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NUMERICAL SIMULATIONS OF STEADY AND UNSTEADY OBLIQUE 
DETONATION PHENOMENA WITH APPLICATION TO PROPULSION 

Abstract 

by 

Matthew John Grismer 

Oblique detonations and their propulsive applications were studied by numerically 

integrating the two-dimensional, reactive Euler equations in a generalized, curvilin-

ear coordinate system. The integration was accomplished using the Roe scheme 

combined with fractional stepping; nonlinear flux limiting was used to prevent un­

physical solution oscillations near discontinuities. The method was verified on one­

and two-dimensional flows with exact solutions, and its ability to correctly predict 

one-dimensional detonation instability was demonstrated. 

Unsteady phenomena were considered in a study of straight oblique detonations 

attached to curved walls. Using the exact, steady oblique detonation solution as an 

initial condition, the numerical simulation predicted both steady and unsteady oblique 

detonation solutions when a detonation parameter known as the normal overdrive was 

varied. The normal overdrive value at which the oblique detonation transitioned from 

steady to unsteady behavior was slightly higher than the corresponding value for a 

one-dimensional detonation. 

An oblique detonation application was considered to determine the steady prop­

agation speed of an idealized ram accelerator. Propagation speeds were found which 

gave rise to shocks of such strength as to induce a reaction zone to be in a region 

which allowed the combustion induced thrust to balance the wave drag. For fixed heat 
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release greater than a critical value, two steady propagation speeds were predicted. 

The solution at the higher Mach number was stable to static perturbations while the 

solution at the lower Mach number was unstable. The Chapman-Jouguet velocity 

in the direction of projectile propagation was found to be relevant only as an overly 

conservative lower bound for possible flight speeds. In the far-field the detonation 

wave angle was found to be that of a Chapman-Jouguet oblique detonation. 
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CHAPTER 1 

INTRODUCTION 

This dissertation will discuss oblique detonations, their numerical simulation, their 

applications to propulsion, and their steady and unsteady behavior. In this chapter a 

description of a generic oblique detonation will be given along with a discussion of ap­

plications. Next, the specific questions this research addresses will be given, followed 

by a brief description of the general format of the remainder of the dissertation. 

An oblique detonation is defined here as an oblique shock which induces exother-

mic chemical reaction in a flow. For the special case in which the flow is two­

dimensional and modeled by reactive Euler equations, Fig. 1.1 indicates general fea-

Unreacted, supersonic, 
premixed freestream 

AY 
------i~ 

------i;.. 

Shock 

wedge 

_ . _ . _ . _ . _ . _ . _ . ~:""--_-'-_-L-____ '--___ ~;.J.. _ • ~ • _ • _> 

X 

Figure 1.1: Schematic of oblique detonation. 

tures of an oblique detonation over a sharp-edged, straight, semi-infinite wedge. An 

oblique shock is formed off the wedge tip due to the impinging supersonic freestream, 
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provided the freestream Mach number is high enough to prevent shock detachment. 

Assuming that the upstream reaction rate is negligibly small and the temperature 

increase due to the shock is large enough, chemical reaction is initiated in the post­

shock flow. Solution of the Rankine-Hugoniot reactive jump equations [69,34] shows 

that the oblique detonation wave angle is greater than that of an inert oblique shock 

wave. When finite reaction zone lengths are considered, the shock does not remain 

straight [63]. At the apex of the wedge the flow has not had time to react, and 

thus the shock angle is that of an inert shock. Downstream of the apex the chemical 

reaction releases increasing amounts of heat into the flow, leading to pressure distur­

bances which propagate along characteristics that intersect the shock. The shock is 

then strengthened by the disturbances, the effect of which is the shock being pushed 

farther from the wall and developing curvature. Far from the wall the shock relaxes 

to zero curvature. As the only mechanism for generating vorticity in the inviscid flow 

is shock curvature, vorticity is generated at the shock near the wall, and then con­

vected downstream along particle paths roughly parallel to the wedge surface. Thus, 

as indicated, there is a layer of chemical reaction following the shock, and a layer 

of vorticity near the wedge surface. Both layers eventually relax to an irrotational, 

completely reacted core region downstream of the shock and away from the wedge 

surface. 

Such high-speed nonequilibrium flows have been the subject of many studies over 

the past decades, and have recently been receiving more attention due to renewed 

interest in hypersonic air- and spacecraft such as the proposed National Aerospace 

Plane (NASP). One of the propulsion systems considered for this vehicle is the oblique 

detonation wave engine (ODWE) [25, 56, 15], which, as the name suggests, relies on 

oblique detonations to provide thrust. Figure 1.2 illustrates the general concept of 

the ODWE as proposed by Dunlap, et al. [25]. Supersonic air enters the engine and 

is mixed with fuel. The mixture is then ignited by an oblique shock induced by a 
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%>1 

Thrust 

Figure 1.2: Simplistic concept for oblique detonation wave engine. 

wedge, greatly increasing the pressure inside the engine. This high pressure forces 

the combustion products to expand out the back of the engine at high speed, creating 

thrust. 

The ODWE is perceived to have the same advantage over a ramjet as the su­

personic combusting ramjet (SCramjet): improved efficiencies at high Mach numbers 

due to the reduced total pressure losses possible with supersonic combustion [83]. 

In addition, it is a competitive alternative to the SCramjet because it would use a 

smaller combustion chamber and not require an active ignition device [25]. On the 

other hand, a number of issues remain to be addressed regarding the ODWE: Can 

the supersonic fuel and air be sufficiently mixed? Will the mixture have enough time 

to react fully before leaving the engine? Will the standing oblique detonations be 

stable over a broad range of Mach numbers? 

Another rapidly emerging application is the ram accelerator, first proposed and 

studied by Hertzberg, et al. [38, 39]. This device uses oblique detonations to drive 

projectiles to high speed. While currently undergoing basic feasibility studies, en­

visioned applications include weapons and inexpensive launch systems [7]. Figure 

1.3 illustrates one of the theorized modes of propulsion for this device. A projectile 

is injected at high speed (approximately 1,500 m/s), via a conventional powder or 

light gas gun, into a tube filled with fuel and oxidizer (methane and oxygen at 20 

atm, for example). A conical shock forms over the sharp tip of the projectile, .and 
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is reflected off the interior tube wall. This reflected shock induces rapid combustion, 

which causes a large increase in pressure behind the projectile (approximately 600 

atm). The pressure differential between the front and the back of the projectile then 

accelerates the projectile forward. The projectile would continue to accelerate until 

the end of the tube was reached, or until the lead shock became strong enough to 

lFUJl©li9 

OJum©Jr'9 

OOUJl©llllt 

. Figure 1.3: Schematic of ram accelerator flow field. [37] 

induce combustion and thus increase the pressure on the front of the projectile to such 

an extent as to balance the aft force. Hertzberg, et al. [39] have observed velocities 

as high as 2,500 mj s at the end of the tube. 

In order to optimize performance of these devices, it is important to gain a funda­

mental understanding of oblique detonation behavior. One factor which may degrade 

performance is combustion instability. Experimental [49] and numerical [28, 9] studies 

of fundamentally one-dimensional detonations have shown that under certain condi­

tions detonations have an unsteady, oscillating character, while under other conditions 

they are stable. In the unsteady regime, peak flow quantities (such as pressure, den­

sity, or velocity) following the detonation can vary greatly from their average values. 

Similar multi-dimensional phenomena have been observed experimentally (see chap­

ter 7 of [27]). Thus, for the proper design of devices utilizing oblique detonations, it 

is important to obtain answers to the following questions: 

• What is the relation between one-dimensional detonation instability and oblique 

detonation instability? 
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• What is the behavior of oblique detonations in the unstable regime? 

Finally, as tools were developed to answer these questions, it became apparent that 

these same tools could be easily applied to the ram accelerator in order to answer the 

following questions: 

• What is the maximum propagation speed for a ram accelerator? 

• How long should it take a ram accelerator to reach steady state? 

This study has attempted to answer these questions by numerically solving simpli­

fied equations which model oblique detonations. Real combustion phenomena are ex­

tremely complex, involving many chemical reactions between many different species. 

Even in the combustion of simple systems, such as hydrogen and oxygen, it is diffi­

cult to determine all intermediate products and the elementary reactions that give 

rise to those products. The situation is further complicated by the many disparate 

time scales associated with the reactions, which can differ by as much as ten orders 

of magnitude [55]. In a detonation, this complex chemistry interacts with a com­

plex flowfield. This is typically modeled with partial differential equations (PDE's) 

governing the evolution of each chemical species, as well as the standard PDE's de­

scribing conservation of mass, momenta, and energy. The numerical solution of this 

complex system is usually non-trivial due to the difficulty associated with sufficiently 

resolving all length and time scales of the reacting flow, as well as the question of 

how to correctly model turbulence. 

As an alternative approach, the focus of this study is the solution of the simplest 

system of equations that still captures the main features of an oblique detonation: the 

Euler equations for a calorically perfect ideal gas combined with one equation for one 

irreversible, one-step exothermic reaction with Arrhenius kinetics. These equations 

are a subset of equation sets that model more complex physics; they are the most basic 

system to be studied before more complex systems are considered. Consideration of 
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such systems most efficiently exposes any inadequacies in our understanding. Though 

the approach has the disadvantage of not modeling certain physical realities (such 

as real gas effects, viscous effects, etc.) it has a long history as a useful tool for 

understanding [28, 27, 9, 8]. 

The format of this dissertation is as follows: a general review of the detonation 

literature will be presented, followed by a presentation of the model equations. Then a 

number of analytical solutions to the model equations will be presented and discussed. 

Next, the numerical method used to solve the model equations will be presented, 

followed by numerical solutions to a number of one- and two-dimensional problems to 

assess its accuracy. The numerical method will then be applied to oblique detonation 

problems to determine their steady and unsteady behavior. Finally, conclusions will 

be drawn from the aforementioned numerical solutions. 
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CHAPTER 2 

LITERATURE REVIEW 

This review of the relevant literature will be divided into two sections: the first 

will review detonations, while the second will focus on ram accelerators. The deto­

nation literature will be organized in two parts: the first will discuss one-dimensional 

detonations, covering analytical linear stability results, and then numerical studies of 

unstable detonations, while the second will discuss oblique detonation results, cov­

ering experimental evidence for steady and unsteady oblique detonations, analytical 

and numerical solutions for nonequilibrium flows with oblique shocks/detonations, 

and finally, analytical and numerical studies focused on oblique detonation stability. 

Finally, the ram accelerator literature will be divided into representative experimental 

and numerical studies. 

A number of detonation-related terms in this chapter are first defined. Detonations 

are typically classified by the overdrive factor f == (D / DCJ)2, where D is the wave 

speed measured with respect to a laboratory frame of a piston-supported detonation; 

DCJ is the speed of an unsupported, freely travelling detonation; and CJ refers to what 

is known as the Chapman-Jouguet condition (see Fig. 2.1). The detonation becomes 

unsupported when the piston velocity drops below a certain velocity denoted UCJ. 

The freely travelling detonation is commonly referred to as a CJ detonation. When 

f > 1 the detonation is referred to as overdriven, while for CJ waves f = 1. 

7 
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overdriven 
detonation I J>t D 

CJ detonation I ~ DC! 

Figure 2.1: Illustration of overdrive. 

2.1 One-dimensional Detonations 

In the early 1940's 2eldovich [90], von Neumann [79], and Doering [24] indepen­

dently modeled detonations with what is now known as the 2ND model [27]. The 

2ND detonation is one-dimensional and modeled by reactive Euler equations; it is 

composed of a travelling shock wave followed by a zone of chemical reaction. The 

reaction is initiated in the fluid by the shock, which is treated as a discontinuity over 

which no reaction occurs. The particular studies discussed here focused on the case 

of a 2ND detonation with one irreversible, exothermic chemical reaction. 

The stability of 2ND detonations has been studied both analytically, using lin-

earized equations, and numerically, using the complete, nonlinear equations. Fickett 

and Davis [27] present a summary of the limited linear analytical stability results 

available in 1979. The parameters varied in the studies were the activation energy (a 

parameter in the chemical reaction model), the amount of heat released in the chem­

ical reaction, the wave number (which is inversely proportional to wavelength) of the 

transverse disturbance, and the amount of overdrive for the detonation. The results' 

general trends were as follows: for a transverse wave number of zero, increasing the 

activation energy lowered the transition threshold to instability for finite heat release 

and low values of overdrive. Sufficiently high overdrive resulted in stability. For an 

activation energy of zero there was complete stability for all values of heat release 

and overdrive. When the transverse wave number approached infinity, increasing 
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the activation energy again resulted in instability. In this case, however, stability was 

achieved for low and high levels of heat release and overdrive, but not for intermediate 

values of the two. Once again, zero activation energy resulted in complete stability. 

Finally, for intermediate values of transverse wave number, increasing the activation 

energy resulted in the transition to instability occurring at ever lower values of heat 

release for all values of overdrive. Even at zero activation energy, higher levels of heat 

release yielded unstable results. Lee and Stewart [47] recently completed a linear an­

alytical study of the stability of ZND detonations to longitudinal disturbances. Using 

modern techniques they were able to both support the results of the previous studies, 

and then fill in and extend the range of parameters (activation energy, heat release, 

longitudinal wave number) which determine stability boundaries. 

Time-accurate numerical studies of ZND detonations have been performed to ver­

ify the linear stability analyses and to determine the nonlinear behavior of the det­

onation. Fickett and Wood [28] used the method of characteristics to find pulsating 

detonations that were consistent with the linearized stability results. The unstable 

detonations oscillated about the steady solution, with peak pressures approximately 

50% higher than the steady pressure. Later, Bourlioux, Majda, and Roytburd [9] 

studied unstable detonations and made detailed comparisons to the results of Lee and 

Stewart [47]. Using an asymptotic analysis, they were able to show that their numeri­

cal method was predicting the correct unstable behavior. Then Bourlioux and Majda 

[8] extended the study to two spatial dimensions, finding complex two-dimensional 

cellular structures arising from the original one-dimensional, steady detonation. They 

showed that for certain cases in which the ZND detonation profile was unstable to 

long transverse wavelength disturbances, the cell spacing predicted by simple theo­

ries agreed well with the numerical simulation. When the ZND profile had a complex 

stability diagram, such as instability to short wavelength transverse perturbations, 

neither the simple theories nor more complex theories were able to predict the com-

9 
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puted cell spacings accurately. Finally, their numerical solutions appeared to show 

transition to something akin to turbulence in the wake of the unstable detonation 

front as the activation energy and heat release were increased. 

2.2 Oblique Detonations 

Experimental results for oblique detonations fall into two categories: wind tun­

nel data and hypervelocity projectile data. The observations suggest that oblique 

detonations have regimes of stability and instability. Gross and Chinitz [35] pro­

duced apparently steady oblique detonations by injecting hydrogen upstream of a 

wedge placed in a supersonic wind tunnel. Their main method of measurement was 

schlieren photographs. Rubins and Rhodes [67] used a similar apparatus and also 

produced apparently steady oblique detonations. Ruegg and Dorsey [68] obtained 

early evidence of detonation instability by firing projectiles into combustible mixtures. 

Later, Behrens, Struth, and Weckens [6] fired spherical projectiles into stoichiometric 

mixtures of hydrogen and air at low pressures (0.24-0.72 aim), and using high speed 

shadow and schlieren photographs deduced shock pressures, stagnation temperatures, 

and frequency of shock oscillation. They found that the period of shock oscillation 

was the same as the induction time for self-ignition of the mixture. Lehr [49] addi­

tionally considered projectiles with both spherically and conically shaped noses. Both 

studies found apparently steady and unsteady combustion phenomena following the 

bow shock in front of the projectile. Many of these photographs are considered to 

record examples of fundamentally one-dimensional instabilities (see left side of Fig. 

2.2). However, Lehr obtained one photograph (see right side of Fig. 2.2) of what he 

described as "an oblique Chapman-Jouguet detonation" away from the centerline of 

the projectile. The photograph shows a straight oblique detonation followed by a 

complicated, unsteady fiowfield, and could be interpreted as an example of oblique 

detonation instability. 

10 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Figure 2.2: Unsteady detonations resulting from hypervelocity projectiles. [49] 

There are a number of early representative analytical studies of the type of flow 

depicted in Fig. 1.1. Vincenti [78] considered supersonic, nonequilibrium flow over a 

thin wedge, and obtained asymptotic solutions by perturbing about a uniform, equi­

librium freestream flow. Capiaux and Washington [16] considered the hypersonic flow 

of a diatomic, dissociating gas over a finite-angle wedge, and obtained flow solutions 

using the method of characteristics. Lee [48] considered supersonic flow over a wedge 

in which the fluid was in vibrational nonequilibrium. By perturbing about the frozen 

shocked-state, he was able to obtain asymptotic solutions for the nonequilibrium flow 

downstream. 

Oblique detonations were originally studied with discontinuity analyses, in which 

the detonation is considered to be a discontinuous wave with heat release. Siestrunck, 

et al. [71] and Rutkowski and Nicholls [69] presented and discussed oblique detonation 

polars based upon this analysis. Larisch [44], and later Gross [34], obtained analytical 

jump equations for the flow properties across the detonation, with heat release as a 

11 
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parameter. Chernyi [18] discussed the formation of detonations over a number of 

different bodies, including wedges and cones. Others studies of this sort include 

Oppenheim, et al. [57], Buckmaster and Lee [12], and Pratt, et al. [64]. A more 

complete review of this type of analysis is given by Pratt et al., who discuss and 

synthesize much of the previous work. 

More recently, many numerical solutions of the model partial differential equations 

for reactive flows have been obtained. Examples include the work of Brackett and 

Bogdanoff [10], Fujiwara, et al. [30, 29], Wang, et al. [81], Cambier, et al. [14, 15], 

Yungster, et al. [87,89,88]' Ahuja and Tiwari [2,1]' Li, et al. [51,52,53], and Tivanov 

and Rom [77]. Recently, Powers and Stewart [63] obtained asymptotic solutions 

for a steady oblique detonation which are valid in the limit of high Mach number. 

Grismer and Powers [32] then calculated numerical solutions to the same equations 

and compared their results to the asymptotic solutions. These calculations, to be 

described in Ch. 4, show that at very high Mach numbers (rv 20), the differences 

between the two solutions were attributable almost entirely to numerical artifacts 

and the truncation error of the numerical method. On the other hand, at lower 

Mach numbers (rv 10) the majority of the difference was due to the inaccuracy of 

the asymptotic solution. The studies of Grismer and Powers were not time accurate, 

however, and therefore cannot be used to ascertain the stability characteristics of 

oblique detonations. 

Also related to this work are recent studies involving the stability of shocks with 

detonation. Jackson, Kapila, and Hussaini [421 and Lasseigne, Jackson, and Hussaini 

[45] examined the passage of a weak vorticity disturbance through a reactive shock 

wave (detonation) by linearizing about the steady shocked state, and by numerically 

simulating the model partial differential equations. In particular, they found that 

heat release due to chemical reaction acts to amplify the vorticity disturbance down­

stream of the detonation. By considering the asymptotic limit of high activation 
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energy, they also determined that the vorticity disturbance affects the detonation by 

causing the fire zone (a thin region of intense chemical reaction) position to oscil­

late. Buckmaster [11] examined small perturbations to an oblique detonation wave in 

the high activation energy limit. He determined that these perturbations grow while 

moving downstream along the wave, and thus concluded that the oblique detonation 

is structurally unstable in the limit of infinite activation energy. 

2.3 Ram Accelerators 

The ram accelerator was first proposed and investigated by Hertzberg, Bruckner, 

and Bogdanoff [38]. In order to test the concept, they built an experimental facility 

consisting of a light gas gun to launch the projectile at high speed; three connected 

steel tubes filled with varying amounts of fuel, oxidizer, and diluent; an evacuated 

dump tank into which the projectile flew after exiting the tubes; and lastly, a large 

bore decelerator tube filled with steel lathe turnings. Figure 2.3 illustrates this de­

vice. Using this facility, projectile velocities and accelerations as high as 1500 mj s 

Evacuated 

~~~.~::~~~~~~~~~~~~~ dumpt~k High speed __ 
". ~ 

injection , Jc~~~~ 
Projectile 

Figure 2.3: Schematic ofram accelerator test facility. 

and 16,000 g, respectively, were achieved. The authors suggested possible classes of 

flowfields termed "propulsive modes" for the ram accelerator, and labeled them sub­

detonative and superdetonative. Sub detonative modes are limited to speeds below 

the CJ speed for the gas mixture, while superdetonative modes exist above the CJ 

speed. Hertzberg, Bruckner, and Knowlen [39] then studied these modes in more 

detail. They found that by filling each of the three tubes with different mixtures of 

fuel, oxidizer, and diluent, and thus altering the CJ speed, subdetonative propulsion 

could be maintained and still accelerate the projectile. The same technique could 
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also be used to force a transition from sub detonative propulsion in one tube to su­

perdetonative propulsion in the next. Finally, it was found that the projectile could 

transition from sub detonative to superdetonative propulsion when the gas mixture 

was the same throughout the tubes. Using these techniques, the maximum velocity 

achieved by the projectile was increased to 2,500 m/ s. 

A number of numerical studies of ram accelerators have been performed. Brackett 

and Bogdanoff [10J used a Godunov scheme to solve the Euler equations combined 

with one global Arrhenius rate expression for all the chemical reactions. They found 

that an oblique detonation could occur where the initial conical shock attached to 

the projectile nose reflected off the tube wall. An oblique detonation could also be 

induced by placing a small ramp at the midpoint of the projectile body. In either 

case, they found positive thrust on the projectile. Yungster, Eberhardt, and Bruck­

ner [89J developed a code to solve the Euler equations with detailed multispecies, 

multireaction chemistry and real gas effects. The code was verified using experi­

mental results for hypersonic, exothermic blunt body flows, and then applied to a 

ram accelerator configuration at two flight speeds. In both cases there was a posi­

tive thrust on the projectile.Yungster and Bruckner [88J then performed a detailed 

study using the code, investigating the performance characteristics of various projec­

tile configurations in the range of 5-10 km/ s. They examined the effects of varying 

projectile geometry, tube cross sectional area, and gas mixture on the net thrust 

developed on the projectile. Positive thrusts were found in all cases. Yungster [87J 

studied the shock-wavejboundary-Iayer interaction on a ram accelerator configuration 

using a code developed to solve the Reynolds-averaged Navier-Stokes equations with 

detailed multispecies, multireaction chemistry and a Baldwin-Lomax algebraic tur­

bulence model. The analysis centered on an oblique detonation propulsion mode, and 

indicated that a reflected shock wave initiated significant combustion in the boundary 

layer on the projectile. If the projectile speed was increased, significant combustion 

14 
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began in the boundary layer spontaneously. For one flight speed the thrust on the 

projectile was determined, and it was found to be approximately ten percent lower 

than the corresponding inviscid case. 

Other representative experimental and numerical studies of ram accelerators in­

clude Kruczynski and Nusca [43], Srulijes, et al. [73], and Sinha, et al. [72]. These 

are just a few of the studies on ram accelerators. Much of the most recent work in 

this area is summarized in the proceedings of a recent international workshop [41]. 

None of the studies mentioned has addressed the nonlinear stability of oblique 

detonations attached to wedges and modeled by the reactive Euler equations. The 

early analytical studies did not consider stability, while the recent numerical studies 

mentioned considered complicated, multi reaction chemistry models. Jackson, et al. 

and Buckmaster use a linearized analysis, while Lasseigne, et al. do not consider a 

resolved reaction zone. The two-dimensional simulations of Bourlioux and Majda 

consider the reactive Euler equations with a resolved reaction zone, but use periodic 

boundary conditions; thus, they do not consider the effect of wall boundaries such as 

a wedge. In this research oblique detonations attached to wedges and having resolved 

reaction zones were studied in order to relate oblique detonation instability to one­

dimensional detonation instability, and to determine the behavior of unstable oblique 

detonations. 

Grismer and Powers [33] sought to determine the maximum steady propagation 

speed of an idealized ram accelerator projectile. None of the studies referenced here 

considered this aspect of the ram accelerator. In the experimental studies the pro­

jectile continuously accelerated through the end of the tube, and thus no steady 

speeds were obtained. In the numerical studies only individual points of positive and 

negative thrust on the projectile were studied; there was little emphasis placed on 

determining steady speeds. A methodology will be presented here for determining 

the steady speed, along with the results that were obtained for a model problem. 

15 
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CHAPTER 3 

MODEL EQUATIONS 

This chapter introduces the model equations employed in this research. The first 

section presents the equations and their underlying assumptions. The equations are 

then further simplified algebraically and nondimensionalized. The second section 

presents the transformation of the equations to a generalized, curvilinear coordinate 

system. This coordinate system allows for the solution of the equations within geo­

metrically arbitrary domains. 

3.1 Cartesian Reactive Euler Equations 

In a wide variety of scenarios, the model equations for·a reactive, viscous, Newto­

nian fluid can be taken to be the Navier-Stokes equations, with additional terms to 

account for the chemical reactions [85, 13]. However, as the purpose of this research 

is to ascertain the characteristics of oblique detonations by studying the simplest sys­

tem of equations having oblique detonation solutions, the following assumptions have 

been made: 

1. Molecular transport processes are negligible, i.e. there is no momentum, energy, 

or species diffusion. 

2. Body forces are negligible. 

3. There are no internal heat generation or radiation effects. 

4. There is one irreversible reaction (A -+ B). 

16 
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5. A and B are calorically perfect ideal gases. 

6. The specific heats and molecular weights of A and B are identical. 

7. Three-dimensional effects are negligible. 

These simplifying assumptions remove many physical features that are contained 

in the solution of the complete reactive Navier-Stokes equations. The physical flow 

features that are being neglected can be qualitatively described by considering each 

of the assumptions in turn. Neglecting transport processes eliminates the effects of 

viscosity and thermal conduction on the flow. Therefore, there will be no viscous or 

thermal boundary layers near solid bodies, and flow separation is not a possibility. 

There is no mechanism for the solid surface to impart heat to the flow; it acts essen­

tially as an adiabatic body. The lack of viscosity and restriction to two dimensions 

means momentum diffusion generated turbulence is also no longer possible, so nu­

merical resolution of the very small scales associated with this type of turbulence is 

not necessary. Removing the viscous terms from the equations results in a hyperbolic 

system of equations in time, instead of a mixed hyperbolic-elliptic system. The hy­

perbolic system has real characteristics, which will be taken advantage of later in the 

numerical method. Also, since the dissipation mechanisms have been neglected, sharp 

gradients contained in the solution of complete equations may become discontinuous 

in the solution of the reduced equations. 

Neglecting body forces eliminates the possibility of gravity driven flows; there 

will be no gravity-induced density gradients. Disregarding internal heat generation 

removes the possibility of using heat sources (or sinks) to affect the flow or to influence 

the chemical reactions. This is not to say that the chemical reaction itself does not 

release (or absorb) heat; this is accounted for in the internal energy of the flow. 

Radiation is another transport process. It would tend to smooth sharp temperature 

gradients and equalize the temperature everywhere by transporting heat away from 

17 
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local hot spots in the flow. Neglecting radiation, like the other transport effects, thus 

permits for local high temperature regions and discontinuous solutions. 

Finally, the remaining assumptions limit the complexity of the chemical reactions 

and the fluid properties. Considering one irreversible reaction limits the equations to 

only the very simplest possible reacting system. Real reacting flows have much more 

complex chemistry involving multiple reversible reactions among multiple species. 

The reactions can be both exo- and endothermic, and occur over widely varying time 

scales. Thus, the one reaction model is only in the very broadest sense applicable to 

real chemically reacting flows. Considering the species to be calorically perfect ideal 

gases with identical properties further limits the applicability to real systems. This 

is a very brQad simplification, since real gas properties vary with the thermodynamic 

state. This is particularly true for reacting systems, which often have large changes in 

temperature and pressure. Additionally, the properties of the products and reactants 

themselves are also in general different. Lastly, the ideal gas assumption does not 

account for situations in which the gas reaches non-ideal conditions, such as very 

high pressure and low temperature. It also does not account for gases that do not 

behave ideally. 

Though many of these assumptions are made for tractability, there also exist some 

physical justifications. For the high speed flows considered here, transport processes 

generally are not significant. The boundary layer is very thin, and thus most of 

the detonation occurs in the essentially inviscid region outside of it. Heat and species 

diffusion have very little time to occur as the flow is convected through the detonation 

and downstream. Anderson [4] discusses many of the useful inviscid solutions that 

have been obtained for both inert and reactive flows. 

With the simplifying assumptions the equations of [85] reduce to the following: 

aj) a (--) a (--) 0 at + ax pu + ay pv = , 
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a ( __ ) a (--2 -) a (---) 0 at Pu + ax Pu + P + ay PUV = , 
a ( __ ) a (---) a (--2 -) 0 at pv + ax puv + ay pv + p = , 

a (-E-) a (--H) a (--H) 0 at P + ax pu + ay pv =, 

a (_y;) a ( __ y;) a (--'V') -B-T-a E/~( Y;) at P 2 + ax pu 2 + ay pv I 2 = pel - 2, 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

where "-,, indicates a dimensional quantity. Equations (3.1-3.4) represent conserva-

tion of mass, momenta, and energy, respectively, and Eq. (3.5) represents evolution 

of the product mass fraction. Dependent variables in the equations are the density 

p, the Cartesian velocities u and V, the pressure p, the total energy (internal and 

kinetic) per unit mass Et,' the total enthalpy per unit mass Ht, the product mass 

fraction 1'2, and the temperature T. Parameters in the equations are the Arrhenius 

prefactor 13, an exponent determining the temperature dependency of the reaction 

Q, the activation energy for the reaction E, and the universal gas constant lR. The 

total energy is related to the specific internal energy (e) by E = e + (u2 + v2)/2, and 

to the total enthalpy by H = E + PiP. Finally, since the species mass fractions must 

add to one, the reactant mass fraction can be determined by 

(3.6) 

For a multispecies mixture, the ideal gas law and the caloric equation of state are 

N.p 1': 
P = plRT2: i, (3.7) 

i=l Mi 

hi 
-0 AT - - (3.8) = hi + _ Cpi dT, 

TO ' 

respectively, where hi is the specific enthalpy of the ith species, h? is the standard 

enthalpy of formation per unit mass for species i at the temperature TO, Cp,i is the 

specific heat at constant pressure for the ith species, Mi is the molecular weight of 

tThis notation is common in computational fluid mechanics literature and should not be confused 
with that of classical thermodynamics, which reserves capital letters for extensive properties 
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the ith species, and Nsp is the total number of species. For Nsp = 2, Ml = M2 = M, 

and Cp,l = Cp,2 = Cp, these reduce to 

p = 

hl = 

h2 = 

pRT, 
-0 --
hl + Cp(T - To), 

-0 --
h2 + Cp(T - To), 

(3.9) 

(3.10) 

(3.11) 

where R = fR/ M is the gas constant. Finally, these can be related to the specific 

internal energy using the identity 

which in this case reduces to 

e- p y;­
= Ph' -1) - 2Q· 

(3.12) 

(3.13) 

In (3.13) a heat release parameter, if = h~-hg, has been defined, the heat offormation 

of species one has been taken to be h~ = cpTD, Cv = Cp - R is the specific heat at 

constant volume, and 'Y = cp/cv is the ratio of specific heats. Finally, for a calorically 

perfect ideal gas, the isentropic frozen speed of sound C is 

C = V'YP/p, (3.14) 

The Mach number M can then be defined as 

(3.15) 

By defining the activation energy on a mass basis, Ea = E / M, removing the 

temperature dependency from the Arrhenius term, a == 0, and using the ideal gas 

law to replace temperature in favor of pressure and density, the species equation (Eq. 

3.5) can be simplified to 
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Equations (3.1, 3.2, 3.3, 3.4, and 3.16) can be nondimensionalized by the following 

scheme: 

Bx 
x = Mo/po/ po' 

P 
p = -::-, 

Po 

u = MoV-fJo/po' 

t = lB, 
(3.17) 

where Mo, Po, and Po are the freestream Mach number, pressure, and density, re-

spectively. Using this scheme, continuity (Eq. 3.1), momenta (Eqs. 3.2 and 3.3), and 

energy (Eq. 3.4) do not change form: 

ap a a 
at + ax (pu) + ay (pv) = 0, (3.18) 

a a a 
at (pu) + ax (pu2 + p) + ay (puv) = 0, (3.19) 

a a a 
at (pv) + ax (puv) + ay (pv2 + p) = 0, (3.20) 

a a a 
at (pE) + ax (puH) + ay (pvH) = o. (3.21) 

The species equation (Eq. 3.16) becomes 

The supplementary algebraic relations for secondary variables become 

e = P 
p('}' _ 1) - Y2Q, (3.23) 

T 
p 

(3.24) = , 
p 

c = V'YP/p, (3.25) 

1 
E = e + 2"(u2 + v2

), (3.26) 

H = E+ P., (3.27) 
p 

respectively, where e = Eapo/ M6Po, e = epo/ M6Po, q = qpo/ M6Po, T = T / M6To, 

c = c/MoVPo/po, E = Epo/M6PO, and H = Hpo/M6Po. Powers and Stewart 

[63] show that in the limit as Mo -+ 00, the reaction zone length is O(UOB-l = 
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MolY'Po/poB- 1
). The time to cross the reaction zone is thus O(B-l). Noting that 

'Y is 0(1) and comparing these quantities to the nondimensionalization scheme, it is 

apparent that the variables have essentially been nondimensionalized by the charac­

teristic length and time scales of the flow. Thus, the variables have been nondimen-

sionalized based upon characteristic freestream quantities, and, in the limit of high 

Mach number, the characteristic length of the reaction zone and time for the reaction 

to take place. 

3.2 Generalized Curvilinear Reactive Euler Equations 

For the numerical portion of this research, Eqs. (3.18-3.22) are not the preferred 

form; it is more useful to have the equations written in the conservative form for an 

arbitrary curvilinear coordinate system. The curvilinear coordinate system allows the 

equations to be solved over arbitrary, complex shapes, unlike the Cartesian equiva­

lents. As is commonly done with the two-dimensional, Cartesian Euler equations [40], 

Eqs. (3.18-3.22) can be written in a vector conservative form 

where 

aq af ag 
-+-+--W at ax ay - , (3.28) 

q= [~I' f= [pu:~pI' g= [;~pI' W= [ ~ I. 
~~ :~ ~~~ p(l - ~)e-0P/p 

The vectors f and g are commonly called the flux vectors. These equations can be 

transformed to the curvilinear space (~,'Tl,T) by taking 

~=~(x,y,t), 'Tl='Tl(x,y,t), T=t, (3.29) 

and using the chain rule 
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a a~ a aT} a 
ay = ay a~ + ay a17 ' 
a a~ a aT} a a 
at = at a~ + at a17 + aT' (3.30) 

The terms ~x, ~y, ~t, 17x, T}y, and 17t (where subscripts denote partial derivatives with re­

spect to the subscripted variables) are referred to as the grid metrics. Since the trans­

formation defined in Eqs. (3.29) is general, the particular form chosen for ~(x, y, t) 

and T}(x, y, t) is arbitrary. Given a computational grid of points in Cartesian space, 

Fig. 3.1 illustrates the chosen transformation to curvilinear space: each grid point 

y 

x 

11 
2 

o 

g 

d 

a 

h i 

e f 

b c 

2 

Figure 3.1: Illustration of the transformation from Cartesian space to the generalized, 
curvilinear space. 

is defined to lie at integer locations of ~ and T}. In this way .6.~ = .6.17 = 1, which 

simplifies the computations necessary to determine the grid metrics. The metrics can 

be determined from known derivatives in Cartesian space once a computational grid 

has been defined. This is accomplished as follows [3]. The changes in ~, 17, and T can 

be written 

(3.31) 

dT = dt, 

or in matrix form 

(3.32) 
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Similarly, assuming Eqs. (3.29) can be inverted such that x = x(c;, 7], r), Y = Y(c;, 7], r), 

and t = r, the changes in x, y, and t can be written 

[i] = [~; ~: =;][H 
Solving Eq. (3.33) for dC;, d7], and dr, 

[;~] = [~ ~: =; r [;r]· 
and comparing to Eq. (3.32), it is apparent that 

[ 

c;x C;y C;t 1 [X~ xTJ 
7]x TJy 7]t = y~ YTJ 
o 0 1 0 0 

The inverse matrix can be written explicitly as 

xT 

YT 
1 ]

-1 

where J = l/(x~y'rJ - y~xTJ). Thus a term by term comparison shows that 

(3.33) 

(3.34) 

(3.35) 

(3.36) 

(3.37) 

All of the terms on the right hand sides of Eqs. (3.37) can be determined through finite 

differencing using the grid point locations in Cartesian space and the transformation 

to curvilinear space defined previously. 

Applying Eqs. (3.30) to Eqs. (3.28) results in 

oq 8q 8q 8f 8f 8g 8g 
or + C;t 8c; + TJt 87] + c;x 8c; + TJx 87] + C;y 8c; + 7]y 87] = w. (3.38) 

Writing out the metric quantities using Eqs. (3.37) and dividing through by J leads 

to 
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Since the conservative form of the equations is necessary to capture shock speeds 

accurately [50], it is necessary to have the curvilinear equations in the form of Eqs. 

(3.28). To this end the following groups are useful: 

8q 8f 8g 
- (YTX7) - xTY7)) 8f, + Y7) 8f, - x7) 8f, - gX~7) + 

q[YT~X7) + yTx{7) - XT{Y7) - xTY7){] + fY~7) (3.40) 

8q 8f 8g 
= (XTY~ - YTx{) 8ry - Y~ 8ry + x~ 8'Tj + gX7)~ + 

q[XT7)Y~ + XTY7)~ - YT7)X~ - YTX~7)]- fY~7) (3.41) 

Comparing the last three sets of equations, it is apparent that the first three terms 

on the right sides of Eqs. (3.40) and (3.41) match the last six terms on the left side 

of Eqs. (3.39). Substituting and canceling terms results in 

18q 8 [ ] 8 [ J 8T + 8f, (yTx7) - xTY7))q + Y7)f - x7)g + 8'Tj (XTY~ - YTX~)q -

y~f + X{g] - q[YT~X7) + XT7)Y~ - xT{Y'1 - YT7)X~] = ~. (3.42) 

Noting that 

Eqs. (3.42) becomes 

Finally, resubstituting the metric quantities from Eqs. (3.37) leads to 

(3.45) 

Thus, the conservative, curvilinear form of the governing equations is 

(3.46) 
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where 

p 
pu 
pv 
pE 
pY2 

The contravariant velocities, UC = ~t + ~xu + ~yV and VC = 'TIt + 'TIxU + 'TIyV, represent 

the velocities along the coordinate directions ~ and 'TI, respectively. 

Because the numerical scheme to be used in this research takes advantage of the 

characteristic formulation of the Euler equations, it is necessary to modify the equa­

tions further. In particular, it necessary to obtain the eigenvalues, right eigenvectors, 

and left eigenvectors of the flux Jacobian matrices (defined below) in the curvilinear 

coordinate system. This is done as follows: Eqs. (3.28) can be written in the following 

form 
aq aq 8q -+A-+B-=w, 
at ax 8y 

where A and B are the flux Jacobians 

1 o 
(3 - 'Y)u (1 - ')')v 

v u 
H + (1 - ')')u2 (1 - ')')uv 

1'2 0 
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')'U 

o 
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o o 1 o o 
-uv v u 0 0 

B=8g = X::l(U2 +V2)_V2 (l-,)u (3-,)v (,-1) (,-l)q 
8q ~V(U2 + v2 ) - vH (1 - ,)uv H + (1 - ,)v2 ,V (, - l)vq 

-VY2 0 Y2 0 V 

As before, the curvilinear version of these equations is desired. Thus, Eqs. (3.46) can 

be written 

(3.48) 

Knowing the definitions of the flux terms e and g in Eq. (3.46), the chain rule, and 

the Cartesian flux Jacobians, the curvilinear flux Jacobians can be determined: 

e = 
~tq + ~xf + ~yg 

J 

= f [q(q) , f( q(q)), g( q(q))] , (3.49) 

A ae 8 f aq 8 f 8f 8q 8 f ag 8q 
A= aq = --+---+---

aqaq 8f aq8q 8gaq8q 

= ~t J I + ~x af J + ~y 8g J 
J J 8q J 8q 

af 8g 
{3.50) = ~t I + ~x aq + ~y 8q , 

and similarly 

g = 
7]tq + 7]xf + 7]yg 

J 

= 9 [q(q) , f( q( q)), g( q(q))] , (3.51) 

A ag agaq 8gaf8q 8gag8q 
B= aq = --+---+---aq aq 8f aq 8q ag aq 8q 

= 7]t J I + 7]3; 8f J + 7]y 8g J 
J J 8q J 8q 

af 8g 
(3.52) = 7]t I + 7]x aq + 7]y 8q , 

where I is the identity matrix. Carrying out the operations in Eqs. (3.50) and (3.52), 

27 

~x 
(2 - ')~xu + uc 

~xv + (1 - ,)~yU 
~xH + (1- ,)u(UC - ~t) 

~xY2 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

ryy 
ryyu + (1 - ,bxv 
(2 - ,)ryyv + VC 

ryyH + (1 - ,)v(VC - ryt) 
ryyY2 

o 
~x(-y - 1) 
~y(-y -1) 

~t + ,(UC - ~t) 
o 

o 
ryx(-Y - 1) 
ryy(-y - 1) 

ryt + ,(VC - ryt) 
o 

The right eigenvectors and eigenvalues of A are obtained from the eigenvalue 

problem: 

AR=RA, (3.53) 

where>. is the diagonal matrix of eigenvalues, and R = [rllr2lr3lr4lrsJ is the matrix 

of right eigenvectors (rl, r2 .. ' are columns containing the right eigenvectors of A). 

Since only fixed computational grids were used in the numerical studies, ~t = ryt = O. 

Using standard methods the eigenvalues of A were determined to be 

[ Al 
0 0 0 

~l= 
UC 0 0 0 0 

A= ~ 
.A2 a 0 0 uc a 0 0 

0 .A3 0 0 0 UC - cJ~; + ~~ a 0 

0 a .A4 0 0 a u c +cJ~;+~~ 0 
0 a 0 .As 0 0 0 a UC 

(3.54) 

and the corresponding matrix of right eigenvectors is 

~x 0 1 1 a 
UC ~y u-~c 

y'~i+~~ u + y' ~i"'+~~ c a 

R= 0 -~x v - _€_V-c 
J~i+~~ 

v+_€v-c 
y'~~+~~ 

a 
(u2 - V2)~ + ~yuV ~yu - ~xV H __ C_UC 

y'aHB H + y'~;H~Uc -q 

0 0 Y2 Y2 1 
(3.55) 
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The left eigenvector problem for A is 

T.A = AT, (3.56) 

where T is the matrix of left eigenvectors (the rows of T are the left eigenvectors of 

A). Solving Eqs. (3.53) and (3.56) for .A 

A = 

A -

RAR-1 , 

it is apparent that T = R-1 . Thus, the left eigenvector matrix is simply: 

:r=l 
2c2 q 

1+7qY2 

(3.57) 

(3.58) 

(3.59) 

The eigenvalues, J.L , right eigenvector matrix, U, and left eigenvector matrix, u-l, 

of Bare 
v c 0 
0 v c 

J.L= 0 0 

0 0 

0 0 

'T/y 
0 

u= V C 

(v2 - U2)~" +'T/xUV 

0 

0 0 0 
0 0 0 

v c - cJf;; + f;~ 0 0 

0 vc+cJe~+~~ 0 

0 0 V C 

0 1 1 
'T/y u - 17% c u+ v';% 2C 

v'17i+17~ 17%+17y 

-'T/x v - 17. C v+~c v'17i+17~ 17%+17y 

'T/yU-'T/xV H - c V C H+~Vc 
v'17i+17~ 17%+17y 

0 Y2 1'2 

29 

o 
o 
o 

(3.60) 

-q 

1 
(3.61) 
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u-1 = 

(3.62) 

Even though the flux Jacobian arrays A and B really only differ in terms of their 

metric quantities, slightly different forms for the eigenvector arrays Rand U were 

chosen. Had the same form been used for both eigenvector arrays, there would have 

been singularities in one of the inverse eigenvector arrays, In particular, one of the 

arrays would have had either ~y or 'flx in the denominator of a term, leading to a 

singularity when one of those quantities became zero. For example, ~y and 'flx would 

become zero on a Cartesian mesh. On the other hand, ~x and 'fly will not normally 

become zero, and so R-l and U-1 have no mesh related singularities. 
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CHAPTER 4 

FUNDAMENTAL DETONATION SOLUTIONS 

This chapter will present three steady analytical solutions to the model equations: 

the one-dimensional ZND solution, the two-dimensional straight shock detonation 

solution for supersonic flow past a curved wall (the two-dimensional analog of the 

ZND solution), and the two-dimensional detonation solution for supersonic flow past 

a straight wall. These solutions were used to verify the numerical methods used in 

the research, as well as to provide initial conditions for some of the numerical studies. 

4.1 One-dimensional Steady Solution 

Figure 4.1 illustrates the steady ZND detonation problem. At t = 0 a detonation 

wave is initiated in a tube of quiescent premixed fuel and oxidizer by striking the 

detonation PL-lis_to_n---jrt-_mm- x=Dt m_};:-l., D > 

~ i 1 
Figure 4.1: Illustration of the steady detonation problem and the Galilean coordinate 
transformation. 

mixture with a sharp blow from a piston (for example). After an initial transient, 

the detonation proceeds into the tube at a steady velocity D, and induces the fluid 

following it to move with velocity u. The flow is modeled by the Euler equations 

and is one-dimensional, with shocks treated as discontinuities over which no chemical 

reaction occurs. The reaction is assumed to be initiated by the passage of the shock, 
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and then to proceed to completion at a finite rate. If we consider only one dimension, 

the model presented in Eqs. (3.18-3.22) is a ZND model: 

ap a 
at + ax (pu) = 0, (4.1) 

a ( a 2 at pu) + ax (pu + p) = 0, (4.2) 

a a 
at (pE) + ax (puH) = 0, (4.3) 

~(PY2) + ~(PUY2) = p(l - Y2)e-0p
/
p

• at ax 
(4.4) 

Since the detonation is propagating at the steady velocity D, the following Galilean 

coordinate transformation will place the equations of motion in the detonation frame 

of reference .(see Fig. 4.1): 

x = Dt-x t= t. (4.5) 

The relation between the velocity in the new frame and the velocity in the old frame 

is obtained by taking the derivative of Eq. (4.5) 

dx dx 
U = - = D - - = D - u. dt dt 

(4.6) 

The equations are transformed in the much the same manner as they were in the 

previous chapter: derivatives in the old frame of reference are replaced with equivalent 

derivatives in the new frame of reference using the chain rule. The detonation is 

assumed steady in the new frame ofreference, thus a/at == 0. 

a = ax~ at~_D~ ~-D~ 
at at ax + at at - ax + at - dx 
a ax a at a d 
ax = ax ax + ax at = - dx (4.7) 

Applying this transformation to Eqs. (4.1-4.4) and using Eq. (4.6) results in (after 

simplifying) 

d ~ 
dx (pu) = 0, (4.8) 

! (pu2 + p) = 0, (4.9) 
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d ¥ 

dx(pUH) = 0, 

d 
df (pUY2) = p(1 - Y2)e-0p

/
p

, 

where iI = E + pip = e + u2/2 + pip. 

(4.10) 

(4.11) 

Figure 4.2 illustrates the problem in the new coordinate system. The detonation 

sees an incoming flow with known initial conditions Po, Po, eo and velocity D. The 

uO=D 
(uO = 0) 

detonation 
front 

x=o 

Figure 4.2: Diagram of detonation in the f coordinate system. 

flow variables change through the reaction zone, eventually reaching a fixed final 

state. Using the initial conditions and the definition for iI, Eqs. (4.8-4.10) can be 

integrated directly to give 

pu = PoD, 

piP + p = POD2 + Po, 

( u
2 

p) pu e+2"+p = ( D2 p) PoD eo + 2 + P: . 

Equation (4.12) can be used in Eq. (4.13) to eliminate u 

'T") _ 2D2 _ P - Po - 0 ,\- - Po - , 
<Po - <P 

( 4.12) 

( 4.13) 

(4.14) 

(4.15) 

where <P = 1/ p is the specific volume. This is the equation for the Rayleigh line R. 

Similarly, the equation for a Hugoniot curve 1l can be obtained by using Eqs. (4.12) 

and (4.13) to eliminate u and D from Eq. (4.14) 

1l = e - eo - (p+po)~<po - <p) = O. (4.16) 
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The Hugoniot equation can be written in terms of p, <p, and Y2 by using the equation 

of state to eliminate e from Eq. (4.16). The equation of state is Eq. (3.23) written in 

terms of the specific volume 

(4.17) 

The Hugoniot equation then becomes 

(4.18) 

where Y20 = 0 (there are no products in the quiescent mixtu're). This equation may 

be written in the form of rectangular hyperbola [27] 

(4.19) 

centered on the point <p/<Po = J.L2, p/Po = -J.L2, where p2 = h - l)/h + 1). 

The intersection of the Rayleigh line with the Hugoniot curve determines the 

state (p,<p) for a given detonation velocity D. This is illustrated in Fig. 4.3. Three 

Rayleigh lines are shown for different values of the detonation velocity D; increasing 

D results in increasingly negatively sloped lines. Three Hugoniot curves are shown for 

increasing values of the product mass fraction: Y2 = 0 is no reaction (1£0), Y2 = 0.5 

is a half-complete reaction (1-£1/2), and Y2 = 1 is complete reaction (1l 1 ). The initial 

state is denoted 0 where all three Rayleigh lines and the Y2 = 0 Hugoniot curve 

intersect. The detonation wave first shocks the flow to state N, the Neumann point, 

which is the leftmost intersection of the Rayleigh lines with the zero mass fraction 

Hugoniot curve. As expected, detonations with larger velocities shock the flow to 

higher pressures and lower specific volumes. Following the sh.ocked state the flow 

reacts, proceeding along the Rayleigh lines through Hugoniot curves of increasing 

Y2 • The final constant end state S is achieved only for detonation velocities above a 

certain value, denoted the Chapman-Jouguet velocity DcJ , when the Rayleigh lines 

intersect the Hugoniot curve of complete reaction (Y2 = 1). 
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Figure 4.3: Rayleigh lines and Hugoniot curves for 2ND detonation. 

Examining the curves more carefully, it is apparent that below a certain velocity 

there is no solution; the Rayleigh line does not intersect the end state Hugoniot curve 

til. At DCJ there is one unique intersection at C. Above the CJ velocity there are 

two intersections; the upper intersection is called the strong solution S, and the lower 

intersection W is called the weak solution. The weak solution is discarded on the 

grounds that there is no path from the shocked state to point W for this model. 

Thus, the CJ velocity is the minimum speed at which the detonation with a lead 

shock can travel. 

It can also be argued to be the speed of an unsupported, freely travelling deto­

nation wave. It can be shown that the flow velocity with respect to the front at S 

is subsonic it = D - u < c, at the CJ point is sonic it = D - u = c, and at W 

is supersonic it = D - u > c. Because of the subsonic condition at S, the strong 

solution requires support from the piston depicted in Fig. 4.1. If the piston is slowed 
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below the end state velocity at S, rarefactions travelling at u + c will overtake the 

detonation and weaken it. The detonation velocity will then slow until it reaches 

D = u + c = DcJ , the point at which the detonation speed matches the speed of 

following disturbances. 

The complete solution ZND solution requires that all of Eqs. (4.8-4.11) be con­

sidered. Solution of Eq. (4.11) in general cannot be done analytically, and requires 

that cp, U, and p be written only in terms of Y2. Equations (4.12-4.14,4.17) can be 

manipulated to give 

-"IC2 + V[,,(C2 - (1 + "I)C1us ]2 + 2(1 + "1)(1- "I)CrqY2 

-(1 + "I)C1 
U = (4.20) 

where C1 = PoD and C2 = PoD2 + Po are constants. Only the positive roots are shown 

because the negative roots correspond to an unshocked initial state. Equations (4.12-

4.14) can also be manipulated to give the shocked velocity Us 

Us 2+ b -l)Mij 
= --;--'-'---:---'-~ 

Uo b+ l)Mij , 
( 4.23) 

where Mo = D / .j"lPo'Po is the Mach number of the travelling detonation. Note that 

the CJ condition can be determined from Eq. (4.21), for example. At the CJ point 

(Y2 = 1), 'P must be single-valued and real. This occurs when the radical in Eq. (4.21) 

is zero: 

(4.24) 

The nondimensional constants C1 and C2 can be written more simply by noting the 

preshocked state has been used to nondimensionalize the flow variables: 

Po = ~o = 1, 
Po 
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D = b = Moc = lY'Po/po = y'!, 
Molfo/ Po Molfo/ Po Vio/ Po 

( 4.26) 

Po 1 
Po = Mijpo = Mij' (4.27) 

This results in C1 = .JY and C2 = ')' + 1/ M~. Substituting for C1, C2 , and Us in Eq. 

(4.24) results in (note Uo = D = J7) 

[~5 + ')'2 - ')'[2 + (~~ I)M~lr + 2')'(1- ')'2)q = O. (4.28) 

The only unknown in this equation is M o, the Mach number of the detonation at the 

CJ condition; this will be denoted M ocJ ' Before this equation can be solved, however, 

q must be rewritten so as not to depend on Mo. A commonly chosen non dimensional 

form is q = ijpo/Po = Mfiq. Equation (4.28) then becomes 

[ 

')' 2 ')'[2 + h - I)MfiCJ 1] 2 2')'(1 - ')'2)q _ 0 
M2 + ')' - M2 + M2 -, 

OCJ OCJ OCJ 

(4.29) 

which can be solved to give 

(4.30) 

Thus, the CJ Mach number depends only upon the fluid properties, initial fluid 

conditions, and the heat release due to the chemical reaction. 

Substituting Eqs. (4.20-4.23) into Eq. (4.11) results in an ordinary differential 

equation in Y2 and x. This can be integrated numerically using standard techniques 

to obtain Y2(i), which then determines u(i), cp(x), and p(x). Figure 4.4 shows the 

solution for a strong ZND detonation when f = 1.8 (recall the definition of overdrive 

from the beginning of Ch. 2), q = 0.719, e = 0.719, and 'Y = 1.2. Examining Fig. 4.4 

more closely, it can be seen that u and cp are initially shocked from their freestream 

values to a minimum value, and then increase through the reaction zone. The pressure 

acts in the opposite way, peaking at the detonation front and decreasing through the 

reaction zone. The product mass fraction curve shows there is no.induction zone; Y2 
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Figure 4.4: Overdriven ZND detonation solution (f = 1.8, q = 0.719, e = 0.719, 
'Y = 1.2). 

immediately begins increasing following the detonation front. As 1'2 asymptotically 

approaches 1, fL, <p, and p asymptotically approach constant values predicted by the 

jump analysis. 

Figure 4.5 illustrates a CJ detonation for the same q, e, and 'Y. Comparing to 

Fig. 4.4 it is apparent that the reaction zone is much longer than in the overdriven 

case; the weaker lead shock of the CJ detonation results in the reaction rate being 

much lower initially. There is an induction zone and then a narrow region in which 

the reaction proceeds very quickly to completion. The other flow variables follow 1'2, 

remaining close to the shocked state and then undergoing a rapid transition to their 

final values. 
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Figure 4.5: Chapman-Jouguet detonation solution (J = 1.0, q = 0.719, e = 0.719, 
'Y = 1.2). 

4.2 Two-dimensional Steady Solutions 

4.2.1 Straight Shock, Curved Wall 

The straight shock, curved wall detonation solution is the two-dimensional analog 

of the one-dimensional ZND detonation. In this case consider steady flow over a 

curved wedge. The wall is assumed to be curved in such a fashion that the resulting 

oblique detonation is straight, as shown in Fig. 4.6. The exact shape of the wedge is 

initially unknown; it will be determined by the solution of the equations of motion. 

Once again Eqs. (3.18-3.22) are appropriate, except the time derivatives are zero; 

the detonation is considered to be steady in the fixed frame attached to the wedge. In 

this case it is useful to consider the equations in the coordinate system (x ,f)) oriented 

with the detonation as indicated in Fig. 4.6: 

:x (pu) + :f) (pi)) = 0, (4.31) 
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Figure 4.6: Schematic of straight shock, curved wall detonation flowfield. 

:x (pu2 + p) + :fJ (puv) = 0, 

a a 
ax (pilv) + ay (pfi + p) = 0, 

a ¥ a ¥ 

ax (puH) + ay (pvH) = 0, 

:x (pilY2) + :y (piJY2 ) = p(l - Y2)e-0p
/
p

• 

(4.32) 

(4.33) 

(4.34) 

(4.35) 

The velocities u and v are in the x and y directions, respectively, and iI = E + p/ p = 

e+(u2 +v2)/2+p/p. The detonation coordinate system and wedge coordinate system 

may be related using the detonation angle {3: 

x = x sin {3 + Y cos {3, 

y = -x cos {3 + ysin {3. 

(4.36) 

(4.37) 

The relation between the velocities in the two coordinate systems is found by taking 

the derivative with respect to time of the coordinate transformation above. The 
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resulting relations are: 

U = u sin ,B + v cos ,B, 

v = -ucos,B + vsin,B. 

(4.38) 

(4.39) 

As in the ZND model, the detonation is initiated by a lead shock. In this case 

the shock is an oblique shock, and it is assumed that there are no changes in the y 

direction; thus ;y == o. Equations (4.31-4.35) then become 

d v 

di (pu) = 0, (4.40) 

d v 

di [pu2 + pj = 0, (4.41 ) 

d 
dx(puv) = 0, (4.42) 

d v 

di (puH) = O. (4.43) 

d 
di (puY2) = p(l - Y2)e- Elp

/
p

• .(4.44) 

Equations (4.40-4.41,4.43-4.44) are exactly the same as Eqs. (4.8-4.11) for the ZND 

detonation, and therefore have the same solution. Equations (4.42, 4.40) are easily 

solved to give piLv = constant and pit = constant. Combining the two it is apparent 

that 

v = constant. (4.45) 

Thus, the straight shock, curved wall detonation solution is simply the one-dimen­

sional ZND solution with an added constant v component. Note that since shock 

curvature is the only vorticity production mechanism in an inviscid flow, the flow is 

irrotational 

- av au 
w. = \7 x V = - - - = o. 

- ai ay 
( 4.46) 

Since there is no flow through a streamline, the wall function yw(i) may be ob-

tained by finding any streamline in the flow. The velocity vector must be tangent to 
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the streamlines; therefore, the slope of the streamlines and velocity vector must be 

equal 
dyw v 
dx = u(x)' (4.47) 

Taking the origin to be at the wedge tip so Yw(O) = 0, this can be solved to give 

(4.48) 

Much in the same way as one-dimensional detonations, oblique detonations are 

typically classified using the results of a Rankine-Hugoniot analysis. Figure 4.7 illus­

trates the case in which an oblique detonation is considered to be a shock discontinuity 
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Figure 4.7: Variation of oblique detonation wave angle with wedge angle and heat 
release (-y = 1.2, Mo = 5). 

with heat release [34, 64]. Just as in oblique shock theory, the equations of motion 

are reduced to algebraic relations via a Rankine-Hugoniot discontinuity analysis, and 

then manipulated to give a relation between the detonation wave angle and the sup­

porting wedge angle. This equation contains an extra parameter for the heat release 
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Y2Q, and reduces to the oblique shock relation when Y2 = o. Unlike the inert state, 

adding heat to the flow leads to closed curves in which decreasing the wedge angle 

below a certain minimum value results in increasing wave angles (see Fig. 4.7). In­

creasing the amount of reaction results in the closed area shrinking toward the upper 

left corner of the plot. For a given q, detonation angles below a certain angle (3CJ 

are not possible. At (3 = (3CJ there is one solution, and above (3CJ there are two. 

As in oblique shock theory, there is a strong regime (S) in which the Mach number 

following the detonation (M 2) is subsonic, and a weak regime (W) in which M2 > 1 

but the Mach number normal to the wave (M 2n ) is less than unity. Following one­

dimensional detonation theory, there is a state when the Mach number normal to the 

wave (M 2n ) is unity. This leads to an underdriven (VD) regime where M2n > 1, 

and an overdriven (OD) regime where M 2n < 1. Thus, oblique detonations are clas­

sified as strong (which is always overdriven), weak overdriven, and weak underdriven. 

As in the one-dimensional theory, the weak underdriven state is inaccessible from 

the shocked state for a one-step, irreversible reaction. Recent work [62], however, 

has demonstrated that when a two-step, exothermic-endothermic scheme is consid­

ered, the weak underdriven solution is accessible from the shocked state. Lastly, the 

straight shock, curved wall solution can be classified according to an overdrive pa­

rameter, in this case termed the normal overdrive in = (Mon/MocJ)2, where M'on is 

the component of the freestream Mach number normal to the detonation. 

Figure 4.8 shows a weak overdriven straight shock, curved wall detonation solu­

tion for in = 1.6. The plots show contours of constant pressure and product mass 

fraction, as well as the wall shape. As expected the solution contours are straight 

(any jaggedness in the contours is an artifact of the discretization necessary for plot­

ting), while the wall curves. The detonation angle is (3 = 61°, while the wall angle is 

a maximum at the apex (Bmax = 50°) and decreases to a minimum constant value at 

the end of the reaction zone (Bmin = 35°). Figure 4.9 shows a strong solution with the 
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Figure 4.8: Weak, overdriven straight shock, curved wall detonation solutions for 
pressure and product mass fraction Un = 1.6, Mo = 9, q = 0.719, e = 0.719, 
'Y = 1.2). 

same normal overdrive value of in = 1.6. In this case the detonation angle is greater 

at f3 = 79°, the initial wall angle is the same to this precision, emax = 50°, and the 

final wall angle is less at emin = 240
• 
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4.2.2 Curved Shock, Straight Wall 

The straight shock, curved wall detonation solution was simple to obtain because 

it was only pseudo-two-dimensional; the assumption of a straight shock leads to an 

essentially one-dimensional solution. Powers and Stewart [63J considered the more 

complex problem of the oblique detonation resulting from a wedge with a straight 

wall. In this case the oblique detonation has curvature and a truly two-dimensional 

character. A general description of their solution procedure will be presented here, 

followed by some example solutions. The reader is referred to [63J for the complete, 

detailed analysis. 

The governing equations studied were the steady versions of Eqs. (3.18-3.22). 

This model was studied in the limit of high Mach number, linearized about the inert 

oblique shocked state. In this limit the kinetic energy of the flow is much greater 

than the heat release from chemical reaction. The leading order solution was an inert 

shock, and the linear asymptotic theory corrected for the effects of small heat release. 

Also in this limit the induction zone length was effectively zero; the assumption of 

large activation energy, which gives rise to a thick induction zone and thin reaction 

zone, was not made. Consequently, a simple leading order solution of the kinetic rate 

law was available. At the following order, acoustic equations with chemical reaction 

forcing terms generated at leading order were solved to determine the pressure and 

velocity fields. The resulting solution was rotational and characterized by a curved 

shock attached to a straight wedge. 

The solution procedure of [63] was as follows. To simplify application of the 

boundary conditions, the Euler equations were first transformed to a non-orthogonal 

coordinate system fixed to the inert shock and wedge. The equations and shock 

conditions were then written as linear equations in the high Mach number limit. 

Assuming the oblique shock was weak and the trailing flow was supersonic allowed 

the equations to be written in characteristic form. These equations were then solved 
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with the shock position function as a parameter. The shock position function was 

then specified such that a downstream boundary condition on the wedge surface was 

met. 

Figures 4.10 and 4.11 show asymptotic solution contours for vorticity and product 

mass fraction. The flow features follow the description of an oblique detonation given 

in Ch. 1 (see Fig. 1.1). As shown by the vorticity contours, the detonation front is 

curved; curvature is a maximum near the wedge apex, and then decreases to zero 

away from the apex. The curved detonation front generates vorticity which then is 

convected downstream along the wedge. The highest vorticity is generated by the 

maximum curvature near the wedge apex, and then convected downstream along 

the wedge surface. The vorticity decreases away from the wedge surface, eventually 

reaching zero when the shock curvature reaches zero. The product mass fraction 

contours show the reaction initiated by the front, and then proceeding to completion 

over a finite distance. 

Figure 4.12 shows the asymptotic solution contours for pressure. The minimum 

detonation pressure occurs near the wedge apex where the detonation front is essen­

tially an inert shock. The maximum pressure occurs where the curvature is zero and 

the detonation front has reached its maximum angle. Just as in a ZND detonation, 

the pressure peaks at the front and then decreases as the reaction progresses. 

Grismer and Powers [32] demonstrated the utility of the asymptotic solutions 

as benchmarks to which numerical solutions can be compared. Figure 4.13 shows 

a numerical pressure solution obtained with RPLUS, a code under development at 

NASA Lewis Research Center [70]. Comparing Figs. 4.12 and 4.13 it is apparent 

that the numerical solution is very similar to the asymptotic solution, but some 

of the details in the flow are somewhat different. In order to better quantify the 

comparison between the asymptotic and numerical solutions, the asymptotic solution 

was "written" on the same grid used for the numerical calculations. The two solutions 
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were then compared using a fractional error [86J defined as 

N 

el = L IPai - Pnil/N , 
i=l 

(4.49) 

where Pai is the asymptotic pressure at a point, Pni is the numerical solution at 

a point, and N is the total number of points. Thus, el is essentially an average 

pressure difference between the two solutions at a given point. 

Figure 4.14 shows a plot of el versus freestream Mach number Mo. Asymptotic 

and numerical solutions were calculated for different cases of freest ream Mach number 

and heat release, and then the corresponding el values determined (filled symbols). To 

aid in interpreting the results, asymptotic and numerical solutions for zero heat release 

were also compared to the exact oblique shock solution (open symbols). Finally, the 

predicted order of the error of the asymptotic and numerical solutions was plotted. 

The error in the asymptotic solution is the next highest order not considered, or 

O(€2) = 1/ Mg. The error in the numerical solution is the order of accuracy of the 

finite differencing scheme used, or O(.6.x2). Since the same fixed grid was us'ed for 

all calculations, this was constant. Measured order of accuracy results in eh. 6 and 

from other researchers [86J suggest that for nonlinear flows with discontinuities the 

actual order of accuracy is much lower; however, as no order of accuracy testing was 

done with RPL US, the initial estimate was retained. 

The trend of the comparisons to the exact oblique shock solution highlights the 

behavior of the asymptotic and numerical solutions. The exact/numerical comparison 

shows that the error of the numerical solution remains nearly constant regardless of 

the Mach number. On the other hand, the exact/asymptotic comparison shows that 

the error of the asymptotic solution decreases with increasing 'Mach number. These 

are both consistent with the behavior of the respective predicted error curves shown. 

The large difference between the magnitude of the predicted errors and the calculated 

errors is likely due to the smeared shock profile of the numerical solution and the 

error in the prediction of the shock location of the asymptotic solution. Examining 
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the asymptotic/numerical errors for ij = 0 in light of the comparisons to the exact 

solution, it is apparent that for low Mach number the difference in the solutions is 

due to the error of the asymptotic method. At high Mach number the difference is 

due to the error of the numerical method. Adding a small amount of heat to the 

flow (ij = 1) retains the same behavior. Adding a larger amount of heat to the flow 

(ij = 10) results in a curve with the same trends as ij = 0 and 1, but having much 

higher values. This is due to large errors in the asymptotic solution; this level of heat 

release is inconsistent with the initial assumptions made in obtaining the asymptotic 

solution. Thus, for low heat release and high Mach number, the asymptotic solution 

was shown to be a useful quantitative benchmark for numerical solutions of high speed 

flows. At lower Mach numbers or high heat release, it has value as a qualitative tool 

for predicting general flowfield features. 
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Figure 4.10: Oblique detonation vorticity contours from asymptotic solution (Mo = 
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Figure 4.11: Oblique detonation product mass fraction contours from asymptotic 
solution (Mo = 20, if = 10, 'Y = 1.4, e = 20°). 
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Figure 4.12: Oblique detonation pressure contours from asymptotic solution (Mo = 
20, Ii = 10, 'Y = 1.4, e = 20°). 
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Figure 4.13: Oblique detonation pressure contours from numerical solution (Mo = 20, 
Ii = 10, 'Y = 1.4, () = 20°). 
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CHAPTER 5 

NUMERICAL METHOD 

This chapter will present the numerical algorithm implemented for this study. The 

chapter will be broken into four sections: a brief description of Godunov schemes, a 

discussion of Roe's approximate Riemann solver and its use in a first order scheme, 

extension of the scheme to second order accuracy in space and time, and the actual 

implementation of the second order scheme for the reactive Euler equations in the 

two-dimensional generalized coordinate system. 

5.1 Godunov Schemes 

Roe's scheme is part of a broader class of methods referred to as Godunov schemes. 

Unlike finite difference methods, in which the solution is assumed to be smooth, 

Godunov's [31] idea was to average a series of exact, nonlinear, discontinuous solutions 

of the conservation equations to arrive at an overall solution. This type of scheme 

captures discontinuous flow solutions, such as shocks, naturally without resorting to 

the artificial dissipation methods necessary in finite difference methods. Godunov 

chose the exact solution of the Riemann problem as his discontinuous solution. The 

Riemann problem may be thought of as follows: consider a tube filled with inviscid gas 

and divided into two sections by a diaphragm. In each section the gas is at different 

conditions of pressure, density, and/or temperature. At t = 0 the diaphragm breaks, 

sending a shock into the gas of lower pressure. Convected along at the particle velocity 

behind the shock is a contact discontinuity, and moving in the opposite direction into 
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Figure 5.1: x-t diagram of the Riemann problem. 

the high pressure side is an expansion wave. This is illustrated in Fig. 5.1; each 

of the waves moves at a constant velocity, thus the curves in the x-t diagram are 

linear. The solution between the waves, denoted by 1-4 in Fig. 5.1, is a constant 

state. Details of the Riemann solution are well known [40]. In fact, the Riemann 

solution is a similarity solution; along lines of x/t = constant the solution remains 

constant. Figure 5.2 shows a Riemann problem solution at t = 0.0061 s in which the 

diaphragm was located at x = 0, the initial velocity was zero everywhere, the initial 

ratio between the left and right state density was 8, the initial pressure ratio was 

10, 'Y = 1.4, and the total dimensional domain length was 10 m. These parameters 

were chosen for direct comparison with published results [40]. The variables have 

been scaled by their peak values, and the spatial coordinate has been scaled by the 

domain length. The contact discontinuity (evident as the first step in the density 

plot) and shock are moving to the right, while the expansion wave moves to the left. 

The solution varies smoothly and continuously through the expansion region, while 

remaining constant or varying discontinuously in the other regions. 

Godunov utilized the Riemann solution by considering the flow variables to be 

constant across a given computational cell i, but different on a cell by cell basis (see 

Fig. 5.3). The different constant states in each cell led to a Riemann problem at the 

cell interfaces (i - 1/2) and (i + 1/2). The Riemann problem for each interface was 
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Figure 5.2: Exact solution to Riemann problem at t = 0.0061 s (diaphragm initially 
at i = 0, initial pressure ratio = 10, initial density ratio = 8, initial velocity. = 0, 
'Y = 1.4, total domain length = 10 m). 

then solved, taking b..t sufficiently small such that there was no interaction between 

adjacent interface solutions. Finally, the resulting Riemann solutions were averaged 

in each cell to obtain the overall flow solution for that time step. 

The perceived deficiency of Godunov's method was that each Riemann problem 

must be solved with an iteration process. For a large number of cells this requires 

significant computational time, making the scheme inefficient compared to other com-

Figure 5.3: Illustration of Godunov's method. 
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mon methods. However, since the detail of each Riemann problem is lost in the av­

eraging process, the necessity of obtaining the exact solution is questionable. In the 

interest of efficiency, a number of approximate Riemann solutions have been developed 

that do not require iteration. 

5.2 The Roe Scheme 

Roe [66] published his approximate Riemann solution in 1981, and since that time 

it has been widely used, e.g. [84, 80, 5, 46, 54]. In particular, in a recent article on 

unsteady detonations [19], Roe's method was chosen following a detailed comparison 

between a number of different schemes. The largest concern in the study was that 

the shock/detonation front be captured cleanly and oscillation free without resorting 

to artificial dissipation methods. Artificial dissipation is undesirable because it could 

dampen physical oscillations in the unsteady solutions of interest. Roe was able to 

show that his approximate Riemann solver reduces to the standard Rankine-Hugoniot 

jump conditions for a shock discontinuity; thus it seemed well equipped to handle our 

problem. Much of the following discussion is based upon a book by LeVeque [50], 

which focuses on numerical methods for hyperbolic systems of conservation equations. 

For the control volume defined by i -1/2 and i + 1/2 in Fig. 5.3, the integral form 

of the one-dimensional conservation equations (Eqs. 3.46) is 

(5.1) 

where ~i = i(b.~). It is noted that this form is actually more fundamental in that 

the governing partial differential equations are typically derived from an integral 

formulation after the assumption of a continuously varying integrand is made. The 

integral form allows discontinuities to be present in the domain. Equation (5.1) can 

be integrated to give 
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(5.2) 

By defining 

(5.3) 

(5.4) 

(5.5) 

Eqs. (5.2) become 

(5.6) 

Equations (5.3) define an average q over the spatial interval ~i-l/2 to ~i+1/2' Equations 

(5.4) and (5.5) define average fluxes over the temporal interval Tn to Tn+!. For 

Godunov's scheme and the Roe scheme to be used here, the initial data q(~i' Tn) is 

considered to be constant across the interval, thus Qi = q(~i' Tn). The integral in 

Eqs. (5.4) is actually simpler than it appears. For Godunov's scheme, the value of 

q(~i+l/2' T) remains constant over the interval Tn to Tn+! due to the similarity nature 

ofthe Riemann solution (along (~-~i+l/2)/T = constant = 0 the solution is constant). 

This is also true of the approximate Riemann solution of Roe. Thus, 

(5.7) 

where q*(Qi, Qi+1)) denotes the value of q at the interface due to the Riemann 

solution between cell i and i + 1. If the piecewise constant solution for q at the new 

time is taken the be the averaged value, q(~i' Tn+l) = Qi+1
, then Eqs. (5.6) become 

(5.8) 

where qi = q(~i,Tn) and fi':rl/2 = f(q*(Qi, Qi+1))' Equations (5.8) define the nu­

merical scheme for a general Godunov-type method; the way in which the interface 

fluxes fH-l/2 are determined distinguishes the various schemes. 
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Roe's approach was to approximate the Riemann solution by considering a linear 

system of equations: 

8q = 8q 
81' +A 8~ = 0, 

q(~, 0) = qo(O, (5.9) 

where A is a constant matrix. Note that since A is constant, the flux vector for this 

system is simply f( q) = Aq. For the moment, consider this to be the one-dimensional, 

linear version of Eqs. (3.48) without the source term w. This system of equations 

has an exact solution which can be more easily seen by considering a simpler one 

equation system: 

(5.10) 

where A is a scalar constant. A characteristic solution for this can be obtained by 

noting that 
fr 8 A 

dq = 8: dr + 8~d~, (5.11) 

and dividing through by dT 
dq 8q 8q d~ -=-+--. 
dT 81' 8~ dr 

(5.12) 

Comparing Eqs. (5.10) and (5.12) it is apparent that along the characteristic d~/dT = 

A 

dq =0. 
dT 

(5.13) 

Simply integrating Eq. (5.13) shows that q is constant along dU dT = A, and can be 

determined everywhere using the initial condition 

(5.14) 

where ~o is the intersection with the ~-axis of the characteristic passing through (~, r). 

This can be written more simply by considering the solution for the characteristic 
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equation 

(5.15) 

Solving for ~o (TO = 0) 

~O = ~ - AT, (5.16) 

and substituting leads to 

(5.17) 

Note that if the initial condition is discontinuous, q(~, T) will be discontinuous. 

The same type of treatment can be used on Eqs. (5.9), provided the system of 

equations can be decoupled into a set of independent equations. This is accomplished 

by diagonalizing A, which can always be done for the flux Jacobian matrix of a 

hyperbolic system of equations [50]. The matrix A can be written 

= = = =-1 
A=R,XR , (5.18) 

where R and X ar.e the right eigenvector matrix and eigenvalue matrix of X, respec-
=-1 

tively. Substituting into Eqs. (5.9) and multiplying by R results in 

=-10q = =-loq 
R OT +,XR o~ = o. (5.19) 

Since R -1 is constant, it can be brought within the derivative. With a new variable 

v defined as 

Eq. (5.19) transforms to 

=-1 
v=R q. 

ov >..ov =0 
OT + o~ . 

(5.20) 

(5.21) 

Since X is a diagonal matrix of eigenvalues, this is a decoupled system of equations 

which can be written 

OVm ~ BVm = 0 
OT + m o~ m= 1,2, ... ,N, (5.22) 
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where N is the number of equations. The solutions are then simply 

(5.23) 

where the initial conditions for v are found using Eqs. (5.20) 

=-1 
v(~, 0) = R qo(~). (5.24) 

Finally, the solution in terms of the original variables is found by solving for q in Eqs. 

(5.20): 

q(~, T) = Rv(~, T). (5.25) 

Working out the matrix multiplication on the right hand side, this can be written as 

an eigenvector expansion 

N 

q(~, T) = L vm(~, T) rm , (5.26) 
m=l 

where rm are the right eigenvectors. 

The Riemann problem is simply a discontinuous initial condition 

{ 

ql ~<O 
qo(~) = , 

qr ~ ~ 0 

(5.27) 

where ql and qr are constant left and right states, respectively. Likewise, the charac­

teristic variables have constant left and right initial states 

m= 1,2, ... ,N, 

which can be used in the eigenvector expansion of Eqs. (5.26) to give 

N 

ql = L vmzrm 

m=l 

N 

qr = L vmrrm . 
m=l 

Following Eq. (5.23) the characteristic solution is simply 

m= 1,2, ... ,N. 
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Assuming the eigenvalues ):.m are arranged such that 

~I :::; ~2 :::; •.. :::; ~N' (5.31) 

the solution for q can be written 

N e(~ .. r) N 

q(~,r) = L vmrm = L Vmrrm + L vm1rm , (5.32) 
m==1 m==1 m==e(~,T)+1 

where f(~, r) is defined as the maximum value of m such that ~ - ):.mr 2: o. Figure 

5.4 shows an example of a solution; characteristics emanating from the negative side 

B 

A 

Figure 5.4: Diagram of linear Riemann solution. 

of the ~-axis result in Vm = v m1 ' while those emanating from the positive side lead to 

Vm = Vmr · Thus, VI = VIr' V2 = V2r , and V3 = V31, and the solution from Eqs. (5.32) is 

(5.33) 

Additionally, the value of q is constant within the wedge defined by d~/dr = ):.2 and 

d~ / dr = ):.3 (region C of Fig. 5.4). Since the characteristics emanating from the points 

~ - ~mr (solid lines) parallel the characteristics d~/dr = ~m at the origin (dashed 

lines), moving the point of interest (~, r) within region C will not result in any of the 

emanating characteristics (solid lines) crossing the origin; therefore the values of Vm 
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will not change. The same reasoning applies to each of the four regions defined by 

Figure 5.5 indicates the constant value of q for each region. The solution changes 

-
q(~;c)=vl r1 +v2 r2+v3 r3 ~ 

r 1 1 , 
, 

o 

Figure 5.5: Linear Riemann solution by quadrant. 

discontinuously across each characteristic; the jump across the mth characterIstic is 

(0 denotes the difference operator) 

(5.34) 

By beginning with the left state and summing the differences for the characteristics 

that would be crossed to reach the point of interest, the Riemann problem solution 

may be written 

(5.35) 
Xm<E./r 

Likewise, the solution may be written by beginning with the right state and subtract-

ing the differences for the characteristics crossed: 

q(~, 7) = qr - I: (Vmr - vml)rm. 
>'m?E./r 

(5.36) 

The jump from the left to right state is then made up of a series of smaller jumps 

(5.37) 
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Since the eigenvectors rm and left and right states ql and qr are known, this equation 

can be used to solve for am = Vmr - vmz . Adding the terms together and rearranging, 

Eqs. (5.37) can be written 

(5.38) 

which is then easily solved by multiplying by the inverse eigenvector matrix 

(5.39) 

The previous derivation is true for any constant matrix A with real eigenvalues. In 

order to make the linear Riemann solution and the actual nonlinear Riemann solution 

of the Euler equations as alike as possible, it would make sense to define A as some 

function of the left and right states, A( ql, qr). An important contribution of Roe was 

defining A( ql, qr) according to the following criteria [66]: 

1. It constitutes a linear mapping from q to f. 

2. As ql -7 qr -7 q, then A(ql, qr) -7 .A(q) where A = 8fj8q. 

3. For any ql, qn A· (qr - ql) = fr - fl (. indicates matrix multiplication for 

clarity). 

4. The eigenvectors of A are linearly independent. 

Conditions 1, 2, and 4 are satisfied by straightforward averaging processes such as 

A = t(.Al + Ar ), but Condition 3 is not. Condition 3 is motivated by the desire to 

have A satisfy the Rankine-Hugoniot jump conditions. 

The general Rankine-Hugoniot conditions can be derived by considering a one­

dimensional shock moving at speed s (see Fig. 5.6). The shock has travelled a distance 

ST, and the states to the left and right of the shock are constant at ql and qr, 

respectively. The Rankine-Hugoniot equations relating the states can be obtained by 
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shock 

Figure 5.6: Illustration of one-dimensional travelling shock. 

considering the integral form of the conservation equations over the control volume 

(-f, f) at time 7 (where f» S7): 

(5.40) 

The integral in this equation is divided as 

(5.41) 

and since q is constant in each interval 

(5.42) 

Taking the derivative with respect to time of the right-hand side results in the fol-

lowing Rankine-Hugoniot relation 

(5.43) 

or, in terms of the difference operator, 

s[q] = [fl. (5.44) 

For the linear Riemann solution the flux is simply f = Aq, and thus the difference 

in the flux is [f] = A[q]. Using Eqs. (5.34), the difference in the linear flux across the 

mth characteristic can be written 

[r] = A[q] 

(5.45) 
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(5.46) 

Since each jump is propagating at Xm , this shows that each jump satisfies the Rankine­

Hugoniot conditions. If the initial jump «Ir - «II is an eigenvector of A, then it will 

propagate with the speed of one eigenvalue Xm , and the other jumps will have zero 

strength. Returning to Roe's conditions on .x, number 3 requires that .x be defined 

such that [f] = [fl. All shock waves must satisfy Eq. (5.44), therefore the shock speed 

must be an eigenvalue of .x, s = ~m. Condition 4 requires that ~m correspond to only 

one eigenvector equal to «Ir - <l!- Thus, any shock encountered would be captured 

exactly with one eigenvector of A, and automatically satisfy the Rankine-Hugoniot 

conditions. 

It is now possible to find the flux at an interface from the approximate solution. 

Using Eqs. (5.37) with condition 3 results in 

fr - fl = A(<<Ir - «II) 
N 

= A L amrm 
m=l 

N 

= L am~mrm 
m=l 

N 

= 2: dfm (5.47) 
m=l 

where dfm = am~mrm is the jump in f across each characteristic in Fig. 5.5. If ~ = 0 

is considered a cell interface in Fig. 5.5, the flux at the interface, denoted f i+1/ 2 , can 

be determined from Eqs. (5.47) by beginning with the left state and summing over 

only the negatively sloped characteristics 

fi+l/2 = f/ + L QmXmrm. 

'>'m<O 
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Likewise, the interface flux can be determined by beginning with the right state and 

summing over only the positively sloped characteristics 

fi+l/2 = fr - L am~mrm. (5.49) 
Am>O 

A third form can be obtained by adding Eqs. (5.48) and (5.49) together and dividing 

by two 

(5.50) 

All that remains is to determine the proper averaging process such that A satisfies 

conditions 1-4. Following Roe, this is accomplished for the reactive Euler equations 

by defining another vector 

z=fj[i ' 
Y2 

and writing q and f in terms of it (Zl' Z2, ... , Zs are the components of z): 

Zr 
ZlZ2 

ZlZ3 

ZlZ4h -7Z1Z5Q + ~(z~ + z~) 
ZlZ5 

~xZlZ2 + ~yZlZ3 
~xz~ + ~yZ2Z3 + ~X7[ZlZ4 + ZlZ5Q - ~(z~ + z~)l 
~xZ2Z3 + ~yZ~ + ~Y7[ZlZ4 + ZlZ5Q -- ~(z~ + znl 

Z4 (~xZ2 + ~yZ3) 
Zs (~xZ2 + ~yZ3) 

(5.51) 

(5.52) 

(5.53) 

In general, the jump in q, [ql = qr - ql, can be written in terms of the jump in z, 

[zl = Zr - Zl, as follows 

[ql = C[z], (5.54) 

where C is a matrix. C is determined by writing the difference for each component of 

q in terms of the components of z. In doing this, the following identities are useful: 
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1 1 
= 2(ar + al)(br - bl) + 2(br + b!)(ar - al) 

= alb] + bra], 

[a2
] = faa] 

= ala] + ala] 

= 2a[a], 

where x = (Xl + xr )/2 is the arithmetic mean. Thus, for example, 

[lh] = [zil = 2z1[Zl] 

[q2] = [Z1 Z2] = zrlz2] + Z2[Z1], 

which leads to 

2Z1 0 0 0 0 
Z2 Z1 0 0 0 

c= Z3 0 Z1 0 0 
Z4/"( -7qz5 1=.!. - 12- zlh -l2QZl 'Y Z2 'Y Z3 'Y 

Z5 0 0 0 Z1 

(5.55) 

(5.56) 

(5.57) 

(5.58) 

In the same way the change in f can be written in terms of the change in z 

[rl = D[z], (5.59) 

where D can be determined to be 

~xZ2 + ~yZ3 ~xZ1 ~yZ1 0 0 
~x7(Z4 + QZ5) :r±!~ - + ~ - ~yZ2 -7~xZ3 1.=.l~ '" 12~ -'Y xZ2 yZ3 'Y x"'1 'Y xqzl 

:0= ~Y7(.Z4 + qzs) ~ - :r=.!.~- ~ - + I±!~ - :r=.!.~- 12~ -xZ3 - 'Y yZ2 xZ2 'Y yZ3 'Y yZl 'Y yqz1 
0 ~xZ4 ~yZ4 ~xZ2 + ~yZ3 0 
0 ~xzs ~yZs 0 ~xZ2 + ~yZ3 

(5.60) 

Roe's matrix A can now be obtained by combining Eqs. (5.54) and (5.59) to get 

(5.61) 
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which matches condition 3 for A = DC-I. Inverting C and multiplying by D results 

in the following element of A, for example: 

Writing out the terms in detail 

zi = i[(y'JU)r + (ffU)IF = [(ffu)r + (y'JU)I]
2 

= u? 
Zf H(y'J)r + (ff)l]2 (y'J)r + (j§)/ ' 

Z~ = H(v'JV)r + (v'Jv)IF = [(v'Jv)r + (j§V)I]
2 

= v2 

Zf i[(y'J)r+ (ff)t]2 (ff)r + (y'J)1 ' 
Z2 

(5.62) 

(5.63) 

(5.64) 

(5.65) 

(5.66) 

it is apparent that each term is essentially a mass weighted average of the left and 

right state velocity component. This leads to 

(5.67) 

which has exactly the same form as A.2,1 (since ~t = 0), except U and v have been 

replaced by their averaged quantities, u and v. In fact, all the elements of A match 

those of A. if the variables are replaced by the following "Roe" averaged variables: 

(5.68) 

Since A and A have the same form, their eigenvalues have the same form 

5.1 
= = =c 

= ).2 = ).3 = U , 

5.4 = tf - cj~i + ~~, (5.69) 

5.5 = tf + cV~i + ~~, 
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where lY = ~xu + ~yV and c = J(r - 1)[H + Y2Q - (u2 + v2)/2j. Likewise, the 

eigenvector array R retains the same form as ft, except the variables have been 

replaced by their Roe averaged quantities 

~x 0 1 1 0 

(f ~y = ex-= 
u+ y't. 2 C 0 u-~c 

~,,+~y ~" '~y 

R= 0 -~x v-~c 
y'~~H~ v + y' ~Y 2 C 

~,,+~y 
0 

(u2 - V2)~ + ~yuV ~yu -~xv H--1-(l H+ y'~ /f -Q 
y'{~+~~ ~,,+~y 

0 0 Y2 Y2 1 

(5.70) 

Thus, Roe's matrix A is simply the flux Jacobian matrix A with Roe averaged vari­

ables, and as such satisfies Roe's conditions 1-4. 

The implementation of the first order Roe scheme in one dimension is relatively 

straightforward. Each cell in the domain is initialized to some value. Using tl;1e cell 

quantities to the left and right of each cell interface as the left and right states, the 

appropriate Roe averaged variables, eigenvalues, and eigenvectors are calculated. The 

flux at each interface is then calculated using one of Eqs. (5.48, 5.49, or 5.50), and 

the solution advanced in time using the appropriate form of Eqs. (5.8): 

(5.71) 

5.3 Extension of the Roe Scheme to Second-Order Accuracy 

The scheme presented in the previous section was first-order accurate in both 

time and space. The first order spatial accuracy is the result of assuming piece-wise 

constant states in each cell, which is entirely decoupled from the Riemann solution 

step. Second-order accuracy has been achieved for these types of schemes in two 

ways: extrapolating the cell-centered dependent variables to the cell interfaces, and 

extrapolating the cell-centered fluxes to the cell interfaces [40]. The spatial accuracy 
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of the scheme then depends upon the accuracy of the extrapolation; assuming a linear 

variation results in second-order accuracy, while a quadratic variation leads to third­

order accuracy. Essentially, the accuracy of these schemes is increased by using more 

points, much like a finite-difference method. 

The second-order scheme chosen for this research was based upon flux extrapola­

tion. The linear extrapolation of a variable S (see Fig. 5.7) to the interface i + 1/2 is 

s 

I 

<-~~=l ~ 

i-I 

Figure 5.7: Linear extrapolation for Si+l/2. 

simply 

(5.72) 

Using the cell-centered values, ms = (Si - si-d/ Ll€ = Si - Si-l and €i+l/2 - €i = 

b..€j2 = 1/2, since Ll€ == 1. This leads to 

(5.73) 

The general second-order scheme can be derived as follows [40]: the flux at a cell 

center can be divided into contributions from waves travelling along positive and 

negative characteristics 

(5.74) 

One way of obtaining a higher-order flux at the interface i + 1/2 is to linearly ex­

trapolate fluxes from positive (rightward travelling) characteristics using cells i and 
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i-I, 

~+b _ ~+ 1 ~+ ~+ 
fi+1/2 - fi + '2(fi - fi_I)' (5.75) 

while linearly extrapolating fluxes from negative (leftward travelling) characteristics 

using cells i + 1 and i + 2, 

(5.76) 

The second-order flux at the interface is then (from Eqs. (5.74)) 

(5.77) 

To relate this to the first-order scheme, the differences in the positive and negative 

fluxes can be defined as the difference between a first-order numerical flux and the 

physical flux 

Using Eqs. (5.78) and (5.79) in Eqs. (5.77) results in 

The second-order flux using Roe's first-order flux is simply 

which can be written as 

=(2) - 1 - -
fi+1/2 = fi+l/2 + '2[()= am).mrm)i-l/2 - ()= Qm).mrm)i+3/2l, 

Am>O Am<O 

(5.78) 

(5.79) 

(5.80) 

(5.81) 

_ 1 N N 

= f i+1/2 + '2[2: dft~t2 - 2: dfi~3;2l (5.82) 
m=l m=l 
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using Eqs. (5.48) and (5.49). Thus, the second-order interface flux can be seen to be 

the first-order flux plus corrections from the surrounding flux values. 

Unfortunately, replacing the first-order flux terms in Eqs. (5.71) with the second­

order flux as defined by Eqs. (5.82) results in solutions that have unphysical oscil­

lations near discontinuities [40]. This is a general property of linear, second-order 

upwind schemes [26]. One approach for avoiding this behavior is to "limit" the 

schemes in such a way as to make them only first-order accurate near discontinuities, 

while remaining second-order accurate in smooth regions of the flow. This is the 

general approach for so-called high resolution methods [50], which have second-order 

accuracy in smooth regions of the flow and resolve discontinuities crisply and without 

oscillations. 

Hirsch [40] contains a fairly complete review of the basis for high resolution meth­

ods; what follows is a brief synopsis of the underlying ideas as presented by Hirsch. It 

can be shown in one dimension that physical solutions of the Euler and Navier-Stokes 

equations do not admit new extrema in the evolution of the flow; this is thought to be 

true of multidimensional flows also. Thus, physical solutions of the conservation equa­

tions are monotone, and therefore numerical approximations to the solutions should 

also be monotone. Godunov [31], however, showed that monotone linear schemes are 

at most first-order accurate. This is a severe restriction, since first-order schemes are 

very dissipative and have solutions with very smeared shocks. This suggests that in 

order to achieve higher accuracy, the numerical scheme must use nonlinear limiting. 

A less restrictive criteria than monotonicity is based on the solutions of a scalar, 

one-dimensional conservation law: any physical solution has the property that its 

total variation 

TV (q) = J I :~ I d~, (5.83) 

does not increase with time. For a discrete solution, the total variation can be ex-
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pressed as 

TV(q) = l: Iq~+l - q~l, (5.84) 
m 

and a numerical scheme is described as total variation diminishing (TVD) if 

(5.85) 

A scheme is described as monotonicity preserving if in the evolution of the solution no 

new local extrema are created, and a local minimum or maximum is non-decreasing 

or non-increasing, respectively. Put another way, if qn is monotone, then qn+l will 

also be monotone. The monotonicity and TVD property are related in the following 

way: all monotone schemes are TVD, and all TVD schemes are mono tonicity pre-

serving. As alluded to above, a scheme can be made TVD by using limiting functions 

("limiters") to reduce to first-order accuracy near discontinuities. For linear limiters 

(and thus a linear scheme), monotonicity preservation leads to the same conditions 

as monotonicity, and thus the scheme is first-order accurate. This does not apply 

to nonlinear schemes, however. Thus, if a second-order scheme can be made TVD 

using nonlinear limiters, it will be monotonicity preserving and remain higher-order 

in smooth regions of the flow. Since the initial data for the scheme can be specified as 

monotone, any resulting solution will be monotone and (presumably) physically cor­

rect. This presumes that the scheme satisfies the entropy condition, which is the last 

criteria for a high resolution scheme. In fact, for the case of an rarefaction through 

a sonic point, Roe's scheme does not satisfy the entropy condition and a correction 

must be included [40]. Except for a one-dimensional test case, the problems studied 

in this research did not have any rarefactions of this type, so the correction was not 

included in the general two-dimensional code. 

Chakravarthy and Osher [17] have determined a "TVD" form of Eqs. (5.82). They 

note that the TVD property can so far only be rigorously proven for scalar equations 

or systems of linear equations in one (spatial) 'dimension. Their TVD formulation of 

73 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Eqs. (5.82) is 

(5.86) 

where df and df may now be limited based upon neighboring values. The limited 

flux increments are defined as follows: 

where 

(J'vm+ = L[(J'm+ (J'm+] 
i-l/2 i-l/2' i+l/2' 

and 

(5.87) 

(5.88) 

(5.89) 

(5.90) 

(5.91 ) 

The LO indicates a nonlinear limiting function, and 'xm± indicates eigenvalues with 

positive or negative signs, respectively. The choice of a limiting function is not unique; 

Whitfield [84] suggests one of the following: 

Superbee: L[a, b] = sign(a) max{O, min[lal, 7Pbsign(a)], min[7Plal, bsign(a)]} 

van Leer: 

where 1 ~ 7P ::; 2, 

L[a, b] = ab + I~bl. 
a+ 

(5.92) 

(5.93) 

In the next chapter the Riemann problem was used to differentiate the solutions 

obtained with the various limiters; based upon this the van Leer limiter was chosen 

for the numerical studies. 

The implementation of the second-order scheme remains the same, except the 

first-order fluxes are simply replaced by their second-order counterparts: 

(5.94) 
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For both the first and second order schemes, the time step is determined by the 

restriction that Roe's approximate Riemann solution does not account for the inter-

action of multiple Riemann problems. Thus, the time step must be chosen such that 

the Riemann problems at neighboring cell interfaces do not interact. This can be 

done by basing the time step on the time it takes for the fastest wave in the domain 

to cross half of a computational cell. Since the waves propagate with a speed equal 

to the magnitude of the eigenvalues, and .6~ = D.7] == 1 

where 

A 0.5 
ur - ---:--------

- max[rnax(ki,j), max(li,j)]' 

ki,j = [max(I~II, 1~21, .. ·, 1~5J)kj 

li,j = [max(l.lLll, 1.lL21,···, 1.lL51)kj 

(5.95) 

(5.96) 

(5.97) 

In practice, to obtain a slightly more restrictive criteria, the following formulation 

was used 
0.5 

D.r= ()' max m 
(5.98) 

h k2 + l2 R . thO were mi,j = i,j i,j' earrangmg IS 

max(m) D.r = 0.5 = CFL 
D.~ , 

(5.99) 

it is apparent that the left-hand side is the Courant-Friedrichs-Lewy (CFL) criteria. 

Thus, the maximum attainable CFL number for this scheme is 0.5; typically a more 

conservative estimate of CFL = 0.4 was used in the numerical studies. 

Higher temporal accuracy may be achieved by using a two step procedure, in this 

case a second-order Runge-Kutta scheme [65]. Basically, the solution is advanced a 

half time step, and the resulting information is used to obtain an improved approxi­

mation to the solution over an entire time step. This is illustrated as follows: 

At An .6r =(2}n =(2}n 
qi = qi - 0.5 .6~ (fi+l/2 - f i- 1/ 2) (5.100) 

An D.r =(2) t =(2) t 
= qi - D.~ (fi+1/2 - f i- 1/ 2), (5.101) 
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where r(2) t is the second-order flux determined from the half time step solution, qt. 

5.4 The Roe Scheme for the Reactive Euler Equations in a Two-Dimen-

sional, Curvilinear Coordinate System 

The proceeding development was essentially for the one-dimensional Euler equa­

tions. The following issues remain to be addressed in order to obtain solutions of 

the reactive Euler equations: the scheme must be extended to more than one spa­

tial dimension, the source term in the reactive Euler equations must be incorporated 

into the scheme, and lastly, inflow, outflow, and wall boundary conditions must be 

implemented in a rational way. 

Fortuitously, a method exists whereby the first and second issues may be ad­

dressed; it is commonly called fractional stepping [40, 50]. Instead of solving the 

complete two-dimensional problem in one step, it is broken into a number of one­

dimensional problems in the respective coordinate directions. Each of these i~ then 

solved one after another to arrive at the final solution. Thus, Eqs. (3.48) would 

become 

aq at 
0, (5.102) aT + a~ = 

a~ a~ 

~+~ = 0, (5.103) aT ary 
aq w. (5.104) = aT 

In the solution of the first two equations the chemistry is assumed to be frozen, and 

thus Roe's scheme can be applied directly for each direction. The Roe averaged 

versions of the eigenvalue and eigenvector arrays (Eqs. (3.54, '3.55, 3.59)) would be 

used for the solution of Eqs. (5.102), while the Roe averaged versions of Eqs. (3.60, 

3.61, 3.62) would be used in the solution of Eqs. (5.103). 

Colella, et al. [20] suggest solving Eqs. (5.104) analytically. Writing out the indi-
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vidual equations 

:T (]) = 0, (5.105) 

d~ (~) = 0, (5.106) 

d~ (~) = 0, (5.107) 

~(PE) = 0, (5.108) 
dT J 

~ (PY2) = ](1 - 1'2) e-0p
/
p

, (5.109) 
dT J 

it is apparent that p, U, v, and E are constant (J is constant for a fixed grid). Equation 

(5.109) can be simplified by bringing pi J out of the derivative 

(5.ll0) 

which makes it apparent that the equation is separable and can be integrated directly 

J dY2 = J -0p/Pd 
y; e T. 

1- 2 
(5.1ll) 

The left-hand side can be integrated to give 

(5.ll2) 

and, assuming p remains constant over b.T, the right-hand side can be integrated to 

(5.ll3) 

Setting Eq. (5.112) equal to Eq. (5.ll3) and solving for y2
n+1 results in 

(5.ll4) 

The fractional stepping procedure can be written as follows: let £t'r, £~T, and 

£~T be the solution operators for Eqs. (5.102, 5.103, 5.104), respectively, over time 

b.T. One fractional stepping scheme would be 

(5.ll5) 
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Unfortunately, splitting the equations in this manner results in a scheme that has 

only first-order temporal accuracy [50], i. e. even though each step of the solution 

has second-order temporal accuracy (or better), the actual splitting has an error of 

0(.6.7). Strang [75] found that the following type of splitting retained second-order 

temporal accuracy: 

(5.116) 

Since the time step restriction for each step of the solution is still .6.7, Colella, et al. 

[20] suggest the following for maximum efficiency: 

(5.117) 

Thus, using the second-order Roe fluxes and the second-order Runge-Kutta time 

stepping with the splitting procedure of Eqs. (5.117) results in a scheme with second-

order spatial and temporal accuracy in smooth regions of the flow. 

The issue of boundary conditions is somewhat more difficult to address. Figure 

5.8 indicates the types of boundary conditions needed for the various boundaries of 

the computational space. The flow was considered to be entering the domain from 

TJ t ___________ ~~~(q!_q!:l!tl£.~_q9_~'!4gD' ___ ----- -; C 

C :~ 
~ : ~ 
§ computational : ~ c ,~ 

~ domain ! 6 
c :~ 
~I I::: 0_, : \::I 

:- ............................................................................................. ~ 
wall boundary ~ 

Figure 5.8: Types of conditions required for the computational domain boundaries. 

the left at the inflow boundary, and exiting the domain on the right at the outflow 

boundary. The incoming flow was always supersonic, while the outgoing flow could 

be either supersonic or subsonic. An impenetrable wall was considered to be along 
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the bottom of the domain, while the top of the domain was treated as either a wall 

or another outflow boundary. 

To date, the best approach for handling inflow and outflow boundary conditions 

is based on the characteristics of the one-dimensional form of the governing equa­

tions [58]. Essentially, the sign of the characteristics at the boundary determine the 

direction in which information is physically propagating. For example, at the in­

flow boundary positive characteristics indicate that information is propagating into 

the domain, while negative characteristics indicate information is propagating out 

of the domain. Therefore, the boundary conditions that are used must adhere to 

this physical mechanism. The inflow boundary is straightforward: all characteristics 

are positive for supersonic inflow, therefore information is only propagating into the 

domain. Numerically, this requires that all of the flow variables be specified at the 

inflow boundary. 

The right outflow boundary is less trivial. For a supersonic outflow, all character­

istics point out of the domain, while for a subsonic outflow four characteristics point 

out and one points in. Physically this means that information is only propagating 

out of the domain in a supersonic outflow, but both out of and into the domain for 

a subsonic outflow. Numerically, a supersonic outflow requires that the variables at 

the outflow boundary be entirely specified using quantities from within the domain. 

The numerical condition for a subsonic outflow is very difficult, however, because it 

requires information from outside the domain that is unknown (at least for the cases 

studied in this research). Poinsot and Lele [58] suggest treating the outgoing waves 

with the characteristic method of Thompson [76]' and estimating the magnitude of 

the incoming waves with a simple equation based upon pressure. The following de­

velopment is based upon this approach. 

For the general, two-dimensional reactive (or inert) Euler equations, there is no 

characteristic form directly analogous to a one-dimensional system (for example, Eqs. 
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(5.19 or 5.21)). However, a reasonably close approximation suitable for determining 

characteristically-based boundary conditions is possible. The vector conservative form 

of the conservation equations (Eqs. (3.46)) may be written in the following form 

(5.118) 

where p = [p, u, V,p, 'Y2JT is the vector of primitive variables, and M = oqjop, 

G = ofjop, and Z = ogjop are Jacobian matrices. The conservation equations in 

terms of the primitive variables are then simply 

op HOP K OP =b 
01' + o~ + 017 ' 

(5.119) 

where H = M-1G, K = M-IZ, and b = M-1w. For the outflow boundary condition 

desired, the ~ direction is of interest. Since 

of = GOp 
o~ o~' 

(5.120) 

and G = MH, the conservative form of the equations (Eqs. (3.46)) may be written 

oq op og A 

01' + MH o~ + 017 = W. 
(5.121) 

The characteristic information is obtained by considering the eigenvalue problem 

HY=Y" (5.122) 

where, as before, Y is a right eigenvector array, and, is the diagonal array of eigen­

values. In fact, , has the same elements as A, except they are in a different order. 

Using this in Eqs. (5.121) results in 

(5.123) 

Defining 

p = .... Y_10P 
." o~' 

(5.124) 
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and examining the form of its terms more closely 

(5.125) 

it is apparent that each eigenvalue multiplies the sum of the ~ derivatives and their 

coefficients (note: there are no derivatives in the components of y-1). The outflow 

boundary variables are then calculated as follows: for each (i > 0, Pi is calculated 

from Eq. (5.125) using upwind differencing for the derivatives; for the one possible 

(i < 0, Pi is estimated by 

(5.126) 

where Poo is a constant far-field pressure, and K is a constant. For the cases studied 

here, Pee ='Po, the freestream pressure. The Pi are then used in Eqs. (5.123), which 

are solved using the same technique as the points on the interior of the domain. For 

the method employed here, Eqs. (5.102) was solved using second-order upwind fi­

nite differencing for the spatial term, and explicit Euler time differencing. Equations 

(5.103 and 5.104) were solved as described previously. If the top of the computa­

tional domain (see Fig. 5.8) is considered an outflow boundary, 8gj8'T] is replaced by 

MK(8pj8'T]) in Eqs. (3.46) and the same type of analysis applied. 

The remaining boundary conditions to be determined lie along the top and bottom 

of the domain. For the case of a solid wall at this boundary, Fig. (5.9) illustrates one 

of the computational cells. The standard wall condition for inviscid equations is flow 

tangency, i. e. there is no flow through the wall. In the curvilinear coordinate system 

this results in V e = 0 at the wall. The numerical method requires the flux at the 

wall, which would be 

A J-1 
gi,j-1/2 = 

pVC 
puye + 'T]xP 
pvVe + 7]yP 
pHVe - 'T]tP 

pY2ve 
i,j-l/2 

o 
'T]xP 
'T]yp 
o 
o 

(5.127) 

i,j-1/2 

from the definition of g (recall that 'T]t = 0). Unfortunately, the value of p is only 
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~i,j+1/2 
-- --------------------------

t1/2,j t1/2,j 

~i,j-I12 
wall boundary 

Figure 5.9: Schematic of wall boundary computational cell. 

determined at the cell center. The most straightforward form of the boundary con­

dition would be to take Pi,j-I/2 = Pi,j' This, however, leads to severe overshoots near 

shocks and rarefactions for the cell-centered flow variables along the wall. 

A better, more stable approach utilizing one-dimensional Riemann invariants was 

suggested by Dadone and Grossman [23]. Consider the one-dimensional, nonreactive 

form of Eqs. (5.119) 

(5.128) 

Using the eigenvalue problem (in this case K has the same elements as IL, except in 

a different order) 

KX=XK, (5.129) 

this can be written in characteristic form 

X-I ~~ + KX-I ~~ = O. (5.130) 

The fifth equation in this system is 

8u 8v _ vrt~ + rt~ 8p (VC _ . / 2 2) [8U 8v _ V rt; + rt~ 8P] = 0 
rtX!:l + rty !:l !:l + cy rtx + rty rtX!:l + rty !:l !:l' 

uT uT pc uT urt urt pc urt 

(5.131) 

Along drt/dT = Vc - Cvrt~ + rt~ this reduces to 

du dv Vrt; + rt~ dp 
rtx-d + rtY-d - d = 0, T T pc T 

(5.132) 
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or 
V'T/;+'T/~ 

'T/xdu + 'T/udv - dp = 0, 
pc 

(5.133) 

which can be further simplified to 

dVc _ V'T/; + 'T/~ d = o. 
pc p (5.134) 

This is one of the Riemann invariants; a second Riemann invariant along d'T/ / dT = 

V C + CV'T/; + 'T/~ can be obtained from the fourth equation of Eqs. (5.130): 

dVc + V'T/i + TJ~ dp = O. 
pc 

(5.135) 

At this point it is assumed the "downward" travelling characteristic from the cell 

center (d'T//dT = vc - cV'T/i + 'T/~ < 0 since VC is small near the wall) intersects with 

the wall at (i,j - 1/2). Thus, Eq. (5.134) holds, and can be approximated by 

(5.136) 

This can be solved to estimate the pressure at the wall 

[ 
VCpc 1 

Pi,j-l/2 = Pi,j - V 2 + 2 ' 
'T/x 'T/y .. 

t,] 

(5.137) 

since all quantities at (i, j) are known. For the case in which the top boundary of the 

computational domain is considered a wall, Eq. (5.135) would hold and the estimated 

wall pressure would be 

[ 
VCpc 1 

Pi,j+l/2 = Pi,j + V 2 + 2 
'T/x 'T/y .. 

t,] 

(5.138) 
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CHAPTER 6 

VERIFICATION OF NUMERICAL ALGORITHM 

This chapter will present the results obtained for various one- and two-dimensional 

test problems used to verify the accuracy of the numerical algorithm. The following 

test cases were considered: the Riemann problem, steady and unsteady ZND det­

onations, inert supersonic flow over a wedge, and the straight wall, curved oblique 

detonation problem of Powers and Stewart [63]. Of the four test cases considered, only 

the unsteady ZND detonation has no known analytical solution; it has been studied 

extensively in the literature, however, so detailed numerical solutions are available. 

6.1 Riemann Problem 

Figures 6.1, 6.2, and 6.3 show comparisons of the the first- and second-order Roe 

scheme solutions with the exact Riemann solution. All solutions here and in the rest 

of this section used a common equally spaced grid of 200 points and CFL = 0.4. All of 

the numerical studies here and in the remainder of the dissertation were performed on 

IBM RS/6000 workstations. Because of the contact discontinuity and the shock, the 

density solution is the hardest for the scheme to resolve. The first-order scheme can 

be seen to be very dissipative, smearing the contact discontinuity rather severely, and 

to a lesser degree, the shock. It does not, however, show any evidence of unphysical 

oscillations near either discontinuity. The solutions for velocity and pressure show 

the same behavior for the first-order scheme. 

As expected, the second-order solution (using the van Leer limiter) is much more 
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Figure 6.1: Comparison of Roe scheme solutions with the exact density solution of 
the Riemann problem (pZ/Pr = 10, pz/ Pr = 8, Ul = ur = 0 m/ s, 'Y = 1.4, t = 0.0061 s, 
Xdiaphragm = 0 m, xmax = 5 m)_ 

accurate. The contact discontinuity and shock both exhibit much steeper profiles. 

Though it is not apparent from this line plot, the shock was resolved in approximately 

3 points and the contact discontinuity in 6 points. For the first-order scheme these 

figures were approximately 13 and 30, respectively. Similar improvements are seen 

in the velocity and pressure plots. The limiting functions work very well; there are 

no apparent oscillations in the second-order solution. Overall, the slight increase in 

computational effort required to obtain the second-order results is easily offset by the 

significant improvement in the solution. 

For completeness, Fig. 6.4 shows the solutions obtained for a Riemann problem 

with much larger initial pressure and density ratios. In this case there is an expansion 

through a sonic point, and a correction must be added to both the first- and second­

order Roe schemes. The following correction suggested by Harten and Hyman [36] 
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Figure 6.2: Comparison of Roe scheme solutions with the exact velocity solution of 
the Riemann problem (pt/Pr = 10, pt/ Pr = 8, Ul = ur = 0 m/ s, 'Y = 1.4, t = 0.0061 s, 
Xdiaphragm = 0 m, xmax = 5 m). 

was used: 

= { l~mli+l/2 
I>'mlmod = 

c 

(6.1) 

where 

(6.2) 

This is described as introducing a local expansion fan in the approximate Riemann 

solution when a rarefaction through a sonic point is detected [40]. As can be seen in 

the figure, the correction works very well; there is no detrimental effect on either the 

first- or second-order solution. 

Figure 6.5 shows a comparison of the second-order scheme using the van Leer 

and Superbee limiters. Three different values of the parameter 'IjJ were used with 

the Superbee limiter. Through the expansion region and the shock, both limiters 

resulted in nearly identical solutions regardless of the value chm~en for 'IjJ. Through 
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Figure 6.3: Comparison of Roe scheme solutions with the exact pressure solution of 
the Riemann problem (pt/Pr = 10, pz/ Pr = 8, Ul = ur = 0 m/ s, "y = 1.4, l = 0.0061 s, 
Xdiaphragm = 0 m, xmax = 5 m). 

the contact discontinuity and at the beginning of the expansion region the solutions 

differ slightly. Figure 6.6 shows an expanded view of the contact discontinuity and 

shock of Fig. 6.5. The solution obtained using the Superbee limiter with 'l/J = 2.0 

is the best, and the solution for 'l/J = 1.0 is the worst; the van Leer limited solution 

falls in between. Overall, the solutions obtained with both limiters are quite good. 

In terms of complexity (see Eqs. (5.92) and (5.93)), the Superbee limiter has a much 

higher operation count than the van Leer limiter. Since the limiter is used in the 

innermost loop of the program, a significantly higher operation count could result in 

significantly longer run times for the simulation, particularly for large two-dimensional 

problems. For this reason, and the fact that the van Leer limited solution is only 

slightly worse than the best Superbee limited solution, the van Leer limiter was used 

for the remainder of the study. 

Since an exact Riemann solution was known, a measurement was made of the 
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Figure 6.4: Comparison of Roe scheme solutions with the exact density solution of the 
Riemann problem (pL/Pr = 100, PL/ Pr = 100, Ul = ur = 0 mj s, 'Y = 1.4, i = 0.0039 s, 
Xdiaphragm = 0 m, xmax = 5 m). 

actual spatial order of accuracy of the scheme. The error of the numerical solution is 

proportional to the truncation error of the scheme 

(6.3) 

where el is the fractional error defined in Eq. (4.49), and n = 2 for a second-order 

scheme. The actual value of n can be determined by considering the log of this 

equation 

log el ex: n log.6.(, (6.4) 

which indicates that the slope of a line on a plot of log el vs log.6.( is the actual order 

of accuracy of the scheme. Figure 6.7 shows the results obtained for the (nominally) 

first- and second-order Roe schemes as .6.~ was made increasingly smaller. In this 

case .6.~ is proportional to the inverse of the number of grid points (1 j N), since the 

grid spacing is uniform. The slope of the least-squares fitted lines through the data 
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Figure 6.5: Comparison of 2nd order Roe scheme solutions using different limiters 
with the exact density solution for the Riemann problem (fhlPr = 10, pl/ Pr = 8, 
Ul = ur = 0 mis, 'Y = 1.4, i = 0.0061 S, Xdiaphragm = 0 m, xmax = 5 m). 

are indicated on the graph. Obviously, neither the first nor the second-order solution 

lives up to expectations. The much lower than expected accuracy of the second­

order scheme is likely the result of limiting the scheme to the first-order algorithm 

near discontinuities. The error at the discontinuity then overwhelms the error in 

the remainder of the solution. This type of behavior was noted by Woodward and 

Colella [86] when they considered a number of different schemes applied to a one-

dimensional, non-linear problem. In fact, the value of n for their best second-order 

(Godunov-based) scheme did not pass 1 either. 
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Figure 6.7: Measured order of accuracy for the first- and second-order Roe schemes 
using the exact Riemann solution as a basis. 
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6.2 One-dimensional Detonations 

As previously discussed, one-dimensional detonations predicted by the model of 

Ch. 3 are known to be unstable for certain values of heat release and activation 

energy. The linear stability boundaries for these detonations are well known [47], 

and a number of researchers have numerically determined the unsteady solutions 

[28, 9]. Bourlioux, et al. [9] performed a detailed study of such unsteady detonations, 

and showed that they provide a stringent test of a numerical algorithm's capability to 

accurately determine unsteady phenomena in reacting systems. In particular, because 

the linear stability characteristics of these detonations are known, it is straightforward 

to determine whether a given numerical solution is correctly predicting steady or 

unsteady behavior. 

The second-order algorithm was tested by starting with the exact "steady" ZND 

solution of Ch. 4. An equally spaced one-dimensional grid was constructed, and 

the desired exact solution written on the left end of the grid; the remaining cell 

centers were initialized to the quiescent conditions ahead of the detonation. The 

calculations were then started, and the detonation would travel from the left side 

of the grid towards the right side. During the calculation the leftmost boundary 

fluxes were held constant at the end state conditions of the exact steady solution. 

The rightmost boundary fluxes were set to the quiescent values; the calculation was 

always terminated before the detonation reached this boundary, so it had no effect 

upon the solution. 

6.2.1 Unsteady Solutions 

The linear stability results indicate that for a nondimensional activation energy 

Ea = EaPo/Po = 50, nondimensional heat release ij = 50, and 'Y = 1.2, ZND deto­

nations with an overdrive ratio f > 1.73 are stable, while those with f < 1.73 are 

unstable. Bourlioux, et al. reported detailed results for f = 1.6 and 1.8 using a 
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higher-order Godunov method with a front tracking, adaptive mesh algorithm. Their 

predictions of unsteady peak pressure for f = 1.6 compare favorably with those ob­

tained using the second-order Roe scheme (see Fig. 6.8). The peak pressure is simply 
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Figure 6.8: Unsteady detonation peak pressures (j = 1.6, CFL = 0.4, 14 points L1/ 2 ). 

the maximum pressure of the detonation at a given instant, and is a good indicator 

of the time-dependent nature of the detonation. The solution exhibits regular oscilla­

tions in the peak pressure, and thus the detonation is indeed unsteady. For reference, 

the peak pressure of the exact ZND solution is also shown; the unsteady detonation 

exhibits peaks more than 50% higher than the steady solution. The time scales were 

chosen for direct comparison with [9]; t1/2 is the dimensional time required for a fluid 

particle to cross the dimensional half reaction zone length (L1/ 2 ). The half reaction 

zone length is defined as the distance between the detonation front and the point at 

which the reaction is halfway to completion. An important criteria in these studies 

is the number of computational points within the half reaction zone length; the more 
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points there are, the more resolved the reaction zone structure is. In this case, there 

were 14 points per £1/2, and 8000 total computational points. 

For this case Bourlioux, et at. obtained a nearly identical plot with maximum peak 

pressures in the range of 100.6-102.7, and periods of oscillation in the range 7.4-7.5. 

As indicated in the figure, the peak values are nearly 100, and the periods are very 

close at 7.57. Figure 6.9 shows the results of doubling the number of grid points. 
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Figure 6.9: Unsteady detonation peak pressures (J = 1.6, CFL = 0.4, 27 points £1/2). 

Overall, the plot appears nearly identical to Fig. 6.8, except that the peak has moved 

slightly higher to 98.0, and the period has decreased slightly to 7.46. Thus, even 

better agreement with Bourlioux, et at. was obtained. Fourteen and 27 points per 

£1/2 is not unreasonable; in comparison, Bourlioux, et at. used 20 points per £1/2. 

Figures 6.8 and 6.9 do exhibit one apparent artifact of the scheme. This is partic­

ularly noticeable in the transition region of each plot Ciji1/2 < 20), where portions of 

the peak pressure curve appear somewhat thicker. A closer inspection revealed these 
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to be slight changes in the peak pressure as the detonation front moved from cell to 

cell during the simulation. Reducing the CFL number lessened this effect somewhat, 

but did not seem to eliminate it entirely (see Fig. 6.10). As will be shown in the 
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Figure 6.10: Unsteady detonation peak pressures (J = 1.6, CFL = 0.35, 27 points 
L1/ 2 ). 

following discussion, however, this artifact did not seem to have any effect on the 

schemes ability to correctly predict stable and unstable detonation solutions. 

In order to more fully evaluate the scheme, a case closer to the stability boundary 

was studied. Figures 6.11 and 6.12 show the results for f = 1.72, which is slightly 

within the unstable regime. For 5 points per L1/2 the solution oscillates regularly 

with a very slightly decreasing amplitude as time progresses. Doubling the num­

ber of points results in the solution oscillating with increasing magnitude as time 

progresses. Thus, the correct unstable behavior is predicted even very close to the 

stability boundary. 
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Figure 6.11: Unsteady detonation peak pressures (J 
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6.2.2 Steady Solutions 

Figure 6.13 shows a solution obtained in the steady regime (f = 1.8) using 9 

and 18 points per £1/2' As expected, the initial transients are damped, and the 
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Figure 6.13: Steady detonation peak pressures (f = 1.8, CFL = 0.4). 

solutions asymptotically approach a steady peak pressure. For linearly stable cases 

the steady peak pressure should equal that of the exact ZND solution; increasing 

the number of points in the half reaction zone length resulted in the solutions more 

closely approaching this value. As before, a case closer to the stability boundary was 

considered. Figure 6.14 shows the results obtained slightly within the stable regime 

(f = 1.74). In this case using 5 and 20 points per £1/2 led to solutions that are slowly 

approaching a steady value close to the expected value. 

Finally, as was done using the exact Riemann solution, the order of accuracy of 

the scheme was determined using the exact ZND solution at f = 1.8 (see Fig. 6.15). 

In this case only the portions of the solutions near the wave front were compared due 

to the initial transients in the numerical solution. As before, the indicated order of 
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Figure 6.14: Steady detonation peak pressures (f = 1.74, CFL = 0.4). 

accuracy is around 1; in this case the fit to the points is not nearly as good as ip Fig. 

6.7. The poor fit is likely a result of the ambiguity in "lining up" the final numerical 

solution with the exact solution for the comparison. 

Overall, when an adequate number of points within the half reaction zone length 

is used, the second-order Roe scheme is capable of obtaining the correct steady and 

unsteady features of a one-dimensional reactive flow. 
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Figure 6.15: Measured order of accuracy for the second-order Roe scheme using the 
exact ZND solution as a basis (f = 1.8). 
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6.3 Inert Supersonic Flow over a Wedge 

The numerical method was tested in two dimensions by considering inert super­

sonic flow over a wedge. This flow is characterized by oblique shock waves whose 

strength and angle can be determined exactly using a Rankine-Hugoniot analysis. 

A program was written to generate smooth, somewhat orthogonal, clustered compu­

tational grids over arbitrary shapes. Figure 6.16 indicates the computational mesh 

generated for this problem: the wedge angle is e = 20°; there are 49 cell centers 

in each direction; and the mesh has been clustered somewhat near the wedge sur-

y 

600 
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400 

300 

200 

100 

100 200 300 400 500 600 700 800 
x 

Figure 6.16: Computational grid of cell centers used for 20° wedge. 

face. Following common convention, the grid points in the x direction are numbered 

i = 1,2, ... ,49, while those in the y direction are numbered j = 1,2, ... ,49. This 

grid was used for all of the following cases with CFL = 0.4. 
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Figure 6.17 indicates the pressure and velocity vector solution obtained for a 

freestream Mach number of Mo = 10. In this case the shock exits through the rear 

of the domain, so the outflow condition at the top of the domain does not affect the 

solution. As expected, the plots indicate a sharp pressure and velocity discontinuity at 

the shock. The measured shock angle is 25° ± 10
, which compares well with the exact 

value of 25.80
• The effect of the rear outflow condition can be seen in the slight tilting 

of the pressure contours at the exit of the domain. A few extraneous contours in the 

region after the shock indicate the pressure is not quite constant at the post-shock 

pressure. The tangency of the velocity vectors at the wall indicates the slip condition 

is being enforced by the wall boundary condition. Figure 6.18 shows a comparison 

between the numerical and exact density solutions along various j = constant grid 

lines. In this and the following cases, the exact solution was written on the same 

computation grid as the numerical solution. This is a more realistic portrayal of the 

actual "best" solution that can be obtained for a given grid. Along each gridline the 

numerical solution captures the shock in only 4 to 5 points, which is not much worse 

than the scheme in one dimension. The worst agreement appears in the j = 1 and 

j = 3 gridlines, where j = 1 is the row of cell centers nearest the wall. Along j = 1 

the solution initially overshoots the exact solution, and then follows it more closely 

farther downstream. Along j = 3 the solution undershoots the exact solution, and 

then remains below it downstream. The solutions farther from the wall do not seem 

to have this problem, though they do drop below the exact solution downstream of 

the shock. The overshoot is likely a result of the discontinuity in the grid at the 

wedge tip. The solutions at each grid line also exhibit slight oscillations, indicating 

that the extension to two dimensions has not entirely preserved the TVD nature of 

the one-dimensional scheme. Figure 6.19 is the same type of plot for the v component 

of the velocity. In this case the agreement is even better; the v component shows no 

over- or undershoots, but does oscillate slightly. Though not shown, the behavior of 
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the u component solution is nearly identical to that of the v component. Lastly, Fig. 

6.20 compares the pressure solutions. In this case there is a slight overshoot along 

the j = 1 gridline, but otherwise the agreement between the numerical and exact 

solutions is very good. 

To get an idea of how well this scheme converged to a steady solution, Fig. 6.21 

shows the density and u velocity component residuals as the solution progressed. The 

residuals are defined as follows 

"'~ma", ",~ma", 1 y':t2 _ Y':.I y _ L..,,=l L..,J=l ',J ',J 
ru- N ' (6.5) 

where Y represents the variable of interest, and N is the total number of cells in the 

grid. Thus, the residual is basically the average difference between the variable at 

the old and new time step (the value at n + 2 is used due to the splitting meth~d of 

Eqs. (5.117)). Ideally, the residuals would decrease to a machine zero of 10-15 for a 

steady problem. Realistically, this does not always happen. As the figure indicates, 

the residuals decrea..c;ed about two orders of magnitude before leveling out. At this 

point the solution was no longer changing. Slightly different grids resulted in different 

levels of convergence, but the overall solution would change very little. 
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Figure 6.17: Pressure contours and velocity vectors for Mo = 10. 
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Figure 6.18: Comparison of numerical and exact density solutions along j = constant 
gridlines for Mo = 10. 

103 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

v 

n.3 

n.2 

n.1 

11.3 

n.2 

n.1 

n.o 
5n 100 150 

x 

200 
x 

j=l 
__ numerical 
-- exact 

j=5 
__ numerical 
-- exact 

250 3lXI 

n.3 

n.2 

n.l 

0.3 

n.2 
v 

n.1 

(J.O 
50 lOll ISO 2110 

j=3 
__ numerical 
-- exact 

j=15 
_____ numerical 
-- exact 

250 300 
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j = constant gridlines for Mo = 10. 

104 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

P 

0.20 

(1.15 

O.1Il 

(1.115 

50 100 t50 

n.20 

(1.15 

n.11I 

(1.115 

511 1110 1511 

200 

200 

j=I 
__ numerical 
-- exact 

250 3(X) 

j=S __ numerical 
-- exact 

250 3(lO 

0.20 

(1.15 

(1.10 

(1.115 

50 1110 

0.20 

11.15 

0.10 

0.05 

5U 100 

)511 200 

1511 2110 

j=3 
__ numerical 
-- exact 

2511 300 

j=IS 
__ numerical 
-- exact 

250 3(10 
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Figure 6.21: Residual histories of density and u component of velocity for Mo = 10. 

106 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

In order to evaluate the subsonic outflow condition discussed in Ch. 5, the free­

stream Mach number was lowered such that the shock would exit through the top of 

the computational domain (Mo = 2). In this case, one characteristic is entering the 

top of the domain from outside, and Eq. 5.126 is needed to estimate its magnitude. 

The value of the constant K in the equation will be determined by the solution that 

best matches the exact solution. Ideally, there should be no reflections from the top 

of the domain, and the flow state following the shock should be constant and equal 

to the exact solution. Figure 6.22 shows pressure and velocity solutions obtained for 

K = 0.0. This is Thompson's [76] nonreflective boundary condition; the magnitude of 

any incoming waves is set equal to zero. As is very apparent in both figures, this leads 

to large reflections from the boundary. In fact, a shock appears to be propagating 

upstream into the domain, which is obviously opposite to the desired behavior. The 

inadequacy of this value of K is not entirely unexpected, however, since it ignores the 

actual physical propagation of information into the domain from above 

Figure 6.23 shows the same information when K = 0.025. In this case there 

is a different type of reflection. The pressure after some distance downstream of 

the shock is decreasing slowly to an intermediate state between the freestream and 

shocked pressure. The region between the reflection and the shock is at the correct 

shocked pressure, however, and the reflection is stationary. The velocity vectors at 

the boundary appear to have the correct magnitude and direction at the boundary, 

but it is difficult to determine from this figure. Figures 6.24, 6.25, 6.26, and 6.27, 

compare the solutions for p, p, U, and v with the exact solutions along j = constant 

grid lines. In this case the row of cell centers along the top of the domain is shown 

(j = 49). Unlike the case of Mo = 10, the density nearest the wall is consistently 

less than the exact solution. Along interior grid lines the density follows the exact 

solution fairly well to a point, and then begins to decrease to an intermediate density. 

The point at which the decrease begins moves closer to the shock as the top of the 
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domain is approached. Along the topmost grid line the density slightly overshoots the 

exact value, and then immediately begins to decrease. For the pressure solution, the 

comparison is much better. There is a good region of agreement between the exact 

and numerical solutions for all but the last grid line. Along j = 49 the numerical 

solution is shocked to the correct value, and then immediately begins to decrease. 

The u component of velocity follows a pattern similar to the density. It is initially 

shocked to a value lower than the exact solution along j = 1 and for some distance 

downstream, and then begins to increase. Along interior grid lines the numerical 

and exact solutions have relatively good agreement for a given distance, and then 

the numerical solution begins to increase. Along the topmost gridline, the numerical 

solution is shocked to a value above the exact solution, and immediately begins to 

increase. Lastly, the v component of velocity is similar to p and u in that there are 

regions of good agreement along the interior j = constant lines, with discrepancies 

along the wall and the topmost gridline. 
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Figure 6.22: Pressure contours and velocity vectors for Mo = 2 and K = 0.0. 
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Figure 6.23: Pressure contours and velocity vectors for Mo = 2 and K = 0.025. 
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Figure 6.24: Comparison of numerical and exact density solutions along j = constant 
gridlines for Mo = 2 and K = 0.025. 
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Figure 6.25: Comparison of numerical and exact pressure solutions along j = constant 
gridlines for Mo = 2 and K = 0.025. 
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Figure 6.26: Comparison of numerical and exact u velocity component solutions along 
j = constant gridlines for Mo = 2 and K = 0.025. 
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Figure 6.27: Comparison of numerical and exact v velocity component solutions along 
j = constant gridlines for Mo = 2 and K = 0.025. 
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Figures 6.28, 6.29, 6.30, 6.32, and 6.31 show the same types of data obtained for 

K = 0.035. The main change in the solutions from K = 0.025 to K = 0.035 is that 

the increase (or decrease, as the case may be) of the variables through the reflection 

region is larger. For K somewhat less than 0.025, the opposite behavior occurred. 

However, along the j = 49 grid line, the density and pressure solutions both begin to 

overshoot the exact values at the shock. For a reactive flow, these two variables drive 

the reaction through the right-hand side of Eq. 3.22. Overshoots in their shocked 

values at the boundary could result in an increased reaction rate, which would lead 

to the undesirable situation in which the boundary condition is forcing the reaction 

to proceed. Based upon this, K = 0.025 was chosen as the optimal value to use in 

the remaining numerical studies. 
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Figure 6.28: Pressure contours and velocity vectors for Mo = 2 and K = 0.035. 
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Figure 6.29: Comparison of numerical and exact density solutions along j = constant 
gridlines for Mo = 2 and K = 0.035. 
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Figure 6.30: Comparison of numerical and exact pressure solutions along j = constant 
gridlines for Mo = 2 and K = 0.035. 
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Figure 6.31: Comparison of numerical and exact v velocity component solutions along 
j = constant grid lines for Mo = 2 and K = 0.035. 
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Figure 6.32: Comparison of numerical and exact u velocity component solutions along 
j = constant gridlines for Mo = 2 and K = 0.035. 
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The chosen value of K was further evaluated by considering a second case in 

which the shock exits through the top of the computational domain: Mo = 4. Figure 

6.33 shows the pressure contours and velocity vectors obtained for this case. It is 

immediately apparent in the pressure contours that the reflection due to the boundary 

condition is much more localized than in the case of Mo = 2. As before, the velocity 

vectors would seem to indicate the correct outflow at the boundary. Figures 6.34, 

6.35, 6.36, and 6.37 show the comparisons with the exact solution for p, p, u and v, 

respectively. In each case the agreement with the exact solution is very good for 

all of the j = constant grid lines except the last. Along j = 49 the previously seen 

behavior of the numerical solutions for p, p, and v reappear; the numerical solution 

for u, however, maintains excellent agreement with the exact solution. Apparently, 

the higher velocity of the flow at Mo = 4 acts to reduce the range of influence of the 

outflow boundary condition. 

As was done with the one-dimensional Riemann solutions, the average error over 

the entire grid of the two-dimensional oblique shock solutions was determined on a 

number of increasingly finer grids to ascertain the actual spatial order of accuracy of 

the scheme. The results are shown in Fig. 6.38 for Mo = 4 and K = 0.025. As before, 

the actual order of accuracy of the second-order scheme is slightly less than one. This 

indicates that extending the scheme to two dimensions via fractional stepping, as 

well as using the outflow boundary condition along the top of the domain, did not 

adversely effect the spatial accuracy of the scheme. 

Overall, the extension of the Roe scheme to two dimensions via operator splitting 

resulted in essentially the correct inert shock solutions. 
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Figure 6.33: Pressure contours and velocity vectors for Mo = 4 and K = 0.025. 
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Figure 6.34: Comparison of numerical and exact density solutions along j = constant 
gridlines for Mo = 4 and K = 0.025. 
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Figure 6.35: Comparison of numerical and exact pressure solutions along j = constant 
gridlines for Mo = 4 and K = 0.025. 
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Figure 6.36: Comparison of numerical and exact u velocity component solutions along 
j = constant gridlines for Mo = 4 and K = 0.025. 
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Figure 6.37: Comparison of numerical and exact v velocity component solutions along 
j = constant grid lines for Mo = 4 and K = 0.025. 
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6.4 Straight Wall, Curved Oblique Detonation Problem 

The asymptotic, curved oblique detonation solution of Powers and Stewart [63] was 

used as the final test case for the numerical algorithm. The nature of the asymptotic 

solution is such that chemical reaction only begins following the lead shock; there is no 

reaction in the freestream. For a fair comparison, this requires that the same be true 

for the numerical solution. For reactions modeled with the exponential dependence of 

Arrhenius kinetics, such as is done here, there is always some level of reaction present 

at all points in the flow. To eliminate this the Arrhenius kinetics were replaced with 

a "switch" in the numerical simulation. For densities below a certain value the right­

hand side of Eq. 3.22 was set to zero, while for densities equal to or above this value 

the right-hand side was set to p(l - Y2). The value of the switch density chosen was 

somewhat below the density rise due to an inert oblique shock at the given freest ream 

Mach number, in this case Mo = 20. 

Solutions were obtained for a wedge angle of e = 20° and heat releases of ij = 10. 

The grid resolution was 299 by 149 and CFL = 0.4. Figure 6.39 shows the pressure 

contours for the numerical solution that was obtained .. The contour values were 

chosen so as to match those of the asymptotic solution shown in Fig. 4.12, which is 

replotted here for ease of comparison (see Fig. 6.40). The numerical solution indicates 

the correct trends in the pressure solution, with the indicated contours being similar 

to those seen on the asymptotic solution. Towards the rear outflow boundary the 

numerical solution appears to degrade somewhat, indicating that the small amplitude 

oscillations apparent in the inviscid oblique shock solutions are here also. Figure 

6.41 shows wedge surface pressure comparisons between the two methods, as well 

as a comparison of the numerical and exact oblique shock solution. Both numerical 

solutions show a fairly large overshoot at the wedge tip, and then proceed to follow the 

asymptotic and exact solutions, respectively, for the remainder of the wedge surface. 

Except for the overshoot, the agreement is very good in both cases. The larger than 
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previously observed overshoot is apparently a result of the higher freestream Mach 

number. Slight oscillations are apparent in the numerical oblique detonation solution 

toward the end of the wedge. Figure 6.42 shows a comparison of the shock locations 

determined by the two methods. The asymptotic and numerical shock locations are 

relatively close to one another, but do not overlap. As discussed in Ch. 4, higher levels 

of heat release are increasingly inconsistent with the assumptions of the asymptotic 

solution, so the disagreement between the two solutions at ij = 10 is not unexpected. 
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Figure 6.39: Oblique detonation pressure contours from Roe scheme numerical solu­
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Figure 6040: Oblique detonation pressure contours from asymptotic solution (Mo = 
20, lj = 10, 'Y = lA, e = 20°). 
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Figure 6.42: Comparison of shock locations for numerical and asymptotic oblique 
detonation solutions (Mo = 20, ij = 10, 'Y = 1.4, () = 20°). 
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CHAPTER 7 

UNSTEADY OBLIQUE DETONATIONS 

This chapter will present the results obtained for both steady and unsteady oblique 

detonations. In order to make more direct comparisons with one-dimensional stability 

results, only straight shock, curved wall detonations were studied. As discussed in Ch. 

4, the exact steady solution for such detonations is simply the steady one-dimensional 

detonation solution with an additional constant transverse velocity component. As 

such, the stability threshold of the oblique detonation is expected to be close to the 

stability threshold of the one-dimensional detonation. As for the one-dimensional 

detonation results, the parameter varied in this study was the normal overdrive, in; 

the chapter has been divided into sections describing the results obtained for each 

value of in studied. 

The solution procedure used for each case studied was as follows. An exact, 

weak overdriven oblique detonation solution was determined, along with the wall 

shape required to support it. This wall shape was entered into the computational 

mesh program, and smooth grids were generated having grid points concentrated 

near the wall. Figure 7.1 indicates a typical grid of cell centers used. The exact 

detonation solution was then written on the grid of cell centers. As indicated by 

the one-dimensional verification studies of Ch. 6, there is a need to maximize the 

number of points within the reaction zone of the detonation in order to successfully 

capture detonation instability. For this reason, the grid was generated such that the 

oblique detonation would exit through the top of the domain and not the rear; in 
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Figure 7.1: Typical grid of cell centers used in oblique detonation studies. 

this way it was possible to increase grid resolution within the the reaction zone of the 

detonation while minimizing the total number of points needed for the computation. 

An additional parameter used to size the computational grid was the ratio of the 

initial shock length within the domain to the initial half reaction zone width, Lratio = 

Lsh/ L1/ 2 • The exact solution on the grid was then used as an initial condition for 

the simulation, which was run continuously until the solution had reached a steady 

state or could not continue. Steady state was typically achieved when the residuals 

of the flow variables had decreased by 2-3 orders of magnitude. During execution, 

data files were written every 200 time steps to follow the time-dependent nature of 

the solution. Complete solutions required anywhere from a ~ day to several days to 
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finish when run on one of the IBM RS/6000 workstations. 

In all ,of the cases studied, the following parameters were held constant: Ea = 50, 

q = 50, "r'= 1.2, K = 0.025, and CFL = 0.4 (unless otherwise noted). Additionally, 

the same constant dimensional tangential velocity of ij = 1379 m/8 was used in all 

cases to generate the exact solution. Different levels of normal overdrive in were thus 

achieved by varying the freestream Mach number Mo. The values of heat release, 

activation energy, ,,(, and CFL were chosen to match those used in the unsteady one­

dimensional detonation; the tangential velocity was chosen so the exact detonation 

solutions would be weak and overdriven. A value of B = 1.0 X 106 8-1 was chosen 

simply to determine nondimensional values for the coordinate axes and the time; it 

has no effect upon the solutions obtained. The value of K was chosen based on the 

results of the verification studies in Ch. 6. 

7.1 Normal Overdrive in = 2.0 

This level of overdrive was achieved with Mo = 9.822. The resulting detonation 

wave angle was (3 = 63.50
, and the wedge had an initial angle of Omax = 51.90

• 

According to the one-dimensional theory, this case should be well within the stable 

regime. Figures 7.2,7.3, and 7.4 show shaded contours of the time-dependent sollJtion 

obtained on a grid of 99 by 99 cells. There were approximately 10 points in the initial 

half reaction zone length L1/2 of the exact solution and Lratio = 21.5. For this and 

all remaining plots of this type, the convention will be the same as that followed 

when reading English text; the upper left plot is at the earliest time, the lower right 

is at the latest time, and time advances from left to right and down. The contours 

plotted were chosen based upon the interesting phenomena in the solution, and are 

not necessarily sequential or equally spaced in time. 

The detonation front is apparent in each of the plots as the abrupt change from 

the white freestream value to some shade of gray. As shown in Fig. 4.8, the exact 
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steady solution is characterized by straight contours parallel to the detonation front. 

It is apparent in the earliest time shown in the figures that the solution has begun to 

deviate from the exact solution. This small deviation progresses to become a concen­

trated region of high density and pressure, as well as increased reaction rate, at the 

detonation front. As the pressure and density increase in this region, it slowly pro­

gresses up the length of the detonation, eventually passing out of the domain. After 

the disturbance exits, the upper half of the detonation front begins to move forward 

(to the left) slowly, leading to the formation of a second disturbance approximately 

midway along the length of the front. This disturbance travels down along the det­

onation front, eventually hitting the wedge surface. The passage of the disturbance 

results in the detonation moving forward into the freest ream until it encounters the 

inflow boundary. At this point the simulation was stopped, as the inflow bound­

ary condition was not configured to handle such an occurrence. A more detailed 

description of this general phenomena will be given for the case of in = 1.6. 

Since this unsteady behavior was not expected for this level of overdrive, two more 

cases were run, one with approximately 12 points per L1/ 2 (124 by 124 cell centers) 

and the other with 14 points per Ll/2 (149 by 149 cell centers). In both cases the 

second, downward travelling disturbance did not form, and the solutions relaxed to a 

steady state nearly identical to the exact steady solution. Figure 7.5 shows the time 

history of the residuals for density and the u component of velocity; both residuals 

decrease approximately three orders of magnitude (note that the curves actually begin 

at the upper left of each plot, but are masked by the y axes). Figures 7.6, 7.7, and 7.8 

show the time-dependent solutions obtained for density, pressure, and product mass 

fraction on the grid of 149 by 149 cell centers. Similar to the previous less resolved 

case, an initial disturbance forms and propagates out the top of the domain. In this 

case, however, the detonation front returns to its initial straight state following the 

passage of the disturbance. 
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Figure 7.9 shows the velocity vectors for the final, steady solution. As expected, 

these change discontinuously through the detonation front and parallel the wall 

boundary. Note that the vectors within the freestream only appear to curve be­

cause they are plotted at cell centers which lie along curved grid lines. Figure 7.10 

compares the final solution contours for density with the exact solution contours us­

ing the same contour levels. This quickly illustrates the slight discrepancies in the 

numerical solution. The numerical contours closely parallel the exact contours, with 

increasing discrepancies near the top of the domain. Along the wall there appears to 

be a slight layer in the numerical solution, and in the upper right corner there is an 

extra contour due to the outflow condition. Figures 7.11, 7.12, 7.13, 7.14, and 7.15 

compare the numerical and exact solutions for p, u, v, p, and Y2, respectively, along 

j = constant gridlines. As before, j = 1 is the row of cell centers nearest the wall, 

while in this case j = 149 is the last row of cell centers at the top of the domain. It 

is immediately apparent that there is a large spike in both the density and pressure 

at the wedge tip along the wall. As in the verification studies, this is a result of the 

discontinuity in the grid at the wedge tip; the grid was extended a slight distance in 

front of the wedge tip to allow for some movement of the detonation in this region, 

which results in a grid discontinuity where the wedge begins. By the j = 3 gridline 

the spike has disappeared, and the numerical solution relatively closely tracks the ex­

act solution. Along j = 15 all of the flow variables show excellent agreement with the 

exact solution. As expected, the agreement along the topmost grid line j = 149 has 

degraded due to the outflow boundary condition; however, the numerical solutions 

for p, u, and Y2, are relatively close to the exact solution. Finally, there are slight 

oscillations in the numerical solution, particularly for the pressure and v component 

of velocity. 

Overall, there appears to be good agreement between the steady numerical solu­

tion and the exact solution. As in the verification studies, the top outflow boundary 
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condition and the wall boundary condition induce the largest discrepancies in the 

numerical solution. The two steady numerical solutions would seem to indicate that 

at this level of overdrive, the oblique detonation is stable. The instability observed for 

the least resolved case was apparently the result of an insufficient number of points 

in the half reaction zone length. 
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Figure 7.3: Shaded pressure contours as a function of time (In = 2.0, 99 by 99 grid, 
t = 409.8, 657.5, 1111.6, 2066.9, 2605.0, 3687.0). 
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Figure 7.4: Shaded product mass fraction contours as a function of time (fn = 2.0, 
99 by 99 grid, t = 409.8, 657.5, 1111.6, 2066.9, 2605.0, 3687.0). 
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Figure 7.6: Shaded density contours as a function of time Un = 2.0, 149 by 149 grid, 
t = 246.8, 645.2, 845.0, 969.9, 1094.8, 1869.6). 
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Figure 7.7: Shaded pressure contours as a function of time Un = 2.0, 149 by 149 grid, 
t = 246.8, 645.2, 845.0, 969.9, 1094.8, 1869.6). 
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Figure 7.8: Shaded product mass fraction contours as a function of time Un = 2.0, 
149 by 149 grid, t = 246.8, 645.2, 845.0, 969.9, 1094.8, 1869.6). 
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Figure 7.10: Comparison of numerical and exact density contours Un = 2.0, 149 by 
149 grid, t = 1869.6, dashed = numerical, line = exact). 
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Figure 7.12: Comparison of numerical and exact u velocity component solutions along 
j = constant grid lines Un = 2.0, 149 by 149 grid, t = 1869.6). 

147 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

v 

v 

v 

0.4 

0.3 

0.3 

v 0.2 
0.2 

j=l j=3 
0.1 

__ numerical 0.1 __ numerical 
-- exact -- exact 

0.0 
50 100 

0.0 
SO 100 

0.4 

0.3 
0.3 

0.2 v 0.2 

j=lS j=SO 
0.1 

__ numerical 0.1 __ numerical 
-- exact -- exact 

0.0 
50 100 

0.0 
50 100 

1l.4 j=149 
0.3 __ numerical 

-- exact 

0.3 

1l.2 

0.2 

j=l25 
11.1 ___ numerical 

-- exact 0.1 

0.0 0.0 
511 100 511 100 
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Figure 7.15: Comparison of numerical and exact product mass fraction solutions along 
j = constant grid lines Un = 2.0, 149 by 149 grid, t = 1869.6). 

150 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

7.2 Normal Overdrive in = 1.6 

Next, the case of in = 1.6 was considered; this was expected to be unstable based 

upon the one-dimensional results. This level of overdrive was achieved with Mo = 

9.0, and the detonation and initial wedge angles were {3 = 60.9° and emax = 50.2°, 

respectively. 

The first grid used had 99 by 99 cell centers, approximately 14 points per Ll/2' 

and Lratio = 14.6. The increased number of points in L 1/ 2 compared to the previous 

case is a result of the thickening of the reaction zone as in decreases. For this grid 

the solution relaxed to a steady state; however, this final solution differed from the 

exact steady solution. Figure 7.16 shows shaded contours of density and pressure for 

the steady numerical solution. It is apparent, particularly in the pressure solution, 

that the contours are no longer straight as in the exact solution. In the progression 

of the solution to steady state, it appeared a disturbance was beginning to form and 

progress upward along the detonation front. As it approached the top of the domain, 

however, the formation of the disturbance slowed, eventually stopping at the steady 

state shown. This appears in the figure as slight bulges of high density and pressure. 

Since the upper boundary seemed to be affecting the progress of the solution, 

a second case was run in which the grid was extended in the y direction such that 

Lratio = 18.1. Approximately the same grid resolution was maintained by increasing 

the number of points to 124 in this direction (approximately 14 points per L 1/ 2 ). In 

this case an unsteady solution somewhat similar to the initial unsteady solution at 

In = 2.0 was found. In order to determine if it would withstand grid refinement, a 

third case with a grid resolution of 124 by 149 (16 points per L1/ 2 ) was considered. As 

happened with the initial grid, the solution froze at a state different than the exact 

steady solution. Once again the top boundary seemed to quell the formation of the 

initial disturbance. 

A final fourth case was run with the upper boundary extended even farther in the 
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y direction while maintaining approximately the same resolution of the previous case 

(139 by 184 cell centers, 15 points per L 1/ 2 , and Lratio = 22.4). The unsteady solution 

returned once again. Figures 7.17, 7.18, and 7.19 show the time-dependent solutions 

for p, p, and Y2. The initial formation of a disturbance is apparent in the first frame. 

By the second frame the disturbance has become triangular in shape, and is a moving 

region of very high density and pressure. Above this region the shock becomes very 

strong and begins to bow outwards. The increased shock strenght leads to a region of 

nearly complete reaction immediately behind it. The disturbance progresses upward 

along the detonation front until it has left the domain through the top boundary. 

At this point the upper half of the detonation front begins to move forward into 

the freestream. A second triangular disturbance then forms about the midpoint of 

the detonation, and progresses downward along the front (frame 4). Comparing the 

density and pressure contours, it is apparent that the bottom side of the triangu­

lar region is a shock, but the top portion is a contact discontinuity. Courant and 

Friedrichs [22] refer to this as a three-shock configuration, which is diagrammed in 

Fig. 7.20. Two intersecting shock fronts Sl and S2 result in a reflected shock S' and a 

contact discontinuity Dc. The reflected shock is necessary to turn the flow following 

Sl such that it is parallel to the flow following S2; the contact discontinuity separates 

the two parallel flows V{ and V2• 

The reflected shock S' emanating from the the three-shock configuration can be 

seen to intersect the wall and form another reflected shock into the rear of the domain. 

The mass fraction contours show that a "tongue" of complete reaction has progressed 

downward with the three-shock. By frames five and six the three-shock reaches the 

wall, resulting in even higher densities and pressures. The following detonation front 

is highly curved and moving forward into the freestream. Small instabilities are 

apparent at the front in the product mass fraction contours. Soon after the last frame 

shown, the detonation reaches the forward computational boundary and attempts to 
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propagate out of the domain. As before, the simulation was stopped at this point. 

The forward propagation of the unstable detonation is expected from the one­

dimensional results; as the detonation becomes unstable, the detonation velocity 

changes a great deal. For an attached oblique detonation such as this, the detona­

tion velocity of the exact steady solution is equal to the component of the freest ream 

velocity normal to the wave front. Thus, since the freest ream velocity remains fixed, 

the detonation propagates forward and out of the computational domain as the det­

onation velocity increases due to the instability. It is hypothesized that the forward 

propagation of the detonation would eventually end as it was weakened by following 

rarefactions. An attempt was not made to simulate this due to the prohibitively large 

number of grid points that would be required to extend the computational domain a 

large distance in the -x direction. 

In order to somewhat quantify the effect of moving the outflow boundary at the 

top of the domain, the two unsteady density solutions obtained (the second and fourth 

cases considered) were plotted side-by-side in Fig. 7.21. These solutions should be 

similar, since they have about the same number of points in the half reaction zone. 

Three frames from each solution are shown with overlaid Cartesian coordinate grid 

lines; the three frames on the left side of the plot are from the solution on the 99 by 

124 grid, while the frames on the right are from the solution on the 139 by 184 grid. 

The divisions along each coordinate axis were made the same for each case to ease 

comparison. The frames were chosen so that the three-shock! disturbance structures 

were evident and the elapsed times of the solutions were approximately the same. 

Qualitatively, the solutions appear nearly identical; the approximate locations and 

general appearance of the three-shock structures are very similar. Table 7.1 shows 

the actual location and magnitude of the density peak in the three-shock structure of 

each frame. The numbers show the agreement between the two solutions is relatively 

good. These results would seem to indicate that once the three-shock structure has 
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99 by 124 139 by 184 

grid grid 

Pmax x Y Pmax X Y 

10.692 204.7 339.9 10.400 202.3 341.9 

10.366 155.9 300.8 10.562 159.8 304.5 

11.319 82.4 144.6 11.408 84.9 147.9 

Table 7.1: Magnitude and location of density peak in three-shock structure of numer­
ical solutions on two different grids Un = 1.6). 

formed, the location of the top outflow boundary does not have much effect on the 

ensuing solution. 
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Figure 7.16: Shaded density and pressures contours for steady numerical solution 
(In = 1.6, 99 by 99 grid, t = 3128.2). 
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Figure 7.17: Shaded density contours as a function of time Un = 1.6, 139 by 184 grid, 
t = 1176.3, 1929.1, 2776.0, 3481.7, 4234.5, 5175.5). 
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Figure 7.18: Shaded pressure contours as a function of time (in = 1.6, 139 by 184 
grid, t = 1176.3, 1929.1, 2776.0, 3481.7, 4234.5, 5175.5). 
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Figure 7.19: Shaded product mass fraction contours as a function of time (In = 1.6, 
139 by 184 grid, t = 1176.3, 1929.1,2776.0,3481.7,4234.5, 5175.5). 
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Figure 7.20: Illustration of three-shock structure [22]. 
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Figure 7.21: Comparison of progression of density solutions on different grids (left -
99 by 124 grid, right - 139 by 184 grid). 
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7.3 Normal Overdrive In = 1.7 

Havin,g demonstrated cases of stable and unstable oblique detonations, the next 

step was to more accurately determine the location of the stability boundary. For a 

one-dimensional detonation an overdrive value of 1. 7 is just on the unstable side of the 

stability boundary, so the equivalent case for the oblique detonation was considered 

next. This level of overdrive was achieved at Mo = 9.2115, and the detonation and 

initial wedge angles were f3 = 61.60 and ()max = 50.7°, respectively. 

The initial run on a 124 by 149 grid with approximately 13 points per L 1/ 2 and 

Lratio = 21.7 resulted in an unstable solution similar to those discussed. Increasing the 

grid resolution to 149 by 149 and 15 points per L1/2 resulted in the solution stalling at 

an incorrect steady solution, as described in the previous section. Once again, moving 

the top outflow boundary upward while maintaining the grid resolution (159 by 184 

grid, 15 points per L1/2' and Lratio = 27.1) resulted in the instability reoccurring. 

Figures 7.22, 7.23, and 7.24 show p, p, and 1'2 for the unsteady solution obtained. In 

this case a disturbance has begun to form in frame 1, and by frame 2 it has become a 

triple-shock and moved toward the upper boundary. Instead of exiting through the top 

of the domain, however, it reverses direction and begins moving downward along the 

detonation front (this was also the behavior observed on the 124 by 149 grid). At this 

point an entirely new behavior occurred. As shown in frames 3 and 4, small "bursts" 

of completely reacted material have jumped forward into the freestream. The densities 

and pressures in this region are lower than the surrounding areas. Apparently a small 

region at the detonation front became very unstable quickly, resulting in a localized 

jump in the detonation velocity and the bursting phenomena observed. By the later 

frames the bursting has completely disappeared, and the solution follows the same 

pattern observed before, i.e. the three-shock hits the wall and the detonation front 

moves into the inflow boundary. 

Figures 7.25,7.26, and 7.27 show magnified time series views of the bursting events 
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for p, p, and Y2. The initial bursting begins slightly above the triple-shock in frame 

1, and frames 2 and 3 show the growth and decay of the two events. By frame 4 the 

first two bursts have disappeared and two new ones have occurred slightly further 

above the triple-shock. These also grow and decay, and by the last frame the only 

structure remaining is the triple-shock. Figure 7.28 shows two magnified views of 

the bursting regions in frames 2 and 5. These plots combine velocity vectors with 

shaded density contours. The velocity vectors show an interesting result; within the 

bursts the flow direction has reversed, and recirculation regions have developed. The 

reversal of the flow direction can be explained once again by the increased unstable 

detonation velocity. For a propagating normal shock or detonation, the passage of the 

wave through a quiescent medium induces a velocity in the medium in the direction 

of propagation. For the high-speed bursting, the induced velocity to the left due to 

the burst is greater than the shocked freestream velocity to the right. Thus, the net 

effect is that the flow reverses direction immediately behind the burst. Apparently, 

the flow reversal combined with the large generation of vorticity due to the highly 

curved bursting detonation front result in the recirculation zones. It should be noted 

that no bursting events occurred in the unsteady solution on the 124 by 149 grid. 
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Figure 7.22: Shaded density contours as a function of time Un = 1.7, 159 by 184 grid, 
t = 960.5, 1870.6, 2831.1, 3791.7, 7077.8, 9251.7). 
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Figure 7.23: Shaded pressure contours as a function of time Un = 1.7, 159 by 184 
grid, t = 960.5, 1870.6, 2831.1, 3791.7, 7077.8, 9251.7). 
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Figure 7.24: Shaded product mass fraction contours as a function of time (In 1.7, 
159 by 184 grid, t = 960.5, 1870.6, 2831.1, 3791.7, 7077.8, 9251.7). 
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Figure 7.25: Shaded density contours as a function of time for bursting events Un = 
1.7, 159 by 184 grid, t = 2527.8,2831.1,3336.7,3741.1, 3892.8, 4145.6). 
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Figure 7.26: Shaded pressure contours as a function of time for bursting events Un = 
1.7, 159 by 184 grid, t = 2527.8, 2831.1, 3336.7, 3741.1, 3892.8, 4145.6). 
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Figure 7.27: Shaded product mass fraction contours as a function of time for bursting 
events (In = 1.7, 159 by 184 grid, t = 2527.8,2831.1,3336.7,3741.1,3892.8,4145.6). 
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Figure 7.28: Shaded density contours and velocity vectors within the bursting regions 
Un = 1.7, 159 by 184 grid, t = 2831.1 and 3892.8). 
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7.4 Normal Overdrive in = 1.76 

For a one-dimensional detonation, f = 1. 76 is slightly on the stable side of the 

stability boundary. For the oblique detonation, however, in = 1.76 led to an unstable 

solution. For this case the freest ream Mach number, detonation angle, and initial 

wedge angle were Mo = 9.3363, (3 = 62.0°, and 8max = 50.9°. 

Five different cases were run to verify the unsteady nature of the detonation at 

this level of overdrive. The first grid had 124 by 149 cell centers (approximately 12 

points per L 1/ 2 and Lratio = 24.9) and resulted in a typical unstable solution. The 

grid resolution was increased to 149 by 149 (approximately 13 points per L1/ 2 ), which 

led to a stalled, incorrect steady solution. Moving the top boundary and maintaining 

the resolution (159 by 184 grid, approximately 13 points per L 1/ 2 , and Lratio = 31.2) 

restored the instability once again. As a further check the grid resolution was in­

creased again to 184 by 209 (approximately 15 points per L 1/ 2 ), which still resulted 

in an unstable solution. Finally, to ensure that the slight artifacts apparent in the 

one-dimensional detonation verification studies were not influencing the solution, the 

simulation was rerun on this final grid using a CFL number of 0.35. This also led to 

an unstable solution. 

Figures 7.29, 7.30, and 7.31 show the unsteady solutions for density, pressure, 

and product mass fraction obtained on the 184 by 209 grid with CFL = 0.35. As 

with the previous unsteady solutions, the disturbance begins to develop in the first 

frame and has transitioned to a three-shock structure by the second frame. In this 

case, however, a second three-shock began to develop near the top of the domain, but 

slowly dissipated as the first three-shock structure began to move upwards. The rate 

at which the three-shock moved upward along the detonation front was much slower in 

this case than in unsteady results of the previous sections. By frame three its upward 

progress has stopped, and it very slowly begins to move downward. Though difficult 

to see in these figures, the remanents of the second structure follow the remaining 
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eFL = 0.4 eFL = 0.35 

Pmax x Y Pmax X y 

11.785 170.0 277.5 12.149 169.6 275.8 

11.529 174.7 324.7 11.534 177.1 323.6 

11.374 58.9 107.6 11.448 53.1 93.4 

Table 7.2: Magnitude and location of density peak in three-shock structure of numer­
ical solutions for different time step criteria Un = 1.76). 

three-shock downward. As before, the three-shock eventually hits the wedge and the 

detonation front moves forward into the inflow boundary. 

In order to quantify any differences between the solutions due to the different 

time step restriction, another side-by-side comparison was made. Figure 7.32 shows 

the density solutions at different times on the 184 by 209 grid for eFL = 0.35 and 

0.4. As before, the elapsed time is approximately the same for each row of the figure. 

Qualitatively, the first two frames of each solution appear nearly identical; however, it 

is apparent at the last time that the three-shock structure is closer to the wedge surface 

for the case of eFL = 0.35 than it is for eFL = 0.4. Table 7.2 lists the locations and 

magnitUdes of the density peak within the three-shock for both solutions. The peak 

densities agree relatively well for all three times, with the worst agreement occurring 

at the first time. The peak density locations agree well for the first two times, but 

not well for the last time, as suggested by the qualitative assessment. For instabilities 

such as this, slight differences in the initial development of the solution can lead to 

relatively large differences later on. This is apparently the case here. Overall, both 

solutions are very similar and indicate instability at this level of normal overdrive. 
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Figure 7.29: Shaded density contours as a function of time (In = 1.76, CFL = 0.35, 
184 by 209 grid, t = 754.5, 1349.9,2660.1, 4168.8, 7146.5, 8655.2). 
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Figure 7.30: Shaded pressure contours as a function of time (In = 1.76, CFL = 0.35, 
184 by 209 grid, t = 754.5, 1349.9, 2660.1, 4168.8, 7146.5, 8655.2). 
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Figure 7.31: Shaded product mass fraction contours as a function of time Un = 1.76, 
CFL = 0.35, 184 by 209 grid, t = 754.5, 1349.9, 2660.1,4168.8,7146.5,8655.2). 
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Figure 7.32: Comparison of progression of density solutions on identical grids for 
different time step criteria (left - CFL = 0.4, right - CFL = 0.35). 

175 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

7.5 Normal Overdrive In = 1.78 

The stability threshold was finally crossed when In = 1.78 was considered. The 

freest ream Mach number, detonation angle, and initial wedge angle for this case were 

Mo = 9.3776, (3 = 62.20
, and ()max = 51.00

, respectively. Figures 7.33, 7.34, and 

7.35 show the time series solutions obtained for p, p, and Y2 on a 184 by 209 grid 

with approximately 16 points per L 1/ 2 and Lratio = 29.8. This grid was chosen to 

approximately match the characteristics of the final grid used for In = 1.76, as there 

was a relatively high degree of confidence in those results. As with In = 1.76 a three­

shock structure forms and slowly moves upward along the detonation front; a second 

three-shock also begins to form, but propagates out the top of the domain. Instead of 

slowing and then reversing direction, however, the first three-shock continues to move 

slowly upward until it has also left the domain. Following its passage, the detonation 

front returns to a nearly straight configuration. 

Figure 7.36 shows a comparison of the steady numerical and exact solution con­

tours for identical contour values. It is apparent that the agreement between the 

solutions is not as good as the case of In = 2.0. In this case the numerical detonation 

front bows out slightly in the upper half of the domain. There are also extraneous 

numerical contours in the rear of the domain, indicating the rear boundary condition 

was not doing as well as before. Figures 7.37, 7.38, and 7.39 show comparisons be­

tween the numerical and exact solutions for p, p, and Y2 along various j = constant 

gridlines. Along the interior gridlines (j = 15 and j = 50) the numerical solutions for 

p and Y2 show good agreement with the exact solutions. The pressure initially shows 

relatively good agreement, but then oscillations seem to overtake the solution towards 

the rear of the domain. Along the j = 1 and j = 3 gridlines the numerical solutions 

for p and Y2 do not agree very well with the exact solution, while the solution for p is 

about the same as it was on the interior grid lines. Along the upper gridlines (j = 125 

and j = 184), each of the numerical solutions is offset somewhat in front ofthe exact 
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solutions, as was indicated in the contour comparison. Other than the offset, once 

again the numerical density and product mass fraction solutions look relatively good, 

while the pressure solution is somewhat lacking. As in the verification studies, the 

effect of the top outflow boundary condition can be seen particularly at j = 184, as 

well as at the larger values of x on some of the lower j = constant gridlines. A likely 

reason for the relatively poor agreement between the numerical and exact solutions is 

the estimated nature of the boundary conditions at the top and rear of the domain. 

The formation and passage of the three-shock structure altered the flowfield to such 

a degree that the boundary conditions were no longer able to maintain the original 

steady solution. 
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Figure 7.33: Shaded density contours as a function of time Un = 1.78, 184 by 209 
grid, t = 290.9, 756.3, 1105.4, 2181.7, 2647.2, 3839.9). 
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Figure 7.34: Shaded pressure contours as a function of time Un = 1.78, 184 by 209 
grid, t = 290.9, 756.3, 1105.4, 2181.7, 2647.2, 3839.9). 
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Figure 7.35: Shaded product mass fraction contours as a function of time (In = 1.78, 
184 by 209 grid, t = 290.9,756.3, 1105.4, 2181.7, 2647.2, 3839.9). 
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Figure 7.36: Comparison of numerical and exact density contours Un = 1.78, 184 by 
209 grid, t = 3839.9, dashed = numerical, line = exact). 
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Figure 7.37: Comparison of numerical and exact density solutions along j = constant 
grid lines (In = 1.78, 184 by 209 grid, t = 3839.9). 
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Figure 7.38: Comparison of numerical and exact pressure solutions along j = constant 
grid lines (In = 1.78, 184 by 209 grid, t = 3839.9). 
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Figure 7.39: Comparison of numerical and exact product mass fraction solutions along 
j = constant grid lines (in = 1.78, 184 by 209 grid, t = 3839.9). 

184 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

7.6 Normal Overdrive in = 1.8 

As a final check on the steady results obtained in the previous section, a number 

of cases at in = 1.8 were considered. The freestream Mach number, detonation angle, 

and initial wedge angle were Mo = 9.419, (3 = 62.30
, and Bmax = 51.1 0

, respectively. 

Five cases in all were considered, with the number of cell centers ranging from 99 

by 99 to 184 by 209, the approximate number of points per L 1/ 2 ranging from 12 to 

16, and Lratio ranging from 14.7 to 30.7. As was done at in = 1.76, a final case was 

run on the largest, most resolved grid with CFL = 0.35. In all cases a stable, steady 

solution was obtained. 

Figures 7.40, 7.41, and 7.42 show the time series solutions for p, p, and 12 on 

the 184 by 209 grid with CFL = 0.35. In this case it is immediately apparent that 

two three-shock structures form, and then both begin to propagate up and out of 

the domain. Figure 7.43 compares the final steady numerical solution contours for 

density to the exact steady solution contours. As was the case with in = 1.78, the 

final numerical solution bulges somewhat in front of the exact solution in the upper 

half of the domain. Figures 7.44, 7.45, 7.46, 7.47, and 7.48 show comparisons of the 

exact and numerical solutions along various j = constant grid lines for p, U, v, p, and 

12. The numerical solutions for p, p, and Y2 follow essentially the same pattern of 

relative agreement/disagreement as they did for in = 1.78. This pattern also holds 

true for u and v. 

It should be. noted that the results of this and previous sections are in some 

sense similar to the results obtained by Bourlioux and Majda [8] for an unstable 

two-dimensional detonation. Their results show detonation fronts having multiple 

cusps with reflected shocks and contact discontinuities behind the front. However, 

the flow structures generated downstream of the unstable detonation front were much 

more complex than those observed here. Part of the reason for this may be that the 

detonations observed here may not have developed fully before leaving the wedge and 
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exiting through the front of the domain. Bourlioux and Majda considered moving 

detonations with a grid tracking scheme, and perturbed them initially so as to observe 

the instability more quickly. In any case, this previous research supports the general 

form of the detonation front structures observed here. 
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Figure 7.40: Shaded density contours as a function of time Un = 1.8, CFL - 0.35, 
184 by 209 grid, t = 253.1, 810.1, 1316.6, 1924.2, 2658.5, 4557.5). 
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Figure 7.41: Shaded pressure contours as a function of time Un = 1.8, CFL = 0.35, 
184 by 209 grid, t = 253.1, 810.1, 1316.6, 1924.2, 2658.5, 4557.5). 
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Figure 7.42: Shaded product mass fraction contours as a function of time Un = 1.8, 
CFL = 0.35, 184 by 209 grid, t = 253.1, 810.1, 1316.6, 1924.2, 2658.5, 4557.5). 
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Figure 7.43: Comparison of numerical and exact density contours (in = 1.8, 184 by 
209 grid, t = 4557.5, dashed = numerical, line = exact). 
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along j = constant grid lines (In = 1.8, 184 by 209 grid, t = 4557.5). 
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j = constant grid lines Un = 1.8, 184 by 209 grid, t = 4557.5). 
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CHAPTER 8 

RAM ACCELERATOR CALCULATIONS 

This chapter will present a methodology for determining the steady propagation 

speed of a ram accelerator. The chosen methodology will then be applied to a ram 

accelerator configuration using a version of the two-dimensional code developed in the 

preceding chapters. This earlier version used explicit Euler time stepping (eq. (5.71)), 

and thus had only first-order temporal accuracy; it was verified with the same tests 

used in Ch. 6. The results of this chapter were recently accepted for publication in a 

reviewed journal [33]. 

8.1 Methodology 

As discussed in Ch. 2, most recent theoretical studies of ram accelerators and 

ODWE's have not given analysis to determine a steady propagation speed. Typically 

the related problem of flow with a fixed incoming Mach number over a fixed geometry 

is examined. Emphasis is placed on characterizing the resulting flow field, and only a 

small number of incoming Mach numbers is studied. With this approach, the thrust 

can be determined as a function of flight speed. This is useful in a transient analysis 

which presumes that fluid relaxation time scales are short compared to the time it 

takes for the projectile to relax to a steady velocity. 

A general theoretical approach to predict the steady speed is as follows: a math­

ematical model for the fluid and a representative geometry are selected. The model 

equations are studied in the reference frame in which the projectile is stationary; thus, 
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the incoming flow velocity, which is the steady propagation speed, is thought of as 

an adjustable parameter at this stage. For a given incoming velocity, solution of the 

model equations leads to a stress distribution on the projectile surface which may 

or may not result in a net force on the projectile. Should the particular incoming 

velocity lead to zero net force on the projectile, that velocity is a candidate for a 

steady propagation speed. The static stability of the candidate solutions is easily 

determined. Should a perturbation in the incoming velocity lead to a net force which 

tends to restore the projectile to a speed at which there is zero net force, the solution 

is stable in a static sense (we call such solutions stable); otherwise the solution is 

unstable. A further step, not considered here, is to account for the inertia of the 

projectile and surrounding fluid so as to determine the dynamic stability. 

8.2 Model Problem 

The methodology is illustrated through the use of a model problem which is related 

to the ram accelerator and ODWE. For tractability, an idealized model and geometry 

are considered which retain the essential features of real systems. The geometry, 

shown in Fig. 8.1, is a symmetric double wedge with half angle e and length Lp. Two 

-
incoming _ 
supersonic 
premixed _ 
flow 

-

u er cowl surface 

y 

lower cowl surface 

Figure 8.1: Schematic of generic configuration 
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cowl surfaces are placed symmetrically about the wedge and are separated by height 

fIe. The depth of the double wedge and cowl is taken to be infinite and the flow 

is assumed to have no variation in this direction. The Cartesian coordinate system, 

with its origin at the leading edge and with the x axis aligned with the incoming flow 

is also indicated. It is appropriate to think of a ram accelerator as the axisymmetric 

analog of Fig. 8.1 in which the projectile moves while the cowl is stationary; likewise, 

an aerospace plane powered by an ODWE can be thought of as the axisymmetric 

analog of Fig. 8.1 in which the cowl moves with the wedge. In both scenarios one 

must assume that the incoming fuel and oxidizer are completely mixed; in actuality 

this is more appropriate for the ram accelerator than the ODWE. 

Analysis of the geometry of Fig. 8.1 leads in general to a complicated interaction 

of shocks, rarefactions, and combustion processes as the flow propagates between the 

projectile and cowl surface. To further simplify, we consider only the limit fIe -+ 00, 

Fig. 8.2. Consequently, our geometry shares only a rudimentary resemblance to actual 

premixed 
supersonic 
freestream 

--
y 

':noe .... . ~e" 
. e~o'o\" 

~t'~\~ 
w~ Symmetric Double 

Wedoe 
;c _---...:0---- Lp =0.1 m -------+-

Figure 8.2: Detailed schematic for fIe -+ 00 

devices, but has the advantage of being amenable to simple analysis. 
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As discussed previously, the flow model employed also has only a rudimentary 

resemblance to commonly used models for real devices. Fig. 8.2 indicates the general 

flow features. The ambient, premixed freest ream fluid encounters an attached oblique 

shock at the leading edge of the projectile. No appreciable reaction occurs within the 

shock or near the front of the projectile. Near the apex of the wedge appreciable 

reaction begins, and at the apex the flow is turned through a centered Prandtl-Meyer 

expansion until it attains a velocity parallel to the lee wedge surface. The reaction 

then proceeds to completion on the leeward side of the projectile. The flow passes 

through a final oblique shock at the tail of the projectile, resulting in a velocity only 

in the x direction. The net force on the projectile is determined by integrating the 

pressure over the entire surface area. The lead oblique shock wave is strengthened by 

the reaction such that in the far-field the shock angle reaches the Chapman-Jouguet 

wave angle; this will be demonstrated in the following section. Chapman-Jouguet 

detonations are known to be unstable with this reaction mechanism, however, so 

additional study is needed to completely verify this result. 

8.3 Results 

For the unconfined double wedge, steady propagation speeds were sought which 

gave rise to a force balance as the heat release parameter ij was varied, 11.908 ::; 

ij ::; 13.456. Other parameters were held constant at 'Y = 7/5, e = 5°, and Ea = 

12.32. For presentation of results the corresponding dimensional values were Po = 

1.01325 X 105 Pa, Po = 1.225 kg/m3 , Ea = 1.019 X 106 J /kg, £p = 0.1 m, 0.985 x 106 

J/kg ::; q::; 1.113 X 106 J/kg, and i3 = 2.64 X 107 8-1• These values were chosen 

not so much to model a real system but so that the method could be successfully 

illustrated and an interesting bifurcation phenomenon predicted. For models which 

better represent physical systems, it is certain that the method given here can be 

applied and plausible that the predictions will have the same essence. A common 199 
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x 99 fixed computational grid was used in all cases, and convergence to steady-state 

was typically achieved in about 5000 time iterations. 

As shown in Eq. 4.30, the CJ Mach number MOCJ is determined solely by if and 

'Y; for the parameters listed 4.275 ::; MOCJ ::; 4.517. For cases attempted in which 

Mo ::; M ocJ ' a normal detonation would form and propagate forward in the domain 

until it hit the inflow boundary. This corresponds to the detonation attempting 

to reach its natural, unsupported propagation speed. All cases considered here in 

which force balances were found had an incoming Mach number well above MOCJ 

(5.5 ::; Mo ::; 8.5); consequently, the steady propagation speeds found are in the 

superdetonative regime. 

The projectile achieves a steady velocity when the force due to pressure wave drag, 

which tends to retard the motion, is balanced by forces induced by combustion, which 

tend to accelerate the projectile. The dimensionless net force per unit depth Fnet is 

given by the pressure force integrated over the circumference of the diamond-shaped 

wedge: 

(8.1) 

where ds is an element of arc length of the diamond-shaped wedge of Fig. 8.1. Due 

to symmetry, the only non-zero component of F net is in the x direction. This force 

is defined to be positive if it points in the negative x direction. For the numerical 

analysis, numerical integration of the pressure field gave the net thrust. Figure 8.3 

shows Fnet plotted vs. Mo for the four indicated values of q. 

For low heat release Fnet is negative; the thrust force induced by combustion is 

not sufficient to overcome the wave drag. At a critical value of heat release, q = 

0.992 M J /kg (if = 11.993), there is a balance of combustion-induced thrust and 

drag such that F net = O. This occurs at Mo = 7.95. As heat release continues to 

increase, there are two distinct Mach numbers for which there is no net thrust. A 

perturbation in the Mach number for the steady solution at the lower Mach number 
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Figure 8.3: Net thrust force versus Mach number for varying heat release. 

results in a net force which tends to accelerate the projectile away from the equilibrium 

Mach number. Consequently, this is a statically unstable equilibrium. In the same 

manner, the equilibrium solution at the higher Mach number is statically stable to 

such perturbations. As heat release is increased, the stable equilibrium Mach number 

increases and the reaction zone is located closer to the expansion fan, while the 

unstable Mach number decreases and the reaction zone is located closer to the trailing 

edge. The same trends of these numerical results can be predicted with a simple 

Rankine-Hugoniot analysis combined with thermal explosion theory [61, 60]. 

These results are summarized in the bifurcation diagram shown in Fig. 8.4, where 

Mach number versus heat release ij are plotted. The lower branch is unstable while the 

upper branch is stable. On the stable branch near the bifurcation point, an increase 

in ij causes the flight speed to increase. The curve of MOCJ versus ij is also shown 

on this figure to demonstrate that the cases considered were all above the CJ point. 

The solutions shown here correspond to stable flight speeds in the range of 2, 700 'm/ s 
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Figure 8.4: Bifurcation diagram for steady state speed versus heat of reaction. 

;S ito ;S 2,900 mj s, 7.9 ;S Mo ;S 8.5. 

For a particular value of heat release, ij = 1.014 M J /kg, detailed plots of pressure 

contours and product mass fraction contours are given for the stable case (Mo = 8.4) 

and the unstable case (Mo = 7.1) in Figs. 8.5, 8.6, 8.7, 8.8, respectively. In the 

stable configuration, the lead oblique shock undergoes a sudden increase in angle of 

inclination from approximately 110 to 310. A similar rise from 120 to 380 occurs 

for the unstable case. This appears to be associated with the chemical reaction. 

The reaction occurs sooner for the stable case which is at the higher Mach number. 

This is readily apparent in the product mass fraction contours. Along the wedge 

surface chemical reaction reaches completion very near the apex for the stable case, 

while in the unstable case the reaction completes further downstream. This may be 

explained in the following way: for low M o, chemical reaction occurs off the leeward 

wedge surface far downstream, resulting in a net drag force. As the Mach number 

is increased, the reaction moves forward onto the wedge, eventually reaching a point 
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at which the wave drag of the projectile is balanced by the thrust due to chemical 

reaction. Increasing Mo past this equilibrium point moves the reaction closer to the 

wedge apex on the leeward side, resulting in positive Fnet . Increasing Mo still further 

pushes the reaction over the apex and onto the front of the wedge. The pressure 

increase due to chemical reaction on the front of the wedge is then balanced by the 

resulting higher pressure on the leeward side of the wedge. 

0.10 ,------------------------, 

%= 8.4 
q= 1.014MJlkg 
po= 1 bar 

Figure 8.5: Pressure contours for statically stable steady configuration. 

Figure 8.9 shows plots of the pressures along the lines of symmetry and projectile 

surface for the stable and unstable cases of interest. Here there are about 90 grid 

points distributed on the wedge surface. As a further verification of the code's ability 

to predict two-dimensional flows, plots of the exact and numerical pressure traces for 

an inert flow over the projectile are also given. The numerical pressure closely follows 

the exact solution, showing the biggest discrepancies at the shock and rarefaction 

discontinuities. The discontinuities are still captured well, however, and there is no 

evidence of the Gibbs phenomena observed in some of the verification studies of Ch. 

203 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

0.10 r---------------------------, 

%=8.4 
q= l.014MJlkg 
Y2=O 

0.0 L ___ =::::::::::::::==w~e~ge====:::::::::~=_ ______ ~ 
-0.01 0.0 x: (m) 0.14 

Figure 8.6: Product mass fraction contours for statically stable configuration. 

6. Between the discontinuities, the numerical solution reaches constant states very 

close to those of the exact solution. Drag calculations for the exact and numerical 

solutions show that they are in excellent agreement. 

Considering the surface pressure for the stable case in Fig. 8.9, it is apparent that 

significant reaction occurs on the front face of the wedge. The pressure begins to rise 

slowly following the initial shock, and then very suddenly prior to the rarefaction at 

the wedge apex. Following the apex the pressure remains well above the inert case, 

and then jumps again because of the trailing shock at the end of the projectile. The 

unstable case shows a much different solution. Once again the pressure begins to rise 

slowly following the initial shock, but in this case the peak prior to the rarefaction is 

much lower. The pressure drops through the rarefaction discontinuity, but once again 

remains above the inert pressure. The pressure peaks on the back of the wedge where 

the reaction reaches completion, and then jumps through the trailing shock. This is 

consistent with the prior discussion. 
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Figure 8.7: Pressure contours for statically unstable steady configuration. 

In order to determine the performance characteristics of the simple configuration 

studied, a number of additional calculations were made using the results obtained for 

q = 1.014 M J /kg. As indicated in Fig. 8.3, the maximum thrust on the projectile 

was obtained at this heat release. For reference, the heats of combustion of propane, 

methane, and hydrogen are 50,56, and 120 M J/kg, respectively [82]; thus, this level 

of heat release is small compared to real systems. Approximate position, velocity 

and acceleration histories for the projectile were obtained by fitting the thrust curve 

of Fig. 8.3 with a sixth order polynomial to get Fnet(up) (see Fig. 8.10), and then 

integrating Newton's second law 

(8.2) 

where m is the dimensional projectile mass per unit depth. Equation (8.2) was 

integrated from a speed slightly greater than that of the unstable steady propagation 

point (it was assumed that l = x = 0 initially), to a speed slightly less than that 

of the stable point. The projectile was assumed to be constructed of aluminum, 
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Figure 8.8: Product mass fraction contours for statically unstable steady configura­
tion. 

which resulted in a mass per depth of m = 1.2108 kg/m. Figures 8.11 and 8.12 

show acceleration as a function of time and distance. As expected, the acceleration 

peaks at the point of maximum thrust. The accelerations found here are much lower 

than those which Hertzberg reported (approx. 160,000 m/82 [38]). The low value 

obtained here is a result of the low levels of heat release considered, and the lack of 

cowl surfaces, which would increase Fnet by creating a system of shock reflections on 

the rear of the projectile. Figures 8.13 and 8.14 show the velocity histories for the 

same projectile mass. The velocity changes quickly in the region of maximum thrust, 

but changes very slowly near the equilibrium points. In this case the total velocity 

change .6..up ~ 430 m/8 (.6..Up ~ 0.19) is only slightly less than that observed by 

Hertzberg (approx. 500 m/8). Figure 8.15 shows the projectile position as a function 

of time. In this case the curve is almost perfectly straight, since the velocity change 

due to the chemical reaction is relatively small compared to the overall speed of the 

projectile. The time required for the projectile to transition from the unstable point 

206 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

.r, 
~ / \ 

2 

, 
/ \ I I' e.. I I' .r \ I 1'.( 

I " I '\ :/ \. " I 1\ I 
, , ,--_ ...... , 

I I 
, , , 

I I \ I , , 
l- I 

j " 
I I \ I 

I I \ j , ...... - .. 
, , I __ x 'i Mo=8.4 : , , II. ._,,--r , , --

J _ -- " -----' / I , , I I , 
I , ---r -- - I , I 
II ... ' I 
I ..,-- inert (exact), Fnet = -I 944 N/m 

I Mo=7.1 I / c inert (numerical).,fnet = -I 942 N/m 
I 

,/ -----. reactive (stable), Fnet - 0 N/m - -
I ,/ - - - reactive (unstable), Fnet - 0 N/m 

5 

4 

'i:' 
'" e 3 

/0.. 

c f \"h. , -, , 
o 0.02 0.04 0.06 0.08 0.1 0.12 0.14 

x: (m) 

Figure 8.9: Pressure traces on wedge surface. 

to the stable point was b.t ~ 17 s (b.t ~ 4.6 x 108), while the corresponding distance 

covered was 6.£ ~ 44,000 m (b.x ~ 5.2 x 108). This length is obviously impractical; 

the experimental studies covered a total length of slightly less than 5 m [38]. 

Finally, it is noted that in the far-field limit the oblique detonation apparently 

becomes an obliquely travelling, unsupported CJ detonation; the wave angle (3 of the 

detonation is such that the component of the Mach number normal to the wave is 

equal to M oCJ ' This is illustrated in Fig. 8.16, which compares the exact CJ wave 

angle to the wave angle predicted from the numerical results for the steady speeds 

of propagation (Fig. 8.4). Error bars of ±1° are shown on the numerical results to 

indicate the estimated error in measuring the numerical detonation angle. Note that 

(3 is a function of both Mo and q, both of which are different for each plotted point 

on the figure. Figure 8.17 shows the same type of comparison, except that in this case 

the freestream Mach number has been held fixed at Mo = 8.4. Thus, it is possible 

to plot an exact curve for the CJ wave angle. In both figures it can be seen that the 
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Figure 8.10: Sixth-order polynomial curve fit of thrust curve for if = 1.014 M J jkg. 

numerical prediction and the exact solution are equal within the measurement error. 

This result gives I).umerical confirmation to ideas put forth by Chernyi [18]. 

Figure 8.18 shows a comparison between the exact CJ detonation pressure solution 

and the numerically predicted far-field pressure solution along a line normal to the 

oblique detonation (Mo = 8.4 and it = 0.985 M Jjkg). The numerical solution is 

interpolated since the computational grid does not follow this line. It is apparent 

that the numerically predicted peak pressure is significantly lower than the exact 

pressure, and that the numerical solution drops well below the exact solution for 

larger values of x. The discrepancy in the peak pressures is likely the result of 

an insufficient number of cell centers (approx. 3-4) within the reaction zone of the 

numerical solution. The increased pressure drop in the numerical solution is due to the 

Prandtl-Meyer expansion emanating from the apex of the projectile. As previously 

mentioned, CJ detonations are known to be unstable with this reaction mechanism, 

and yet no instabilities were found in the cases studied. The verification studies of 
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Figure 8.11: Projectile acceleration as a function of time (q = 1.014 M J/kg, in = 
1.2108 kg/m). 

Ch. 6 indicated, however, that a much greater number of points within the reaction 

zone is required to accurately capture detonation instability. 
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CHAPTER 9 

CONCLUSIONS 

9.1 Unsteady Oblique Detonations 

The results presented here suggest that straight shock, curved wall oblique det­

onations have a stability threshold slightly higher than their one-dimensional coun­

terparts. For the parameters studied, the oblique detonation stability threshold was 

at a normal overdrive value of approximately in = 1.77, while the corresponding 

one-dimensional detonation threshold occurs at an overdrive of i = 1.73. The unsta­

ble oblique detonation solutions were characterized by the formation of one or more 

three-shock structures at the detonation front. These structures would move down­

ward along the front, and eventually impact with the wedge surface. The passage 

of the three-shock resulted in a curved detonation front which propagated forward 

into the freestream until encountering the front computational boundary. The ini­

tial transient stages of the stable oblique detonations were also characterized by the 

three-shock structures; however, in those cases the disturbance would simply propa­

gate out the top of the domain, and the detonation would return approximately to 

its initial steady state. The slightly higher stability threshold for the straight oblique 

detonation suggests that the initial "one-dimensional" instability, which decayed in 

one dimension, transitions to unstable two-dimensional structures for a small range 

of normal overdrive values. Above that range the two-dimensional structures that 

form are too weak to destabilize the detonation. 

As suggested by the one-dimensional detonation stability res,ults, an important 
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parameter in the two-dimensional studies was the number of computational cells 

within the half reaction zone length of the initial steady detonation. The numerical 

algorithm was able to correctly predict one-dimensional instability with as few as 

10 points per L 1/ 2 • For all of the two-dimensional studies the points per L 1/ 2 was 

kept above this value. A second parameter that became important in the oblique 

detonation studies was the length in units of L1/2 of the initial detonation within 

the computational domain. Defining the domains such that Lratio was less than 

approximately 20-25 tended to result in incorrectly predicted stability. It is entirely 

possible that further extending the top of the domain to increase Lratio past the values 

used could change the stability threshold observed. The instability in the solution at 

in = 1.76 occurred away from the upper boundary, however, so it is unlikely that the 

threshold would decrease. Finally, it is also possible that extending the computational 

domain horizontally to allow the curved detonation room to move forward could result 

in the eventual return of the detonation to a (straight) steady state. 

As with any numerical study, particularly one involving the study of stability, 

there are a number of caveats concerning the above conclusions. The implementation 

of accurate wall boundary conditions along the bottom of the computational domain, 

and outflow boundary conditions along the top of the domain, presented the biggest 

challenge in this study; entirely satisfactory results were never obtained. It was 

deemed necessary to extend the computational grid somewhat in front of the wedge 

tip in order to allow the detonation room to adjust in this region; however the density 

and pressure spikes resulting from the grid discontinuity along the wall grid line are 

problematic. Additionally, downstream of the wedge tip and along the wall there was 

always some discrepancy between the exact solution and the numerical solution, even 

for those variables in which there was not an initial overshoot. This was partly a 

result of the spike in density and pressure, but was also observed to a lesser degree 

in inert cases for which the grid discontinuity was much smaller. The net effect of 

215 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

these two problems was the creation of an unphysical numerical boundary layer in 

the region near the wall. As for the outflow condition along the top of the domain, 

there were obvious discrepancies that occurred when a shock exited through this 

boundary. Certainly the method used to determine the value of K was simplistic; 

however, there still remain fundamental problems in accurately estimating unknown 

physical quantities entering the domain along inflowing characteristics. 

A second issue is the unknown effect on the observed detonation instability of 

the slight oscillations observed in the numerical solutions when compared to exact 

solutions. Certainly where issues of stability are concerned these are undesirable ar­

tifacts. Other researchers [21] have advocated adding very small amounts of artificial 

dissipation in higher-order Godunov schemes in order to eliminate such phenomena. 

This was avoided here due to the possible effects on the numerical prediction of in­

stability. Without exact two-dimensional steady and unsteady solutions with which 

to compare, it is difficult to know which is the correct choice. A related issue is the 

nonunique choice of a limiter for the second order scheme. Two were compared here, 

but there are many more possibilities invented each year. Which limiter is used will 

certainly affect the solution, but, as with artificial dissipation, the correct choice is 

not necessarily evident. 

The last issue is the numerical modelling of reactive flows, even those with very 

simple chemistry models. A recent report by Stewart and Bdzil notes some of the 

difficulties being encountered by researchers in this area [74]: 
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"In this case, the test problem was for the physically important case of a 
Chapman-Jouguet detonation, with large temperature sensitivity in the reac­
tion rate. The attempts at solving the problem with different state-of-the-art 
codes seemed to have produced a wide variation in results. A main objective of 
the Workshop was to illustrate the variation in results obtained by the different 
methods. Our experience with CAVEAT and CMHOG [two different codes] 
shows that there can be profound qualitative and quantitative differences in 
the solutions obtained with different codes ... The dramatic differences in the 
solutions obtained by these two codes, that had both passed many tests and 
that were being used with reasonable (numerical) parameters, is disconcerting 
at best. The binary difference in the qualitative behavior obtained with these 
codes points out that advanced algorithms must reduce accuracy errors wher­
ever possible, if realistic engineering problems are to be solved accurately." 

According to the report, the equations being solved were exactly the reactive Euler 

equations with a one-step reaction model which were considered for this study. 

Much work remains to be done in this area. Some of the above issues could be 

resolved by tracking the detonation front and using it as a boundary of the domain. 

This would allow exact Rankine-Hugoniot jump conditions to be used at the discon­

tinuity, thus eliminating any Gibbs phenomena following the shock. Using an even 

higher order scheme could resolve some of the issues concerning the modelling of re­

active flows. Perhaps most important of all, better numerical boundary conditions 

for finite domains need to be devised. In terms of more fully understanding oblique 

detonation stability, parametric studies of such parameters as the wall shape and 

initial detonation wave angle remain to be considered. Real devices, such as the ram 

accelerator, have walls instead of open boundaries, thus it would be useful to consider 

that effect as well. 

9.2 Steady Propagation of a Ram Accelerator 

This study has given indication of the importance of the interaction of kinetic 

length scales with geometric length scales in determining steady propagation velocities 

for high Mach number propulsion devices. The trends of our variation of net thrust 

with Mach number for fixed heat release are consistent with those of Ref. [10] and 
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[88]. Most importantly, the idea of using the heat release to vary the propagation 

speed, as shown in the bifurcation diagrams, has been demonstrated. In an ODWE 

environment, the equivalence ratio could presumably be varied to achieve this effect. 

Alternatively, one may be able to use the wedge angle as a bifurcation parameter to 

vary the propagation speed. 

Due to the relatively low values of heat release considered in the study and the lack 

of cowl surfaces in the configuration, performance parameters, such as the ma.ximum 

projectile acceleration, were much lower than what has been reported in the literature. 

Even with these limitations, however, large accelerations and changes in velocity were 

predicted, indicating the potential for this type of propulsion. 

The relevance of the CJ state for this model and configuration has also been 

demonstrated. Since the CJ velocity is independent of the reaction kinetics, while 

the steady flight speed is dependent on the kinetics, the only relevance of the CJ Mach 

number was as an overly conservative lower bound for flight speeds. Additiona~ly, the 

CJ oblique detonation angle was predicted in the far-field for cases with and without 

force balances, and thus does not have any particular relevance in the determination 

of the flight speed. 

In the results presented here the oblique detonations exhibited no instabilities, 

which is consistent with the results of other researchers [10, 89, 88, 87]. However, 

there were as few as 3-4 cells within the reaction zones of the detonations. The 

one-dimensional ZND results indicate that this is too few to accurately capture the 

possible unsteady behavior of the detonation, though unsteady solutions were still 

found with relatively few cells in the reaction zone. Certainly it is of interest to 

consider more resolved solutions, as the unsteady detonation phenomena observed in 

Ch. 7 may appear. 

For the future it would be useful to consider the case of dynamic stability. This 

would be accomplished by considering the equations of motion in an accelerating 
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frame of reference. The computed forces on the projectile would enter into the ac­

celeration of the reference frame, which would then alter the inflow Mach number 

dynamically. Also as suggested in a review by Powers [59], it would be useful to 

study this problem in the context of other well-documented inert flows such as a 

Busemann biplane or flow over a thin airfoil. 
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