Eq. (4.3) fall into the general category of finite-volume methods. 

To illustrate the conservative character of Eq. (4.3), we integrate Eq. (4.1) over 

the domain [~k-t/2 , ~k+l/2) x ['T", 7""+1] shown in Figure 4.1 to obtain 

{~"+1/2 q(~, 'Tn+l)cle- f~l+l/2 q(~, 'T")de 
h,.-112 le,.-112 

,.,. .. +1 ,.,. .. +1 

+ }.,... f(q(6:+1/2l 'T))d'T- }.,... f(q(~k-1/2! 'T))d'T = 0. 

(4.4) 

Here, the spatial increment ~1c-112 $ ~ $ ~k+l/2 defines a single computational cell 

centered about the location ~k· Next, we define the quantities (ik+l and ~ to be 

the spatially averaged values of q contained within the computational cell at times 

7""+1 and 'T", respectively, and fA:-1/2 and fk+l/2 to be the temporally averaged fluxes 
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through the left and right computational cell boundaries during the time interval 

[rn, ..,.n+I], respectively: 

-n _ 1 (f-11+1/2 n 
Qk = a~ J1 q(~,..,. )d{, 

~ f.l<-1/2 - - -

- 1 11'"+1 . 
fk+I/2 = A f(q(~k+I/2, r))dr. 

~T T" 

(4.5) 

Substituting these definitions into Eq. (4.4) and rearranging terms gives 

+I ar [- - ] ~ = ~ - a~ rk+I/2 - fk-1/2 . (4.6) 

Comparing this expression with Eq. (4.3), it is seen that QZ and Q~+l can be inter-

preted as averages of the conserved quantities contained within the kth cell at times 

..,.n+1 and ..,.n, respectively. Similarly, Fk-1/ 2 and Fk+l/2 can be interpreted as average 

fluxes through the computational cell boundaries over the time interval [rn, ..,.n+I ]. 

4.1.1 Godunov's Methodology and the Two-Phase Riemann Problem 

The methodology formulated by Godunov (40) directly accounts for local wave 

propagation information within the framework of a conservative numerical method; 

as such, it constitutes an upwind conservative method. Here, an upwind method refers 

to one in which the solution is computed in a directionally-biased manner based on the 

direction of flow of characteristic information [72). Though Godunov's methodology 

was originally developed for the Euler equations, it can be generalized to hyperbolic 

systems of conservation laws such as that given by Eq. (4.1). 

In Godunov's methodology, local wave propagation information is provided by 

the solution of Riemann problems at computational cell boundaries. Mathematically, 

the two-phase Riemann problem is defined as the IVP given by Eq. (4.1) with the 

discontinuous initial data 

Qo(~) = { QL for ~ < 0 
QR for~> 0, 
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where QL and QR are constant states to the left and right of the discontinuity. Phys­

ically, this problem can be realized in part by partitioning a two-phase mixture in a 

tube using a thin diaphragm. The thermodynamic state to the left of the diaphragm 

is prepared in such a way that it is different from the state to the right. For 1nstance, 

the two-phase mixture to the left of the diaphragm can be pressurized and heated, 

and the mixture to the right of the diaphragm can be maintained at the ambient 

pressure and temperature. Also, it is possible to prepare the mixtures such that they 

have different solid volume fractions and/or particle sizes. The diaphragm is then 

suddenly removed, resulting in a series of waves being formed which act to drive the 

system to a new equilibrium. This problem is a two-phase equivalent of the classical 

gas shock-tube problem [28). The physical problem would certainly involve phase in­

teraction processes such as drag, heat transfer, and material compaction, and would 

also involve diffusive transport of mass, momentum, and energy within each phase; 

however, the mathematical problem posed here ignores these processes. Though the 

mathematical solution of this problem has not been studied in detail, a few general 

comments can be made concerning its behavior. As such, we first discuss the solution 

of the two-phase Riemann problem in the following four paragraphs, and give the 

details of Godunov's methodology at the end of this subsection. 

The various waves which comprise a typical solution of the two-phase Riemann 

problem are shown in the ~-r diagram of Fig. 4.2. Here, it is assumed that both the 

gas and solid pressure associated with the state QL are higher than that associated 

with the state <JR. The initial discontinuity is located at ~ = 0, and the solution 

evolves for T > 0. The resulting waves separate regions having different constant 

states. Due to the absence of phase interaction processes, physical diffusion, and 

physical boundaries, the solution has a self-similar form; e.g., it can be expressed as 

a function of the similarity variable eJr. Associated with each phase is a shock, a 

contact discontinuity (entropy wave), and a rarefaction (expansion wave). The shocks, 
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Figure 4.2: Sketch of a typical solution of the two-phase Riemann problem. 

which are driven by the high pressure state Q.r,, propagate to the right into the low 

pressure region. The shocks are followed by right-propagating contact discontinuities 

which separate regions having different entropy. Since the gas and solid entropy are 

constant through their respective rarefactions, the gas and solid entropy to the left 

of their respective contact discontinuities are associated with the state <u, while the 

gas and solid entropy to the right of the contact discontinuities are associated with 

the shocked gas and solid states. Also, a discontinuity in particle number density 

advects with the solid contact discontinuity, as does the initial discontinuity in the 

volume fraction and the ignition variable (if a jump in the volume fraction and the 

ignition variable is prescribed across the initial discontinuity). Rarefactions, which 

propagate to the left into the high pressure region, continuously expand the gas and 

solid from the state <lL to the constant states to the left of their respective contact 

discontinuities. 

An exact solution of the two-phase Riemann problem for a calorically perfect ideal 

gas and solid [Pt = fJtRtiL e1 = evd'1; P2 = h,R2T2, e2 = Cv2T2} is shown in Fig. 4.3. 

These state relations were chosen solely for simplicity, as the exact solution can be 

easily constructed for this case [51}. The initial conditions and model parameters 

used to construct this solution are given in TABLE 4.1. No jump in volume fraction 
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Figure 4.3: Exact solution of the two-phase Riemann problem for a calorically perfect 
ideal gas and solid at f = 6 ms: (a) gas quantities; (b) solid quantities; and (c) 
particle number density. (hmu = fo2mu = 10 kg/m3

, P1mu = P2mu = 1 MPa, 
u1mu = 307.3 mjs, u2ma:~: = 237.4 mjs, fimu = 1.81 x 1011 particles/m3.) 

was prescribed across the initial discontinuity; as such, volume fraction is constant 

for all time, and the gas and solid evolution equations decouple. Factoring ~l and tP2 

from the gas and solid evolution equations of Eq. (4.1) results in equations for each 

phase which are identical to the Euler equations. Thus, the solution of the Riemann 

problem for each phase is given by the classical solution of the Riemann problem for a 

single-phase system [28]. The initial discontinuity, which separates the high pressure 

region on the left from the low pressure region on the right, was located at x = 0 m 

at f = 0 ms (it is assumed that x = e for present purposes). 

The solution for each phase, shown in Figs. 4.3(a,b) at time f = 6 ms, consists 
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Parameter or 
Initial Condition Value Units 

~. 7.18 X 102 Jf(kg K) 

~2 2.39 X 102 Jf(kg K) - -;--

ft. 2.87 X 102 Jf(kg K) 

R2 2.87 X 102 Jf(kg K) 

UlL 0 mfs 

U2L 0 mfs 

uul 0 mfs 

U2R 0 mfs 

PIL/PtR 1.00 x 101 

/J2L/fJ2R 1.00 x 101 

</>2L/4>2R 1.00 X 10° 

PtL/PlR 1.00 X 101 

P2L/P2R 1.00 X 101 

nL/nR 1.00 X 10° 

TABLE 4.1: PARAMETER VALUES AND INITIAL CONDITIONS USED FOR 
THE SHOCK TUBE PROBLEM 

of a right-propagating shock, followed by a right-propagating contact discontinuity, 

and a left-propagating rarefaction. Across the gas shock, there exists a jump in Pl! 

ih, P., and T1 (the solution for 1'1 is not shown in the figure). Across the solid shock 

there exists a jump in P,., ii2, F2 , T2 , and n (the solution for T2 is not shown in 

the figure). Though there is no change in pressure and velocity across the contact 

discontinuities, there is a jump in p1 and 1'1 across the gas contact discontinuity, and in 

/J2, T2 , and n across the solid contact discontinuity. The jumps in the thermodynamic 

quantities across the contact discontinuities are associated with changes in entropy; 

thus, contact discontinuities are also referred to as entropy waves. The gas and solid 

rarefactions, which propagate to the left at the local gas and solid sound speed, 

respectively, have a continuous structure. Since the leading edge of the rarefaction 

propagates to the left faster than the trailing edge, the width of these waves grows 
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with time. All gas and solid thermodynamic variables, and the gas and solid velocity, 

vary continuously through their respective rarefactions; also, the particle number 

density continuously varies through the solid rarefaction. If an initial discontinuity 

in volume fraction had been prescribed, then it would have simply advected -with the 

solid contact discontinuity. In this event, the gas and solid evolution equations do 

not decouple, and Eqs. (3.70-3.75} predict a jump in /11, P., and P2 across the solid 

contact discontinuity. 

The order of the gas waves relative to the solid waves for the Riemann problem 

can change depending upon the states (II, and 'Ill· However, the order of the waves 

associated with each phase is maintained in that the contact discontinuity will always 

separate the shock and rarefaction. In general, the relative movement of the gas 

waves with respect to the solid waves poses no special problems, but more work 

needs to be done to verify this claim; this is beyond the scope of this investigation. 

It is plausible, however, that certain initial conditions might result in the evolution 

of the compound discontinuities discussed in Section 3.2 (e.g., if both the g~ shock 

and solid contact discontinuity propagate at the same speed). Furthermore, if the 

solid contact discontinuity is located within the gas rarefaction wave, then the sonic 

condition t12 = v1 - c1 is locally satisfied at the point where the two waves intersect, 

and the model equations become parabolic (for a non-ideal gas). As such, the wave 

structure associated with the solution of the Riemann problem may be considerably 

more complicated than illustrated here. In particular, it is noted that for arbitrary 

Q.L and QR, a single wave will generally evolve in each of the characteristic fields 

identified in Appendix B; such is the case shown in Figs. 4.2 and 4.3. However, 

in contrast to results for strictly hyperbolic systems (68], Keyfitz and Kranzer [58] 

have shown that the Riemann problem for a class of non-strictly hyperbolic systems 

containing parabolic degeneracies can admit multiple waves in a single characteristic 

field. A similar result may hold for Eq. (4.1) for certain values of (II, and QR· 
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The basic premise of Godunov's methodology is to use the wave propagation 

information provided by the solution of a Riemann problem at each computational cell 

boundary in order to advance the solution over a small time intervall:ir. The method 

consists of three steps for computing the updated average solution ~+1 ( k =-1, 2, ... ) 

within each computational cell from the known average solution~ [51]. 

1. Projection step. The initial data ~ is used to define a piecewise constant 

function q(e, rn) having the value Cit over the interval ek-t/2 < { < {k+l/2· Thus, 

the function Ci(e, rn) defines a sequence of Riemann problems at computational 

cell boundaries (Figure 4.4a). 

2. Evolution step: Using q(e, rn) as initial data, the system of conservation laws 

given by Eq. (4.1) is solved exactly for rn < T ~ rn+l to obtain Ci(e, Tn+l) 

(Figure 4.4b). Here, the exact global solution is simply the sequence of exact 

solutions of the local Riemann problems defined at the cell boundaries. 

3. Reconstruction step. The updated solution ~+1 is obtained by averaging the 

exact solution at Tn+l over the Spatial interval ek-1/2 < { < ek+l/2: 

(4.8) 

The updated values are then used to define a new piecewise constant function 

in the projection step, and the process is repeated. 

In practice, the averages defined by Eq. (4.8) need not be computed explicitly. Rather, 

the updated averages can be computed from Eq. ( 4.6) provided that expressions for 

the average fluxes fk+l/2 are known. The average fluxes are easily determined since the 

solution of each Riemann problem is constant along the rays e/r =constant. Thus, 

with the solution Q.(ek+l/2, rn+l) known, then fk+l/2 is simply given by f(Q.(ek+l/2, rn+l)). 

Lastly, we note that the evolution step is computationally expensive since it re­

quires that a nonlinear algebraic system of equations be solved iteratively at each 
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q (~. 1") 

(b) 

Figure 4.4: Sketch of the projection step and evolution step of Godunov's method­
ology: (a) piecewise distribution of q at r"; (b) evolution of the solution at the 
computational cell boundaries over the time interval (r", r"+l]. 

computational cell boundary. Furthermore, much of the detail provided by the exact 

solution of the Riemann problem is significantly smeared due to the averaging step. 

These extravagancies have motivated the use of approximate Riemann solutions for 

approximating the fluxes fk+l/2, resulting in more computationally efficient numerical 

methods. 

4.1.2 Approximate Solution of the Two-Phase Riemann Problem 

An approximate solution of the two-phase Riemann problem is formulated in this 

subsection. In addition to having increased computational efficiency, the use of an 

approximate Riemann solution in this study is warranted since the exact solution of 

the two-phase Riemann problem for non-ideal state relations has not been previously 

67 



determined. Here, the approach used by Roe and Pike {103] to formulate an approx­

imate Riemann solution for the Euler equations for ideal state relations, and that 

used by Glaister [37, 38] to formulate an approximate Riemann solution for the Euler 

equations for non-ideal state relations is adopted. 

The approximate solution of the two-phase Riemann problem is closely coupled 

to the exact solution of the linearized two-phase Riemann problem. As such, we first 

consider the case where the initial data <lL and 'lR in Eq. (4.7) are close to a constant 

reference state q*. This assumption will be later relaxed to account for arbitrary Q.L 

and 'IR· 

For <lL and qR close to q*, we can linearize Eq. (3.8) by assuming an expansion 

of the form 

(4.9) 

where 0 < f <: 1. The following linear system of equations are obtained at lowest 

order in f: 

f 8:1) + eA(q*) 8:~1) = 0, 

or, since fq(1) = q- q* + 0(f2), 

aq = .aq 
ar + A(q) a~ = o, 

{4.10) 

(4.11) 

where A{q*) is the Jacobian matrix evaluated at the constant reference state. This 

equation, with the initial data of Eq. ( 4. 7), can be solved using standard techniques 

applicable to linear hyperbolic systems {72, 123, 130). 

The solution of the linear Riemann problem is obtained by re-expressing Eqs. { 4. 7) 

and ( 4.11) in terms of the characteristic variables defined by 

:: -1 
pER q , (4.12) 

--1 
where R is the inverse of the right eigenvector matrix [Eq. (3.21)] evaluated at the 

:::; -1 
reference state. To this end, we first post-multiply Eq. (3.20) by R to obtain the 
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expression 
- - - --1 
A =Iliii , {4.13) 

where A is the diagonal eigenvalue matrix (Eq. {3.21)) evaluated at the reference 

state. Next, we substitute the expression given by Eq. (4.13) into Eq. {4]1), and 
:: -1 

pre-multiply the result by R to obtain 

:: -18q :: = -18q 
R ar + AR a~ = 0. (4.14) 

= -1 
Since R is constant, we obtain the following equation expressed in ter~ of the 

characteristic variables: 
8p =8p 
ar +A a~ =O. {4.15) 

The initial condition for this equation is 

(c 0) - { v L = R -I~ for e < 0 
p ... , - = -1 

VR = R qR fore> 0. 
(4.16) 

Since A is a diagonal matrix, Eq. (4.15) consists of nine decoupled linear advection 

equations each having the form 

{4.17) 

where Pi (j = 1, . . . , 9) are the components of p. The solution of each advection 

equation, subject to the initial condition of Eq. {4.16), is given by 

{ 
v·L if~- _\U>r < 0 

P;{{, r) = li~R if~- _xU>r > 0, (4.18) 

where v;L and v;R are the jth components of VL and vR, respectively. Thus, by Eq. 

(4.12), we obtain the following solution for q{{, r): 

- 9 
q{~,r) = Rp{~,r) = LP;{{,r)rU>. {4.19) 

i=l 

Once again, we note that the right eigenvectors rU> (j = 1, .. . , 9) (Eqs. (3.23-3.31)] 

are evaluated at the reference state q•. 
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')..(4)= ~..a>= 
')..(8)= ')..(9)= vi ')..(2)=vi+ci 

- -=--

Figure 4.5: Sketch of a typical solution of the linear twcrphase Riemann problem. 

The solution of the linear Riemann problem is illustrated in the ~-r plane of 

Fig. 4.5. The initial disturbance, located at (~, r) = (0, 0), generates a wave of 

infinitesimal strength in each characteristic field for r > 0. The resulting waves 

simply advect along their respective characteristics (identified by the solid lines) at 

speeds .>tU> (j = 1, ... , 9). For this problem, the characteristics associated with each 

field are parallel since the .>tU> are constant. The waves include a gas entropy wave 

[.>t(l>J, gas acoustic waves [.>t<2> and .>t<3>], a solid entropy wave [.>t<4>], and solid acoustic 

waves [.\<5> and .x<6>]. Also, disturbances in the volume fraction [.>t<7>J, the particle 

number density [.>t<8>], and the ignition variable [.>t<9>] advect with the solid entropy 

wave; consequently, these four waves may be treated as a single compound wave. 

As identified in this figure, the waves separate seven regions of uniform state. The 

solution q(~, r) in each of these regions is constant, and is easily constructed by 

extrapolating the characteristics passing through the point ( ~, r) backwards in time 

tor= 0. 

We illustrate this idea for a point located in region (4) in Fig. 4.5; for clarity, only 

a few of the characteristics are extrapolated tor= 0 {identified by the dashed lines). 
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If the jth characteristic through the point ( {, r) intersects the line r = 0 at { > 0, 

then P; in Eq. (4.19) equals v;R; otherwise, P; equals v;L · For the point located in 

region (4}, Eq. (4.19} gives 

q({, r) = v1Rr(l) + v2Lr<2> + V3Rr<3> + v4Lr<•> + VsLr{s) 

+ V6Rr<6> + V7£r<7> + Vs£r<8> + v9Lr<9>. 

- ::---

(4.20} 

It is useful to consider the jump in the dependent vector q across each of the 

waves identified in Fig. 4.5. Writing out the solution given by Eq. ( 4.19) in each of 

the constant regions identified in Fig. 4.5, and using the definitions for the eig~nvector 

expansion coefficients p;, given by Eq. (4.18}, it can be shown that the jump in q 

across the jth wave is given by 

(4.21) 

where q- and q+ are the states immediately to the left and right of the wave, re­

spectively. The jump in q across the entire wave system equals the sum of the jumps 

across each wave: 
9 

ClR- QL = ~[q]; 
j=l 

9 

= ~ (v;R - V;L) r(j) . 
i=l 

It is convenient to express the solution q({, r) in terms of these jumps: 

q({, r) = QL + ~ (v;R- V;L) r(j) 
>..Uk{fr 

= QR- L: (v;R- V;L) rU>. 
>..U>?.{/-r 

- -

(4.22) 

(4.23) 

Furthermore, since A is constant for this problem, then f = A.q, and the jump in f 

across the jth wave is given by 

[f]; = ( r+ - r-); = .A [q]; 

= (v;R - v;L) Ar(j) 

= (v;R- VjL) ).U)r(j). 
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From Eq. (4.21) and the last expression of Eq. (4.24), it is seen that [f]; = AU> [q];; 

thus, the Ra.nkine-Hugoniot relations are identically satisfied across each wave. Fur­

thermore, the compound wave propagating at speed Acw = v2 poses no special diffi­

culty since the Rankine-Hugoniot relations are identically satisfied across this --wave: 

[f]cw = (v4R- v.u.) .x<4>r<4> + (v7R- vn) .x<7>r<7> 

+ (vsR- "sL) _x(S)r(s) + (vgR- 119L) .x<9>r<9> 

= Acw [(v4R- 114L) r<4
> + (117R- vn) r<7

> + (vsR- llsL) r(s) + (v9R- vgL) r<9>] 

( 4.25) 

The jump in f across the entire wave system equals the sum of the jumps acro~s each 

wave: 
9 

fR - fL = L: [f); 
j=l 

9 

= L (v;R- v;L) AU>rU>. 
j=l 

From these relations, the following solution for f(~, r) is obtained: 

f(~, r) = fL + L: (v;R- lljL) _x(;)r(;) 
'Au><{/-r 

= fR- L: (v;R- II;L) .xU>rU>. 
)l.u)~{/-r 

(4.26) 

(4.27) 

Following Roe and Pike [103] and Glaister [37, 38], the eigenvector coefficients 

v;L and v;R (j = 1, ... , 9) are not directly computed using the definitions given in 

Eq. (4.16). Rather, the differences v;R -v;L are approximated by the coefficients aU> 

(j = 1, .. . , 9) which are determined such that each component of the vector equation 

9 
ci(q) = L aU>rU>, (4.28) 

i=l 

is satisfied to within O[ci(q;)2] ,...., O(e2), and that each component of the vector equa-

tion 
9 

ci(f) = L aU> _xU>rU>, (4.29) 
j=l 
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is satisfied to within 0[6(1;)2} "'-~ O(e2), where the difference operator is defined by 

6(•) = (•)R- (•)L· In the limit as QL-+ QR, Eqs. (4.22) and (4.26) reduce to Eqs. 

(4.28) and (4.29), respectively. Expressions for aU> (j = 1, ... , 9), which are derived 

in Appendix G, are given by the following: 

a<t> = 6 (fJltPt)- ~6 (PttPt)- p~1 6(t/Jt), 

aC2) = 2:._6 ( p1 t/Jt) + Pt tPt 6 ( 111) + ( 112 - 11t ) Pt17t 6 ( tPt), 
2q 2Ct 112- (111 + Ct) 2q 

a(a) = 2:._6 (PttPt) _ PttPt 6(vt) + ( 112- Vt ) Pt17t 6(t/Jt), 
2q 2Ct 112- (Vt- Ct) 2q 

1 
a<4> = 6 (P2tP2) - ~6 (P2tP2), 

(5) 1 ( P2tP2 a = 2~6 P2t~J2) + 2C2 6(v2), 

a<6
> = 2~6 (P2t/J2)- ~:2 6(v2), 

Q{7) = P2tP26(tfJ2), 

a<s) = 6(n) - />2:2~6 (P24>2), 

a<9> = P2t/J26(J) +I 6 (P2tP2) - ~ 6 (P2t/J2) · 

- -:-· 

(4.30) 

(4.31) 

(4.32) 

(4.33) 

(4.34} 

(4.35) 

(4.36) 

(4.37) 

(4.38) 

Here, it is again noted that these expressions are to be evaluated at the constant 

reference state q*. The expressions for a<2> [Eq. (4.31)] and a<3> (Eq. (4.32)] are 

singular when 112 = v1 + c1 and 112 = 111 - c1, respectively; also, the expression for 

a<8> (Eq. (4.37)] is singular when tP2 = 0. These points correspond to the sonic and 

complete combustion singularities discussed in Chapter 3. At these points, the model 

equations become parabolic, and the eigenvector expansions given by Eqs. {4.28) and 

(4.29) (also, Eqs. (4.22) and (4.26)] are no longer valid. The methodology used to 

suppress numerical instabilities at these points is discussed at the end of this section. 

Before proceeding to develop an approximate solution of the nonlinear two-phase 

Riemann problem for arbitrary QL and QR, the solution of the linear problem is 

re-expressed in a form which better facilitates the derivation of the approximate 
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solution. To this end, the solution of the linear problem is re-expressed in terms of 

the quantities <{J., v., e~, 4>2, t12, ~' n, I, and the new quantities (Pl¢>I), (P14>1), (P24>2), 

(P2</J2). These latter quantities are the partial density and partial pressure of the gas 

and solid, respectively. Also, the derivatives Fi,., •• = 8~~·) I , Fi., = ::~~-- ' 
Pa 1 "'' .~ 'l's (p'"'' ),e; 

and Fie. = ~Fi (i = 1, 2) are introduced, where the F, denote the functional 
' ~ (p;~·>·"'' 

relationships P,tf>, = F,(p14>1, </Ji, e1) obtained from the gas and solid state relations. 

The solution of the linear Riemann problem expressed in terms of these quantities is 

summarized in Appendix E. 

An approximate solution of the nonlinear two-phase Riemann problem for arbi­

trary ClL and <lR will now be formulated. Following Roe [100] and Glaister [37], it is 

desirable to construct the approximate solution such that the following criteria are 

satisfied. 

1. The approximate solution reduces to the exact solution of the linear Riemann 

problem as <lR ~ ClL ~ q. 

2. The approximate solution is derived from a hyperbolic system of equations. 

3. The Rankine-Hugoniot relations are satisfied across all discontinuities. 

In essence, these criteria stipulate that the approximate solution be consistent with 

the solution of the original system of hyperbolic equations. 

The solution of the linear Riemann problem satisfies the above criteria. As such, 

it is plausible to use this solution as a basis for constructing the approximate solution. 

To this end, we require that the approximate solution have the same functional form 

as the solution of the linear Riemann problem summarized in Appendix E, evaluated 

at an average state q which is different from the reference state q*. The problem 

then reduces to one of properly defining q as a function of the arbitrary initial data 

ClL and <IR· In particular, we seek to define q in terms of the average quantities p14>h 

VI, e~, fib Pl,.l#l' Fl#l' Flc1' p:;j2, 4>2, V2, f2, fi2, F2,.2#2' F2•2 ' F 2,.2! ii, and l, which 
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are functions of QL and QR, such that the following algebraic equations are identically 

satisfied [average quantities are denoted by (;) throughout this analysis]: 

where 

9 

~(q) = L &U>rU>, 
;=1 

9 
~(f) = :E &(j)). (j)f(j), 

;=1 

-(1) [ - - -2 - ]T r = 1, v11 H1- ctfrll 0, o, o, o, 0, o , 

f(2> = [1, i:it + c11 fl.+ i:itc11 o, o, o, o, o, o]T, 

r(s> = [1, v1- c., fl.- iitcb o, o, o, o, o, o]T, 
-(4) [ - - :;;2 - - ]T r = 0, 0, 0, 1, V2, H2- VJ./r2, ~' 0, 0 ' 

r(s> = [o, o, o, 1, v2 + c2, fl2 + ii2~, ~2, n/ P2</J2, ~T, 

f(6
) = [o, 0, 0, 1, ii2 - cz, fl2- iizc2, ~' fi/ P2¢z, ~T, 

-(7) - [- P... - P •• l V2 
r - ~2 ((v2- iit)2 - Cj)' ~ ((v2- iit)2 - Cf), 

P •• l (fl.+ v1v2- v?) P2• 2 ]T 
- , 0, 0, - .......... - , 1, 0, 0 , 

P2<P2 ((v2- v.)2- Cf) P2~r2 

r(8> = [o, o, o, o, o, o, o, 1, of, 

r(9
) = [0, 0, 0, 0, 0, 0, 0, 0, 1f' 

&(I) = A (p,q,,)- ~A (P,,P,) + F~, A(,P,), 

-(2) 1 ~(R.I. ) Pti>t ~( ) ( ~ - Vt ) P •• l ~(.1. ) a = 2~ l"t'l + -2_ Vt - _ (- +- ) 2~ "t'l , 
Ci Ct V2 - Vt Ct Cj 

&(3) = _!_~ (Pt<Pt) _ P~t ~(vt) _ ( _ Vz =- iit _ ) F1•1 ~(<Pt), 
2ct 2Ct V2 - ( Vt - Ct) 2C! 

&(4
) = ~ (P2¢z)- ~~ (Pz~), 

- (5) _ ..!_ A ( ) /)2~ A( ) a - 2~ u. Pz¢2 + 2c2 
u. v2 , 
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(4.39) 

(4.40) 

(4.41) 

( 4.42) 

(4.43) 

(4.44) 

(4.45) 

(4.46) 

(4.47) 

(4.48) 

(4.49) 

(4.50) 

(4.51) 

(4.52) 

(4.53) 

(4.54) 

(4.55) 



a<6> = 2~A (P2tP2)- ~:: A(v2), 

&<7> = ;;:;i>2A(<P2), 

a<8l = A(n)- ~~A (P2<!>2), 
P2tP2 

a<9
> = ~A(/) + j A(P24>2) - ~ A(P2</>2), 

and Cf, ~~ P1</>~t P2tP2, f\, and i\ are given by 

- - (- v~) P2tP2 = 1>2</>2 H2 - e2 - "2 , 

- 1 -r2 = -=-F2e2· 
P2<1>2 

-~· 

(4.56) 

(4.57) 

(4.58) 

(4.59) 

(4.60) 

(4.61) 

(4.62) 

Here, the difference operator is defined by A(•) = (•)R- (•)L, where the difference 

QR- QL is not necessarily small [as opposed to the difference operator 6(•) defined 

for the linear Riemann problem]. If suitable averages can be defined, then the ap­

proximate solutions q(e, -r) and r(e, -r) are given by 

q(e, r) = ClL + L: &(j)r(;) 

5..UkU-r 

= QR - I: a(i>rU>, 
).U>?:.U-r 

f(e, r) = fL + L a(j) ,X(i)r(j) 
J..Uk{f-r 

= rR - L: &(j) X U>r(i). 
j.U)?;.f_/-r 

(4.63) 

(4.64) 

Equations (4.39) and (4.40), and Eqs. (4.63) and (4.64) are analogous to Eqs. (4.28) 

and (4.29), and Eqs. (4.23) and (4.27), respectively. 

In order to define the desired average quantities, it is necessary to solve the non­

linear algebraic problem given by Eqs. (4.39) and (4.40). Though the solution of 

this problem is nontrivial, closed form expressions can be obtained for the average 
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quantities. The derivation of these quantities is given in Appendix F; the results are 

summarized below (where i = 1, 2): 

PJ, = V PaLrPiLPaR<I>aR, --. 
- _ J PaL(/)iLVaL + J PaR?JiRviR 
v, = J PiL(/)iL + J PaR?JaR. ' 

- _ J PaL(/)&LetL + J PaR?JiR.etR. 
e, = J PiL(/)iL + J Pm?Jax ' 

j{. = V PiL?JiLHiL + V PsR?JiRHiR 
' - J PiL(j)iL + J PiR?JiR ' 

~ = V f>2L(/)2L<f>2L + V f>2R(/)2R<f>2R 
- V P2L¢2L + V P2R(/)2R 

1 

- V P2LrP2Ln2R + V P2R<f>2R~L 
n = V P2L(/)2L + V P2R(/)2R 1 

j = V P2L4J2L[2L + V P2R(/)2Rl2R 
- V P2L(/)2L + V P2R¢2R 

1 

(~ [FHPmrPiR, rPiR., e1R.) + F;(PiRrPiR, r/>m, e,L) + Fi(PaRrPiR, rPiL, eiL) 
1 

(4.65) 

(4.66) 

(4.67) 

(4.68) 

(4.69) 

(4.70) 

(4.71) 

+fi(PiR<f>iR,<f>iL, eax)) - 4 (fi(PiL<f>iL, rPiRt eaR) + fi(PiL<f>iL, <f>iL, em) 

+Fa(P&LrP&L, 4>ax, e,L) + Fi(PaLrPiL' rPiL, e,L)] ) / l::.(p,¢>,) if Ll(PirPa) =I= 0, 
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(~ [li(PiRtPiR, tPiR, elR) + Fi(PiLtPiL, tPiL, ~R) + Fa(PiRtPiR, tPiL, eiR) 
1 

+FHPiLtPiL, tPiR, eiR)] - 4 [Fi(PiRtPiR, tPiL, eiL) + Fi(PiRtPiR, tPiR, eiL) 

+Fi(PiLtPiL, tPiR, eiL) + Fi(PiLtPiL, tPiL, fiL)]) /A( e.) if A(e.) =/= 0, 

The averages defined by Eqs. ( 4.65-4.71) are similar in form to the "square root" 

averages defined in References [37, 100]. Though the average derivatives defined 

by Eqs. (4.72-4.74} appear complicated, it is shown in Appendix F that they can be 

substantially reduced when the functional form of the equations of state are specified, 

and that the reduced expressions are physically reasonable. Though not applicable 

to this study, the expressions for the average derivatives may be difficult and/or 

computationally expensive to evaluate for thermodynamic data given in tabular form. 

Furthermore, the average derivatives require function evaluations for artificial states 

constructed from the initial data qr, and qR, and it is possible that these states lie 

outside the range of validity of the thermodynamic data. Glaister (39) has recently 

addressed similar weaknesses for his approximate Riemann solution, and has modified 

his solution to overcome these shortcomings. Though not implemented for this study, 

it is possible that similar modifications can be made for the approximate solution 

outlined here. 

It is easy to verify that the three criteria stated above are satisfied by the approx­

imate solution. First, the averages defined by Eqs. (4.65-4.74) satisfy the property 

that q -+ q as qr, -+ QR -+ q; consequently, the approximate solution properly re­

duces to the exact solution of the linear Riemann problem in this limit. Second, since 

the approximate solution was constructed to have the same mathematical structure 

as the exact solution of the linear Riemann problem, the approximate solution can 
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be considered to be associated with an equivalent linear, constant coefficient system 

of hyperbolic equations (provided that v2 =/; fh ± c1 and ~ =F 0). As such, the 

approximate solution has the same physical interpretation as the solution of the lin­

ear Riemann problem, and consists of (at most) nine discontinuous waves sep~ar~ting 

seven regions of constant state. Third, the jumps in q and f across the jth wave are 

given by 

[q]j = aU>rU>, 

[f]j = aU>>. U>ru>. 

(4.75) 

(4.76) 

Thus, the Rankine-Hugoniot relations are satisfied across the discontinuities since 

A consequence of this property is that, in the event that QL and QR can be connected 

by a single shock or contact discontinuity, then the approximate solution agrees with 

the exact solution of the nonlinear Riemann problem [37, 103]. Lastly, we note that for 

~(¢1 ) = 0 [or ~(¢2) = 0], the governing equations for the gas and solid, given by Eq. 

(3.7), decouple. Similarly, the approximate Riemann solution given here decouples 

for the gas and solid, and the resulting approximate solution for each phase reduces 

to the approximate solution given by Glaister [37] for a single phase non-ideal system. 

The implementation of the approximate Riemann solution within the framework of 

Godunov's methodology is now described. First, the states QL = QZ and QR = Q~+l 
are defined to the left and right of the computational cell boundary located at {k+l/2 ; 

this step is the projection step of Godunov's methodology. The solution is then allowed 

to evolve over a small time increment ~r, and the numerical flux Fk+l/2 is computed 

from the approximate Riemann solution; this step is the evolution step of Godunov's 
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methodology. The numerical fiux is given by Eq. (4.64) evaluated ate= 0: 

Fk+l/2 = f(Qk) + f ~ &<i) ;\U>rU>] 
~U><O k+l/2 

= r(Qk+l)- f L: &(i):\U>r(i)] . 
l>.u>~o k+l/2 

(4.77) 

These two expressions can be averaged to obtain a third expression for Fk+l/2: 

F f(Q:) + f(Q:+l) 1 ~~ -(j)l\(i)l-(j)] 
k+l/2 = 2 - 2 !-a "' r . 

=1 k+l/2 

(4.78) 

The time increment Ar is chosen such that waves associated with neighboring rue­
mann problems do not interact. This restriction leads in a natural way to the Courant-

Friedrichs-Lewy (CFL) condition 

1

:\(i)Arl max < Kj 
j Ae k+l/2-

j = 1, ... '9; k = 1, 2, .... (:4.79) 

Here, the constant K, commonly termed the CFL number, lies in the range 0 ~ 

K ~ 0.5. The value K = 0.4 was used for all computations performed in this study. 

Once the numerical fiux is computed at each cell boundary, the solution at time 

r"+l = r" + Ar is obtained from Eq. (4.3); this step is the reconstruction step of 

Godunov's methodology. The process is then repeated to further advance the solution 

in time. 

The approximate solution has two deficiencies which must be addressed. First, 

since all waves are approximated by discontinuities, rarefaction waves, which have 

a continuous structure, are not accurately represented. This deficiency poses no 

difficulty except for the case when a gas or solid sonic point exists within a gas or 

solid rarefaction wave, respectively. Second, the approximate solution is not uniformly 

valid since the eigenvector expansions given by Eqs. (4.39) and (4.40) break down near 

the singularities v2 = ih ± c1 and 4>2 = 0. Numerical experiments have shown this 

deficiency to result in severe numerical instabilities near these points. 
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Figure 4.6: Illustration of a (a} "sonic" rarefaction and a (b) "normal" rarefaction 
occurring in the gas acoustic field associated with backward propagating waves. 

Both a "sonic" rarefaction and a ''normal" rarefaction in the backward propagat­

ing gas acoustic field are illustrated in Fig. 4.6. Similar rarefactions may also exist 

in the forward propagating gas acoustic field, and in the solid acoustic fields. Here, a 

normal rarefaction refers to any rarefaction that is not a sonic rarefaction. The gas 

rarefaction shocks associated with the approximate Riemann solution are indicated by 

bold lines in this figure. These waves propagate at speed .X (a) = ih - c1• The predicted 

constant states immediately to the left and right of the rarefaction shocks are denoted 

as q- and q+, respectively (quantities associated with each of these states are labeled 

with superscript "-" and "+"). The rarefaction shocks approximate the continuous 

rarefaction structures denoted by the shaded regions in this figure. As such, q- and 

q+ are approximations for the constant states to the left and right of the continuous 

structures. As seen in Fig. 4.6 (a), a sonic rarefaction occurs if v} - c} < 0 < vt - ct; 

consequently, the sonic condition v1 = c1 is locally satisfied along the characteristic 

ray ~ = 0. For this case, the flux through the computational cell boundary located 
1" 

at { = 0 is not accurately predicted by the approximate Riemann solution. The flux 

predicted by the approximate solution is associated with the state q- immediately 
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to the left of the rarefaction shock, whereas the correct flux is associated with the 

constant state along the characteristic ray S, = 0. This difficulty does not exist for 
T 

the case illustrated in Fig. 4.6(b) since both the predicted and correct flux at the cell 

boundary are associated with the state q+. As might be expected, entropy ~v~ol~ting 

rarefaction shocks are predicted by the numerical method when sonic rarefactions 

occur in the solution of the local Riemann problems. Although normal rarefactions 

are also approximated by rarefaction shocks, this approximation has no adverse effect 

on the global solution. 

Various techniques can be used to modify the numerical flux at computational cell 

boundaries where a sonic rarefaction is predicted [45, 101}. Here, we use the technique 

proposed by Harten and Hyman [45], which is discussed in detail by LeVeque [72]. To 

this end, the entropy criterion given by Eq. (3.69) is used to detect sonic rarefactions in 

both the gas and solid; i.e., if )..(i)- < 0 < )..(i)+. If a sonic rarefaction is detected in the 

pth characteristic field, then we replace the single jump &(p)r(p) propagating at speed 

,X(p) with two jumps propagating at speeds )..<P)- and )..(p)+. The jumps across these 

newly defined waves are constructed such that conservation is maintained across the 

entire wave system [i.e., such that Eqs. (4.39) and (4.40) are satisfied]. This idea can 

be conceptualized using Fig. 4.6(a). In this figure, the rarefaction shock propagating 

at speed X <3> is replaced by two waves propagating at speeds ).. <3>- and ).. <3>+. The 

shaded region between these two waves is associated with a new constant state which 

is defined in such a way that conservation is maintained. This new state provides 

a better estimate for the flux through the computational cell boundary located at 

~ = 0, thereby eliminating the prediction of entropy violating rarefaction shocks. 

The modified flux, denoted by superscript "t", is given by 

FL-,,2 = f( Q~) +2f( Q~+l) - ~ r t, aU> IX Ull •"' + 2 ( x(p)+ - x(p)-) &(p).(p)] ' 

~# ~~ 
(4.80) 
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where 

=(p)- - (p)- ( A(p)+- ,X(p) ) 
A - A A(p)+ _ A(p)- , 

•(p)+ - (p)+ ( ,X(p) - A(p)- ) 
A - A A(p)+ - A(p)- • 

Within the context of the approximate Riemann solution, the sonic singularities 
- -; ... 

v2 = ih ± c1 occur when the discontinuity in volume fraction, propagating at speed 

v2, impinges upon either a gas shock or rarefaction, propagating at speed vl + cl 
or iit - c1• For such cases, there may exist complicated wave interactions which are 

not predicted by the approximate solution. As shown by Keyfitz and Kranzer. [58] , 

these interactions may result in a series of additional waves being produced, With the 

solution of the Riemann problem consisting of multiple waves in a single characteristic 

field. For the approximate solution formulated in this chapter, it was implicitly 

assumed that a physically relevant unique solution exists which consists of at most 

nine waves, one associated with each characteristic field; as such, this assumption 

may be invalid near the sonic singularities. In order to properly address this issue, a 

more detailed analysis of the Riemann problem would be required. Here, we accept 

some uncertainty and choose to only suppress numerical instabilities which are known 

to occur near these singularities. Also, we note that if no jump in volume fraction 

exists [i.e., .6(¢2) =a(~) = 0], then the sonic singularities are inconsequential since 

the quantities &<2>r<2>, &(3)f(3), and &<7>r<7> remain well-defined. This result is easily 

seen from the definitions given in Eqs. (4.42-4.59). 

General modifications to the Godunov methodology which are needed to suppress 

numerical instabilities resulting from a loss of hyperbolicity are discussed by Bell et 

al. (12]. To avoid numerical difficulties near the singularities v2 = v1 ± clt we adopt 

a technique which is similar to that proposed in Reference (12]. In particular, we 

assume that a sonic singularity exists if the following criterion is satisfied: 

(4.81) 

where Ct: is a small positive constant. The value cf = 0.017 (ct: =50 m/s) was used 
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for all computations performed in this study. In such instances, we collapse the waves 

propagating at speed ii2 and ii1 + c1 or ii1 - c1 (whichever wave is involved) into a 

single wave propagating at speed XU>= (v2 + v1 ± c1) /2. The jump across this wave, 

aWi<*>, is then defined in terms of both the difference Q:+l-Q: and the jumps across 

the waves not associated with the sonic singularity. For example, if the singularity is 

associated with the gas wave propagating at speed X <3> = v1 - c1 , then the following 

quantities are defined: 

\ (t) = ii2 + v1 - c1 
A - 2 ' 

am = II~< q) - a<t>r<t> - a<2>r<2> - a<s>r<s> - a<6}f(6) II , 
fU> = ~( q) _ &(l)f(l) _ &(2)r(2) _ &(5)f(5) _ &(6}f(6) 

ll~q- a(l)f(l) - (i(2)r(2) - (i(5)f(5)- (i(6)f(6)11, 

where II • II is the Euclidean norm. Consequently, 

Qn Qn­k+l- k-
~ -(j}-(j) 
LJ a r 

(4.82) 

(4.83) 

by construction. The following modified numerical flux, denoted by superscript "t", 

is proposed: 

F* = f(Q:) + f(Q:+l) -! [ "' &(j)IX(j)lr(j)] 
k+l/2 2 2 . LJ . 

=1,2,5,6,t k+l/2 
(4.84) 

A similar result holds if the singularity is associated with the gas wave propagating 

at speed X<2> = iit + c1• Though the Rankine-Hugoniot relations are not identically 

satisfied by this newly defined wave (i.e., (fh f. X<t>(qh), they are nearly satisfied; 

this has been numerically verified. Comparisons of numerical predictions with exact 

steady solutions for two-phase detonation structures possessing these sonic singular­

ities indicate that this error is inconsequential. 

In order to suppress numerical instabilities near ¢>2 = 0, it is necessary to constrain 

¢2 to be greater than a constant minimum value ¢2(. The value ¢2( = 1 x 10-5 was 

used for all computations performed in this study. As discussed in Section 4.3, this 

is achieved by terminating combustion for ¢2 :5 ¢2(· 

84 



4.1.3 Higher-Order Spatial and Temporal Accuracy 

The upwind numerical method outlined in the previous subsection has only nom­

inal first-order spatial accuracy, and has first-order temporal accuracy. First-order 

spatial accuracy is characteristic of all Godunov-based methods for which- ihe ini­

tial state within each computational cell is assumed constant in the projection step. 

In this subsection, the approaches \lsed to increase both the spatial and temporal 

accuracy of the method are given. 

Two techniques are commonly used to extend the spatial accuracy of G~dunov­

based numerical methods (51]: variable extrapolation and flux extrapolation. Both of 

these techniques extrapolate information from cells neighboring each grid point in 

the computational domain in order to locally define a higher-order numerical flux at 

each cell boundary. The variable extrapolation technique achieves increased accuracy 

by directly relaxing the constant state assumption used in the projection step of 

Godunov's methodology. This technique allows for a linear or parabolic variation in 

the initial state within each computational cell, subject to the constraint that the 

average value of the initial state satisfies Eq. (4.8). A comprehensive description of 

the variable extrapolation technique is given in Reference [51]. The flux extrapolation 

technique, which is used in this study, is described below. 

The basic premise of the flux extrapolation technique is to define a higher-order 

numerical flux by extrapolating the exact fluxes fk = f(Q:), evaluated at the cell 

center locations ek, to the cell boundaries. To this end, we decompose fk into the 

following: 

(4.85) 

where rY> and f~b) are fluxes associated with forward and backward propagating 

waves, respectively. As shown in Fig. 4.7, the fluxes r!l) are then extrapolated forward 

using first-order upwind differencing to estimate f{l) at the cell boundary located at 



- .. 

Figure 4.7: Illustration of the flux extrapolation technique used to define the_ second­
order numerical flux. 

r,(/) - f(/) + ! {f(/) - rlf) ) 
l:+l/2 - l: 2 l: l:-1 • (4.86) 

Similarly, the fluxes f(b) are extrapolated backwards using first-order upwind differ­

encing to estimate f(b) at the cell boundary located at {A:+l/2: 

..lb) - (b) 1 (..lb} (b) ) 
lk+l/2- fl:+l- 2 lk+2- fl:+l . (4.87) 

The higher-order numerical flux, denoted by superscript "(2)", is defined as 

Fi~l/2 = f~~l/2 + f~~I/2 
_ e,U> rl~>> + ! [(rln c<l> ) (r,<b> f!.b> )] - l: - k+l 2 k - k-1 - k+2 - k+l • 

(4.88) 

The use of this flux in Eq. (4.3) results in a spatially second-order accurate method. 

Higher-order spatial accuracy (> 2) can be obtained through the use of high-order 

upwind differencing in the extrapolation steps. 

It now remains to express the second-order flux in terms of the information pro­

vided by the approximate Riemann solution. To this end, the following contributions 

from forward and backward propagating waves to the flux difference fR- fL given by 

Eq. (4.40) are defined: 

r,U> - cu> -l~ &(i)jU>r(i)] - ~ dru+> k+l k - LJ - LJ l:+l/2' 
~ Uko k+I/2 j=l 

(4.89) 
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where 

and 

..tb) "'(b) -l~ ;,U)\U)r-U>] - ~d..t;-) lk+l- •~e - L..J '-4 .1\ - L..J lk+l/2' 
·u>>o k+l/2 i=1 

•• H±) - -U)-U±)-U) dtt+112 - a .\ r , 

(4.90) 

(4.92) 

Using these definitions, the second expression in Eq. (4.88) can be re-expressed as the 

following after performing some simple algebra: 

(2) (L) 1 ~ ( ..t'H) ..l;-) ) 
F k+t/2 = F k+t/2 + 2 L..J dtk-1/2 - dtk+3/2 , 

j=l 

(4.93) 

where Fi~112 denotes the lower·order numerical flux defined in Eqs. (4.77) and (4.78). 

Thus, the second-order flux can be interpreted as the sum of a lower-order flux and a 

corrective flux, the latter given by the summation terms in Eq. (4.93). The corrective 

flux is often termed the anti-diffusive flux since it counteracts the numerical diffusion 

inherent in the lower-order flux to give a spatially second-order accurate method. 

Though Eq. ( 4.93) is a fully upwind numerical flux, additional modification of this 

flux is needed to suppress the generation of spurious oscillations near discontinuities; 

such oscillations are characteristic of higher-order numerical methods. This modifi­

cation requires that the corrective flux terms in Eq. (4.93) be limited in a nonlinear 

manner based on some measure of the local variation in the predicted solution. The 

variation in the flux differences dfU±) at neighboring cell boundaries provide such a 

measure. The corrective flux is limited such that 1) sufficient numerical diffusion ex­

ists in the numerical flux to prevent the generation of spurious oscillations in regions 

where the solution is rapidly changing (i.e., near discontinuities), and 2) no numer­

ical diffusion exists in the numerical flux in regions of continuous flow resulting in 

spatially second-order accurate predictions. This idea forms the basis of second-order 

accurate total variation diminishing (TVD) numerical methods (26, 51, 72, 113]. 
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Total variation diminishing numerical methods are designed to mimic the TVD 

property of scalar conservation laws [46, 51, 113). Here, the total variation TV in the 

solution q({, r) of the scalar conservation law ~ + a~~u) = 0 is defined as 

TV(q(~,T))) = !l8q~t)lde· 
-~ .. 

{4.94) 

An important property of this scalar conservation law is that the total variation in 

the solution of the initial-value problem is bounded in time by the initial data q( e, 0)' 

i.e. 

TV (q({, r}) ~TV (q({, 0)), . (4.95) 

for all T > 0. The discrete forms of Eqs. (4.94) and (4.95) are 

TV(Qn) =I,: IQk- Qk-11, 
k 

(4.96) 

(4.97) 

where Qn and Qn+1 are numerical approximations of the scalar qat times Tn and rn+I, 

respectively. Thus, it is easy to conceptualize that oscillations near discontinuities 

for this scalar conservation law locally violate the discrete form of the TVD princi­

ple (Eq. (4.97)]. If the numerical method for predicting Qn+l is TVD, then no new 

extrema are generated, and the value of local maxima (minima) are non-increasing 

(non-decreasing). Though the TVD property only formally holds for scalar conser­

vation laws and one--dimensional systems of linear hyperbolic equations, in practice 

this concept has been successfully used to develop high-resolution TVD numerical 

methods for coupled nonlinear systems of conservation laws. 

Using the methodology of Chakravarthy and Osher [26] for obtaining second-order 

TVD methods, the corrective flux terms in Eq. ( 4.93) are modified as follows: 

(H) (L) 1 ~ ( "(j+) ~(j-) ) 
F t+l/2 = F k+l/2 + 2 ~ dft-112- dfk+3/2 ' 

j=1 

(4.98) 

where 

d{Ci+) = L { [~U+>aU>) [~U+>aU>] } r(j) 
k-1/2 k-1/2 ' k+1/2 k+l/2' (4.99) 
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(4.100) 

Here, the operator L{x, y} is a nonlinear flux limiter which limits the amount of 

numerical diffusion in Fi!~12 based on the approximate Riemann solution at cell - ._ .. _ 

boundaries located immediately to the left (eA:-l/2) and right (eA:+312) of the boundary 

located at et+l/2 • The flux limiter used in this study is referred to as Van Leer's limiter 

[113, 119] which is given by 

L { } 
_ xy + lxvl 

x,y - . 
x+y 

(4.101) 

Other limiters exist (51] which could be used in place of Van Leer's limiter; such 

limiters include that of Van Albada (118], that of Roe [102], and that of Sweby [113]. 

Which limiter is used is, to a certain extent, a matter of personal preference since they 

all reasonably capture discontinuities without the generation of spurious oscillations 

(though certain limiters may be more computationally expensive to use due to logical 

evaluations in the computer algorithm). Van Leer's limiter was chosen for this study 

based on numerical simulations which have shown that it can accurately capture 

discontinuities in both the gas and solid. 

The use of the flux given by Eq. (4.98) in Eq. (4.3) results in an explicit TVD nu­

merical method which has nominally second-order spatial accuracy in smooth regions 

of the flow, first order spatial accuracy near discontinuities, and first order temporal 

accuracy. Though the non-TVD second-order flux given by Eq. {4.93) results in an 

unconditionally unstable method, the TVD flux given by Eq. ( 4.98) results in a condi­

tionally stable method provided that an additional constraint on the time step Ar is 

satisfied (i.e. , in addition to the CFL condition) [26]. Thus, it is desirable to increase 

the temporal accuracy of the method in order to obtain better stability properties 

and to eliminate the need to satisfy an additional time step constraint. To this end, 

the following two-step Runge-Kutta predictor/corrector algorithm is used to advance 
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the solution from r" to r"+l = -r" + !::ir [50]: 

Qk = Qk- ::{ [Fi!~/2(Q")- F1~~/2(Q")), 
Qn+l Q" 6.-r [F(H) (Q-) F(H) (Q-)] 

k = k - .ll~ k+l/2 - k-1/2 . 

(4.102) 

--

Here, the first step is the predictor step whereby the solution is allowed to evolve over 

the time interval ~T, and the second step is the corrector step in which the updated 

solution is computed using the numerical flux of Eq. (4.98) evaluated in terms of the 

intermediate solution Q. Both the predictor and corrector steps are expressed in the 

conservative form of Eq. ( 4.3); as such, conservation is maintained. The resulting 

method is second-order accurate in time. 

4.2 Numerical Solution of the Full Two-Phase Equations 

In this section, the numerical solution of the full two-phase model equations (Eq. 

(3.7)} is considered. In addition to being able to accurately predict the effects of gas 

and solid convection, it is necessary that the numerical method accurately predict 

the effects of phase interaction processes, and the influence of these processes on 

convection. 

The numerical approach used in this study to solve the full model equations is 

based on the following time-step splitting procedure [112, 128]: 

Here, Q" and Q"+1 are the numerical solution at times r" and r"+l, respectively, 

cttrf2 is the convective numerical operator, and ct;r is the source numerical opera­

tor. The convective operator solves the convection problem using the high-resolution 

TVD method formulated in the previous section, and the source operator, which is 

described below, solves the phase interaction terms using a high-order time accurate 

stiff ordinary differential equation solver. During the convection steps, the phase 

interaction processes are suppressed [i.e., g(q) = 0 in Eq. (3.7)]; likewise, gas and 
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solid convection are suppressed during the source step (i.e., ~~q) = 0 in Eq. (3.7)]. 

The splitting procedure requires that the convection step be performed over one-half 

of the time step fir, and that the source step be performed over the full time step, 

where fir is chosen based upon the CFL condition given by Eq. (4.79). However, 

in practice the integration time increment used in the time-step splitting procedure 

is increased to 2Ar for better computational efficiency. This results in the modified 

procedure 

Q n+2 = l,~"'t,2~-rc~"'Qn 
k C II C k • (4.103) 

Provided that the ordinary differential equation solver is at least second-order accu­

rate in time, the splitting procedure given by Eq. (4.103) results in a approximation 

which is nominally second order accurate in both space and time. 

To account for phase interaction processes, the following system of ordinary dif­

ferential equations, obtained by setting : = 0 in Eq. {3.7), must be solved over the 

time interval 2fir at each computational grid point: 
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The definitions for Cm, Ca, Ce, and C1 appearing in these equations are given in Eq. 

(3.5). Also, since the motion of the piston is a prescribed function of time, the piston 

acceleration terms in these equations are treated as time dependent forcing terms. 

Equations (4.104-4.112) can be reduced to a non-autonomous system of five ordi­

nary differential equations having the form 

dy, ( ) 
dr = h, y,,.,.' {4.113) 

where y, = [P2, 4>2 ;v2, e2, IjT, and h, is a nonlinear vector function of y,; the ex­

plicit dependence of h, on .,. is due to the piston acceleration terms. To this end, 

the gas quantities p1, q,., v., and e1 are first expressed in terms of fJ2, f/>2, v2, and 

e2. Multiplying Eq. (4.104) by 1r5 , and adding the resulting expression to Eq. {4.107) 

gives a homogeneous ordinary differential equation for the mixture mass. This equa­

tion is directly integrated, and the initial condition applied, to obtain the algebraic 

expression 

{4.114) 

where 

nn+l [ A. A. ]n+l ~ 'k = ?rsPl "f'l + P2"f'2 k 

is the constant of integration obtained using the data Qk+l provided by the preceding 

convection step in Eq. ( 4.103). Here, the notation subscript "k" is used to indicate 

that this constant depends upon the grid cell location e~~:. 

Next, Eq. ( 4.105) is multiplied by 1r5 , and the resulting expression is added to Eq. 

(4.108) to obtain 

(4.115) 

Thus, the momentum of the mixture within each computational cell, measured rel­

ative to the piston-attached reference frame, changes due to piston acceleration. If 

the piston velocity is constant, then the mixture momentum is unchanged. Since 
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the coefficient of the piston acceleration term is constant, as seen from Eq. (4.114), 

this equation can be directly integrated, and the initial condition applied, to give the 

algebraic relation 

- -(4.116) 

where 

In this relation, the initial condition on the piston velocity vp(rn) is evaluated at the 

old time since it is held fixed during the convection step. 

Lastly, Eq. (4.106) is multiplied by 1r5, and the resulting expression is added to 

Eq. ( 4.109) to obtain 

d [ ( v~) ( v~) l ( ) dvp dr 1rsPt <Pt e1 + 2 + P2¢2 e2 + 2 = - 'TrsP1 <P1 v1 + P2<P2v2 dr . (4.117) 

Using the expression given by Eq. (4.116), this equation can be directly integrated to 

give the algebraic relation 

1rsPt<Pl (el + 1) + P2<P2 (e2 + v;) = Tj!+l- w;:+l (vp(r)- Vp(rn)) 

nn+l (vp(r) - Vp(7n))2 
+ k 2 ' 

where 

y~+l = ["·P·~~· (·· + 1) +~¢> (·>+ ~)r 

(4.118) 

The algebraic relations given by Eqs. (4.114), (4.116), (4.118), and the saturation 

condition <Pt = 1 - ¢2 are sufficient to express the gas variables as algebraic functions 

of the desired solid variables. Using the relation </J1 = 1 - <jJ2, p1 can be directly 

computed from Eq. (4.114). With both <Pt and Pt known, an expression for v1 can 

be obtained from Eq. (4.116). With 4>1, p11 and v1 known, an expression for e1 can 

be obtained from Eq. (4.118). Also, the homogeneous ordinary differential equation 

given by Eq. (4.111) can be directly integrated to give 

n - nn+l. 
- k ' 
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thus, the particle number density is constant during the source step. 

Equations (4.107-4.110) and (4.112) must now be expressed in the desired vector 

form. Multiplying Eq. (4.107) by 4>2, subtracting the result from Eq. (4.110), and 

simplifying gives 

(4.120) 

Multiplying Eq. (4.120) by fJ2, subtracting the result from Eq. (4.107), and simplifying 

gives 
d/)2 
dr = -1r7P24>1 (P2 - 1rsP1 - f). (4.121) 

Next, Eq. (4.107) is multiplied by v2, and the resulting expression is subtracted from 

Eq. (4.108) to get 

(4.122) 

2 

Likewise, Eq. (4.107) is multiplied by e2 + v;, Eq. (4.122) is multiplied by P24>2v2 , 

and both of the resulting expressions are subtracted from Eq. (4.109) to get 

de2 Ce 
-=-'Irs--. 
dr P24>2 

(4.123) 

Equations (4.120-4.123) show that combustion locally changes the solid volume frac­

tion, compaction changes both the solid volume fraction and the solid density, drag 

changes the solid velocity, and heat transfer changes the solid internal energy. Obvi­

ously, the gas quantities also change due to these processes. 

Lastly, we multiply Eq. (4.107) by I, subtract the result from Eq. (4.112), and 

simplify to get 
dl 
-=Cr. 
dr 

(4.124) 

Equation (4.113) is in a suitable form to be numerically solved using standard or-

dinary differential equation solvers. For this study, an implicit stiff solver contained in 

the software package LSODE (Livermore Solver for Ordinary Differential Equations) 

(49] was used to numerically integrate these equations. The solver uses a method 
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Figure 4.8: Illustration of the computational grid used in piston-initiated DDT sim­
ulations. 

based on backward differentiation formulce, and internally generates a full Jacobian 

matrix (i.e., ::) using finite differencing. The solver achieves high-order ti~e accu­

rate approximations by adapting the integration time step such that the truncation 

error of the scheme meets a user specified tolerance. For the computations performed 

in this study, an absolute tolerance of 1.0 x 10-9 was used for each component of y 3 • 

4.3 Initial and Boundary Conditions for the Piston Problem 

In this section, the initial and boundary conditions used for the piston problem 

are given, and the implementation of the boundary conditions within the framework 

of the time-step splitting procedure is discussed. Here, the computational domain 

is discretized into uniformly spaced nodes located at the positions ~k = (k- 1)D.~ 

(k = 1, 2, ... , N), where D.~ = ~N/(N- 1). An illustration of the computational 

domain is given in Fig. 4.8. 

The computational domain is everywhere initialized to a constant ambient state 

having zero velocity. The piston is continuously accelerated from rest to a constant 

velocity of 100 m/ s in 2 p.s; the piston velocity is given by 

vp(f) = { (100 m/s) sin[; ( 2 :s)] for 0 < f ~ 2 p.s 

100 m/s for f > 2 p.s, 
(4.125) 

This rapid acceleration is chosen so that the piston attains its maximum velocity over 

a time interval which is short relative to the time required for the piston-initiated det-
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Figure 4.9: Gas and solid characteristics at the piston surface. 

onation wave to become fully developed. A maximum piston velocity of 100m/sis 

chosen since much of the experimental and numerical deflagration-to-detonation tran­

sition (DDT) data reported in the literature have been obtained for piston velocities 

close to this value [8, 24, 109, 110, 111]. 

The time-dependent boundary conditions which must be satisfied at the piston 

surface are easily obtained by requiring the velocity of both the gas and solid, mea­

sured relative to the piston, to vanish at this boundary: 

(4.126) 

This requirement is equivalent to enforcing a zero mass flux condition at the piston 

surface. It is shown in Fig. 4.9 that, for zero gas and solid velocity, only two of 

the characteristics emanating from the piston surface propagate information into the 

computational domain. These two characteristics are associated with forward propa­

gating gas and solid acoustic waves. As such, the two conditions given in Eq. (4.126) 

are the only conditions which can be explicitly enforced at this boundary [35]; all 

other conditions are a consequence of these two conditions, and must be derived from 

Eq. (3.7). 

In order to determine the equations which must be solved at the piston surface, 

each component of the derivative : in Eq. (3.7) is first expanded, and the resulting 
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terms, as well as the source terms in Eq. (3.7), are evaluated for v1 = v2 = 0. The 

following evolution equations are obtained for the components Q; (j = 1, .. . , 9) of the 

conserved vector q: 

(4.127) 

(4.128) 

(4.129) 

. (4.130) 

(4.131) 

(4.132) 

(4.133) 

(4.134) 

(4.135) 

These equations are identical to those which result using the general methodology of 

Thompson [115] for determining time-dependent boundary conditions for hyperbolic 

systems. 

Equations {4.127-4.135) can be easily solved within the framework of the time­

step splitting procedure given by Eq. ( 4.103) to update the conserved variables at 

the piston surface in time. For the convective step, the left hand side of Eqs. (4.127-

4.135) are numerically solved using a first-order Euler method in time, where the 

spatial derivatives are discretized using one-sided, second-order differencing. For the 

source step, the spatial derivatives in Eqs. (4.127-4.135) are set equal to zero, and 

the resulting system of ordinary differential equations are numerically solved using 

the package LSODE. To this end, an analysis similar to that used in the preceding 

section to obtain Eq. (4.113) can be performed to express the resulting differential 
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equations in the form 

d 
dr 

-1r7 P2tP1 ( P2 - 1rsP1 - f) 
1r7tPttP2 (P2- 7rsPt -f) - 7rstP2Cm 

0 (4.136) -~· ~ 

Here, the gas quantities are expressed in terms of the solid variables using the algebraic 

relations given by Eqs. (4.114), {4.116), and {4.118), evaluated for 111 = 1J2 = 0 and 

4>t = 1- 4>2 -

The upstream boundary condition applied at the location ~N is simply 

Qn+2 _ qn+2 
N - N-1· (4.137) 

Thus, time is restricted such that there is insufficient time for waves generated by the 

moving piston to reach this boundary. 
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5 

VALIDATION OF THE NUMERICAL METHOD 

Comparisons are given in this chapter between numerical predictions and known 

solutions to three different test cases in order to validate the numerical method. The 

three test cases include: 1) an inert two-phase shock tube problem; 2) the evolution of 

an inert shock in both the gas and solid due to compression of the granular material by 

a moving piston; and 3) the evolution of an inert compaction wave due to compression 

of the granular material by a moving piston. The first two cases consider gas and 

solid convection only, whereas the third case couples gas and solid convection with 

interphase drag, interphase heat transfer, and material compaction. In addition to 

these test cases, further validation of the numerical method is provided in Chapter 7 

whereby numerically predicted two-phase detonation structures are compared with 

results from the steady-state analysis given in Chapter 6. All computations performed 

as part of this dissertation were done on an IBM RS 6000 Model 350 workstation. 

5.1 Inert Two-Phase Shock Tube Problem 

The shock tube problem provides a stringent test for numerical methods used to 

solve hyperbolic systems of conservation laws since it generally requires the resolution 

of both contact discontinuities and shocks. As discussed in the previous chapter, 

the two-phase shock tube problem, also known as the Riemann problem, involves 

the breakup of a single initial discontinuity separating constant left (L) and right 

(R) states into self-similar waves consisting of a shock, a rarefaction, and a contact 

discontinuity in both the gas and the solid. This problem considers convection only; 

consequently, g(q) = 0 in Eq. (3.7). 
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For this simulation, the model equations valid in a fixed laboratory reference 

frame were solved, where position and velocity are denoted by x and ui (i = 1, 2), 

respectively. Ideal equations of state were used for both the gas and solid [P1 = 
PtRt'i'~t e1 = evt'i't; .P2 = P2R2'i'2, e2 = ev2'i'2] so that the numerical pr-e9ictions 

could be compared to existing closed-form analytical solutions. To this end, no jump 

in volume fraction was prescribed across the initial discontinuity; as such, volume 

fraction remains constant for all time, and the analytical solution for each phase is 

simply given by the classical solution to the shock tube problem for a single phase 

system (28). Values chosen for the model parameters and the initial conditions are 

given in TABLE 4.1. Different values for Cvt and Cv2 were used so that differences in 

the gas and solid solutions exist. The computational domain used for this simulation 

( -5 m ~ x < 5 m) was discretized into N = 200 uniformly spaced nodes, with the 

initial discontinuity located at the center of the domain (x = 0 m). The computational 

run time for this simulation was approximately two minutes. 

Shown in Fig. 5.1 is a comparison between the numerically predicted solution and 

the exact solution at f = 6 ms. Here, the exact solution is the same solution shown in 

Fig. 4.3 which was discussed in detail in subsection 5.1.1; consequently, the discussion 

given here is intentionally brief. For each phase the solution consists of a right­

propagating shock wave, followed by a slower right-propagating contact discontinuity, 

and a left-propagating rarefaction. As a consequence of choosing £;,2 < £;,1 , the solid 

shock and rarefaction propagate faster than those of the gas, while the solid contact 

discontinuity propagates more slowly than that of the gas. The numerical predictions 

agree well with the exact solution; both the wave speeds and the magnitudes of the 

jumps are correctly predicted. Furthermore, the numerical method is able to capture 

the discontinuities without the generation of spurious oscillations. The shocks are 

spread over approximately three computational cells, while the contact discontinuities 

are spread over approximately seven cells. Typically, a larger number of cells are 
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Figure 5.1: Comparison of the predicted and exact solutions for the inert shock-tube 
problem at f = 6 ms: (a,b) gas and solid density; (c,d) gas and solid velocity; (e,f) gas 
and solid pressure; (g,h) gas and solid temperature; and (i) particle number density. 
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required by shock-capturing methods to capture discontinuities associated with lin­

early degenerate characteristic fields (i.e., contact discontinuities). This is due to 

the absence of a "steepening" mechanism for linearly degenerate fields, such as pro­

vided by the coalescence of acoustic waves in genuinely nonlinear acoustic fields [113]. 

Consequently, numerically predicted spatial profiles for contact discontinuities do not 

steepen as time evolves. 

To investigate the convergence rate of the numerical method, it is necessary to 

define the error associated with the numerical predictions. Here, the convergence 

rate is defined as the change in this error with respect to a change in grid resolution; 

thus, it provides a measure of the spatial accuracy of the method. For the test cases 

given in this chapter, the error Ei (i = 1, 2) at fn is based on either the gas or solid 
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pressure, and is defined by 

{5.1) 

where A., ( fn) is the numerically predicted pressure at the nodal location ~k, i'; ( ~k, f") 

is the pressure given by the exact solution at this same location, and P,_c is a character­

istic pressure used to non-dimensionalize the error. This error is the fractional error 

used by Woodward and Collela [127] and by Grismer [44] to demonstrate the conver­

gence properties of similar high-resolution numerical methods for the Euler equations. 

Based on this error, the convergence rate of the numerical method is estimated by 

decreasing the size of the spatial increment .6.~, and determining the corresponding 

change in the error. Assuming that the error is proportional to the spatial increment 

raised to some power (i.e., Ei oc .6-e"), we obtain the proportionality 

log (Ei) oc plog (.6.~), 

or, since the spatial increment is proportional to the inverse of the maximum number 

of nodes N, 

log (Ei) oc plog (~) . (5.2) 

The convergence rate, given by the exponent p, is estimated by the slope of the best 

fit line through the data points (Ei, 1/N) plotted in the log(l/N)-logEi plane. 

Convergence data obtained for the inert shock tube problem are plotted in Fig. 5.2. 

For simplicity, it was assumed that R1 = R2 = 287 Jf(kg K) and Cv1 = Cv2 = 
717.5 J / (kg K) for this convergence study. Consequently, identical solutions are 

obtained for the gas and solid (thus, E = E 1 = E2), both of which are given by the gas 

phase solution shown in Fig. 5.1. The data were obtained using computational grids 

for which N was within the range 1000 :$ N $ 15000. The characteristic pressure 

used to non-dimensionalize the error was Pt = P!j = 0.1 M Pa, the pressure associated 

with the state to the left of the initial discontinuity. Results of this study show the 
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Figure 5.2: Numerical convergence data for the inert shock tube problem. 

convergence rate to be p = 1.003. The convergence rates reported in References 

{44, 127), based on the exact solution of the inert shock tube problem for an ideal gas, 

were also near unity. Though these high-resolution shock-capturing methods have 

higher spatial accuracy than nominally first-order methods (i.e., the Lax-Friedrichs 

scheme, Godunov's method, etc.), the accuracy is less than second-order. This result 

is somewhat expected since these methods reduce to nominally first-order accuracy 

near discontinuities due to the flux-limiting procedure. For the range of nodal points 

used in this study, machine round-off error was insignificant. 

5.2 Inert Shock Problem 

This test case concerns the evolution of a shock in both the gas and solid due to 

compression of the granular material by a moving piston. Once again, only gas and 

solid convection are considered. Though phase interaction processes are ignored, the 

source vector g( q) is nonzero for early time due to the piston acceleration terms. Here, 

the piston velocity was prescribed by Eq. (4.125). The virial equation of state given 

in Appendix G was used for the gas, and the non-ideal Tait equation of state given in 

Appendix H was used for the solid. Since these state relations are used for the two­

phase detonation analyses given in the following chapters, this test demonstrates the 
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Parameter or 
Ambient Condition Value Units 

b 7.60 x 10-4 m3Jkg 

it1 8.50 X 102 Jf(kg K) 

Cv1 2.40 X 103 Jf(kg K) 

Cv2 1.50 X 103 Jj(kg K) 
q 8.98 X 106 m2fs2 

q 0 Jfkg 

"Y2 5.00 X 10° 

To 1.oo x w-4 m 

To 3.00 X 102 K 

Pto 1.00 X 101 kgjm3 

h.o 1.71 X 103 kgjm3 

<P2o 7.00 X 10-1 

TABLE 5.1: PARAMETER VALUES AND AMBIENT CONDITIONS USED FOR 
THE INERT SHOCK PROBLEM 

ability of the numerical method to accurately capture shocks for the two-phase model 

system of interest in this research. Values for the parameters and ambient conditions 

are given in TABLE 5.1. The computational domain used for this simulation (0 

em ~ ~ ~ 20 em) was discretized into N = 200 nodes. The computational run time 

was approximately two minutes. 

The numerically predicted velocity and pressure history for the gas and solid are 

shown in Fig. 5.3. Here, ~ is position measured relative to the piston surface. Initially, 

a smooth but rapid increase in the velocity and pressure is predicted in both the gas 

and solid due to the sudden acceleration of the piston. Though not shown here, 

there also exist rapid increases in the density and temperature of each phase, and 

and in the particle number density. The volume fraction, however, remains constant 

since the physical mechanisms which effect changes in volume fraction (i.e., material 

compaction and combustion) have been ignored. The coalescence of acoustic waves in 
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Figure 5.3: Predicted time histories for the inert shock problem: (a,b) gas and solid 
velocity, and (c,d) gas and solid pressure. 
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Figure 5.4: Predicted gas and solid shock trajectories for the inert shock problem. 

the gas and solid causes the continuous spatial profiles to rapidly steepen, resulting 

in the formation of shocks. For this simulation, the steepening process occurs on the 

same time scale as that required for the piston to reach its constant maximum speed 

("" 2 J.LS). Once formed, the shocks propagate away from the piston with uniform 

speed, creating an ever-widening steady region of shocked flow. The speeds of the 

gas and solid shocks are computed from the slopes of the shock trajectories in the ~-f 

plane using a least-squares curve-fitting technique; the trajectories are shown in Fig. 

5.4. The numerically predicted speeds for the gas and solid shocks are 654.25 m/ s 

and 3151.31 m/ s, respectively. 

This problem admits a simple analytical solution for the jumps in the gas and 

solid variables across their respective fully-developed shocks, as well as for the shock 

speeds. Given the ambient conditions and the piston velocity, exact values for the 

shocked thermodynamic variables and the wave speeds are obtained from the Rankine­

Hugoniot relations given by Eqs. (3.59-3.68). Since the volume fraction is constant 

for all time, this analysis reduces to a classical shock wave analysis for each phase 

(28]. Comparisons of the numerically predicted solution at f = 60 J.lS and the exact 
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Figure 5.5: Comparison of the predicted and exact solutions for the gas and solid 
shocks: (a,b) gas and solid velocity (measured relative to a fixed laboratory frame); 
and (c,d) gas and solid pressure. 

solution for the pressure and velocity of both the gas and solid are given in Fig. 5.5. 

Also given in this figure is the numerical prediction obtained using the lower-order 

numerical flux (Eq. (4.78)). The jumps predicted by both numerical fluxes agree 

well with the exact jumps; however, the extra numerical diffusion inherent in the 

lower-order flux is evident. Though the higher-order flux results in a less diffuse 

solution, the shocks are still spread over approximately three computational cells. 

The exact values for the gas and solid shock speeds are 654.34 m/s and 3153.74 mjs, 

respectively. These values compare well with the numerically predicted values cited 

above. 
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Figure 5.6: Numerical convergence data for the inert shock problem: (a) gas; {b) 
solid. 

Convergence data obtained for this test case are plotted in Fig. 5.6. Here, the 

convergence rates for both the lower-order and higher-order numerical fluxes were 

determined based on the error defined in Eq. (5.1), where PI = 2.57 MPa and 

Pi_ = 8.21 M Pa are the ambient pressure of the gas and solid, respectively. There 

exist greater scatter in the data from the linear curve fits than exist for the convergence 

data obtained for the inert shock tube problem. This increased scatter is likely due 

to inaccuracies in the placement of the exact solution relative to the numerically 

predicted solution when computing the error. As such, the exact solution was placed 
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at the location which minimized the computed error. These inaccuracies do not exist 

for the shock tube simulation since the exact time-dependent solution is known. The 

convergence rates for the higher-order flux are p = 1.017 for the gas, and p = 1.003 

for the solid. The convergence rates for the lower-order flux are p = 0.814 for.~e. gas, 

and p = 0.812 for the solid. A slight discrepancy exists between the convergence rates 

associated with the higher-order flux for the gas and solid. Though this discrepancy 

may be attributable to the scatter in the data, it is possible that the flux limiter used 

in this study gives better results for the gas than for the solid. Optimal accuracy may 

require the use of a different flux limiter for each phase; this issue is not addressed in 

this study. 

5.3 Inert Compaction Wave Problem 

This simulation considers the evolution of an inert compaction wave due to com­

pression of the granular material by a moving piston. Here, the processes of gas and 

solid convection are coupled with the processes of interphase drag, interphase heat 

transfer, and material compaction; as such, this problem is an extension of the inert 

shock problem considered in the previous section. 

A compaction wave refers to the propagation of a finite disturbance in volume frac­

tion due to a local mechanical stress imbalance [i.e. P2 - P1 - f =F 0 in Eq. (2.52)]. 

Though it has been experimentally shown that material compaction is a significant 

component of both DDT and SDT in granular energetic material [14, 15, 97], it is not 

the intent of this section to give a detailed compaction wave analysis. Rather, results 

are given which illustrate the evolution of a compaction wave, and a comparison be­

tween the numerically predicted compaction wave structure and the steady structure 

predicted by the analysis of Powers et al. [93] is given. Also, convergence results are 

given in order to further validate the numerical met hod. The reader is referred to 

References [3, 93, 104] for a thorough discussion of inert compaction waves. 
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Parameter or 
Ambient Condition Value Units 

b 7.60 x to-• m 3jkg 

R.1 8.50 X 102 Jj(kg K) -.. 
A 

Cvt 2.40 X 103 Jj(kg K) 

Cv2 1.50 X 103 Jj(kg K) 
u 8.98 X 106 m2js2 

q 0 Jjkg 
A 

1.00 X 107 Jj(K s m813) h 

/3 1.00 x 104 kg/(s m2) 

P.c 1.00 X 103 kgj(s m) 

'Y2 5.00 X 10° 

fo 1.00 X 10-4. m 

To 3.00 X 102 K . 

Plo l.QQ X 101 kgjm3 

1J2o 1.90 X 103 kgjm3 

</>2o 7.30 x 10-1 

TABLE 5.2: PARAMETER VALUES AND AMBIENT CONDITIONS USED FOR 
THE INERT COMPACTION WAVE PROBLEM 

The intragranular stress f and the non-ideal Tait equation of state for the solid 

used in Reference (93] are adopted for this test case; these relations are given in 

Appendices I and H, respectively. The virial equation of state given in Appendix G 

was used for the gas, and the piston velocity was prescribed by Eq. (4.125). The 

computational domain, which consisted of N = 600 nodes, was initialized with the 

ambient conditions given in TABLE 5.2. Values for the model parameters are also 

given in this table. The computational run time for this simulation was approximately 

45 minutes. 

Figure 5. 7 shows the numerically predicted history for the gas and solid velocity 

{measured relative to a fixed laboratory frame), the gas and solid pressure, the solid 

volume fraction, and the particle number density. Here, f. is position measured relative 
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Figure 5.7: Predicted time histories for the inert compaction wave problem: (a,b} 
gas and solid pressure, (c,d) gas and solid velocity, (e) solid volume fraction, and (f) 
particle number density. 
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to the piston surface. A smooth but rapid increase is predicted in all variables in re­

sponse to the sudden acceleration of the piston. A compaction wave quickly develops 

and propagates away from the piston with a uniform SP,eed of 418.3 m/ s. The pre­

dicted time and length required for transition to a fully developed compaction wave 

are approximately 0.1 ms and 10 em (measured relative to the piston). The solid vol­

ume fraction in the compacted region is predicted to be 0.96, and the solid pressure in 

the compacted region is predicted to be 67.1 MPa. These values for the compaction 

wave speed, the final volume fraction, and the final solid pressure agree well with the 

experimentally determined values reported by Sandusky and Liddiard [104] for the 

impact of a 100 m/s piston with a bed of porous HMX (<ho = 0.73). Sandusky and 

Liddiard observed compaction wave speeds of 432 m/ s, final _ solid volume fractions 

near 0.94, and final solid pressures near 50 M Pa; no values for transition length and 

time were reported. 

Figure 5.8 shows the numerically predicted variation in solid density, velocity, 

pressure, and volume fraction within the compaction zone at f = 3.2 ms. Also shown 

in this figure are predictions for the steady wave structure given by the simplified 

analysis of Powers et al. (93]. In their analysis, Powers et al. ignore gas effects and 

describe steady compaction wave structure in terms of the solid variables. The Bow 

located between the piston (f = 0 m) and the trailing edge of the compaction wave 

(f = 0.82 m) is not shown in this figure. The prediction labeled Numerical 1 is the 

solution shown in Fig. 5.7. The prediction labeled Numerical2, also shown at f = 3.2 

ms, was obtained by ignoring interphase drag and heat transfer, and by ignoring 

gas effects in Eq. (2.52). As such, a direct comparison can be made between the 

numerical and analytical predictions for compaction wave structure. Good agreement 

exists between the Numerical 2 prediction and the analytical prediction. It is noted 

that a continuous compaction wave structure is predicted, and that interphase drag, 

interphase heat transfer, and gas effects in Eq. (2.52) increase the final solid pressure, 
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Figure 5.8: Comparison of the predicted and analytical solutions for the inert com­
paction wave structure: (a) solid density; (b) solid velocity; (c) solid pressure; and 
(d) solid volume fraction. 

and decrease the final solid volume fraction. The results shown here indicate that the 

gas has little influence on compaction wave structure. The wave speed predicted by 

the simulation denoted as Numerical 2 is 405.8 m/ s; this agrees well with the value 

of 404.7 m/ s predicted by the steady analysis of Powers et al. The compaction wave 

trajectories for the simulations denoted as Numerical 1 and Numerical 2 are shown 

in Fig. 5.9. 

Convergence data obtained for this test case based on a comparison of the Numer­

ical 2 prediction with the analytical compaction wave structure are plotted in Fig. 

5.10. Once again, scatter in the data exist due to inaccuracies in the placement of 
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Figure 5.9: Predicted compaction wave trajectories for the inert compaction wave 
problem. 

the analytical solution relative to the numerical solution. Sine~ the compaction wave 

structure is continuous, this test case provides a good measure for determining the 

spatial accuracy of the method for a continuous solution. The computed convergence 

rate is p = 1.647. Though this rate is substantially higher than the rates computed 

for the test cases having discontinuous solutions, it is lower than what would be 

expected from a truly second-order method. This result is likely due to numerical dif­

fusion introduced by the ftux-limiting procedure. It is possible that the convergence 

rate might improve for more resolved computational grids than used here. However, 

it is not feasible to investigate this claim since the most resolved case performed as 

part of this study (N = 4000} required nearly 100 hours of CPU time_ 
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Figure 5.10: Numerical convergence data for the inert compaction wave problem. 
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6 

STEADY ANALYSIS OF TWO-PHASE DETONATION 

An analysis of steady two-phase detonation is given in this chapter. In Sec­

tion 6.1, the steady problem is mathematically posed as an initial-value problem, 

and the technique used to put the equations into a simplified form suitable for nu­

merical processing is outlined. In Section 6.2, steady two-phase detonation solutions 

are analyzed and discussed within the framework of classical one-phase detonation 

theory. To this end, detonation end states of the steady model equations are first 

analyzed, and then detonation structure is investigated by numerically integrating 

the steady equations. Two classes of self-propagating detonation structures are iden­

tified leading to states predicted by the end state analysis, and existence criteria for 

each of these classes are determined based on the results of a parametric study. Due 

to the complexity of the steady equations, the analysis given in this chapter is not 

comprehensive; however, it does give new results and provides sufficient background 

for analyzing and discussing detonation solutions predicted by the unsteady analysis 

given in the following chapter. 

6.1 Solution Technique 

The first step in seeking a steady wave solution is to assume that such a wave 

exists; thus, the steady problem does not consider the time-dependent events required 

for the wave to develop. Here, it is assumed that the wave is propagating to the right 

at steady speed D, and that the piston is moving with constant speed such that 

dvpfdr = 0 (both D and Vp are measured relative to a fixed laboratory frame). With 

these assumptions, Eq. (3.7) can be transformed to a reference frame moving with 
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Figure 6.1: Schematic of the steady wave coordinate system. 

the wave using the Galilean transformation ( = e- (D- Vp)T and Wi = Vi- (D - v,) 

(i = 1, 2), where D = D/~ot ( = (/fo, and Wi = w,f~o are the ambient freestream 

solid Mach number, and the non-dimensional position and velocity measured relative 

to the wave, respectively (see Fig. 6.1). Since Eq. {3.7) is invariant under a Galilean 

transformation, the model equations valid in the steady wave frame have the same 

form as Eq. (3.7), with 8()/8e and Vi replaced by 8()/8( and Wi, respectively. The 

steady model equations, obtained by setting 8() / 8r = 0, are then given by the 

following equations expressed in terms of the wave coordinate (: 

d 
d( (p1«f>1w1] = Cm, (6.1) 

~ (P1«f>1w~ + P1«1>1] = w2Cm + Ct~, (6.2) 

d [ ( w~ P1)] ( w~) d( P1«f>1w1 e1+2+ Pl = e2+2 Cm+w2Cd+Ce, (6.3) 

d 
d( [P2¢2w2] = -7rsCm, (6.4) 

~ [P2«f>2w~ + P2«f>2] = -1rsw2C~- 1rsCd, (6.5) 

d [ ( w~ P2)] ( w~) d( P2«f>2w2 e2 + 2 + P2 = -7rs e2 + 2 - 1rsw2Cd - 7rsCe, (6.6) 
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:C [P2w2~~] = 'lr7P2~1~~ [P2- 1rsP1- /(~z)]- 27rsf/JzCm, (6.7} 

d 
d( [w2n] = 0, (6.8} 

d 
d( [P2~w2!) = P2~2C1- 7rs1Cm. (6.9} 

Here, it is understood that cd is expressed in terms of the velocities Wi· Freestream 

conditions for these equations specified at the location ( = 0 are 

P1(0} = 1, P2(0} = 1, w1(0} = -D, 

r(O} = 1, 1(0) = 0, (6.10) 

where To= Cv2oTo/f!4o, and To= T1o = T2o is the dimensional ambient temperature 

. of the mixture. When these initial conditions are substituted into Eqs. (6.1-6.9), it is 

observed that the inert freestream flow is an equilibrium state since all forcing terms 

vanish [as discussed in Appendix I, the quantity P2 -1r5P1 - fin Eq. (6.7} vanishes for 

the ambient state]. For this analysis, the virial equation of state given in Appendix G 

is used for the gas, and the non-ideal Tait equation of state given in Appendix H is 

used for the solid. The virial state relation for the gas was chosen for its simplicity. Its 

use enables one to predict certain results commensurate with experiments (discussed 

in the following section) over a limited range of conditions. More commonly used 

product state relations which are valid over a wider range of detonation conditions 

include the JWL (Jones-Wilkins-Lee) equation of state (71) and the BKW equation 

of state [76). The expression for the intragranular stress f is given in Appendix I. 

Using the constitutive relations given by Eqs. (2.55-2.61), it is possible to reduce 

Eqs. (6.1-6.9) to a coupled system of five ordinary differential equations for the solid 

variables pz, th, w2 , P2, and the ignition variable I; these variables will be referred to 

as primary variables. All other variables are algebraically expressed in terms of these 

five primary variables. Alternatively, Eqs. (6.1-6.9) can be reduced to a system of five 

ordinary differential equations for the gas variables p1 , ~1 , w1 , P1 , and the ignition 
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variable I. The preferred choice of primary variables is largely dependent upon the 

specific problem being considered. The solid variables were used as primary variables 

for most problems considered in this study; however, for some problems involving 

sonic singularities in the gas it was necessary to solve the steady problem-posed in 

terms of the gas variables. Only the technique for obtaining the reduced system 

of ordinary differential equations for the solid primary variables follows. A similar 

reduction technique is used to obtain the reduced system of ?rdinary differential 

equations for the gas variables. 

First, Eq. (2.60) is used in Eq. (6.8) to replace n in favor of r and ¢2. The re­

sulting homogeneous differential equation is directly integrated, and initial conditions 

applied, to give an algebraic expression for r in terms of~ and w2 : 

(6.11) 

Next, Eq. (6.1) is multiplied by 1r5, and the resulting expression is added to Eq. 

(6.4) to obtain a homogeneous differential equation for the mixture mass. Similarly, 

Eqs. (6.2) and (6.5}, and Eqs. (6.3) and (6.6} are used to obtain homogeneous differ-

ential equations for the mixture momentum and energy, respectively. These equations 

are then directly integrated, and initial conditions applied, to give algebraic expres­

sions relating the gas and solid variables: 

(6.12) 

( 
w~ Pt) ( w~ P2) 7rsPI4>I WI ei + 2 + PI + P2cP2W2 e2 + 2 + P2 

= -7rscPioD ( eio + ~
2 

+ P1o) - <hoD ( e2o + ~
2 

+ P2o) . 

(6.14) 

Pto P2o eio e2o . . 
Here, Pio = _ ~ , P2o = _ ~ , eio = ~ , and e20 = ~ are the non-dimensiOnal 

Pio'-'2o P2oVJ.o '-2o VJ.o 
ambient pressure and internal energy of the gas and solid, respectively. Using the 
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relations 4>• = 1- 4>2, e1 = e1(P1, PI), and e2 = e2(P2, P2), Eqs. (6.12-6.14) can be 

solved for the gas variables p1, w1, and P1 in terms of the solid primary variables. 

The functional form of the solution is given by the following (the reader is referred 

to Reference [95] for details concerning this solution): --:.--

(6.15) 

(6.16) 

(6.17) 

where 

The cubic expression for p1 [Eq. (6.15)] is a consequence of the gas virial equation of 

state. This expression has three roots: one root corresponds to a shocked gas, one 

root corresponds to an unshocked gas, and one root has a negative value and is thus 

non-physical. The presence of a third non-physical root is due to the inclusion of 

non-ideal gas effects (A1 = 0 for an ideal gas). With PI known, Wt and P1 can be 

computed from the relations denoted by Eqs. (6.16) and (6.17). Here, both Wt and 

P1 depend upon the root chosen for Pll i.e. whether the gas is shocked or unshocked. 

The remaining differential equations [Eqs. (6.4-6.7), and (6.9)] are expressed in 

non-conservative form and solved for the derivatives of the primary variables. Since 

the particle radius and all gas variables are known functions of the primary variables, 

the reduced autonomous system of ordinary differential equations can be expressed 

in the standard form 

(6.18) 

where y2 = [P2, 4>2, w2, P2, J]T is the dependent vector of solid primary variables, 

and h2 is a vector-valued function of Y2· Given suitable initial conditions at the 
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detonation front [i.e., y2{( = 0)], the initial-value problem can be numerically solved 

to predict two-phase detonation structure. 

H the gas variables are used as primary variables, then Eqs. {6.12-6.14) are solved 

for {>2, w2, and P2 in terms of the gas variables, and a reduced autonomous system of 

ordinary differential equations having the form 

dyl 
d( = ht{Yt), {6.19) 

is obtained. Here, Yt = (p11 <Pt, w 11 Pt, I]T is the dependent vector of gas primary 

variables, and h1 is a vector-valued function of Yt· 

Conditions at the detonation front are obtained from the two-phase Ra.nkine­

Hugoniot relations given by Eqs. (3.49-3.58). Since a detonation wave propagates 

supersonically with respect to the ambient gas and solid, a shock in either the gas or 

solid, or in both phases, exists at the front of the wave. Given the ambient state of the 

mixture [Eq. {6.10)], the Rankine-Hugoniot relations can be used to obtain conditions 

immediately behind the shock located at ( = 0 (see Fig. 6.2). If the ambient mixture 

initially contains no discontinuities in volume fraction, then the Ra.nkine-Hugoniot 

relations given by Eqs. {3.59-3.68) are used to determine the shocked conditions. 

Given the shocked conditions, Eq. (6.18) is then integrated on ( E [0, -oo) to predict 

detonation structure. 

Lastly, it is noted that certain components of h2 have a [r(w~- ~))-1 dependency 

and are thus singular at r = 0 or w~ = ~- Here, the complete combustion singularity 

(r = 0) is a consequence of the forms chosen for the phase interaction terms; this sin­

gularity is present in most two-phase combustion models [5, 23). The sonic singularity, 

which is different from the sonic singularity associated with a parabolic degeneracy of 

the model equations as discussed in Chapter 3, arises when the solid velocity equals 

the local solid sound speed. This singularity is also present in the steady equations 

for one-phase systems [108}. Also, it is apparent when one solves the steady problem 

in terms of the gas variables that certain components of h 1 have a [r(w?- ~)J- 1 de-
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Figure 6.2: Illustration of the initial-value problem for the steady detonation structure 
analysis. 

pendency and are thus singular when w~ = 4. For the steady problem posed in terms 

of the solid variables, Eqs. (6.15) predicts complex, non-physical values for the gas 

density after the gas velocity becomes locally sonic. The role of these singularities in 

determining existence criteria for steady two-phase detonations has previously been 

analyzed in Reference (95), and is further analyzed in the following section. 

Difficulties associated with the numerical integration of Eq. (6.18) near r = 0 

or w~ = ~ are eliminated by transforming the independent variable ( to a new 

independent variable z defined by the following: 

~~ = r (w~- ~). (6.20) 

The initial condition for this additional differential equation is ((0) = 0. This equation 

is integrated for z > 0 in the case of a shocked solid ( w~ < ~), and for z < 0 in the case 

of an unshocked solid (wi > ~). Using this definition, Eq. (6.18) can be expressed in 

terms of z by direct application of the chain rule: 

(6.21) 

Similarly, if the steady problem is posed in terms of y 1, then it is necessary to solve the 
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following equations in order to eliminate numerical difficulties near r = 0 or w~ = q: 

:~ = r ( w~ - ~) , 
~1 

= r (w~- en hl(yl). 

6.2 Steady Solutions 

-~~ 

(6.22) 

(6.23) 

The steady problem requires the solution of an autonomous nonlinear system of six 

coupled ordinary differential equations given by Eqs. (6.20) and (6.21) [or Eqs. (6.22) 

and (6.23)], subject to initial conditions at the detonation front. Much information 

can be obtained about the solutions using a geometrical analysis based on nonlinear 

dynamical systems theory [73, 124]. Such an analysis identifies detonation end states 

and determines their structural stability. Though a detailed geometrical analysis is 

beyond the scope of this study, nonlinear dynamical systems theory does provide a 

proper framework for discussing and analyzing solutions of Eqs. (6.20) and (6.21). 

We first analyze detonation end states in Subsection 6.2.1, and then consider 

detonation structure in Subsections 6.2.2 and 6.2.3. 

6.2.1 Detonation End States 

An equilibrium end state Y2 of Eqs. (6.20) and (6.21) is reached when the forcing 

terms in these equations vanish. With Y2 known, the gas variables p1 , w1, and P1 at 

this state are given by Eqs. (6.15- 6.17). The structural stability of the end state is 

determined by analyzing the linear system of ordinary differential equations obtained 

by linearizing Eqs. (6.20) and (6.21) about this end state. Since a rigorous structural 

stability analysis is not feasible due to the complexity of the steady equations, equi­

librium states Y2 and their structural stability are determined here by numerically 

solving the full initial-value problem. 

Of special importance in this study is the complete combustion end state r = 0 

(thus, ¢2 = 0 and ¢1 = 1). For this case, the forcing term in Eq. (6.20) vanishes, 
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and Y2 is determined by equating the forcing term in Eq. (6.21) to zero and solving 

the resulting nonlinear algebraic problem. Though this problem is difficult to solve, 

a simple analysis can be performed to determine the complete combustion end states 

for the gas. This is possible because ~2 vanishes at complete combustion; -thus, the 

gas end state is independent of the solid end state. For 4>2 = 0 (~1 = 1), inspection of 

Eqs. (6.12~6.14) shows that the gas quantities are dependent only upon the ambient 

conditions (quantities labeled with subscript "o") and the steady wave speed D. As 

such, these equations can be solved for the gas quantities at the complete combustion 

state. 

To this end, we set 4>2 = 0 and ~1 - 1 in Eqs. (6.12~6.14), use the resulting 

expression from Eq. {6.12) to eliminate w1 in Eqs. (6.13) and {6.14) in favor of Ph 

and rearrange terms to obtain 

where 

1 
Po. = ~lo + -4>2o, 

1T5 

(6.24) 

{6.25) 

Here, p4 , Pa, and e4 are the non~dimensional ambient density, pressure, and internal 

energy of the mixture. Equations (6.24) and (6.25) are the tw~phase Rayleigh line 

and Hugoniot relation for the complete combustion state, respectively. Given the 

expression for e1{PI, PI), Eqs. (6.24) and {6.25) can be combined to form a cubic 

expression for PI which is simply Eq. (6.15) evaluated for~= 0 (~I= 1). Depending 

upon the ambient conditions and the wave speed D, this cubic expression may have 

1) a single real root and a pair of complex conjugate roots, 2) two equal real roots 

and a third distinct real root, or 3) three distinct real roots. As discussed previously, 

one of the real roots for all three cases is the non~physical result PI < 0; therefore, 
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case 1) predicts physically meaningless end states. Physically meaningful end states 

associated with the remaining two cases are best analyzed by plotting Eqs. (6.24) and 

(6.25) in the (1/ Pl)-Pl plane. 

Equation {6.24) is the equation of a line in the (1/ P1)-P1 plane which, -for fixed 

ambient conditions, has a negative slope which is proportional to D2• Equation (6.25) 

describes a nonlinear curve in this plane which is independent of D. Dimensional plots 

of these equations generated using parameters and ambient conditions representative 

of granular HMX (TABLE 6.1) are shown in Figure 6.3. In this figure, the Rayleigh 

lines for three different waves speeds b are shown. Equilibrium end states are given 

by the points of intersection of the Rayleigh line and the Hugoniot curve. For waves 

speeds b < D01 , the corresponding Rayleigh lines (not shown in this figure) do not 

intersect the Hugoniot curve and non-physical end states are predicted; this scenario 

corresponds to case 1) identified in the previous paragraph. For b = D01, a sin­

gle physically meaningful end state is predicted corresponding to case 2) identified 

above. Thus, analogous to steady one-phase detonation theory [34), there is predicted 

a minimum wave speed required for a steady two-phase detonation to exists; this min­

imum wave speed is referred to as the Chapman-Jouguet wave speed, DcJ, and the 

resulting detonation wave is referred to as a Chapman-Jouguet (CJ) detonation. For 

b > D01, two physically meaningful end states are predicted corresponding to case 

3) identified above. The detonation wave associated with the end state having the 

larger value of p1 is referred to as a strong detonation, and the other is referred to 

as a weak detonation. Also, there exist other solutions of Eqs. (6.24) and (6.25) for 

wave speeds much smaller than those considered here. These solutions, which are not 

relevant to this study, are associated with steady two-phase deflagration waves. 

An analysis of the complete combustion end states gives that the Mach number of 

the gas relative to the steady detonation front is locally unity ( Ml = 1) for the C J 

end state, is less than unity (Mr < 1) for the strong end state, and is greater than 
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Parameter or 
Ambient Condition Value Units Reference 

b 7.60 x w-4 mafkg 

ft1 8.50 X 102 Jf(kg K) (95} 

Cvlo 2.40 X 103 Jf(kg K) (5, 95] 

Cv2o 1.50 X }()3 Jf(kg K) [5, 23, 95) 
q 8.98 X 106 m2js2 (93, 95) 
q 5.84 X 106 Jfkg [23, 95) 

kr 1.00 X 106 8-1 
A 

2.69 X 103 Tr K 

Iig 5.oo x 10-1 

a 2.90 x 10-9 m/(Pa s) [23, 95) 

h 1.00 X 107 Jf(K s m8/3) [95] 

/3 1.00 X 104 kgf(s m 2) (95] 

{.Lc 1.00 X 106 kgf(s m) [95] 
m 1.00 X 10° [23, 95] 

'Y2 5.00 X 10° (93, 95) 
fo 1.00 x w-4 m [8, 23, 95) 

To 3.00 X 102 K 

Plo 1.00 X 101 kgfma [95} 

fo2o 1.71 X 103 kg/m3 [111] 
t/>2o 7.oo x w-1 [111) 

TABLE 6.1: PARAMETER VALUES AND AMBIENT CONDITIONS USED TO 
COMPUTE THE STEADY SHOCKED GAS-UNSHOCKED SOLID C J DETONA­
TION STRUCTURE 
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Figure 6.3: Two-phase Rayleigh lines and Hugoniot curve. 
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unity (Mf > 1) for the weak end state. The OJ detonation is commonly thought to be 

the unique steady solution for a self-propagating detonation since it does not require 

external energy input, such as provided by a moving piston, to sustain propagation 

of the wave. Additionally, since M[ = 1 at the C J end state, the detonation is not 

susceptible to degradation by rarefaction waves originating from behind the wave. 

Weak waves, having Ml > 1 at their end state, are also not susceptible to rarefactions 

from the rear, and do not require piston support for their propagation; thus, they 

too are self-propagating detonations. However, strong detonations, having Mf < 1 

at their end state, are susceptible to rarefactions from the rear, and do require piston 

support for their propagation. As previously discussed, if a moving piston providing 

support for a strong detonation is suddenly stopped, a rarefaction will be produced 

which will eventually overtake the detonation thereby reducing it to either a C J or 

weak detonation. 

The ideas discussed in the preceding two paragraphs are further illustrated in 

Fig. 6.4 which gives steady detonation wave speed as a function of piston velocity. For 
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Figure 6.4: Steady detonation wave speed vs. piston velocity. 

fixed wave speed b, the piston velocity is defined as the gas velocity at the complete 

combustion end state measured relative to a laboratory frame, Vp = w1 +b. As such, 

the gas fiow between the piston and the end of the reaction zone is time-independent. 

Two branches are identified on the curve in this figure: a weak branch and a strong 

branch. The weak branch is associated with weak detonation end states, and the 

strong branch is associated with strong detonation end states; these two branches 

are joined at the CJ end state. A continuum of strong detonation end states are 

predicted for piston velocities in excess of VpoJ' and a continuum of weak detonation 

end states are predicted for piston velocities less than vPor For the scenario depicted 

here, the C J end state is obtained only for a piston velocity of Vpor 

In addition to the complete combustion end states, there exist other singular 

points of Eqs. (6.20) and (6.21). First, there exist end states Y2 such that h2 (y2) = 

(0, 0, 0, 0, O]T, but r(w~-~) :j:: 0. These end states, which were not predicted in this 

study, are equilibrium points for Eq. (6.18) associated with incomplete combustion. 

Second, there exist states Y2 such that r(w~ - ~)h2(Y2) =F (0, 0, 0, 0, O]T, but 
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r(w~- ~) = 0. These singularities are non-equilibrium points having non-physical 

solutions since the spatial derivatives in Eq. (6.18} are undefined at these points. 

Similar singularities also exist for the ga.s. A thorough discussion of singular points 

for steady two-phase models is given by Bilicki et al. [18] --;-~ 

Though the end state analysis identifies physically meaningful OJ, strong, and 

weak detonation end states, one must consider detonation structure in order to de­

termine whether a path exists in phase space connecting the initial conditions at the 

detonation front to these end states. The accessibility of these detonation end states 

is dependent upon both their structural stability and the initial conditions applied at 

the detonation front. In general, the detonation structure may be relatively simple or 

very complex. Regardless of the structure, if a steady wave exists for which all of the 

solid is consumed by combustion, then the structure must terminate at one of these 

three end states. 

In the following subsections, we focus on self-propagating detonations identified 

by a steady structure analysis which terminate at states predicted by the equilibrium 

end state analysis. In particular, we identify 1} CJ waves having a single lead shock 

in the gas and an unshocked solid, and 2} weak waves having a single lead shock 

in the ga.s and an unshocked solid. The first class of waves have previously been 

predicted by the steady analysis of Powers et al. [95); the second class of waves has 

not been previously predicted. Results of a parametric study are given which identify 

regions of parameter space associated with both classes of detonation, and regions for 

which neither of these classes exists. Both the analysis given in Reference [95] and 

the present analysis did not identify steady detonation structures having a shocked 

solid. 

6.2.2 Chapman-Jouguet Detonation Structure 

In this subsection, we show the structure of a steady C J detonation having a 

single lead shock in the gas and an unshocked solid, and give existence criteria for 

130 



this class of detonations. 

Values for the ambient conditions and model parameters used to compute the C J 

detonation structure are given in TABLE 6.1; when available, references for these 

values are also provided. Here, the values for fo2o and f/>20 were chosen such -that the 

ambient mixture density (Pa. = 1200 kg/m3) and solid volume fraction match those 

of the DDT experiment [80) for granular HMX as reported by Stewart et al. [111]. 

Values for the gas constant, R11 and the virial coefficient, b, were chosen such that 

1) predicted steady C J detonation pressures and wave speeds reasonably agree with 

predictions from the thermochemistry code TIGER [27] as reported by Butler and 

Krier [23], and 2) the predicted steady C J detonation wave speed closely matches the 

experimental value reported in Reference [111]. Values for the solid equation of state 

parameters, fT and "(2 , used by Powers et al. [92, 93] are adopted here. These values 

were chosen by Powers et al. such that solid shock and compaction wave predictions 

match solid shock [78] and compaction wave data [105). Values for the ignition pa­

rameters, k1, T1, and Ji9 , were chosen such that 1) the time and length required for 

DDT given in Chapter 7 match the values reported in Reference [111] for the impact 

of a 100 m/ s piston, and 2) the predicted distance required for ignition behind the 

lead shock of steady detonation structures is much smaller than the reaction zone 

length. Values for the drag parameter, {J, the heat transfer parameter, h, and the 

compaction viscosity, iJc, were largely chosen so that a steady two-phase C J deto­

nation structure could be predicted. The high value for iJc used here was also used 

by Powers et al. (95) to predict C J detonation structures in the absence of theory 

for weak detonations. No reliable experimental data exist for determining values for 

these parameters under detonation conditions; however, the values for (J and h used 

here roughly match the values used in empirical drag and heat transfer relations valid 

under less extreme conditions [91, 95]. 

For the structure analysis, Eqs. (6.20) and (6.21) [and Eqs. (6.22) and (6.23)] 
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Figure 6.5: P1-(h phase plane for the steady shocked gas-unshocked solid C J detona­
tion structure analysis. 

were numerically integrated using an implicit stiff ordinary differential equation solver 

contained in the software package LSODE. The results of this analysis are summarized 

in the f/J1-P1 phase plane shown in Fig. 6.5. For clarity, only trajectories in the 

neighborhood of the complete combustion state ( f/J1 = 1) are given. Here, each 

trajectory is associated with a different steady wave speed iJ, and is parameterized 

by position (. The upper and lower regions of this plane correspond to subsonic and 

supersonic gas flow, respectively; these two regions are separated by the sonic curve 

M1 = 1. Since the gas is shocked, all trajectories initially lie in the subsonic region 

of the plane. 

A continuum of trajectories are predicted forb < DcJ = 6159.9 mfs which do 

not reach the complete combustion state ( ¢1 = 1); rather, they intersect the sonic 

curve at the points labeled T (for turning point), reverse direction, and proceed into 

the supersonic region of the plane. The points T are non-equilibrium points at which 

r(w~- e.) = 0 and r(w~- e.)h1(y1) =f:. [0, 0, 0, 0, O]T in Eqs. (6.22) and (6.23), 

respectively. Consequently, the spatial derivative of the gas variables is undefined 
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at these points resulting in non-physical solutions. Bilicki et al. [18) refer to such 

points as ''turning points" because the solutions become double-valued functions of 

position as the trajectories progress into the supersonic region of the plane. As D 

approaches DcJ, the turning point T approaches the complete combustion $te .CJ. 

For a unique value of the wave speed DcJ, the solution trajectory terminates at the 

complete combustion state C J identified by the equilibrium end state analysis. At 

this point, r(wf- q) = 0 and r(w~- q)h1(y1) = [0, 0, 0, 0, o]T. A continuum 

of solution trajectories are predicted for D > DcJ which remain in the subsonic 

region of the plane and terminate at complete combustion states S; these waves 

represent strong detonations. For completeness, solution trajectories associated with 

unshocked gas-unshocked solid structures leading to the states C J and W are also 

shown in this figure. Here, W denotes a weak detonation end state. These structures 

are typically dismissed as non-physical since, in the absence of a lead shock, there is 

no clear mechanism for combustion initiation. As such, it was necessary to assume 

that lig --+ 0 in order to predict these unshocked structures. 

Figure 6.6 shows the spatial structure of the shocked gas-unshocked solid C J det­

onation associated with the trajectory leading to state C J in Fig. 6.5. Here, the 

detonation is propagating to the right at speed DcJ = 6159.9 mfs, and the gas 

shock is located at e = 0 mm. Combustion is quickly initiated as the solid parti­

cles cross the shock. As seen in Figs. 6.6( a,c), the gas pressure and Mach number 

squared change discontinuously from their ambient values of 2.57 M Pa and 108.24 

to 0.3196 GPa and 0.138 at the shock, respectively. The gas pressure subsequently 

increases to 13.48 GPa at complete reaction, and the gas Mach number increases to 

unity at complete reaction. The predicted increase in gas pressure within the reaction 

zone contrasts one-phase detonation theory which predicts a decrease in pressure due 

to exothermic heat release [34]. As seen in Figs. 6.6(b,d), the solid pressure and Mach 

number are continuous throughout the wave, with the solid pressure increasing from 
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its ambient value of 8.21 M Pa to 0.856 G Pa at complete reaction, and the solid Mach 

number squared decreasing from its ambient value of 4.22 to 3.31 at complete reaction. 

The solid flow remains supersonic throughout the wave. As shown in Figs. 6.6(e,f), 

a continuous variation in both solid volume fraction and particle radius is predicted. 

These quantities decrease from their respective ambient values of 0. 7 and 100 J.Lm 

to zero at complete reaction. The predicted reaction zone length is approximately 

15.8 mm. 

The distance behind the gas shock required for ignition, ~9 , is easily estimated 

from the dimensional form of Eq. (B.10): 

A A A A 2 A 

d: = k!(l _I) [P1cP1 + ~2cP2- Pt~cPlo- P2ocP2ol exp [- A T1 A ]· (6.26) 
dr PtocPto + P2ocP2o Tt cPt + T2cP2 

This equation, which is the characteristic equation for the ignition variable, is valid 

along solid particle paths defined by~ = v2 • Here, we assume that the gas and solid 

thermodynamic variables and volume fraction change more slowly than the ignition 

variable. As such, we assume these quantities to be constant, directly integrate Eq. 

(6.26), apply the initial condition I(f = 0) = 0, and solve for f to obtain 

f = -fc In (1 - I) , (6.27) 

where 

Thus, fc is inversely proportional to the ignition rate parameter k1. Since the gas is 

shocked and the solid is unshocked for the CJ detonation structure shown in Fig. 6.6, 

we choose the shocked gas pressure (0.3196 GPa) and temperature (5908 K), the 

ambient solid pressure (8.208 MPa) and temperature (300 K), and the ambient 

gas and solid volume fraction (0.3 and 0.7, respectively) as characteristic values. 

Using these values, and the values for k1, T1, and I = Iig given in TABLE 6.1, in 

Eq. 6.27 gives an estimate for the ignition time, figi the estimated ignition time is 
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0.014 p..s. Using DcJ = 6159.9 m/ s as a characteristic velocity for the unshocked solid 

particles, the ignition length is given by fig = DcJTigi the estimated ignition length 

is "" 0.083 mm. Consequently, the ignition length is much smaller than the predicted 

reaction zone length. This result is confirmed by the numerical computations for 

steady detonation structure. 

The existence of steady shocked gas-unshocked solid C J detonations such as the 

one illustrated in Fig. 6.6 is dependent upon many factors including the relaxation 

rates associated with interphase drag (/3), interphase heat transfer (h) , and material 

compaction (P.c). Values for the parameters /3, h, and P.c under detonation co~ditions 

are among the most difficult to ascertain from experiments. Here, we determine 

existence criteria for this class of detonations based on the rates of these relaxation 

processes. To this end, we use the model parameters and ambient conditions given 

in TABLE 6.1 as a baseline, independently vary the parameters /3, h, and P.c (while 

holding the burn rate parameters a and m fixed), and numerically integrate the model 

equations to predict regions in /3-h-P.c space for which these detonation structures 

exist. Depending upon the values for these parameters, the length scales associated 

with these processes change relative to the reaction zone length. As such, this analysis 

demonstrates the importance of these length scales in determining detonation wave 

structure. The range of parameter values examined here is large; as such, not all 

values are physically relevant. Nonetheless, uncertainties associated with the rates 

of these processes under detonation conditions suggests that one consider a range of 

possible values. Since both the ambient conditions and equation of state parameters 

are held fixed for this study, the C J wave speed, which is independent of /3, h, and 

P.c, is 6159.9 m/ s for all cases considered. 

Results of the parametric study are summarized in Fig. 6.7. Three distinct re­

gions are identified: 1) regions in which shocked gas-unshocked solid C J structures 

are predicted; 2) regions in which no shocked gas-unshocked solid CJ structures are 
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predicted as a gas sonic point is reached within the reaction zone; and 3) regions 

in which no shocked gas-unshocked solid C J structures are predicted as a solid sonic 

point is reached within the reaction zone. At the gas sonic pointst the forcing terms 

in Eqs. (6.22) and (6.23) locally vanish; this has physical implications to be discussed 

in the following section. At the solid sonic pointst the forcing term in Eq. (6.20) 

locally vanishest while the forcing term in Eq. (6.21) does not; consequentlyt these 

solutions must be immediately rejected as non-physical since the solid variables be­

come double-valued functions of position as the integration is continued beyond these 
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points. 

The results shown in Fig. 6. 7 indicate that steady shocked gas-unshocked solid C J 

structures do not exist for high interphase drag, high interphase heat transfer, or high 

material compaction rates. For high drag and heat transfer rates [i.e., appreximately 

/J > 4 x 105 kg/(s m2) and h > 1 x 1011 Jf(K s m813)), the solid flow becomes 

choked within the reaction zone as a sonic point is reached in the solid. This sce­

nario is analogous to one-phase flow through a duct with friction and heat addition 

[108). The gas, having a higher velocity and temperature than the solid, exerts a pos­

itive drag force on the solid particles, and transfers thermal energy to the unshocked 

solid flow. If the rates of interphase drag and heat transfer exceed the combustion 

rate, then the solid flow will be driven to a sonic point within the reaction zone; 

otherwise, the solid flow remains supersonic throughout the reaction zone. For low 

interphase drag and heat transfer rates [i.e., approximately /J < 4 x 105 kgf(s m2) and 

h < 1 x 1011 Jf(K s m813)}, and high material compaction rates (i.e., approximately 

{Lc < 4 x 105 kgf(s m)], the gas flow becomes choked within the reaction zone as a 

sonic point is reached in the gas. 

Though the combustion rate parameters a and m were held fixed for this parameter 

study, it is likely that similar results would be obtained by fixing either /J, he, or {Lc, 

and allowing a and m to vary, as it is the relative rates which are of importance. 

Here, we seek simple expressions for the reaction time, frzn' and reaction zone length, 

fr:n, in terms of the combustion rate parameters a and m. It is easily shown from the 

dimensional form of the characteristic equation for the compaction mode (Eq. (B.8)] 

that frzn is inversely proportional to the combustion rate. To this end, we assume 

that {Lc is large so that material compaction may be ignored. As such, the dimensional 

form of Eq. (B.8) reduces to 

(6.28) 
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This equation is valid along solid particle paths defined by ~ = v2. Next, we use Eq. 

(2.15} to replace f in Eq. (6.28) in favor of ¢2 and n, and assume that both n and pl 

are constant throughout much of the reaction zone. Steady predictions have shown 

this to be a reasonable assumption outside of a relatively small region near the lead 

shock where the gas pressure changes by several orders of magnitude. Consequently, 

we choose the characteristic values n = no and pl = plCJ' integrate the resulting 

ordinary differential equation, apply the initial condition <h(f = 0) = <j)20, and solve 

for f to obtain 

f = ~0 [1- (~)1/3]. 
amJ <Pzo 

In this expression we have replaced no in favor of <Pzo and fo using Eq. (2.15}. Setting 

<P2 = 0 in this expression gives an estimate for f,.:m: 

(6.29) 

Thus, the reaction time is directly proportional to the ambient particle radius, and 

inversely proportional to the combustion rate. Using the values for a, m, and f 0 given 

in TABLE 6.1, and the value P10J = 13.5 GPa, then f,.:m = 2.55 J.LS. Based on this 

reaction time, an estimate for the reaction zone length is f,.:m = DcJf, where DcJ 

is a characteristic velocity for the unshocked solid particles. The estimated reaction 

zone length is 15.73 mm, which agrees well with the predicted value for the CJ 

detonation shown in Fig. 6.6. As the combustion rate increases, i,.:m decreases and, for 

fixed interphase drag and heat transfer parameters, the length scales associated with 

these processes greatly exceed the reaction zone length; consequently, these relaxation 

processes become inconsequential. There likely exists a critical combustion rate for 

which the solid flow first becomes choked within the reaction zone. For combustion 

rates in excess of this value the solid flow will remain supersonic throughout the 

reaction zone. 

Lastly, it was shown by Powers et al. [95] that C J structures having a lead 
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Figure 6.8: Variation in (a) OJ wave speed and (b) OJ gas pressure with ambient 
mixture density. 

shock in the gas and an unshocked solid do not exist for am~ient mixture densities 

(Pa = P1o<P1o + ho<P2o) below a minimum critical value. Here, we vary the ambient 

mixture density by holding p10 and f>2o fixed and allowing <P2o (and thus <P1o) to vary. 

Once again, we use the model parameters and ambient conditions given in TABLE 

6.1 as a baseline, and integrate the steady equations to predict the minimum critical 

value of Pa for which a shocked gas-unshocked solid 0 J detonation exists. The result 

is shown in Fig. 6.8. No shocked gas-unshocked solid 0 J detonation structures are 

predicted for p4 < 486 kgfm3 since a solid sonic point is reached within the reaction 

zone. At these points, the spatial derivative of the solid variables is undefined. This 

result is physically significant in that the ambient mixture density can be directly 

controlled in experiments, and provides a measure of the extent of material damage 

in cast explosives. In contrast, the existence results obtained for variable /3-h-P.c are 

less dependent on the properties of the ambient material, and more dependent on the 

local conditions of the evolving flow. 

Figure 6.8(a) shows the predicted variation in De; with p4 • Also shown in this fig­

ure are numerical predictions given by the unsteady analysis of Butler and Krier [23), 

numerical predictions given by the thermochemistry code TIGER {27] (as reported by 
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Butler and Krier), and the experimental value determined by McAfee et al. [80] (as 

reported by Stewart et al. (111]) . Experiments with compressed solid high-explosives 

have shown DcJ to be an increasing function of Pa. (77}. The model predictions exhibit 

this variation, and also reasonably agree with the referenced results. The pred\cted 

variation in P1cJ with Po is shown in Fig. 6.8(b). Here, an approximately parabolic 

relationship is predicted which is representative of experimentally observed trends 

for solid high-explosives (55]. Also shown in this figure are the numerical predictions 

reported in Reference (23]. Once again, fair agreement exists between the current 

model predictions and the referenced predictions. 

The result of Fig. 6.8 can be explained as follows. As p6 decreases, P1cJ decreases; 

consequently, the reaction time and reaction zone length, based on Eq. (6.29), in­

crease. As the reaction zone length increases with decreasing {J4 , the length scales 

associated with interphase drag and heat transfer eventually become the same order 

as the reaction zone length, and the drag and heat transfer rates become sufficient to 

choke the solid within the reaction zone. 

In summary, large regions are predicted in /J-~P.c parameter space for which no 

C J detonation structures having a single lead shock in the gas and an unshocked 

solid exist. Furthermore, these structures do not exist for ambient mixture densities 

below a minimum critical value. As shown in the following subsection, steady weak 

detonation structures having a single lead shock in the gas and unshocked solid are 

predicted for parameter values located in regions where a gas sonic point is reached 

within the reaction zone. The steady analysis performed in this study was unable to 

identify steady detonation structures for parameter values located in regions where 

a solid sonic point is reached within the reaction zone. This is not to imply that 

steady detonations do not exist for these parameter values; rather, the steady analysis 

became very complicated due to sonic singularities in both the gas and solid, and 

the results of the analysis were essentially inconclusive. As such, two possibilities 
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remain for parameter values in these regions: 1) the solutions are time-dependent and, 

thus, no steady structures exist, or 2) more complicated steady structures exist than 

considered here, possibly having multiple shocks. It is difficult to predict multiple 

shock structures using a strictly steady-state analysis since both the num~er and 

relative locations of the shocks are not known a priori. As such, an unsteady analysis 

can facilitate a steady analysis of more complicated two-phase detonation structures. 

This issue is addressed in Chapter 7. 

6.2.3 Weak Detonation Structure 

In this subsection, we demonstrate the existence of weak detonation structures 

having a single lead shock in the gas and and unshocked solid, and give an example 

of such a structure. To this end, we choose P.c = 1 x 102 kgf(s m), and use the values 

given in TABLE 6.1 for all remaining model parameters and the ambient conditions. 

This value of P.c was used in the unsteady DDT numerical simulations reported by 

Son et al. [109, 110], Kober et al. [59], and Stewart et al. [111]. Also, the numerical 

simulations of Baer et al. [5] used values of P.c close to this value. For the present 

model, it is seen from Fig. 6. 7 that this value of P.c results in a gas sonic point being 

reached within the reaction zone for the shocked gas-u.nshocked solid C J detonation 

structure. 

Results of the weak detonation structure analysis are summarized in the 4J1- P1 

phase plane shown in Fig. 6.9. For clarity, only trajectories in the neighborhood of 

the complete combustion state ( q,1 = 1) are given. Once again, each trajectory is 

associated with a different steady wave speed iJ, and is parameterized by position ( . 

All solution trajectories shown in this figure originate from a shocked gas state which 

is dependent upon the wave speed iJ. 

A continuum of trajectories are predicted for iJ < Dw = 6169.366 m/ s which do 

not reach the complete combustion state, but reach a turning point T at which the 

spatial derivative of the gas variables is undefined. As such, non-physical solutions 
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structure analysis. 

are predicted. For b = bw > Deb the solution trajectory is a manifold of the saddle 

point P (for pathological). At P, both the quantity r(w~- ~) and the components 

of r( w1 - ~)h1 (yl) simultaneously vanish; consequently, it is possible to continue 

the integration from P to either the strong end state S or the weak end state W. 

For b > bw, a continuum of strong detonation trajectories are predicted which 

terminate at complete combustion states S. Similar phase space topologies have been 

documented by Fickett and Davis [34] for steady one-phase weak detonations, and by 

Powers and Gonthier (96) for steady one-phase weak underdriven oblique detonations. 

Since a unique value for the wave speed is required to traverse the saddle point, weak 

detonations are often referred to as eigenvalue detonations. 

Figure 6.10 shows the structure for the shocked gas-unshocked solid weak detona­

tion associated with the trajectory leading to state W in Fig. 6.9. Here, the detonation 

is propagating to the right at speed bw = 6169.366 m/ s, and the gas shock is located 

at ~ = 0 mm. Once again, combustion initiation occurs almost immediately upon 

crossing the shock. It is seen in Figs. 6.10(a,c) that the gas pressure and Mach num-
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Parameter Case! Case II Case III Units 

/3 1 X 104 variable variable kgf(s m2) 

h 1 X 107 1 X 107 1 X 107 Jf(K s m813) 
---~ .. 

P.c variable 1 X 104 1 X 102 kgf(s m) 

TABLE 6.2: CASES USED TO ILLUSTRATE BIFURCATIONS IN STEADY DET­
ONATION STRUCTURE 

her squared change discontinuously from their ambient values of 2.57 M Pa and 108.57 

to 0.3206 GPa and 0.138 at the shock, respectively. Subsequently, the gas pressure 

increases to 12.75 GPa at complete reaction, and the gas Mach number squared 

increases to unity at ( = -11.343 mm, and further increases to 1.094 at complete 

reaction. Due to the gas sonic point within the reaction zone, only gas acoustic waves 

generated in the region -11.343 < ( < 0 mm influence the lead shock. It is seen 

in Figs. 6.IO(b,d) that a continuous change in solid pressure and Mach number is 

predicted as the solid is unshocked. The solid pressure increases from its ambient 

value of 8.21 MPa to 8.896 GPa at complete reaction. The solid Mach number 

squared decreases from its ambient value of 4.23 to 1.266 at ( = -4.02 mm, and 

then increases to 13.261 at complete reaction. Also, it is seen in Figs. 6.10(e,f) that 

a continuous variation in both solid volume fraction and particle radius is predicted. 

The predicted reaction zone length is 16.46 mm. 

Shown in Fig. 6.11 is the predicted variation in steady detonation wave speed 

for the three cases identified in TABLE 6.2. These three cases, which correspond 

to the dashed lines identified in the /3-h-P.c parameter space of Fig. 6. 7, illustrate 

bifurcations in the predicted steady detonation structure. For Case I, the parameters 

/3 and hare fixed, and P.c is varied over the range 1 x 101 < fJ.c ~ 1 x 108 kgf(s m). 

For Cases II and III, the parameters h and fJ.c are fixed, and /3 is varied over the range 

1 x 101 ~ /3 ~ 1 x 107 kgf(s m2) . A different value for P.c is used in Cases II and 
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Figure 6.11: Bifurcation diagrams for the three cases identified in TABLE 6.2. 

III to illustrate a difference in the steady solution near the boundary where a solid 

sonic point is first predicted. The value h = 1 x 107 J /(K s m813 ) was used for all 

three cases. Values for the ambient conditions and the remaining model parameters 

are given in TABLE 6.1. 

For Case I, Fig. 6.11(a) shows that a continuum of weak detonation structures 

having speed bw are predicted for P.c::; 9 x 104 kgf(s m). For P.c < 1 x 103 kgf(s m), 

Dw is insensitive to changes in P.c, and is approximately equal to 6169.37 m/ s. As 

P.c increases, bw continuously approaches bcJ. The shocked gas-unshocked solid 

weak detonation structure undergoes a bifurcation to a shocked gas-unshocked solid 
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CJ detonation structure for approximately foe = 9 x 104 kg/(s m). A continuum of 

shocked gas-unshocked solid CJ structures are predicted as the value of foe is further 

increased. 

For Case II, Fig. 6.11(b) shows that a continuum of weak detonation structures 

are predicted for {J < 8 x 104 kgf(s m2). Here, Dw is insensitive to changes in {J for 

{J < 1 x 103 kgf(s m2), and is approximately equal to 6166.64 mfs. There exists a 

bifurcation from weak structures to C J structures as {J increases. A C J structure is 

first predicted for approximately P = 8xl04 kg/(s m2). A continuum ofCJ str.uctures 

are predicted for 8 x 104 :5 {J :5 1.3 x 105 kgf(s m2). For {J > 1.3 x 105 kgf(s m2), no 

steady shocked gas-unshocked solid detonation structures are predicted since a solid 

sonic point is reached within the reaction zone. 

For Case III, Fig. 6.11(c) shows that a continuum of weak structures are predicted 

for P < 6.16 x 104 kgf(s m2). Once again, Dw is insensitive to changes in {J for 

P < 1 x 103 kg/(s m2}, and is approximately equal to 6174.75 mfs. For increasing 

/3, Dw approaches but does not reach DcJ since a solid sonic condition is predicted 

within the reaction zone for P > 6.16 x 104 kgf(s m2). For this case, the minimum 

steady wave speed for a shocked gas-u.nshocked solid detonation is Dw = 6160.14 m/ s. 
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7 

UNSTEADY ANALYSIS OF TWO-PHASE DETONATION 

In this chapter, we give an unsteady analysis of the piston-initiated DDT prob­

lem. The goals of this analysis are three-fold: I) to demonstrate the existence of 

DDT events which give rise to the steady detonation structures predicted in the pre­

vious chapter; 2) to investigate the evolution of detonation for parameter values and 

ambient conditions for which no steady shocked gas-unshocked solid detonations were 

predicted; and 3) to investigate the influence of material comp~tion, interphase drag, 

and ambient solid volume fraction on DDT and detonation wave structure. Through­

out, emphasis is placed on comparing detonation structures predicted by the unsteady 

analysis with results of the steady analysis. 

We focus on Cases I and II identified in TABLE 6.2, and fix all remaining model 

parameters and the ambient conditions at the values listed in TABLE 6.1. Case 

I is considered in Section 7.1, where we show the existence of DDT events which 

give rise to the CJ and weak detonation structures shown in Figs. 6.6 and 6.10, 

respectively, and investigate the influence of compaction viscosity, P,c, on both DDT 

and detonation wave structure. Case II is considered in Section 7.2.1, where we 

investigate the evolution of detonation for values of the drag parameter, /3, greater 

than the maximum value for which steady shocked gas-unshocked solid C J structures 

were predicted. Here, it is demonstrated that C J structures having a single shock in 

both the gas and solid evolve, as do CJ structures having only a single lead shock in 

the solid. Also, the influence of /3 on DDT is investigated. Lastly, in Section 7.3 we 

show that C J structures having a single shock in both the gas and solid also evolve for 

ambient mixture densities less than the minimum value for which steady shocked gas-
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unshocked solid C J structures were predicted. As mentioned in the previous chapter, 

this is a physically interesting case as the ambient mixture density of the material 

is known a priori, and is a direct measure of the extent of material damage in cast 

explosives or propellants. The piston velocity prescribed by Eq. 4.125 was-used for 

all simulations performed in this analysis. 

7.1 Effect of Material Compaction 

For Case I shown in Fig. 6.ll(a), the steady analysis predicts a continuum of 

shocked gas-unshocked solid weak detonation structures for P,c ~ 9x 104 kgf(s .m), and 

a continuum of shocked gas-unshocked solid C J detonation structures for P,e greater 

than this value. In this section, we first give DDT results for P,e = 1 x 102 kgf(s m) 

which demonstrate the evolution of a shocked gas-unshocked solid weak detonation 

structure, and then give DDT results for P.c = 1 x 106 kgf(s m) which demonstrate 

the evolution of a shocked gas-unshocked solid C J detonation structure. This section 

is concluded by summarizing DDT results and detonation structures predicted for 

several values of P,c within the range 1 x 102 ~ P,c kg/(s m) ~ 1 x 107 kg/(s m). The 

computational domain used for these unsteady numerical simulations was defined for 

0 < i < 50 em, and consisted of N = 1500 uniformly spaced nodes. The average 

CPU time for a single simulation was approximately five hours. 

7.1.1 Evolution of a Weak Detonation 

Shown in Fig. 7.1 are the predicted velocity (measured relative to the laboratory 

frame) , pressure, and temperature history of the gas for P,e = 1 x 102 kg/ ( s m). Also 

shown in this figure are the spatial profiles at f = 210 p.s. The predicted solid velocity, 

pressure, and temperature history are shown in Fig. 7.2. Each of the curves for the 

solid variables is plotted up to the point of complete combustion (4>2~ = 1 x w-5
) . In 

these figures, i is position measured relative to the piston surface. 

The moving piston transmits energy to the ambient granular material through 
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forward propagating gas and solid acoustic waves. As discussed in Chapter 2, the 

non-dimensional model parameter 1r7 = hot:or 0 is the ratio of the characteristic time 
P.c 

associated with the propagation of solid acoustic waves in the ambient solid to the 

characteristic time associated with compaction of the ambient material. -F.or_ this 

simulation, 1r7 = 5.13; thus, compaction occurs on a faster time scale than does the 

propagation of solid acoustic waves. As such, a solid shock does not form in response 

to the accelerating piston due to the rapid relaxation in solid pressure associated with 

material compaction (i.e., P2 -+ P1 + j). Rather, a dispersed compaction wave quickly 

forms which propagates away from the piston at constant speed. The predicted 

compaction wave speed relative to the fixed laboratory frame is 401.98 mfs, which 

is well below the ambient solid sound speed (3000 mfs). The predicted compaction 

zone thickness is approximately 5.0 mm. A continuous variation in all variables is 

predicted within the compaction zone. The gas pressure and temperature increase 

from their ambient values of 2.57 M Pa and 300 K to approximately 19.81 M Pa 

and 330.25 K, and the solid pressure and temperature increase from their ambient 

values of 8.21 MPa and 300 K to approximately 55.59 MPa and 304.53 K within 

the compaction zone, respectively. The gas and solid velocity increase from 0 m/ s to 

100 m/ s, as required by the zero mass flux boundary condition at the piston surface. 

The predicted solid volume fraction in the compacted region is approximately 0.94. 

The gas and solid states in the compacted region are not constant, but deviate slightly 

due to thermal non-equilibrium between the phases. However, since the temperature 

difference between the gas and solid is small, the rate of thermal energy transfer is 

accordingly small. 

As time advances, the width of the compacted region increases as the compaction 

wave propagates away from the piston. Combustion initiation is predicted to occur 

at the piston surface after an induction period of approximately 135 p.s. Induction 
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Figure 7.1: Predicted time histories for the shocked gas-unshocked solid weak detona­
tion simulation: (a) gas velocity, (b) gas pressure, and (c) gas temperature. 
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(a) (b) 

(c) 

Figure 7.2: Predicted time histories for the shocked gas-unshocked solid weak detona­
tion simulation: (a) solid velocity, (b) solid pressure, and (c) solid temperature. 

periods prior to the onset of sustained combustion are characteristic of piston-initiated 

DDT in granular high-explosives [8, 80, 81). It is widely accepted that during the 

induction period, weakly exothermic chemical reactions take place due to localized 

heating of the explosive material as it is compacted. As previously discussed, possi­

ble heating mechanisms include adiabatic shear localization within explosive particles, 

friction between explosive particles, and adiabatic compression of the gas contained 

within the interstices of explosive particles. As progressively more energy is liberated 

due to combustion, the reaction rate increases resulting in a self-accelerating process. 

Since chemical reaction is local in nature, the compacted explosive nearest the piston 
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surface incubates the longest and, consequently, is first to undergo sustained com­

bustion. The onset of sustained combustion marks the end of the induction period. 

In this study, the induction period is modeled using the evolution equation for the 

ignition variable I (Eq. (2.9)]. Within the context of this model, the higheF--temper­

ature gas in the compacted region transfers an increasing amount of thermal energy 

to the solid as time advances due heat transfer. As such, both the solid pressure and 

temperature increase, resulting in a net increase in the growth rate of I. At the time 

of combustion initiation, defined as the time at which I = fig = 0.5, the thermal 

energy acquired by the solid is assumed sufficient to initiate full-scale combustion. 

An estimate for the induction time can be obtained from Eq. (6.27). To this end, 

we choose as characteristic values the gas pressure {19.81 MPa) and temperature 

{330.25 K), the solid pressure {55.59 MPa) and temperature (304.53 K), and the 

gas and solid volume fraction {0.06 and 0.94, respectively) in the compacted region. 

Substituting these values into Eq. {6.27) gives an estimated ignition time of 162 p.s. 

This value reasonably agrees with the numerically predicted value of 135 J.LS. 

As seen in Figs. 7.1 and 7.2, a rapid increase in the velocity, pressure, and tem­

perature of both the gas and solid is predicted following the onset of combustion. 

Transition to detonation is predicted to occur almost immediately. The detonation 

continuously accelerates and strengthens as it propagates through the compacted 

material. The solid is first completely consumed at the piston surface approximately 

140 J.LS after piston impact; consequently, the solid is not directly affected by the 

moving piston for f > 140 p.s. The accelerating detonation overtakes the compaction 

wave approximately 145 p.s after piston impact. Since the gas and solid pressure, gas 

and solid temperature, and solid volume fraction continuously decrease immediately 

in front of the detonation as it traverses the compaction zone structure, both a left­

propagating rarefaction and a right-propagating entropy wave are produced by the 

interaction. For this case, the entropy wave has a continuous structure (i.e., it is not 

153 



200 

T50 

50 

' Compaction 
(401.98 m/s) 

2 4 6 8 10 12 

~(em) 

Figure 7.3: Predicted gas density (kgfm3 ) contours for the shocked gas-unshocked 
solid weak detonation simulation. 

a contact discontinuity). These waves are evident in Fig. 7.3 which gives gas density 

contours projected in the x-f plane. Subsequently, the left-propagating rarefaction 

reflects off the piston surface, the entropy wave continues to propagate slowly to the 

right, and the accelerating detonation relaxes to a steady weak detonation propagat­

ing at speed 6168 m/ s. Following the detonation is a right-propagating rarefaction 

which reduces the gas velocity at the end of the reaction zone to that of the piston 

(100 m/s). The rarefactions are indicated in the spatial profiles for the gas velocity 

and pressure at f = 210 JJS [Figs. 7.1(a,b)], and the entropy wave· is indicated in 

the spatial profile for the gas temperature at f = 210 JJS (Fig. 7.1(c)]. Since the 

gas velocity (measured relative to the piston) is zero through the entropy wave at 

f = 210 JJS, and since thermal diffusion is absent from the model, the wave does not 

move relative to the piston, nor does its amplitude decrease as time advances. 

Also indicated in the gas temperature profile of Fig. 7.1(c) is an entropy layer im­

mediately next to the piston surface which is generated during the transition process. 

Menikoff (82, 83) and Menikoff and Lackner [85] have shown that shock-capturing 

methods predict a spurious entropy layer when a shock interacts with a solid bound-
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ary, and have proposed a production mechanism for this anomalous structure which 

is a direct consequence of the artificial width of the numerically predicted shock. For 

hyperbolic equations, the time interval associated with the shock-boundary interac­

tion is zero since the shock is a discontinuity. However, numerical shocks, h~v.ing an 

artificial width due to numerical diffusion, interact with the boundary over a finite 

time interval. Since entropy production occurs only during the interaction period, 

the predicted width of the spurious entropy layer is close to the artificial shock width. 

Though not reported in this dissertation, spurious entropy layers were numerically 

predicted near the piston surface when the piston was impulsively set into constant 

velocity motion. Glaister [37] has also predicted spurious entropy layers for similar 

types of problems. Since the piston was continuously accelerated from rest to a con­

stant velocity for the simulations reported in this thesis, the effects of the entropy 

production mechanism may be minimal. Furthermore, the width of the entropy layer 

predicted here is much larger than the length of three computational cells, the typical 

length needed to numerically capture shocks. Nevertheless, it is difficult to conclu­

sively determine if this entropy layer is physical, or if it is a numerical artifact of the 

shock-capturing method. 

The predicted solid volume fraction history is shown in Fig. 7.4. Here, the inert 

compaction wave is seen propagating away from the piston for early time. Across this 

wave, the ambient mixture is compacted from a solid volume fraction of 0. 70 to 0.94. 

Following combustion initiation at the piston surface at f = 135 p.s, combustion 

consumes the solid as the resulting detonation propagates through the compacted 

material. As seen in this figure, the detonation is about to overtake the compaction 

wave at f = 141.95 p.s. Soon afterwards, the steady detonation forms. The solid 

volume fraction continuously decreases from 0. 70 to cf>2t = 1 X 10-s through the 

steady detonation structure. 

The numerically predicted compaction wave and burn front trajectories in the x-f 
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Figure 7.4: Numerically predicted solid volume fraction history for the shocked gas­
unshocked solid weak detonation simulation. 

plane are shown in Fig. 7.5. Also shown in this figure are the compaction wave and 

bum front trajectories observed experimentally by McAfee et al. (80] (as reported by 

Stewart et al. [111}). In their experiment, McMee et al. impacted a bed of granular 

HMX with an explosively driven piston. The granular material, which was confined 

by a thick-walled steel tube, was prepared such that tf>2o ~ 0.70 and Pa. I"V 1200 kgfm3 • 

The size of the HMX granules ranged from 10-100 p.m, and the impact velocity of the 

piston was approximately 100 m/ s. These values are representative of the ones used 

in this study. 

As seen in Fig. 7.5, good agreement exists between the numerically predicted 

and experimentally observed compaction and detonation wave trajectories. Though 

the experiment indicates that combustion is first initiated at the piston surface, as is 

predicted by the model, it is observed to occur much sooner ( f I"V 88 p.s) than predicted 

by the model. The experiment indicates that a low speed ( I"V 400 m/ s) combustion 

wave propagates away from the piston following combustion initiation, and that an 

inert solid plug is formed slightly ahead of the combustion front, approximately 120 p,s 

from the time of piston impact. As the plug accelerates and grows in size, a shock 
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Figure 7.5: Comparison of the predicted compaction wave and burn front trajectories 
for the shocked gas-unshocked solid weak detonation simulation ·with the experimental 
wave trajectories identified by McAfee et al. (80]. 

is formed immediately ahead of the plug which ignites the material resulting in the 

formation of a second combustion wave. This second wave then quickly undergoes a 

transition to detonation. This sequence of events, including inert plug formation, has 

also been recently observed by Luebcke et al. (75] during DDT in granular PETN. 

Though the model does not predict the slow speed combustion wave, nor the formation 

of an inert solid plug, it does reasonably predict 1} the compaction wave speed, 2) the 

compaction wave thickness, 3) the solid volume fraction behind the lead compaction 

wave, ~) the time and distance associated with transition to detonation, and 5) the 

detonation wave speed. Here, the time and distance for transition to detonation 

are defined by the point in the e-r plane where the detonation speed, as measured 

by the slope of the burn front, approximately equals the steady detonation speed. A 

comparison of the numerically predicted and experimentally observed values for these 

quantities is given in TABLE 7.1. 

Lastly, a comparison of the numerically predicted detonation structure with the 

shocked gas-v.nshocked solid weak detonation structure predicted by the steady anal-
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Quantity Experiment Model 

compaction wave speed 400 m/s 401.98 mjs 
compaction wave thickness 2mm 5mm 

solid volume fraction behind 0.90 0.94 - :--

the lead compaction wave 
time to detonation 142 Jl.S 138 Jl.S 

distance to detonation 25mm 10mm 
measured relative to the piston 
detonation wave speed 6200 mjs 6169.4 mjs 

TABLE 7.1: COMPARISON OF NUMERICALLY PREDICTED QUANTITIES 
WITH THE RESULTS OF THE DDT EXPERIMENT GIVEN IN REFERENCE 
{80) 

ysis is given in Fig. 7.6. This figure shows the variation in density, velocity, pressure, 

temperature, and Mach number squared (measured relative to the wave) of the gas 

and solid, and in the solid volume fraction and particle radius within the reaction 

zone. The flow located between the piston surface ( ~ = 0 em) and the end of the 

reaction zone ( ~ = 43.4 em) is not shown in this figure. Good agreement exists be­

tween the predicted solutions. As such, it is clear that a shocked gas-unshocked solid 

weak detonation structure has evolved. The numerical method is able to capture 

the gas shock with approximately three computational cells without the generation 

of spurious oscillations. Though not very evident here, the numerical method has 

difficulty accurately predicting the variation in solid quantities near the end of the 

reaction zone; this difficulty is slightly noticeable in the numerically predicted solid 

density profile. Reasons for this difficulty are unclear, but it is likely a consequence 

of the burn termination technique used in this study. 
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Figure 7.6: Comparison of the shocked gas-unshocked solid weak detonation struc­
tures predicted by the steady and unsteady detonation analyses: (a,b} gas and solid 
density; (c,d) gas and solid velocity; (e,f) gas and solid pressure; (g,h) gas and solid 
temperature; (ij) gas and solid Mach number squared (relative to the wave); (k) solid 
volume fraction; and (1) particle radius. 
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7.1.2 Evolution of a Chapman-Jouguet Detonation 

Shown in Fig. 7. 7 are the predicted velocity, pressure, and temperature history of 

the gas for fJc = 1 x 106 kgf(s m). Also shown in this figure are the spatial profiles for 

these quantities at f = 89ps. The predicted solid velocity, pressure, and temperature 

history are shown in Fig. 7.8. Once again, each of the curves for the solid variables 

is only plotted up to the point of complete combustion. 

For this simulation, 1r7 = 5.13 x 10-4; consequently, the time scale associated with 

compaction of the ambient material is much larger than the time scale associated 

with the propagation of solid acoustic waves through the ambient solid. Since the 

relaxation in solid pressure due to material compaction is insignificant during the 

short time interval required for the piston to accelerate to its maximum constant 

velocity (2 ps), forward propagating gas and solid acoustic waves generated by the 

moving piston rapidly coalesce to form shocks. The gas shock, which evolves almost 

immediately following the initial movement of the piston, is not evident in the history 

profiles of Fig. 7.7. However, the faster propagating solid shock is evident in the 

history profiles of Fig. 7.8. Here, the solid velocity, pressure, and temperature for 

f < 10 ps are close to the shocked solid velocity (100 m/s), pressure (.548 GPa), and 

temperature (341.38 K) associated with a 100 m/ s piston. 

Combustion is initiated at the piston surface after a short induction period of ap­

proximately 3 ps. An estimate for the induction time can be obtained from Eq. (6.27). 

To this end, we choose as characteristic values the shocked gas and solid pressure 

(3.22 MPa and 0.548 GPa, respectively), and the shocked gas and solid temperature 

(318.44 K and 341.38 K, respectively) associated with a 100 m/s piston, and the 

ambient gas and solid volume fraction (0.30 and 0.70, respectively). The estimated 

ignition time is 0.94 ps; thus, ignition rapidly occurs due to compression of the ma­

terial. The shocked gas pressure, gas temperature, and solid temperature produce 

a relatively small increase in the growth rate of the ignition variable I. The high 
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Figure 7.7: Predicted time histories for the shocked gas-unshocked solid CJ detonation 
simulation: (a) gas velocity, (b) gas pressure, and (c) gas temperature. 
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Figure 7.8: Predicted time histories for. the shocked gas-unshocked solid C J detonation 
simulation: (a) solid velocity, {b) solid pressure, and (c) solid temperature. 

shocked solid pressure is primarily responsible for the rapid increase in the growth 

rate of I resulting in ignition. 

Following ignition, the gas velocity, pressure, and temperature rapidly increase as 

the combustion wave strengthens and undergoes transition to detonation. Smaller 

increases in the solid velocity, pressure, and temperature are predicted during the 

transition process. The solid is completely consumed at the piston surface approxi­

mately 16 J.LS after piston impact. The solid shock, propagating at speed 3116.4 m/ s, 

is overtaken by the strengthening detonation 20.12 J.LS after piston impact. Small 

amplitude rarefaction and entropy waves are generated in the gas as the detonation 
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overtakes the solid shock. The rarefaction is not noticeable in the spatial profiles for 

the gas velocity, pressure, and temperature at f = 89 J..I.S (Fig. 7.7}, and the entropy 

wave is barely noticeable in the spatial profile for the gas temperature. Once again, 

an entropy layer is generated immediately next to the piston during the tr~sition 

process as indicated in the gas temperature profile. Subsequently, the strengthening 

detonation relaxes to a steady CJ detonation propagating at speed 6154.6 mfs. Fol­

lowing the steady detonation is a right-propagating rarefaction, which is indicated in 

Fig. 7.7(a). 

The solid volume fraction history is shown in Fig. 7.9. No compacted region is 

predicted in response to the moving piston, and the solid volume fraction monotoni­

cally decreases from its ambient value to zero through the detonation wave structure. 

The predicted trajectories for both the inert solid shock and the burn front are shown 

in Fig. 7.10. The predicted time and length required for transition to detonation are 

approximately 21 J.LS and 60 mm, respectively. 

A comparison of the numerically predicted detonation structure with the shocked 

gas-unshocked solid C J structure given by the steady analysis is shown in Fig. 7 .11. 

Good agreement exists between the solutions. 
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tures predicted by the steady and unsteady detonation analyses: (a,b) gas and solid 
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7.1.3 Summary of Results for Increasing Compaction Viscosity 

The relaxation time associated with changes in solid volume fraction due to the 

non-equilibrium stress condition P2 - P1 - f(¢>2) =f. 0 is inversely proportional to fi.c· 

This is easily seen from the dimensional form of the characteristic equatioii --for the 

compaction mode, repeated here for convenience: 

(7.1) 

This equation is valid along solid particle paths defined by ~ = v2• The first term on 

the right hand side of this equation accounts for changes in solid volume fraction due 

to material compaction, and the second term accounts for changes due to combustion. 

Figure 7.12 gives the variation in gas and solid pressure, and gas and solid Mach 

number squared (measured relative to the wave) within the reaction zone as predicted 

by both the steady and unsteady analysis for increasing values of fi.c· In these plots, 

position is given by the steady wave coordinate, (. Each detonation structure consists 

of a shocked gas and an unshocked solid. Weak detonation structures are predicted 

for P.c = 1 x 102 , 1 x 103, and 1 x 104 kg/(s m), and CJ detonation structures are 

predicted for fi.c = 1 x 105 , 1 x 106, and 1 x 107 kgf(s m). Due to the gas shock, 

P2 - P1 - f{¢>2) =/= 0 immediately behind the shock; the subsequent relaxation in 

¢>2 is governed by Eq. 7.1. As seen in the pressure plot, the gas and solid pressures 

rapidly equilibrate for fi.c = 1 x 102 (actually, a small pressure difference is predicted 

throughout much of the reaction zone, particularly near the shock). For this value 

of fi.c, the gas sonic point is located within the reaction zone at ( = -11.31 mm; 

the location of this point is identified in the Mach number plot. As P.c increases, the 

relaxation rate associated with material compaction decreases, larger gas and solid 

pressure differences are predicted, and the location of the gas sonic point approaches 

the complete combustion end state. The gas sonic point is located at the end of the 

reaction zone for the C J structures. Results of the unsteady analysis indicate that 

168 



100.000 1000.0 

10.000 
100.0 

....... 1.000 

~ 10.0 
~ N -- ~ 

<Q, 0.100 

~c .. 1x1ol ig/(:tm) 
1.0 

0.010 Q Numerical (gas) 
6 Numerical (solid) 

- S.S'Ibeory 0.1 
0.001 

-20 -15 -10 - 5 0 -20 -15 - 10 -5 0 

" " I; (mm) ~ (mm) 

100.000 1000.0 

10.000 
100.0 

~1.000 

~ 10.0 
N ._.. 
~ 

<Q, 0.100 nc= lxlo3 ig/(lm) 
1.0 

0.010 Q Numerical (Ju) 
6 Numerical (solid) 

- s-s 'lbeory 0.1 
0.001 

-20 -15 -10 - 5 0 -20 -15 -10 - 5 0 
1\ 
I; (mm) 

1\ 
I; (mm) 

100.000 1000.0 

10.000 
100.0 

~1.000 

~ 10.0 
N ._.. 
~ 

<Q, 0.100 

nc•lxlo4 kgl(lm) 
1.0 

0.0 10 Q Numerical (gas) location of 
6 Numerical (solid) gas sonic point 

- S-STheory 0.1 (·12-lS mm) 
0.001 

-20 -15 - 10 -5 0 - 20 -15 -10 - 5 0 

" " I; (mm) I; (mm) 

Figure 7.12: Summary of predicted shocked gas-unshocked solid detonation structures 
for increasing values of compaction viscosity. 
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the bifurcation from weak to CJ structures occurs near flc = 9 x 104 kg/(s m), in 

agreement with the result predicted by the steady analysis for Case I. 

The length scale associated with the equilibration P2 -+ Ft + j { 4>2) near the shock 

for fJ.c = 1 x 102 kgf(s m), as seen in Fig. 7.12, is smaller than the lengt-h-of the 

artificial shock structure predicted by the numerical method, and is substantially 

smaller than the reaction zone length. Accurate numerical predictions are dependent 

upon the properties of the numerical method, and require that physical length scales 

be much larger than artificial length scales associated with numerical diffusion and 

dispersion. As such, the physics governing the formation of this relaxation layer 

is masked by numerical diffusion and not accurately predicted. Though the error 

shown in Fig. 7.12 does not appear severe when compared to the steady solution, 

the magnitude of the error will increase for smaller values of fJ.c· Furthermore, since 

the length of this relaxation layer is much smaller than the reaction zone length, 

it becomes computationally impractical to resolve this layer, which would require a 

prohibitively large number of grid points within the reaction zone. 

Figure 7.13 gives the predicted variation in the compaction and combustion rates, 

identified by the forcing terms in Eq. (7.1), along solid particle paths within the 

reaction zone for the structures shown in Fig. 7.12. The results shown here are pre­

dicted by the steady analysis. In these figures, both rates are zero ahead of the shock 

since the freestream flow is an equilibrium state. For fJ.c = 1 x 102 kgf(s m), the 

compaction rate rapidly decreases as the solid particles cross the gas shock. Here, 

the high pressure gas contained within the interstices of the solid particles push the 

solid particles apart, thereby locally decreasing the solid volume fraction. Combus­

tion, which also locally decreases the solid volume fraction, is insignificant during 

this short time interval. Subsequently, the combustion rate accelerates, and eventu­

ally dominates the compaction rate. Both rates vanish at the complete combustion 

end state. For larger values of flc, the compaction rate becomes less significant as 
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compared to the combustion rate. In fact, the compaction rate is inconsequential for 

approximately flc > 1 x 105 kgj(s m). 

The complete combustion gas end states predicted by both the steady and un­

steady analysis for the different values of flc considered here are listed in TAaLE 7.2. 

Overall, the predictions agree well. However, wave speeds predicted by the unsteady 

analysis are consistently lower than those predicted by the steady analysis, although 

the discrepancy is less than 0.1 per-cent. The discrepancy may be due in part to the 

burn termination technique used in the unsteady analysis to avoid singularities associ­

ated with the complete combustion state. Since the solid particles are not completely 

consumed, a small amount of energy is retained by the solid near the end of the re.. 

action zone which would otherwise be transferred to the gas and used to support the 

detonation (for CJ detonations). Other possible reasons for the discrepancy include 

uncertainties when computing the wave speeds, and insufficient grid resolution. Also, 

it is possible that the unsteady numerical solutions were slightly under-developed, 

and that better agreement might be obtained by allowing the solutions to evolve for 

longer time periods. 

The predicted variation in time to detonation, fDDT, and distance to detonation, 

eDDTt with llc are shown in Fig. 7.14. Here, distance to detonation is measured rela­

tive to the piston surface. For small values of flc [i.e., flc < 1 x 103 kgj(s m)], material 

compaction dominates non-linear acoustic effects associated with gas and solid con­

vection. As such, gas and solid shocks do not form; rather compaction waves are 

generated which propagate away from the piston at speeds below the ambient solid 

sound speed (3000 m/s). The solid pressure in the compacted region("" 50 MPa) is 

considerably lower than the corresponding shocked solid pressure resulting from the 

impact of a 100 m/ s piston (547.5 M Pa), and the ignition time is delayed; conse.. 

quently, fDDT is large. Once combustion is initiated, transition to detonation rapidly 

occurs in the compacted material where the mixture density is high("" 1612 kgjm3 ); 
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reaction zone for increasing values of compaction viscosity. 
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""""' ~ 

Unsteady Analysis Steady Analysis 

Pc PI final ui final PI final M[ final b fJI final ui final />1 final M[ final b 
(kgf(s m)) (kgfm3 ) (mfs) (GPa) (mfs) (kgfm3 ) (mfs) (GPa) (mfs) 

1 X 102 1665 1723 12.8 1.09 6168.0 1664 1721 12.8 1.09 6169.4 

1 X 103 1667 1727 12.8 1.09 6166.1 1666 1726 12.8 1.09 6168.1 

1 X 104 1680 1761 13.0 1.06 6162.1 1680 1761 13.0 1.06 6163.4 

1 X 105 1702 1820 13.5 1.00 6157.2 1704 1822 13.5 1.00 6159.9 

1 X 106 1704 1821 13.5 1.00 6154.6 1704 1822 13.5 1.00 6159.9 

1 X 107 1704 1823 13.5 1.00 6154.2 1704 1822 13.5 1.00 6159.9 

TABLE 7.2: COMPARISON OF THE PREDICTED GAS END STATES FOR ,CASE I IDENTIFIED IN TABLE 6.2 WITH 
THE VALUES GIVEN BY THE STEADY DETONATION ANALYSIS 
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Figure 7.14: Predicted time and distance to detonation for Case I identified in Table 
6.2. 

consequently, f.vDT is small. This result is consistent with both experiments [15] and 

numerical modeling results [23] of DDT in granular high-explosives which show that 

transition length decreases with increasing ambient mixture density. The opposite 

trends are predicted for large values of P.c [i.e., {Lc > 1 x 104 kgf(s m)]. Here, 

non-linear acoustic effects dominate material compaction, and gas and solid shocks 

quickly form. Little compaction takes place. The shocked solid pressure is sufficient 

to rapidly initiate combustion; consequently, fvDT is small. Also, f.vDT is large as 

the mixture density in the shocked region is relatively low ("' 1240 kgfm3). For 

intermediate values of {Lc [i.e., 1 x 103 kgf(s m) < P.c :::; 1 x 104 kgf(s m}), both 

material compaction and convection are important, and fvDT and f.vDT are sensitive 

to small changes in Pc· 
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7.2 Effect of Interphase Drag 

For Case II shown in Fig. 6.11(b), the steady analysis predicts a continuum of 

shocked gas-unshocked solid weak detonation structures for fj < 8 x 104 kgf(s m2), 

and a continuum of shocked gas-unshocked solid CJ detonation structures for 8x 104 < 

fj ~ 1.3 x 105 kgf(s m2). No steady shocked gas-unshocked solid detonation structures 

were predicted for /3 > 1.3x 105 kgf(s m2) as a solid sonic point was reached within the 

reaction zone. In this section, we first give DDT results for (i = 1.1 x 106 kgf(s m2 ) 

which illustrate the evolution of a CJ detonation structure having a lead shock 

in the solid, followed by a shock in the gas, and then summarize the DDT re­

sults and detonation structures predicted for several values of /3 within the range 

1 x 105 ~ fj < 1 x 109 kg/(s m2) . The computational domain used for the unsteady 

numerical simulations was defined for 0 < e < 50 em, and consisted of N = 3000 uni­

formly spaced nodes. The CPU time for these simulations ranged from approximately 

15 to 120 hours. 

7.2.1 Evolution of a Two-Shock Chapman-Jouguet Detonation 

Shown in Fig. 7.15 are the predicted velocity, pressure, and temperature history 

of the gas for fj = 1.1 x 106 kgf(s m2). The spatial profiles for these quantities at 

f = 90 IJ.S are also shown in this figure. The predicted solid velocity, pressure, and 

temperature history are shown in Fig. 7.16. 

The histories for the gas and solid quantities are qualitatively similar to those 

predicted and discussed in the previous section. Initially, a compaction wave propa­

gating at speed 2983.7 m/ s is predicted to evolve in response to the moving piston. 

Combustion is initiated at the piston surface at f f'V 4 IJ.S, and the resulting com­

bustion wave strengthens and undergoes a transition to detonation at approximately 

f = 26 IJ.S. Subsequently, the accelerating detonation overtakes the compaction wave, 

and relaxes to a steady two-shock CJ detonation propagating at speed 6158.6 mfs. 
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Figure 7.15: Predicted time histories for the shocked gas-shocked solid CJ detonation 
simulation: (a) gas velocity, (b) gas pressure, and (c) gas temperature. 
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Figure 7.16: Predicted time histories for the shocked gas-shocked solid CJ detonation 
simulation: (a) solid velocity, (b) solid pressure, and (c) solid temperature. 

The two-shock structure of the detonation wave is barely noticeable in the spatial 

profile for the gas velocity at f = 90 p,s {Fig. 7.15(a)). 

The solid volume fraction history is shown in Fig. 7.17. Here, the effect of the 

two-shock detonation structure is evident, as these spatial profiles appear different 

from those predicted in the previous section. Following the onset of combustion, 

a compacted region having t/>2 > 0. 70 is seen to develop immediately ahead of the 

combustion front. The solid shock is located at the front of the compacted region, 

and the gas shock is located at the point where 4>2 is a maximum. This compacted 

region results from the coupling between exothermic energy release by combustion 
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Figure 7.17: Predicted solid volume fraction history for the shocked gas-shocked solid 
C J detonation simulation. 

and large interphase drag. The drag force exerted by the high velocity gas on the 

lower velocity solid is sufficient to choke the solid within the reaction zone resulting 

in the formation of a solid shock. Though combustion is initiated by the solid shock, 

significant combustion only occurs behind the gas shock where the gas pressure is high. 

The compacted region steepens as the combustion wave accelerates and undergoes 

transition to steady detonation, and subsequently continues to propagate with the 

detonation. No change in the spatial profiles is seen for approximately f > 30 p,s. 

Solid volume fraction histories similar to the one shown here have been predicted by 

Baer and Nunziato [5) and Baer et al. [7] for the DDT of granular high-explosives, 

though only a vague description of the resulting detonation structure was given. 

The predicted compaction wave and burn front trajectories are shown in Fig. 

7.18. Also indicated in this figure is the distance between the compaction front 

and the burn front, !:l.x •. Here, the burn front is assumed to be located at the gas 

shock since this location marks the onset of significant combustion. The predicted 

time and length required for transition to detonation are approximately 25.8 p,s and 
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Figure 7.18: Predicted compaction wave and burn front trajectories for the shocked 
gas-shocked solid C J detonation simulation. 

71 mm, respectively. The predicted variation in !:l.x. with time is shown in Fig. 

7.19. As seen in this figure, the compaction front propagates faster than the burn 

front for approximately f < 12.5 ps. For 12.5 ~ f =:; 24.0 ps, the distance between 

the compaction and burn front narrows as the combustion wave strengthens and 

accelerates. At approximately f = 24 ps, !:l.x. has nearly reached its equilibrium 

value of 3.33 mm associated with steady detonation. The small "wiggles" in this 

curve are due to the technique used in the numerical algorithm for determining the 

location of the fronts, and are equal in length to one computational cell (0.17 mm) . 

As such, they should not be construed as resulting from a dynamical or numerical 

instability. 

The numerically predicted detonation wave structure is shown in Fig. 7 .20. The 

location of the gas and solid shocks, which are smeared over approximately three 

computational cells due to numerical diffusion, are evident in these plots. Across 

the solid shock, an abrupt change in all solid quantities is predicted, as is an abrupt 

decrease in particle radius. A continuous variation in the gas quantities, and the solid 
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Figure 7.19: Predicted history for the distance between the lead solid shock and the 
trailing gas shock for the shocked gas-shocked solid C J detonation simulation. 

volume fraction, is predicted across the solid shock. The rapid change in gas velocity 

through the solid shock seen in Fig. 7.20(c) is due to the large value of /3 used in 

this simulation; consequently, the gas and solid velocities rapidly equilibrate through 

the solid shock. All quantities vary continuously throughout the compaction region 

located between the solid and gas shocks. An abrupt change in the gas quantities 

is predicted across the gas shock, while the solid quantities, solid volume fraction, 

and particle radius remain continuous. Significant combustion occurs behind the gas 

shock, reducing both the solid volume fraction and particle radius to near zero as the 

solid is consumed. All quantities vary continuously throughout the region located 

between the gas shock and the end of the reaction zone. 

As seen in Fig. 7.20(i), the gas Mach number measured relative to the wave is 

locally unity at the end of the reaction zone. Furthermore, the numerically pre-

dieted gas density {1704 kgfm3), velocity {1822 mfs), and pressure (13.5 GPa) at 

the complete combustion state exactly match the CJ values for the gas predicted 

by the steady equilibrium end state analysis. The numerically predicted detonation 
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wave speed (6158.6 m/s) also agrees well with the CJ wave speed (6159.9 m/s) pre­

dicted by the end state analysis. Consequently, this wave is an example of a shocked 

gas-shocked solid C J detonation structure. 

- .. 
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Figure 7.20: Predicted shocked gas-shocked solid CJ detonation structure: (a,b) gas 
and solid density; (c,d) gas and solid velocity; (e,f) gas and solid pressure; (g,h) gas 
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7 .2.2 Summary of Results for Increasing Drag Coefficient 

The drag relaxation time associated with changes in gas and solid velocity due 

to the non-equilibrium kinematic condition v2- ill:/; 0 is directly proportional to /3. 
Here, we summarize detonation structures predicted by the unsteady numerical"analy­

sis for several values of /i associated with Case II identified in Table 6.2. In particular, 

we consider values /i ~ 1 x 105 kg/(s m2), and focus on the evolution of detonation 

structure for cases in which the steady structure analysis proved inconclusive. For 

/i < 1 x 105 kg/(s m2), both the steady and unsteady analysis predict weak and CJ 

detonation structures similar to those discussed in the previous section. An example 

of such a weak detonation structure is given in Fig. 7.12 for /3 = 1 x 104 kg/(s m2 ) 

[!1c = 1 x 104 kg/(s m)]. 

Shown in Fig. 7.21 is the predicted variation in gas and solid velocity, and gas and 

solid Mach number squared (measured relative to the wave) within the reaction zone 

for increasing values of /3. As shown later in this section, each of these structures is 

a CJ detonation. In particular, the structure predicted for /3 = 1 x 105 kg/(s m2) is 

a shocked gas-unshocked solid C J detonation. A comparison of this structure with 

the structure predicted by the steady analysis for this same value of {3 is given in the 

figure. Good agreement exists between the predicted solutions. As a consequence of 

the relatively small value for /i used here, a difference of at least 2000 m/ s is predicted 

between the gas and solid velocity at each point within the reaction zone. Though the 

solid is nearly choked (Mi = 1.09) at ( = -3.2 mm, the solid ftow remains entirely 

supersonic throughout the reaction zone. 

For /3 = 2 x 105 kg/(s m2), the unsteady analysis predicts the evolution of a 

two-shock C J detonation structure having a lead shock in the gas, followed by a 

weak shock in the solid. This result is consistent with the steady analysis in that no 

unshocked solid structures were predicted for approximately {3 > 1.3 x 105 kg/(s m2) 

as the solid becomes choked within the reaction zone. Here, the trailing solid shock is 
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located at ( = -1.75 mm, slightly ahead of the point ( = -2.6 mm where the steady 

analysis predicts that the solid first becomes choked for {3 = 1.3 x 105 kgf(s m2) . The 

unsteady analysis predicts a similar structure for /3 = 3 x 105 kgf(s m2 ), with the 

exception that the solid shock is stronger, and is located closer to the lead gas shock. 

The solid shock is strengthened due to the higher rate of conversion of gas kinetic 

energy into solid energy. As such, the difference in the gas and solid velocities is seen 

to decrease with increasing /3. 
For {3 = 4 x 105 kgf(s m2), the location of the solid shock is coincident with the 

lead gas shock, and the solid flow is subsonic throughout the reaction zone. This 

result suggests that there exists a unique value of /3, close to the value used in this 

simulation, for which a steady C J detonation structure evolves having a single gas­

solid compound shock. As discussed in Chapter 3, such compound discontinuities are 

admitted by the two-phase Ra.nkine-Hugoniot relations, Eqs. (3.59-3.67), and satisfy 

the two-phase entropy criterion given by Eq. (3.68). 

As /3 is further increased, C J detonation structures having a lead solid shock are 

predicted. For {3 = 6 x lOS, 1.1 x 106, and 1 x 107 kg/(s m2), the solid shock is 

followed by a gas shock located within the reaction zone which is seen to weaken and 

move further behind the solid shock with increasing /3. The gas shock weakens due to 

the increasing drag relaxation rate immediately behind the gas shock, causing the gas 

velocity to rapidly decrease in response to the lower velocity solid. For /J = 1 x 108 

and 1 x 109 kgf(s m2), the gas flow smoothly transitions from supersonic to subsonic 

flow near the point ( = -5.5 mm, and the solid flow is entirely subsonic throughout 

the reaction zone. In fact, little difference is seen here between the two solutions, 

both of which are examples of unshocked gas-shocked solid CJ detonation structures. 

As seen in the velocity plots of the lead shocked solid structures, the unshocked gas 

velocity rapidly equilibrates with the shocked solid velocity due to the large values 

of /J. Once again, the length scale associated with this relaxation process is on the 
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order of the artificial shock width; consequently, the physics governing this process 

is masked by numerical diffusion and not accurately predicted. The error associated 

with these inaccuracies is difficult to assess in the absence of steady-state solutions. 

Though numerical simulations were not performed for [3 > 1 x 109 kg/(s ~)._due to 

computational time requirements [the simulation for /3 = 1 x 109 kg/(s m2) required 

approximately 120 hours of CPU time], it is reasonable to expect, based on the results 

given here, that a continuum of unshocked gas-shocked solid C J detonation structures 

exist for values of [3 > 1 x 109 kg/(s m2). 

A physical estimate for /3 can be obtained using an empirical drag coefficient 

relation for the flow of gas around a solid sphere, CD [122): 

24 6 
CD = Re + rn: + 0.4, 

l+vRe 
(7.2) 

where Re is the Reynolds number based on the diameter of the sphere. We choose the 

following characteristic values which are representative of the conditions immediately 

behind the shock of shocked gas-unshocked solid detonation structures predicted in 

this study: PI = 60 kg/m3
, lu2- ull = 4000 m/s, f = 100 J.LS. We choose a gas 

viscosity of 9 x 10-5 kg/(s m) which is representative of heated air ('ii > 2500° K). 

Based on these values, we obtain Re = 5.3 x 105 and CD = 0.4082. Though this 

value of Re is slightly outside the range of validity of Eq. (7.2), we use this relation to 

obtain a first-order estimate for the drag force exerted by the gas on a single particle, 

which is computed to be 24.6 N. Assuming n = 1.67 X lOll particles/m3, which is 

a representative value predicted in this study, and neglecting interactions between 

particles, the drag force per unit volume for a system of particles is computed to be 

4.11 x 1012 N/m3 • Thus, from Eq. (2.2) we have that 

/3¢>1~ lu2- u1l,...., 4.11 x 1012 N/m3
• 

r 

Choosing ¢>1 = 0.3 (thus ¢>2 = 0.7), the estimate /3 = 4.89 x 105 kg/(s m2
) is obtained. 

Similar estimates for /3 are obtained based on the the scaling analysis given by Meni-
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koff et al. (84], while slightly larger estimates are obtained based on the empirical drag 

relation used by Baer and Nunziato (5]. For this value of /3, the detonation structures 

having a shock in both the gas and solid are predicted to evolve. 

Figure 7.22 gives the predicted variation in the compaction ~d combustion rates, 

identified in Eq. (7.1}, along solid particle paths within the reaction zone of the 

detonation structures shown in Fig. 7.21. The combustion rate is strictly negative 

and thus only locally decreases the solid volume fraction within the reaction zone. 

For C J detonation structures having a lead gas shock, i.e. for /3 = 1 x 105 , 2 x 105, 

and 3 x 105 kgf(s m2}, the compaction rate is negative since the sum of the gas 

pressure and the intragranular stress is everywhere greater than the solid pressure. 

For these cases, the high gas pressure within the interstices of the solid particles 

pushes the particles apart, thereby locally decreasing the solid volume fraction. For 

/3 ~ 4 x 105 kgf(s m2}, the strength of the solid shock is sufficient to produce a 

compacted region having ¢>2 > 0.70 at the front of the detonation structure. In this 

region, the solid pressure exceeds the sum of the gas pressure and the intragranular 

stress, and the bed of solid particles is compacted. The size of the compacted region 

is seen to increase with /3. Though combustion is initiated by the lead solid shock, the 

combustion rate is small throughout much of the compacted region. The compaction 

rate vanishes quickly as the gas and solid pressure nearly equilibrate in the region 

behind the gas shock. Based on these results, it is concluded that the existence of a 

compacted region within the reaction zone is directly associated with the presence of 

a lead solid shock. 

The numerically predicted results for detonation structure obtained for the differ­

ent values of /3 are summarized in TABLE 7.3. The predicted values for p1 final, u1 

final, P1 final, M? final, and iJ for all values of /3 agree well with the values predicted 

by the steady equilibrium end state analysis for the C J state. This .indicates that the 

predicted waves are CJ detonations. The predicted minimum value for Ml within 
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..... 
co 
~ 

fJ PI final 111 final P1 final Ml final Ml minimum D .6.x, (mm) 
(kgj(s m2)) (kgjm3 ) (mjs) (GPa) (m/s) (mm) 

1.0 X 105 1704 1822 13.5 1.00 0.086 6158.6 no solid shock 

2.0 X 105 1704 1821 13.5 1.00 0.075 6157.8 -1.75 

3.0 X 105 1705 1823 13.5 1.00 0.069 6157.8 -1.24 

4.0 X 105 1704 1822 13.5 1.00 0.083 6157.7 0.00 

6.0 X 105 1704 1822 13.5 1.00 0.112 6157.3 1.65 

1.1 X 106 1704 1822 13.5 1.00 0.165 6158.6 3.33 

1.0 X 107 1704 1821 13.5 1.00 0.829 6157.2 5.65 

1.0 X 108 1704 1821 13.5 1.00 0.858 6159.1 no gas shock 
' 1.0 X 109 1704 1822 13.5 1.00 0.859 6159.1 no gas shock i 
I 

II CJ state I 1704 1822 13.5 1.00 - 6159.9 - II 

TABLE 7.3: PREDICTED GAS END STATES FOR CASE II IDENTIFIED IN TABLE 6.2. 



the reaction zone decreases with /3 for 1 x 105 ::; {3 < 3 x 105 kgf(s m2
), and in­

creases with f; for f; > 3 x 105 kg/(s m). Since the predicted wave speed is nearly 

constant ("" DcJ = 6159.9 m/s), the shocked value for Ml is nearly constant for 

detonation structures having a lead gas shock. Consequently, the decrease . in the 

minimum value for M'f is due to the drag relaxation process immediately following 

the gas shock. This conclusion is substantiated by the steady analysis which predicts 

a thin relaxation layer immediately behind the gas shock of shocked gas-unshocked 

solid CJ detonation structures which further decreases Ml from its shocked value. 

Furthermore, this minimum value is predicted to decrease with increasing /3 (for /Jless 

than the maximum value associated with shocked gas-unshocked solid C J detonation 

structures). For larger values of /3, a lead solid shock is predicted, and the minimum 

value forM{ increases with /J as the trailing gas shock weakens. Also summarized in 

Table 7.3 is the predicted distance between the lead solid shock and the trailing gas 

shock, ax,, for two-shock detonation structures. 

Based on these results, the steady model equations were numerically integrated 

in an attempt to predict the two-shock C J detonation structure for /3 = 1.1 x 106 

kg/(s m2), and the unshocked gas-shocked solid CJ detonation structure for /3 = 

1 x 109 kgJ(s m2}. The results are compared to the detonation structures predicted 

by the unsteady analysis in Figs. 7.23 and 7.24, respectively. Here, no complete 

structures were predicted by the steady analysis due to difficulties encountered near 

gas sonic points. This does not indicate that no such steady structures exist; rather, 

the results of the steady structure analysis are inconclusive. 

For the incomplete steady result shown in Fig. 7 .23, the wave speed was fixed at 

DcJ = 6159.9 m/ s, and the distance between the lead solid shock and the trailing 

gas shock, ax,, was adjusted in order to minimize the value of ¢J2 at the location 

of the gas sonic point. In other words, ax, was adjusted in order to get as close 

as possible to the complete combustion state (¢>2 = 0) before reaching a gas sonic 

195 



5000 

0 Numerical (Jas) 

4000 "" 
Numerical (5olid) 

- S-Slbeory 

3000 

~ 
JU~poiDI 

(S-S Tbeory) '\ 
'-' 2000 - . . 

<:::s 

1000 

0 

0 -1!1 -10 -~ 0 
1\ 

C (mm) 

1000.0 l o N11111Crical (gas) 
"" N11111Crical (solid) 

- S-Slbeory 

~ 
au IOIIic: poiDI 1• tollic poW 
(Nua>eric:.l) (S-S Tbeory) I> 

100.0 

M 10.0 

~ 

\ I 1.0 

..J 

' 0.1 

-1~ -10 -s 0 
1\ 

C (mm) e (mm) 

Figure 7.23: Comparison of the numerically predicted shocked gas-unshocked solid C J 
detonation structure with an incomplete structure predicted by the steady analysis 
for {3 = 1.1 x 106 kgj(s m2) . 

point. A minimum value of t/>2 = 0.08 was predicted. The predicted minimum value 

proved to be very sensitive to Ax.. In fact, substantial decreases in t/>2 were still 

being predicted for values of Ax, differing only by 1 x IQ-16 m, the level of machine 

precision. As seen in this figure, with the exception of the region located immediately 

behind the lead solid shock, good agreement exists between the structure predicted by 

the unsteady analysis and the incomplete structure predicted by the steady analysis. 

Though it appears that the steady analysis predicts a discontinuous jump in gas 

velocity, pressure, and Mach number at the lead solid shock, careful examination of 

the data indicates a fully resolved drag relaxation layer. Since the width of this layer 
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Figure 7.24: Comparison of the numerically predicted unshocked gas-shocked solidCJ 
detonation structure with an incomplete structure predicted by the steady analysis 
for /J = 1 x 109 kgf(s m2). 

is much smaller than the artificial shock width, the numerical method is unable to 

accurately resolve this layer; the error is evident. It was determined numerically that 

the gas sonic point predicted by the steady analysis is not a saddle point, but is a non­

equilibrium turning point since r(w~ -~) = 0 and r(w~ -~)h1(y1) ::/: [0, 0, 0, 0, o]T 

in Eqs. (6.22) and (6.23}, respectively. Consequently, it is not possible to obtain a 

physically meaningful solution by integrating the steady equations through this point. 

For the incomplete steady result shown in Fig. 7.24, the wave speed was fixed at 

DcJ = 6159 m/ s, and the steady equations were numerically integrated for an un­

shocked gas and a shocked solid. A gas sonic point was predicted within the reaction 
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zone, which was numerically determined to be a saddle point since r( w~ - ~) = 0 

and r(wi- ~)h1 (y1 ) = (0, 0, 0, 0, O]T in Eqs. (6.22) and (6.23), respectively; con­

sequently, it is theoretically possible to continue the integration through this point 

to obtain a physically acceptable result. However, it proved difficult to trav~rse the 

sonic point in such a way as to be on the precise trajectory leading to the complete 

combustion state. The incomplete steady structure reasonably agrees with the struc~ 

ture predicted by the unsteady analysis in the region prior to the gas sonic point, 

though the numerical method once again has difficulty capturing the thin drag relax­

ation layer located immediately behind the solid shock. The location of the gas sonic 

point (( "-J -5.5 mm) predicted by both the steady and unsteady analysis reasonably 

agree. Notably, both the steady and unsteady analysis predict the onset of full-scale 

combustion, occurring at the location where ¢>2 is a maximum, in the absence of a 

gas shock. Here, the increase in gas pressure necessary to initiate full-scale combus­

tion is due to the combined effect of slow exothermic heat release, interphase drag, 

interphase heat transfer, and material compaction induced by the shocked solid flow. 

Lastly, the predicted variation in fDDT and ~DDT with /J are shown in Fig. 7.25. 

Though both TDDT and {DDT increase slightly with {3, interphase drag is seen to 

have little influence on both of these quantities outside of a small interval where 

relatively small changes are predicted. For the cases considered in this study, material 

compaction is seen to have a greater influence on TDDT and fDDT than interphase drag. 
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7.3 Effect of Ambient Mixture Density 

Results of the steady analysis showed that shocked gas-unshocked solid C J deto­

nations do not exist for ambient mixture densities Pa < 486 kg/m3• In this section, 

we demonstrate that two-shock detonation structures also evolve for ambient mix­

ture densities less than this minimum value. In particular, it is shown that a OJ 

detonation structure having a lead solid shock and a trailing gas shock evolves for 

p4 = 400 kg/m3• Though we only consider this single case, it is plausible to expect, 

based on the results of the previous section, that as Pa decreases there exists a continu­

ous transition from shocked gas-unshocked solid C J detonation structures, to shocked 

gas-shocked solid C J detonation structures, and possibly to unshocked gas-shocked 

solid C J detonation structures. Values for the model parameters and ambient condi­

tions used for this simulation are given in TABLE 6.1 (¢2o = 0.229 for this case). The 

computational domain was defined for 0 ~ { ~ 210 em, and consisted of N = 3000 

evenly spaced nodes. The CPU time for this simulation was approximately twelve 

hours. 

The predicted velocity history of the gas and solid are shown in Fig. 7.26. Here, a 

solid shock propagating at speed 3081.1 m/ s evolves for early time in response to the 

moving piston. Combustion is initiated at approximately f = p.s. Subsequently, the 

combustion wave accelerates, undergoes a transition to detonation, and relaxes to a 

steady two-shock CJ detonation propagating at speed 4592.1 m/s. Once again, the 

two-shock structure of the detonation wave is barely noticeable in the spatial profile 

for Ut at f = 500 p.s. 

The compaction front and burn front trajectories are shown in the x-f plane of 

Fig. 7.27. The predicted time, fnur, and distance, {DDT, associated with transi­

tion to detonation are approximately 170 p.s and 460 mm, respectively. The value 

for {DDT is substantially higher than those predicted in the previous sections for 

Pa = 1200 kg/m3• This result is consistent with the experimental results of Bernecker 
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Figure 7.26: Predicted time histories for Pa. = 400 kgfm3 : (a) gas velocity and (b) 
solid velocity. 

and Price (15} which show that transition length increases with decreasing ambient 

mixture density. The predicted variation in the distance between the compaction 

front (associated with the lead solid shock} and the burn front (associated with the 

trailing gas shock}, Ax., with time is shown in Fig. 7.28. Here, it is seen that Ax .. 

relaxes to approximately 16 mm as steady detonation is approached. 

The predicted variation in the gas and solid velocity, pressure, and Mach number 

squared, and in the solid volume fraction, throughout the reaction zone at f = 500 J.LS 

are shown in Fig. 7.29. The location of both the lead solid shock and the trailing gas 
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Quantity Unsteady Analysis Steady End State Analysis 

P1 final 619 kg/m3 619 kgfm3 

iltfinal 1617 m/s 1617 m/s 

P1 final 2.98 GPa 2.98 GPa 
-~-· 

All final 1.00 1.00 

DcJ 4592 mfs 4593 mfs 

TABLE 7.4: COMPARISON OF THE PREDICTED GAS END STATE WITH THE 
CJ VALUES GIVEN BY THE STEADY DETONATION END STATE ANALYSIS 
FOR Po.= 400 kgfm3 . 

shock are clearly evident in this figure. Combustion is initiated by the solid shock, 

but significant combustion is again predicted to occur only behind the gas shock. 

As such, a compaction region exists between the two shocks. The gas and solid 

velocity, pressure, and Mach number squared change abruptly across their respective 

shocks, and are continuous in the compaction region between the shocks, and in the 

combustion region located between the gas shock and the end of the reaction zone. 

The solid volume fraction is continuous throughout the wave. Also, it is noted here 

that the solid Mach number squared increases from its subsonic value behind the solid 

shock, to unity within the reaction zone at e = 193.6 em, and to approximately 1.2 

at complete reaction. The predicted reaction zone length is 633 mm. Though this 

structure is qualitatively similar to the two-shock C J structure predicted in Subection 

7.2.1 for Po. = 1200 kgfm3, the maximum pressures and velocities predicted here are 

substantially smaller, and the reaction zone length is substantially larger, than the 

corresponding values reported in that subsection. 

Lastly, a comparison of the numerically predicted gas end state and detonation 

wave speed with the CJ values obtained from the equilibrium end state analysis for 

Po. = 400 kgfm3 is given in TABLE 7.4. The good agreement between these values 

indicates that a shocked gas·shocked solid C J detonation has evolved. 
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8 

CONCLUSIONS AND RECOMMENDATIONS 

8.1 Steady Analysis 

Steady two-phase detonations were analyzed in terms of their end states and re­

action zone structure. The end state analysis identified three classes of potential 

two-phase detonation solutions: C J detonations, strong detonations, and weak deto­

nations. Of these three classes, C J and weak detonations do not require energy input 

from a. moving piston to sustain their propagation and are thus self-propagating waves. 

Given initial conditions at the detonation front, a detailed analysis of the spatial re­

action zone structure determined the accessibility of the C J and weak detonation end 

states. 

The structure analysis identified both C J and weak detonations having a shocked 

gas and an unshocked solid structure. No other self-propagating detonation structures 

were identified, though the analysis given here does not preclude their existence. This 

work is not the first to predict these C J structures, as they have been previously 

predicted and analyzed by Powers, Stewart, ~d Krier [91, 95]. However, this work 

is the first to predict and analyze steady two-phase weak detonation structures. 

The end state and steady wave speed for a weak detonation, if it exists, are de­

pendent on reaction zone structure; thus, given a particular set of system parameters, 

one must integrate the steady model equations to determine these quantities. In this 

study, a phase space technique was used to identify steady weak detonation struc­

tures. It was shown that a weak detonation solution trajectory originating from a 

shocked gas and unshocked solid initial state must traverse a saddle point in the </>1-P1 

phase plane prior to terminating at a weak detonation end state. At the location of 
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the saddle point, the gas velocity relative to the wave is locally sonic; at the end state, 

the gas velocity is supersonic. The weak detonation solution trajectory corresponds 

to a unique value of wave speed, Dw, which is greater than the 0 J wave speed for the 

ambient material, DcJ. For steady wave speeds greater than Dw, strong solutions are 

predicted, and for waves speeds less than Dw, non-physical solutions are predicted 

as turning points are reached in the (Pt-Pl phase plane, beyond which the solutions 

become double-valued functions of position. Similar phase space topologies exist for 

steady one-phase weak detonations (34). 

The phase space topology for a steady 0 J detonation structure is less complicated 

than that of a steady weak detonation, as a 0 J solution trajectory does not traverse 

an interior singularity prior to terminating at the 0 J end state. In contrast to weak 

detonations, the 0 J end state and steady wave speed are independent of reaction 

zone structure, and can be uniquely determined by a simple equilibrium end state 

analysis. A 0 J solution trajectory originating from a shocked gas and u.nshocked solid 

initial state terminates at the OJ end state for a unique value of wave speed, DcJi 

at the 0 J end state, the gas velocity relative to the wave is locally sonic. For wave 

speeds greater than DcJ, strong solutions are predicted, and for wave speeds less 

than DcJ, non-physical solutions are predicted. 

Existence criteria for shocked gas-unshocked solid 0 J and weak detonations were 

determined based on a parametric study of the steady model. For a physically relevant 

ambient mixture density (Pa = 1200 kgfm3), shocked gas-unshocked solid OJ and 

weak detonations do not exist for large values of the drag coefficient, /3, or for large 

values of the heat transfer coefficient, h. For such values, the drag and heat transfer 

rates are sufficient to drive the unshocked solid flow to a solid sonic state within the 

reaction zone. In this event, the solutions are non-physical as the solid variables are 

double-valued functions of position. 

Provided that [J and hare sufficiently small to admit shocked gas-unshocked solid 
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structures, a bifurcation from weak detonations to OJ detonations occurs with in­

creasing compaction viscosity, fi.c· As the value of fJ.c increases, the compaction rate 

decreases, and the gas sonic point located within the reaction zone structure of weak 

detonations approaches the end of the reaction zone. The bifurcation poin.t corre­

sponds to the critical of fi.c at which the gas sonic point first reaches the end of the 

reaction zone. 

Consequently, the existence of steady shocked gas-unshocked solid weak detona­

tions depends on low drag and heat transfer rates, and high material compaction 

rates. The existence of steady shocked gas-unshocked solid 0 J detonations depends 

on low drag and heat transfer rates, and low material compaction rates. 

Also, the existence of steady shocked gas-unshocked solid C J detonations is influ­

enced by the ambient mixture density. Powers, Stewart, and Krier [91, 95) were the 

first to show that these OJ structures do not exist for ambient mixtures densities less 

than a minimum critical value. For such a value, the unshocked solid flow is once 

again driven to a sonic state within the reaction zone, resulting in the prediction of 

a non-physical solution. Though not considered in the this study, it is likely that a 

similar existence criterion holds for shocked gas-unshocked solid weak detonations. 

8.2 Unsteady Analysis 

Numerical simulations of piston-initiated DDT predicted the evolution of self­

propagating detonation for values of the system parameters used in the steady anal­

ysis. The simulations were performed using a new high-resolution numerical method 

which demonstrated an ability to accurately capture strong shocks without the gener­

ation of spurious oscillations, and to accurately resolve fine-scale detonation structure. 

Comparisons of fully-resolved detonation structures with results given by the steady 

analysis clarified several previously unresolved issues. 

First, it was shown that both shocked gas-unshocked solid 0 J and weak detonation 
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structures identified by the steady analysis evolve from piston-initiated DDT events. 

Which type of detonation evolves was found to depend on the existence criteria iden­

tified by the steady analysis. By considering increasing values of f.tc, while holding all 

other system parameters fixed (Case I identified in Table 6.2), the simulations predict 

a bifurcation from weak to C J detonation structures very near the bifurcation point 

identified by the steady analysis. Consequently, a significant contribution of this work 

was in demonstrating for the first time that the C J wave speed is not the unique wave 

speed for a self-propagating two-phase detonation. 

Second, it was shown that detonation structures having a shocked solid evolve for 

parameter values in which the steady analysis predicts non-physical solutions due to 

solid sonic states occurring within the reaction zone of unshocked solid structures. 

In particular, by considering increasing values of /3, while holding all other system 

parameters fixed (Case II identified in Table 6.2}, the unsteady analysis predicts a bi­

furcation from shocked gas-unshocked solid weak structures, to shocked gas-unshocked 

solid C J structures, to shocked gas-shocked solid 0 J structures, and finally to un­

shocked gas-shocked solid C J structures. Also, it was shown that shocked solid struc­

tures evolve for ambient mixture densities less than the minimum value required for 

a steady shocked gas-unshocked solid C J structure to exists. This dependency of det­

onation structure on both the drag rate and ambient mixture density has not been 

previously demonstrated. In addition to the detonation structures predicted by this 

study, other structures likely exist for different combinations of parameter values. In 

particular, as weak detonations are structure dependent, it is likely that the slight­

est modeling modification will affect the existence of these detonations. Nonetheless, 

this study has demonstrated a large variety of detonation structures admitted by 

two-phase continuum DDT models. 

Close examination of numerically predicted detonation structures having a lead 

solid shock reveals a thin relaxation layer immediately behind the shock. Within this 
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layer, the unshocked gas velocity rapidly equilibrates with the shocked solid velocity. 

The steady analysis estimates the width of the relaxation layer to be approximately 

30 J.Lm for the physically relevant value /3 = 1.1 x 106 kgf(s m2}, and also indicates 

that the width of the layer decreases with increasing /3. The unsteady analysis shows 

the width of this layer to be small compared to the reaction zone length for this same 

value of /3 (""' 12 mm). The presence of such fine-scale structure within the reaction 

zone brings up two important issues concerning numerical resolution and the validity 

of the continuum modeling approach. 

First, the best shock-capturing methods to date require at least three computa­

tional cells to resolve a shock; this gives rise to an artificial shock structure. If the 

width of the drag relaxation layer behind the solid shock is on the order of three 

computational cell lengths, or smaller, then the artificial shock structure will over­

whelm this fine-scale structure. A prohibitively large number of computational cells 

would be needed within the reaction zone to fully resolve the drag relaxation layer. 

For example, based on the values quoted in the previous paragraph, and assuming 

an even distribution of computational cells, approximately 2500 computational cells 

would be needed within the reaction zone to fully resolve all length scales. For the 

simulations performed in this study, the number of computational cells within the 

reaction zone·ranged from 50-100, whereas previous DDT studies have typically used 

from 6-20 cells within the reaction zone. 

Second, if the fine-scale structure occurring within the reaction zone is smaller than 

the characteristic size of a single solid particle, such as for the case described here, 

the fundamental premise of the continuum modeling approach is violated. As such, 

the appropriateness of continuum models for analyzing detonation in these systems is 

questionable, provided that the small lengths scales identified are physically relevant. 

However, due to modeling complexities, alternative modeling approaches are also 

certain to have many limitations. 
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As stated earlier, the primary objective of this work was to predict and analyze 

tw<rphase detonation structures by numerically simulating piston-initiated DDT, and 

to compare the predicted structures with results given by a steady detonation anal­

ysis. As such, the forms for the constitutive relations used in this study weFe.-chosen 

mostly for simplicity, and not to accurately model all experimentally observed fea­

tures characteristic of piston-initiated DDT. Nevertheless, the numerical simulations 

reasonably predicted most experimentally observed features including the formation 

and propagation of a lead compaction wave, the induction period prior to the onset 

of significant combustion, and the final transition to detonation. The simulations did 

not predict the slow build-up of combustion observed during the early stages of DDT, 

nor did they predict the formation for an inert solid plug just prior to the onset of 

detonation. To this end, a number of modeling improvements can be made to obtain 

better predictive capabilities. 

As this work addressed two-phase detonation structure, values for the combustion 

rate parameters were assumed constant, and were chosen to model high-rate com­

bustion associated with detonation. These values proved much too large to properly 

account for low-rate combustion during the early stages of DDT. The combustion 

rate parameters should depend on the local solution, enabling low-rate combustion 

to be modeled under relatively mild conditions, and high-rate combustion to be mod­

eled under detonation conditions. In fact, several recent DDT modeling studies have 

adopted such a strategy [59, 109). Furthermore, experiments suggest that the forma­

tion of the inert solid plug, which is believed to be significant in effecting transition to 

detonation, is largely due to the coalescence of compression waves generated by the 

acceleration of this initial low-rate combustion process. Thus, it follows that the first 

step toward properly addressing inert plug formation is to accurately model low-rate 

combustion occurring during the early stages of DDT. 

One of the most uncertain aspects of this model is the evolution equation used to 
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predict the induction period prior to the onset of full-scale combustion. The values for 

the rate parameters used with this equation were chosen such that the numerically 

predicted induction time matched that observed in a single piston-initiated DDT 

experiment (v, = 100 mfs) (80]. At a minimum, values for the rate parameters 

should be more judiciously chosen such that predictions for induction time match 

experimentally observed induction times for a range of piston velocities. To this 

end, one could choose to match the data reported by Sandusky and Bernecker (105). 

However, as the functional form of the forcing term in this equation was chosen ad hoc, 

it would be appropriate to first choose a functional form based on stronger physical 

arguments. 

Much work remains concerning the modeling of DDT in granular energetic solids. 

Though two-phase continuum models have demonstrated an ability to predict re­

sults commensurate with a number of DDT experiments, the development of models 

having good predictive capabilities is contingent upon accurate sub-scale modeling. 

The proper way to account for sub-scale processes, such as those responsible for the 

formation of "hot spots," within the framework of these models remains unclear. 

Also, better constitutive relations are needed to model the combustion, drag, heat 

transfer, and material compaction rates over the wide range of conditions associated 

with DDT. Due to a lack of experimental data, it is common practice to use em­

pirical relations valid under less extreme conditions to describe these rate-dependent 

processes under detonation conditions. Furthermore, all prior modeling studies, in­

cluding this study, have not rationally accounted for solid granule break-up, though it 

is well-accepted that substantial break-up occurs during DDT. Rate-dependent parti­

cle break-up could be rationally accounted for within the framework of the model used 

in this study. Such issues should be sorted out based on one-dimensional modeling 

before attacking complicated, but very important, multi-dimensional DDT problems. 
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A 

DERlVATION OF THE SOUND SPEED RELATIONS .--...-. 

A general expression for the gas sound speed is derived in this appendix using 

standard thermodynamic relations. Though not shown here, an identical expression 

for the solid sound speed is derived using the same approach. 

Given the functional dependency pl = Pt({Jt, et) (Eq. (2.22)), a differentiai change 

in P1 is expressed as 

dp,A aP1I d A aP. .~~ 
1 = a.. P1 + a A ~~. 

P1 el et Pl 
(A. I) 

The Gibbs equation for a gas of fixed composition is given by 

(A.2) 

Equation (A.l) is solved for det, and the result is substituted into Eq. (A.2) to obtain 

(A.3) 

Setting ds1 = 0 in this equation, and solving the result for dPtfdfJtls 1 gives an ex­

pression for ~: 
.,2 = dP1 P1 aP1 
q dp-1 = --r 1 + ~ , 

61 Pt Pt a1 

(A.4) 

where the Griineisen coefficient r 1 is given by 

1 aP1 
r 1 = fJt ael Pl • 

Equation A.4 is the desired result. 
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B 

CHARACTERISTIC FORM OF THE MODEL EQUATIONS - .. , 

The characteristic form of the model equations is given in this appendix. It 

is possible to express the equations in characteristic form since they constitute a 

hyperbolic system. As such, the partial differential equations can be reduced to 

ordinary differential equations which hold along characteristic curves in the (~, r) 

plane. 

To this end, Eq. (3.8) is left multiplied by each of the left eigenvectors l(j) (j = 

1, ... , 9) [Eqs. (3.35-3.43)] to obtain a system of eight characteristic equations: 

(j) 
(

8q ::; 8q) (j) 
I · ar + A(q) 0~ =I · g(q). (B.l) 

Using the relation 1U> ·A= _x(j)l(j) in Eq. (B.l), we obtain 

(B.2) 

This system of equations gives the time rate of change in the conserved variables 

along characteristic curves in the (~, r) plane, i.e. 

l(j) . dq = l(j) . g( q) 
dr 

on d{ = (j) 
dr A · 

The characteristic equations defined by Eq. (B.3) are: 

Gas Entropy Mode (.X, r, 1)<1> 

Gas Acoustic Modes (.X, r, 1)<2>, (.X, r, 1)<3> 
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1 dPt ± 1 dv1 1 (p P1111(v2- vt)) d¢>1 
Pt if dr1± c1 dr1± + P1 ¢>1 if 1 

+ v2 - v1 =F c1 dr1± 

= P1;1Cf { [~1 (v2- v1)
2 

+ r1(e2- e1) ± c1(v2- vt) 

+771 (P2(V2- t) =F c1(P2} 1rsP1)) + P1] Cm - ·· · (B.5) 
P2 V2 - V1 =F C1 P1 

+ [r1{v2- vt) ± ci] Cd + r1Ce} 

=F 1r7f71¢>2 (P2- 1rsP1 - /) =F .!_ dvp (T), 
c1(v2- Vt =F c1) c1 dr 

Solid Entropy Mode (.\, r, 1)<4> 

Solid Acoustic Modes (.\,r,l)<5>, (.\,r,I)<6> 

Compaction Mode (.\, r, 1)<7> 

d
d¢>2 = 11"7</>1 ¢>2 ( P2 - 1rsP1 - f) - 11"5 Cm , 
~0 P2 

Particle Number Density Mode (.\, r, 1)<8> 

dn n df>2 n d¢>2 n 
- - -- - --- - 1fs--C 
dT2o P2 dT2o ¢>2 dT2o - P2¢>2 m, 

Ignition Variable Mode (.\, r, 1)<9> 

dl 
-=Cr 
dT2o ' 

where the differential operators are given by 

d a a d{ 
drio = ar +Vi af, on dr = v,, 

__!!____ = ~ + (v, ± c;)~ on elf. =Vi± c;. 
d~± ar af, dT 
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(B.7) 

(B.8) 

(B.9} 

(B.10) 



The piston acceleration term dvd~r) in Eqs. (B.5) and (B.7) is a prescribed function 

of time, and is thus considered a forcing term in these equations. It is noted that 

in the limit as v2 ~ v1 ± ch the characteristic equation associated with the corre­

sponding forward or backward gas acoustic mode degenerates into the characteristic 

equation associated with the compaction mode. In these limits, the model equations 

become parabolic and the characteristic equations can no longer be used to construct 

a solution of the problem. It is seen from Eq. (B.S) that the sonic singularity is 

removed for T/1 = 0. 
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c 

CLASSIFICATION OF THE CHARACTERISTIC FIELDS 
~ -- . 

An analysis is given in this appendix for classifying the characteristic fields iden­

tified in Appendix B. Following Lax [68], the jth characteristic field is classified as 

genuinely nonlinear if 

for all q, (C.l) 

and linearly degenerate if 

for all q. (C.2) 

In these expressions, the gradient operator is defined by \7 q = (8()/8q1, • •• , 8()/8q9 ). 

The following expressions are obtained for the directional derivatives using the 

eigenvalues given by Eq. (3.22) and the right eigenvectors given by Eqs. (3.23-3.31): 

V qA (2) • r<2> = -
1
- ~ (Pt ct) 

PtlPt 8p1 

n ,(3) (3) 1 8 ( ) ' "q ,(4) • r<"> -- 0, v ql\ • r = -- - PtCt v 1\ 

P1lP1 8p1 ,
1 

V qA (s) · r<5> = -
1
- ~ (P2c2) 

P2lP2 8P2 12 

V A(6). r(6) = __ 1_ ~ (P2C2) 
q P2lP2 8P2 

V qA<7
> · r<7> = 0, 'Vq · r<8> = 0, 

where 

(C.3) 

(C.4) 

Here, J.LI(= 1/ PI) and JJ2(= 1/ P2) are the specific volume for the gas and the solid, 

respectively. Thus, the gas entropy field, (A,r,I)<1>, the solid entropy field, (A,r,I)<4>, 
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the compaction field, (.X, r, 1)<7>, the number density field, (.X, r, 1)<8>, and the ignition 

variable field, (-X, r, 1)<9>, are linearly degenerate characteristic fields. Since p1, ljJ1, 

c11 and fJ2, ¢2, C2 are non-negative quantities, the gas acoustic fields, (-X, r, 1)<2
> and 

(.X, r, 1)<3>, and the solid acoustic fields, (>., r, 1)<5> and (>., r, 1)<6>, are genuinely nonlin-
. . . 82 pl 82 p21 . 

ear characterzsttc fields provtded that 82 :/:- 0 and 7}2 :/:- 0 , respectively. 
P.t 11 P.2 12 

These requirements for genuine nonlinearity are identical to those obtained by Embid 

and Baer (31] for the two-phase model proposed by Baer and Nunziato (5]. Further-

more, these requirements are the standard convexity conditions derived for the Euler 

equations of gas dynamics (28]. 

The expressions given by Eq. (C.4) are derived as follows. Here, only the ex­

pression for the gas is considered; the expression for the solid is derived in a similar 

manner. First, the expression on the left hand side of Eq. (C.4) is expanded by direct 

application of the chain rule 

(C.5) 

Next, the definition for the gas sound speed ~ = 8Ptf8Ptl,
1 

is differentiated with 

respect to p11 and the resulting expression is solved for 8c!/8p1l11 
to obtain 

8cl 1 82Pl 
8pt 11 = 2cl apt 11 • 

(C.6) 

Since p.1 =~'we have that 
8
8 

=- ~ 
8
8 

; consequently, we obtain the following 
Pt PI Pl P.t 

relation: 

(C.7) 

Making the substitution 

in Eq. (C.7), we obtain 

(C.8) 
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Thus, substituting Eq. (C.6) into Eq. (C.5), using the relation given in Eq. (C.8), and 

simplifying, the desired result is obtained: 

(C.9) - .. 

218 



D 

DERIVATION OF THE EIGENVECTOR EXPANSION COEFFICIENTS 

The eigenvector expansion coefficients aU> (j = 1, ... , 9) [Eqs. (4.30-4.38)] asso­

ciated with the solution of the linear two-phase Riemann problem are derived in this 

appendix. 

To this end, we choose the aU> such that each component of the vector equation 

9 

o( q) = L: aU>r(j) (D.1) 
j=l 

is satisfied to within O[o(q;)2], and such that each component of the vector equation 

9 
o(f) = L aU> _x(j)r(j) (0.2) 

j=l 

is satisfied to within O[o{f;)2], where the difference operator is defined by 6(•) = 
(•)R- (•)L· Substituting the expressions for r(j) (j = 1, ... , 9) [Eqs. (3.23-3.31)} into 

Eq. (0.1), and fully expanding the resulting system of equations gives 

6 (PltPt) = a<t> + aC2) + a<3) + a(7) P11J1 , 
P2tP2 ( ( tJ2 - Vt)2 - ci) 

d (PttPtVl) = a(l)tJ1 + a(2) (vi+ Ct) + a(l) (vi - Ct) 

+ (7) P11J1 v2 
a P2tP2 (( v2 - Vt)2 - ci)' 

o (PttPt (e1 + vU2)) = a<1> (Ht- c~/r1) + a<2
> (Ht + VtCt) 

+ (3) (H _ ) + (7) P11J1 (Ht + Vtt12 - vU2) 
a 1 Vt Ct a .1.. (( )2 _2) , P2'1'2 v2 - v1 - cr 

d (P2tP2) = a(4) + a(5) + a(6)' 

6 (P2tP2v2) = a<4>v2 + a<5
> (v2 + C2) + a<6

> (v2- c2), 

6 (P2tP2 ( e2 + v~/2)) = a<4
> ( H2 - ~;r 2) + a<5

> (H2 + v2C2) 

+a<6> (H2- v2c2) + a<7>rn/(tP2r2), 
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(0.3) 

(0.4) 

(0.5) 

(0.6) 

(0.7) 

(0.8) 



6 (P24>~) = 0:(4)4>2 + 0:(:>)4>2 + 0:(6)4>2 + 0:(7), 

6(n) = o:<5>nf(P24>2) + o:<6>nf(P24>2) + a<8>. 

6 (P24>2I) = o:<5> I + o:<6> I + o:<9>. 

(0.9) 

(0.10) 

(0.11) 
="'- ...... • 

With the assumption that QL is close to QR, the left hand sides of Eqs. (D.4), (0.5), 

(D.7}, {0.8), (D.9), and {D.ll} can be approximated by the following expressions 

valid to 0{02), respectively: 

6 (Pt<f>tVt) I"V Vt6 (Pt<f>t) + Pt<f>t6(vt), 

6 (Ptif>t (et + vU2)) "-J (et + vU2) 6 (Ptif>t) + Ptif>t6(et) + Pt4>tvt6(vt), 

6 (P24>2v2) "-J v26 (P2¢2) + P2<!>26(112), 

6 (P24>2 ( e2 + vi/2)) "-J ( e2 + vU2) 6 (P24>2) + P2t/>26(e2) + P2<f>2v26(v2), 

6 (P2<~>n "' ¢>26 (P24>2) + P2if>26( ¢2), 

6 (P24>2I) "' P24>26(1) + I6 (P2¢2). 

Substituting these expressions into Eqs. (0.3-D.ll}, and solving the resulting coupled 

system of equations for a<1>, a<2>, ... , o:<9> gives 

a<•> = 6 (Pt4>d- .!_6 (Ptif>t)- Pl'71 6(</>I}, (0.12} q q 
a(2) = ~6 (Pt4>t) + Pt4>t6(vt) + ( v2- Vt ) Pt1716(4>t) , (0.13) 

2q 2Ct 1J2- (vl + Ct) 2q 

ct(3) = ~6 (Ptif>t)- Pt<f>t6(vt) + ( v2- Vt ) Pt1716(4>t), (0.14) 
2q 2ct v2- (v1- c1) 2q 

o:<•> = 6 (P2</>2) - ~6 (P2t/>2), {0.15) 

o:<5> = ~6 (P2<!>2) + P2¢>2 6(v2) {0.16) 
24 2C2 , 

a<6> = ~6 (P2<!>2)- P2if>26(v2), {0.17) 
24 2c2 · 

a<7> = {>2</>26(</>2}, (0.18} 

a<s> = 6(n) - P2~46 (P2¢>2), (0.19} 

I 
a<9> = P24>26(I) + I6 (P2¢>2)-

4
6 (P2¢>2). (0.20) 
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It is easily checked by directly substituting the expressions for >.W [Eq. (3.22)], r(j) 

[Eqs. 3.23-3.31)], and aU> [Eqs. (D.12-D.20)] into Eq. (D.2) that the required identities 

are satisfied to within 0[8(/;)2]. 
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E 

EXACT SOLUTION OF THE LINEAR RlEMANN PROBLEM 

In this appendix, the exact solution of the linear two-phase Riemann problem is 

re-expressed in a form more suitable for the development of the approximate Riemann 

solution valid for arbitrary initial data <lL and QR· 

To this end, the solution is re-expressed in terms of the quantities c/J., v1, e~, ¢2 , 

v2, e2, n, I, and the new quantities {plc/Jt), {P1c/J1), {P2¢2), and {P2c/J2). These new 

quantities are introduced using the identities 

{i = 1, 2) (E.l) 

Also, it is necessary to relate the thermodynamic derivatives 8Paf8p;,le; and 8P;J8eilp; 

( i = 1, 2) to derivatives expressed in terms of these newly defined quantities. As such, 

we use the thermodynamic relations 

{E.2) 

whose functional forms are obtained from specific thermal and caloric equations of 

state for each phase. Expressions relating the quantities PicPi to the quantities Pi¢>i, 

c/J;,, and ei {i = 1, 2) are uniquely determined by substituting the expressions given in 

Eq. {E.l) into Eq. (E.2); the functional forms of the resulting expressions are 

(E.3) 

where Fi (i = 1, 2) are used to denote the functional relationships. Now, assuming 

· differential changes in the state of the system, we have from Eqs. (E.2) and (E.3) that 

(fori= 1,2) 

(E.4) 
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(E.5) 

where the operator d( •) denotes a differential change in the enclosed quantity. Ex­

panding the differential operators d(Pit/>i) and d(p,¢,) in Eq. (E.5) and sol~~ng for 

d(~), equating the resulting expression to Eq. (E.4), and collecting like terms gives 

(i=1,2). 

(E.6) 

Since we consider arbitrary differential changes in the state of the system [i.e., d(p,) =F 

0, d(¢,) # 0, and d(es) # 0], then in general this expression is only satisfied if the 

coefficients of the d( •) are identically zero. Thus, the following relations are obtained: 

8~ 8Ft 
-

8pi e, 8(PicPi) ~.,e; ' 
(E.7) 

Pi ( :P.p~ 1 ... - P.p:) = PiTJi = - -~:--~ , 
• ~ 'Ys (p;~;),e; 

(E.8) 

8~ 1 8Ft 
8e· = A. . 8e· · 

' p; o/J ' (p;~·>·~· 
(E.9) 

Using the relationships given in Eqs. (E.l), (E.3), and (E.7-E.9), the solution 

of the linear Riemann problem {Eqs. (4.23) and (4.27), with the quantity VJR- VJL 

replaced by a0>] is expressed in the following equivalent form in terms of the newly 

defined quantities: 

q(~, r) = QL + :E a0>r(i) = QR- I: a0>r(i), (E.lO) 
>.,U) <et 'T >. (j) ?::J./., 

f(~, r) = fL + L a0> ,\(i)r(i) = fR- L a0> ,\(i)r(j), (E.ll) 
>.Uk(f-r >.U> ~e/-r 

where 

(E.12) 
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r(l) = [1, VlJ Hl- ci/rl, 0, 0, 0, 0, 0, o]T' 

r<2> = (1, !'I+ Ct, Hl + VtClJ 0, 0, 0, 0, 0, o]T' 

r<3> = (1, Vt - C1J Hl - VtCl, 0, 0, 0, 0, 0, of I 

(E.13) 

(E.14) 

(E.15) - ..... 

r<5
> = [0, 0, 0, 1, v2 + ~~ H2 + V2C2, 4>2, n/ (P2¢>2) , I]T, 

r<6> = [0, 0, 0, 1, v2 - ~, H2 - v2~, c/>2, nf (P2¢>2) , If, 
r(7) _ [- Fltt _ F1~1 V2 

- (P2c/>2) ((~- Vt)2 - ~) 1 (fJ2¢>2) ((~- Vt)2- ~) 1 

Fl~l (Ht + VtV2- vn F2~2 ]T 
- {P2¢>2){(v2- Vt)2- ~)' o, o, (P2¢>2)r2, 11 01 o , 

r(S) = [0, 01 0, 0, 0, 0, 0, 1, of 1 

r<9> = [0, 0, 0, 0, 0, 0, 0, 0, 1f, 

aP> = 8 (Pt<Pt)- ~8 {Pt<Pt) + F:;1 6(¢>1), 
1 1 . 

a(2) = _!_8 (Pt<Pt) + (Pl<Pt) 8(vt)- ( ~- Vt ) Fl•t8(<Pt), 
2~ 2c1 v2- (v1 + c1) 2~ 

0 (3) = _!_8 (Pt<Pt) _ (Pt<Pt) 8(vt) _ ( v2- Vt ) Ft•18(4>t), 
2ci 2ct v2 - (v1 - c1) 2ci 

1 
a<4

> = 8 (P24>2)- ~8 (P2c!>2), 

a<5
> = 2~8 (P2c/>2) + (~~) 8(v2), 

a<&) = _!_8 (P. .L) - (P2¢>2) 6(v ) 
2~ 2'1'2 2C2 2 I 

a<7> = (P2¢>2)8(¢>2)1 

a<8
) = 6(n)- (P2;2)~8 (P2¢>2) 1 

I 
a<9

> = P24>28(I) + I8(P2¢>2)- ~8(P2c/>2), 
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(E.16) 

(E.17) 

(E.18) 

(E.19) 

(E.20) 

(E.21) 

(E.22) 

(E.23) 

(E.24) 

(E.25) 

(E.26) 

(E.27) 

(E.28) 

(E.29) 

(E.30) 

(E-.31) 

(E.32) 



(E.33) 

(E.34) 

In these equations, the quantities Fi.P'•" Fi••' and Fie, (i = 1, 2) denote the derivatives 

8Fi 8Fi I 8Fi . . 
8( ·ifJ·) ' aA.. ' and 8e· (' = 1, 2), respectively. 

p, ' .,,e, ~~ (Pi4/li),ei ' (p,,,),9i 
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F 

AVERAGES FOR THE APPROXIMATE RlEMANN SOLUTION 

In this appendix, Eqs. (4.39-4.62) are solved for the average quantities P~tt ih, 

e~, fib frlpl4>1' Ft.,p frlell ~' ~' ii2, e2, ii2, fr2p24>2' fr24>2' fr2e21 n, and i. To this end, 

it is convenient to first substitute the expressions given by Eqs. (4.41-4.50) into Eq. 

(4.39), and to fully expand the resulting expressions: 

-(7) -
fl. (pd>t) = a<t> + &(2) + &(3) _ _ a F1•1 , 

P24>2[<~- iitP- crl 
(F.1) 

Ll (Pt4>tvt) = a<1>vl + a<2> (iit + cl) + a<3
> (iit- c~) 

a<7>ii2frl.l 
(F.2) 

~2[(v2 - iit)2- cr]' 
fl. (P•4>• ( e1 + vU2)) = a<1> (ii. - cUi\) + a<2> ( ii1 + ii1 c1) + a<3

> ( ii1 - iit c1) 

a(7) (fit + iit ii2 - vnP~~~ 
~[(ii2 - ii1)2 - crl 

Ll (P24>2) = &(4) + &(5) + &(6)' 

fl. (P24>2v2) = a<4>ii2 + &<5> (ii2 + c2) + &<6
> (v2- c2), 

fl. {P24>2 ( e2 + vV2)) = a<4
> ( H2 - ~/f\) + &<5> ( ii2 + ii2~) 

-(7)-
-(6) (H- - - ) a F2._2 +a 2 - V2C2 - - , 

P24>2f2 
fl. (P24>n = &(4)¢2 + &(5)¢2 + &(6)~ + &(7), 

!:l.(n) = a<5>nf ~2 + a<6>nf ;;:;¢2 + a<8>, 

!:l.(P24>2/) = &(5) j + &(6) j + &(9). 

(F.3) 

(F.4) 

(F.5) 

(F.6) 

(F.7) 

{F.8) 

(F.9) 

Likewise, we substitute the expressions given by Eqs. (4.41-4.50) into Eq. (4.40) and 

fully expand the resulting expressions: 
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-(7)- F, a V2 ~~~ 

~((v2- i1t)2 - C¥]' 
D. (Pt</JtV~ + Pt</Jt) = a<1>v~ + a<2

> {1h + Ct)2 + &<3
> (vt- Ct)2 

-(7)-2 i' 
a v2rl~~ 

P24>2[(~- iit)2 - C¥1' 

(F.lO) 

_ JF.ll) 

D. (PttPtVt (et + vU2 + Ptfpt)) = a<1>vt (iit- Ci/f't) + &<2> (vt + Ct) (iit + Vtct) 

+&<3> (ih- c1) (iit- Vtct) 
&<7

> ( ii1 + v1 v2 - vO f'~~~ 
P24>2((v2 - iit)2 - cfJ 

D. (P2<P2V2) = a<4>v2 + a<5
> (Va + ea) + a<6> (v2 - ea) I 

D. (P2<Pav~ + P2<1>2) = a<4>v~ + a<5
> (ii2 + ea)2 + a<6

> ( v2 - ea)2 
I 

+&<6> (v2- ea) ~2 + aP>v2, 

D. (v2n) = &(S) (ii2 + c2) n/ ;;:;;h 

(F.12) 

· (F.13) 

(F.14) 

(F.16) 

+&<6> ( v2 - c2) n/ ~ + a<8>v2, (F .17) 

Equations (F.4-F.9) and (F.13-F.18) are first solved for P2¢>2, ~, ii2, e2, H2, n, and i 

in Section F.l. Next, Eqs. (F.l~F.3) and (F.l0-F.12) are solved for p1¢>1, Vt, e1, and 

Ht in Section F .2. Lastly, expressions for Ftp1• 1 , Ft•11 Fte11 F2p2• 2 , F2•2 , and F2e2 are 

postulated in Section F.3 to complete the construction of the approximate solution. 

F .1 Averages for the Solid Quantities 

In this section, Eqs. (F.4-F.9) and Eqs. (F.13-F.18) are solved for P2¢>2 , ~21 v21 

e21 ii2, n, and I. It is noted that by substituting the expressions for &<4>, &(S) I a<6> I 

and a<8> [Eqs. (4.54-4.56) and (4.58), respectively] into Eqs. (F.4) and (F.8), that the 
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latter two equations are identically satisfied by any averages we care to define. Also, 

it is noted that Eqs. (F.5) and (F.13) are identical expressions. Therefore, only Eqs. 

(F.5-F.7), (F.9), and (F.14-F.18) can be considered when determining the required 

average quantities for the solid phase. To this end, the following relations will prove 

useful: 

&(4) + &(5) + &(6) = il(fJ2<f>2), 

a<5> + a<6
> = ~il(P2~2), 

&(5) - &(6) = P2_4>2 il(v2)· 
C2 

First, we rearrange terms in Eq. (F.5) to get 

il (P2~2v2) = ii2 ( &(4) + &(5) + &(6)) + ~ ( &(5) - &(6)) . 

(F.19) 

(F.20) 

(F.21) 

Substituting the expressions given by Eqs. (F.19) and (F.21) into the above equation, 

we obtain 

This equation can be solved for ~ to give 

~ - il (P24>2V2) - ~il (P24>2) 
P2 - il( 112) • (F.22) 

Next, we expand the left hand side of Eq. (F.14) and rearrange terms on the right 

hand side of this same equation to get 

Substituting the expressions given by Eqs. (F.l9-F.21) into this equation and simpli­

fying the result gives 

(F.23) 

Substituting the expression for ~ (Eq. (F.22)] into Eq. (F.23) and rearranging 

terms yields the following quadratic equation for ii2: 
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This equation has two solutions given by 

_ ~ (P2tP2112) ± J[~(P2tP2v2))2 - ~(P2tP2)~(P2tP2v~) 
v2 = ~(P2tP2) . 

Performing the difference operations ~( •) [= ( • )R - ( • )L] in these solutions and 

simplifying the result gives the following expression for the solution corresponding to 

positive ( +) root: 

- J /J2LlP2L V2L - J P2RlP2RV2R 
V

2 = J P2L¢2L - J fJ2R(/)2R . 

Likewise, the following expression is obtained for the solution corresponding to the 

negative (-) root: 

(F.24) 

Clearly, in order to obtain a physically meaningful average we must choose the solution 

corresponding to the negative root. Now, substituting this expression for ii2 into Eq. 

(F.22) and simplifying the result yields 

(F.25) 

Next, we multiply Eq. (F.7) by ii2 and subtract the result from Eq. (F.16) to 

obtain 
~ (P2tP~v2) - ~ (P2tP~) = ~2c2 ( &cs> - &'6>) 

=~~~(v2). 

This equation can be solved for ~ to give 

~ = ~ (P2tP~~ - ii2~ (P2tP~) . 
P2tP2~(v2) 

Since exact expressions for the averages ii2 and ;;:;;h are known, this equation for ~2 

reduces to 

~ _ J P2LlP2LtP2L + J P2R¢2RlP2R 
2 

- J P2L(/)2L + J fJ2R(/)2R • 
(F.26) 
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Similarly, we multiply Eq. (F.9) by V:l, and subtract the result from Eq. (F.18) to 

obtain 
D& (P24>21 v2) - v2l:!& (P2<f>21) = i~ ( a<5

> - a<6>) 

= ~~2D&( v2). 
:- --· 

Solving this equation fori, substituting in the definitions for ii2 and ~2, and sim­

plifying the result gives 

j _ .j P2Llf>2Lh + .j P2R(/)2RJ R 
- .j P2L(/)2L + .j P2R(/)2R • 

(F.27) 

Next, we multiply Eq. (F.8) by v2 and subtract the result from Eq. (F.17) to 

obtain 
l:!& (v2n) - v2D&(n) = ~ ( &(5) - &<6>) 

P24>2 
= nl:!&(v2). 

Solving this equation for n, substituting in the definition for ii2, and simplifying the 

result gives 

- .j P2L<f>2LnR + .j P2R(/)2RnL 
n = .j P2L(/)2L + .j P2R(/)2R • 

(F.28) 

Now, we consider Eqs. (F.6) and (F.l5). Expanding the left hand side of Eq. (F.6) 

and rearranging terms on the right hand side of this same equation yields 

- -(4)~ 
l:!& (P2¢2e2) + l:!& (P2<1>2vV2) = H2 (&<4> + &(5) + &<6>)- a r2 

+ - - (-(5)- -(6))- &<
7>P2.2 v2c2 a a __ . 

P2if>2r2 

(F.29) 

Substituting the expressions given by Eqs. (F.19) and (F.21), and the expressions for 

&<4> [Eq. (4.33)] and &(7) (Eq. (4.36)] into Eq. (F.29), using the second expression 

in Eq. (4.61) to replace fl2 in favor of fJ24>2, ii2, ~~ and e2, and recognizing that 

the second term on the left hand side of Eq. (F.29) is simply the expression given in 

Eq. (F.23) divided by two, we obtain the following expression after performing some 

230 



simple algebra: 

fl. (fJ24J2e2)- e21l.(fJ24>2) = (~ - ~) ll.(fJ2~) + _I ll.(P2</J2)- ~12 fl.(4>2). (F.30) 
P2~ r2 r2 r2 

Now, upon using the second expression in Eq. (4.60) to replace t; in Eq. ~.f.30) in . - . 

favor of~' P~, F2p,.2 , and F282 , using the second expression in Eq. (4.62) to 

replace i\ in Eq. (F.30) in favor of~ and F2e2, subtracting the term ~ll.(e2) 

from both sides of Eq. (F.30), and simplifying the result, we obtain 

ll.(fJ2<P2e2)-e21l.(fJ2<P2)-~21l.(e2) 

= ~ ll.(P24J2)- ~fr2p2•21l.(fJ24J2)- ~fr2•21l.(<!J2)- ~ll.(e2)· 
F2.2 F2.2 F2.,2 

(F.31) 

At this point, a number of assumptions can be made in order to define F2p2• 2 , F2•2 , 

F2e2, and e2• Following the analysis of Glaister [37], it is plausible to choose 

(F.32) 

in which case the right hand side of Eq. (F.31) reduces to 

(F.33) 

Equation (F.32) can then be solved for e2: 

_ ll.(fJ2<P2e2) - ~.tl(e2) 
e2 = ll.(fJ2<P2) . 

In this equation, we replace the term P2¢2 with the expression given by Eq. (F.25) 

and simplify the result to get 

- V {J2L(/)2Le2L + V fJ2R(/)2Re2R 

e2 = V fJ2LtP2L + V fJ2R<fJ2R • 
(F.34) 

It remains to define the quantities F2p2• 2 , F2• 2 , and F2e2 such that Eq. (F.33) is 

identically satisfied. Definitions for these quantities are postulated in a following 

section. 
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Lastly, we multiply Eq. (F.6) by ~~ subtract the result from Eq. (F.15), and 

simplify the resulting expression to get 

Upon substituting the expressions given by Eqs. (F.20) and (F.21) into Eq. (F.35), 

re-expressing the left hand side of Eq. (F.35) in terms of the total enthalpy of the 

solid H2 (= e2 + v~/2 + P2/ fJ2), and simplifying the result, we obtain 

Now, expanding the second term on the left hand side of this equation and canceling 

the appropriate terms gives 

This equation is solved for H2 yielding 

H2 = A{fJ2rhV2~ - ~A(P2¢>2H2). 
P2rhA(~) 

Since fJ2rh, ~'and~ are all known quantities, this expression for H2 reduces to 

fi. - VP2L4J2LH2L + VP2R(j)2RH2R 
2 

- V fJ2L4J2L + V fJ2R(/)2R . 
(F.37) 

In summary, definitions for the solid phase average quantities ~2, ¢2, v2, e2, fl2, 

n, and i are given by Eqs. (F.25), (F.26), (F.24), (F.34), (F.37), (F.28), and (F.27), 

respectively. 

F .2 Averages for the Gas Quantities 

In this section, Eqs. (F.l-F.3) and Eqs. (F.10-F.12) are solved for P~1, iit, ell and 

H1• It is noted, by substituting the expressions for &<1>, &(2), &(3), and &(7) into Eq. 
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(F.l), that Eq. (F.l) is satisfied by any averages we care to define; also, Eqs. (F.2) 

and {F.lO) are identical expressions. Therefore, only Eqs. (F.2), (F.3), (F.ll), and 

(F.12) can be used to determine the required averages for the gas phase. In defining 

these average quantities, the following relations will prove useful: 

&(1) + &(2) + &(3) = ~(Ptif>t)- - ~~.t ~(¢>I), (F.38) 
(v2- v1)2- Cf 

a<2> + &<3> = .!..~(PI¢>1)- (v~- v_:)2.F~.~ ~(4>1), (F.39) 
Cf cr[(v2- VI)2- ~) 

&<2> _ &(3) = Pt_if>I ~(vi) __ (~2- ~1)FI•1 ~(4>1). (F.40) 
C1 CI[(v2- vt)2- ctl 

First, we rearrange Eq. (F.2) to get 

-(7)- F-
A ( .A.. ) _- (-(1) + -(2) + -(3)) +- (-(2) -(3)) a V2 1•1 
L.l PI V'l VI - V1 Q Q Q C1 Q - Q - ~ • 

P2</>2[(v2- vi)2- q] 

By substituting the expressions given by Eqs. (F.38) and (F.40) and the expression 

for &(7) (Eq. (4.36)) into the above equation, and simplifying the resulting expression 

[recognizing that ~(¢>2) =-~(<PI)], we obtain 

This equation is solved for p74>1 to obtain 

-:-;: _ ~ (Pl¢>Ivt)- VI~ (Pl<Pt) 
PlV'l - ~(v•) · (F.41) 

Also, expanding the left hand side of Eq. (F.ll) and rearranging the terms on the 

right hand side of this same equation gives 

~ (PI if>1 vn + ~ (PI4>t) = v~ ( a<•> + a<2> + a<3>) + 2vi c1 ( a<2> - a<3>) 
-(7)-2 p 

+ -2 (-(2) + -(3)) _ a V2 1•1 c1 a a - . 
P2¢>2[(v2 - v1)2 - ~1 

Now, substituting in the expressions given by Eqs. (F.38-F.40), and the expression 

for &<7> [Eq. (4.36)] into the above expression, the following result is obtained upon 

simplifying: 

(F.42) 
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Substituting the expression for p1¢1 (Eq. (F.41)] into this expression and rearranging 

terms results in a quadratic equation for ii1: 

This equation has two solutions given by 

_ .6. (p1¢1v1) ± V(.6.(pi¢lvi)]2 - .6.(p1¢1).6.(p1¢1vl) 
~= .6.~~) . 

Once again, the negative root leads to the physically relevant solution 

(F.43) 

With ii1 known, Eq. (F.41) reduces to 

(F.44) 

Next, we consider Eqs. (F.3) and (F.12). Expanding the left hand side of Eq. 

(F.3) and rearranging terms on the right hand side of this same equation yields 

(F.45) 

Substituting the expressions given by Eqs. (F.38) and (F.40), and the expressions for 

0:<1> (Eq. (4.30)] and 0:<7> [Eq. (4.36)) into Eq. (F.45), using the first expression in Eq. 

(4.61) to replace ii1 in favor of P1lP1, iit, P1¢1! and ell recognizing that the second 

term on the left hand side of Eq. (F.45) is simply the expression given in Eq. (F.42) 

divided by two, and using the equality .6.(¢2) = -.6.(¢1), we obtain the following 

expression after performing some simple algebra: 
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Now, using the first expression in Eq. (4.60) to replace ~ in Eq. (F.46) in favor of 

p-;;{>b PJb Flpt~P and F1et, using the first expression in Eq. ( 4.62) to replace f\ in 

Eq. (F.46) in favor of p-;}1 and F1et, subtracting the term p-;}t~(et) from both sides 

of Eq. (F.46), and simplifying the result, we obtain 

6.(Pt tP1 et)-et~(Pt tPt) - P7l>t~( e1) 

_ p-;;{>1 A(P A.. ) p-;]>1Flpl~1 A( A.. ) p-;}1ft1~1 A(A.. ) --;:_ A( ) - F L.l. 1 Y'1 - F L.l. P1 Y'l - ft. L.l. n - Pt 'f'l L.l. e1 • 
let let ld 

{F.47) 

Here, as was done for the solid phase analysis, we choose 

(F.48) 

in which case Eq. (F.47) reduces to 

(F.49) 

Substituting the expression for p~1 [Eq. (F.41)] into Eq. (F.48), and solving the 

resulting expression for el yields 

- v PtLiJ>lLelL + v PtRiJ>tRelR 

e1 = V PtRiJ>IR + V PtRtPlR • 
(F.50) 

Similar to the solid phase analysis, it is necessary to define the quantities Ftp1~ 1 , F't•1 , 

and F1ct such that Eq. (F.49) is identically satisfied. Definitions for these quantities 

are postulated in the following section. 

Lastly, we multiply Eq. (F.3) by ii., subtract the result from Eq. (F.12), and 

simplify the result to get 

6. (PttPtVt ( e1 + vrf2 + Pt/ Pt)) - iit~ {Pt¢Jl ( e1 + vrf2)) 

- H- (-(2) -(3)) +- -2 (-(2) + -(3)) a<7
>(ii2- ih)(Hl + iitii2- vnPl.l = c1 1 a - a v1 c1 a a - . 

P24>2[(ii2 - iitP - crJ 
(F.51) 

Upon substituting the expressions given by Eqs. (F.39) and (F.40), and the expression 

for &(7) [Eq. (4.36)] into Eq. (F.51), re-expressing the left hand side of Eq. (F.51) in 
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terms of the total enthalpy of the gas Ht ( = e1 + vr/2 + Ptf pt), and simplifying the 

result, we obtain 

(F.52) 
- .. 

Expanding the second term on the left hand side of this equation and canceling like 

terms gives 

Since PI tPt and fit are known quantities, this equation can be solved for fit to give 

fi _ V PtLifitLHlL + V PlR(/)lRHtR 
1 

- v PlL(j)lL + v PlR(j)lR • 
(F.53) 

~ -
In summary, the required gas phase average quantities p1¢11 ih, e11 and H1 are 

given by Eqs. (F.44), (F.43), (F.50), and (F.53), respectively. 

F .3 Averages for the Thermodynamic Derivatives 

- - - - - -In this section, definitions for Ftp1.,11 F2p2.,2 , Ft.,1 , F2
412

, F1e1, and F2e2 are are 

postulated such that Eqs. (F.33) and (F.49) are identically satisfied. These approx­

imations are all that is needed to' complete the approximate Riemann solution. For 

convenience, Eqs. (F.33} and (F.49) are given below in a slightly rearranged form: 

(F.54) 

(F.55) 

Since each of these equations contains the three average derivatives, these averages 

cannot be uniquely defined. As such, the methodology proposed by Glaister [37] is 

adopted in which artificial states are introduced in order to define the averages. 

The following approximations for Ftp1• 1 , Ft
411

, and Ft81 are proposed: 
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1 
+Ft(PtRlPlR, ¢1L, elR)] - 4 [Ft(PlLlPlL, lPtR, etR) + Ft(PtLlPlL, lP1L, etR) 

+Fl(PlLlPlL, lPtR, elL)+ Ft(PlL¢1L, ¢1L, elL)]} I a(pl¢1), 

if A(pt<f>t) =/= 0, (F.56) 

- {1 1 F1•1 = 2 [Ft (PtRlPtR, <PtR, etR) + Ft (PtLc/JtL, c/JtR, etL)] + 2 [Ft (PtR<!>tR, lPtL, etR) 

+Ft(PlL¢1L,¢1L,etL))} 1/},.(c/Jt), if f),.(c/Jt) =/= 0, (F.57) 

- {1 Ftc~ = 4 [F1 (PIRcfJtR, lPtR, etR) + Ft (PILlPtL, lPtL, etR) + F1 (PtRc/JtR, c/JtL, eiR) 

1 
+Ft (PlLlPtL, <I>1R, etR)] - 4 [F1 (PIRlPIR, <PtL, elL) + F1 (PtRciJtR, c/JtR, etL) 

+Ft(PlL¢1L, ¢1RI elL)+ Ft(PlLcfJlLJ c/JtLt elL)]} I a(ed, 

if a(e1 ) =/= 0. (F.58) 

Similarly, the following approximations for F2p2• 2 , F2•2 , and F2.2 are proposed: 

- {1 F2p'W~ = 4 [F2(P2R¢2R, ¢2R, e2R) + F2(P2R¢2R, <I>2R, e2L) + F2(P2Rc/J2R, ¢>-lL, e2L) 

1 
+Fz(P2R¢2R, ¢2L, ezR)]- 4 [Fz(P2L¢2L, ¢2R, ezR) + F2(P2L¢2L, ¢2L, e2R) 

+Fz(P2L¢zL, ¢zR, ezL) + Fz(P2L¢zL, cfJ2Lt e2L)]} I a(P2¢2), 

if a(P2lfo2) =1= o, (F.59) 

- { 1 1 F2•2 = 2 [F2{P2R¢2R, cfJ2R, e2R) + F2(P2L¢2L, ¢zR, e2L)] + 2 [F2(P2RcfJ2Rt cfJ2L, ezR) 

+F2(P2L¢2L, cfJzL, e2L)]} I a(¢2), if A(¢2) =I= 0, (F.60) 

- {1 Fz.2 = 4 [F2(P2R¢2R, c/JzR, e2R) + F2(P2LcfJzL , cfJzL, ezR) + F2(P2R¢2R, cfJzL, e2R) 

1 
+F2(P2L¢2L, <I>2R, e2R)]- 4 [Fz(P2RcfJ2R, cfJzL, e2L) + F2(P2RcfJzR, cfJ2R, e2L) 

+F2(P2LtP2L! ¢2Rt ezL) + F2(P2LcfJ2Lt cfJ2L, e2L)]} I a(ez), 

if ..6.(e2) =I= 0. (F.61) 
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In Eqs. (F.56-F.61), the functions F1(Pt4>t, l/>11 e1) and F2(P2l/>2, l/J2, e2) are obtained 

from the thermodynamic state relations for each phase. In the event that ~(Psl/Ji), 

~(<Pi), or Ll(ei) ( i = 1, 2) vanish, then we take the appropriate limits of Eqs. (F.56-

F.61) (i.e., as ~(Pi4>s) -t 0, ~(l/>i) -t 0, or ~(ei) -t 0) to obtain the ·following 

expressions, respectively: 

(F.64) 

(F.67) 

It is easily checked by direct substitution that the expressions given by Eqs. (F.56-

F.67) identically satisfy Eqs. (F.54) and (F.55). Though these definitions for the 
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derivatives appear complicated, they can generally be reduced when the equations 

of state are specified, and the reduced forms can be directly implemented into a 

computer algorithm. For example, using the virial equation of state for the gas 

given in Appendix G, and the non-ideal Tait equation of state for the solid-given in 

Appendix H, we obtain the relations 

FI(Pl¢>1l¢bel) = 1ru(Pd>I) [1 +1r12 (p~~~)] e1, 

F2(P2¢2, ¢2, e2) = (1r13 - 1) (P2¢2) (e2 - 7rts) - 7rta1rt4tP2· 

Exact expressions for the thermodynamic derivatives are obtained from these rela-

tions: 

(F.68) 

(F.69) 

(F.70) 

(F.71) 

(F.72) 

(F.73) 

F.64) reduce to 

Using the relation for F2, the definitions given by Eqs. (F.59-F.61) and (F.65-F.67) 
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reduce to 

-· ... 

These expressions for the average gas and solid derivatives are globally valid since 

identical expressions are obtained using the definitions given by Eqs. {F.62-F.67). 

Furthermore, these averages appear reasonable when compared to the exact expres-

sions given in Eqs. {F.68-F.73). 
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G 

VIRJAL EQUATION OF STATE FOR THE GAS 

The gas phase is described by a virial state equation. The thermal and caloric 

equations of state are 

P1 = ihRT1 (1 + bfit), 

ft = CvtoTl, 

(G.l) 

(G.2) 

where the constants R, C.,10, and bare the gas constant, specific heat at constant vol-

ume, and virial coefficient, respectively. These state relations are non-dimensionalized 

using the scaled variables defined in Eq. (2.45) to obtain 

where 
il 

7rn =-A-, 
Cvlo 

Using Eq. (G.4) to replace T1 in favor of e1 in Eq. (G.3) gives 

The following thermodynamic derivatives are obtained from this expression: 

Using these derivatives, the Griineisen coefficient, r 1 , is given by 
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(G.3) 

{G.4) 

(G.5) 

(G.6) 

(G.7) 

(G.8) 

(G.9) 



and the non-dimensional gas sound speed squared, ~, is given by 

_2 _ P1r 8P1I q=-1+-
Pl 8p1 e

1 

= .-u [ (1 + "••P•) :: + (1 + 2"••P•) e,] 
= 1ruT1 [ 1 + 27rt2Pl + 7rn (1 + 7ri2Pt)

2
] • 

(G.10) 

Here, Eq. (G.3) was used to eliminate P1 in favor of P1 and T11 and Eq. (G.4) was 

used to eliminate e1 in favor of T1 to obtain the last expression of Eq. (G.lO). 
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H 

TAIT EQUATION OF STATE FOR THE SOLID 
,._. :· 

The solid phase is described by a Tait equation of state. The thermal and caloric 

equations of state are 

(H.l) 

(H.2) 

where the constants h,0, -y2 , t3v20, a-, and q are the ambient solid density, Tait param­

eter, specific heat at constant volume, non-ideal solid parameter, and the chemical 

energy, respectively. These state relations are non-dimensionalized using the scaled 

variables defined in Eq. {2.45) to obtain 

where 
q 

11"14 = :a , 
'Y2~o 

q 
11"15 = ~0. 

Using Eq. {H.4) to replace T2 in favor of e2 in Eq. {H.3) gives 

The following thermodynamic derivatives are obtained from this expression: 
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(H.3) 

{H.4) 

(H.5) 

(H.6) 

{H.7) 

{H.8) 



Using these derivatives, the Griineisen coefficient, r2, is given by 

r 2 = .-!. aP2
1 = 1r13 - 1, 

P2 8e2 P2 

and the non-dimensional solid sound speed squared, 4, is given by 

4 = P2r2 + 8P21 
P2 8/)2 1!2 

= (1r13 -1} (~ + e2 -1r1s) 

= 1rta (1r13- 1) T2. 

(H.9) 

- .. 

(H.lO) 

Here, Eq. (H.3) was used to eliminate P2 in favor of P2 and T2, and Eq. (H.4) was 

used to eliminate e2 in favor of P2 and T2 to obtain the last expression of Eq. (H.lO). 
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I 

INTRAGRANULAR STRESS RELATION 
- : -

The intragranular stress j(¢J2) [Eq. (2.14)) used in this study to model compaction 

of the granular material is given by 

A _ ( A _ A ) t/J~ (2 - ¢J20 )
2 

In 1.!412 I - P2o Plo .1..2 (2 _ ¢J2)2 In _1 _ • 
'f'2o 1-tP'lt> 

(1.1) 

This stress relation, which was used by Powers et al. [93) to analyze steady compaction 

waves in porous HMX, is similar in form to the analytical expression used by Carroll 

and Holt [25] to model dynamic pore collapse in solids due to plastic defprmation. 

This relation is constructed such that 1) it is a monotonically increasing function of 

¢J2 , and 2) the difference between the solid and gas pressure balances the intragranular 

stress for the ambient state [i.e., P2o- P10 = /(tP2o)]. The first of these conditions is 

motivated by experiments which show that an increasing hydrostatic stress (P2-Pt) is 

necessary to balance an increased intragranular stress (/) resulting from compaction of 

the porous material (increasing ¢J2). The second condition specifies that the ambient 

mixture is an equilibrium state since the first term on the right hand side of the 

dynamic compaction equation, Eq. (2.7), vanishes for the ambient state. The variation 

in the quantity A j A with f/J2 is shown is Fig. 1.1. 
P2o- P1o 

Equation (I.1) can be expressed in terms of the non-dimensional variable I defined 

in Eq. {2.45) to give 

I 
t/J~ (2 - ¢J20 )

2 In y:.T, 
= '1r16 .1..2 (2 _ .~.. )2 In _1 _ , 

'f'2o 'f'2 l-tP2o 

(1.2) 

where 

(1.3) 
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Figure 1.1: Variation in the intragranular stress with solid volume fraction for tP2o = 
0.7. 
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