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NUMERICAL SIMULATIONS OF STEADY AND UNSTEADY OBLIQUE
DETONATION PHENOMENA WITH APPLICATION TO PROPULSION

Abstract

by

Matthew John Grismer

Oblique detonations and their propulsive applications were studied by numerically

integrating the two-dimensional, reactive Euler equations in a generalized, curvilin-

ear coordinate system. The integration was accomplished using the Roe scheme

combined with fractional stepping; nonlinear flux limiting was used to prevent un-

physical solution oscillations near discontinuities. The method was verified on one-

and two-dimensional flows with exact solutions, and its ability to correctly predict

one-dimensional detonation instability was demonstrated.

Unsteady phenomena were considered in a study of straight oblique detonations

attached to curved walls. Using the exact, steady oblique detonation solution as an

initial condition, the numerical simulation predicted both steady and unsteady oblique

detonation solutions when a detonation parameter known as the normal overdrive was

varied. The normal overdrive value at which the oblique detonation transitioned from

steady to unsteady behavior was slightly higher than the corresponding value for a

one-dimensional detonation.

An oblique detonation application was considered to determine the steady prop-

agation speed of an idealized ram accelerator. Propagation speeds were found which

gave rise to shocks of such strength as to induce a reaction zone to be in a region

which allowed the combustion induced thrust to balance the wave drag. For fixed heat
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release greater than a critical value, two steady propagation speeds were predicted.

The solution at the higher Mach number was stable to static perturbations while the

solution at the lower Mach number was unstable. The Chapman-Jouguet velocity

in the direction of projectile propagation was found to be relevant only as an overly

conservative lower bound for possible flight speeds. In the far-field the detonation

wave angle was found to be that of a Chapman-Jouguet oblique detonation.
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T 0 Standard temperature

TV(q) Total variation of q

U Right eigenvector matrix of B̂

xv



UD Underdriven

U c, V c Contravariant velocities

V ′
1 Velocity following reflected shock S ′

V2 Velocity following shock S2

W Weak solution

X Right eigenvector matrix of K

Y Right eigenvector matrix of H

Yi Mass fraction of ith species

Y1 Reactant mass fraction

Y2 Product mass fraction

Z ∂ĝ/∂p
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Chapter 1

INTRODUCTION

This dissertation will discuss oblique detonations, their numerical simulation, their

applications to propulsion, and their steady and unsteady behavior. In this chapter a

description of a generic oblique detonation will be given along with a discussion of ap-

plications. Next, the specific questions this research addresses will be given, followed

by a brief description of the general format of the remainder of the dissertation.

An oblique detonation is defined here as an oblique shock which induces exother-

mic chemical reaction in a flow. For the special case in which the flow is two-

dimensional and modeled by reactive Euler equations, Fig. 1.1 indicates general fea-
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Figure 1.1: Schematic of oblique detonation.

tures of an oblique detonation over a sharp-edged, straight, semi-infinite wedge. An

oblique shock is formed off the wedge tip due to the impinging supersonic freestream,
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provided the freestream Mach number is high enough to prevent shock detachment.

Assuming that the upstream reaction rate is negligibly small and the temperature

increase due to the shock is large enough, chemical reaction is initiated in the post-

shock flow. Solution of the Rankine-Hugoniot reactive jump equations [69, 34] shows

that the oblique detonation wave angle is greater than that of an inert oblique shock

wave. When finite reaction zone lengths are considered, the shock does not remain

straight [63]. At the apex of the wedge the flow has not had time to react, and

thus the shock angle is that of an inert shock. Downstream of the apex the chemical

reaction releases increasing amounts of heat into the flow, leading to pressure distur-

bances which propagate along characteristics that intersect the shock. The shock is

then strengthened by the disturbances, the effect of which is the shock being pushed

farther from the wall and developing curvature. Far from the wall the shock relaxes

to zero curvature. As the only mechanism for generating vorticity in the inviscid flow

is shock curvature, vorticity is generated at the shock near the wall, and then con-

vected downstream along particle paths roughly parallel to the wedge surface. Thus,

as indicated, there is a layer of chemical reaction following the shock, and a layer

of vorticity near the wedge surface. Both layers eventually relax to an irrotational,

completely reacted core region downstream of the shock and away from the wedge

surface.

Such high-speed nonequilibrium flows have been the subject of many studies over

the past decades, and have recently been receiving more attention due to renewed

interest in hypersonic air- and spacecraft such as the proposed National Aerospace

Plane (NASP). One of the propulsion systems considered for this vehicle is the oblique

detonation wave engine (ODWE) [25, 56, 15], which, as the name suggests, relies on

oblique detonations to provide thrust. Figure 1.2 illustrates the general concept of

the ODWE as proposed by Dunlap, et al. [25]. Supersonic air enters the engine and

is mixed with fuel. The mixture is then ignited by an oblique shock induced by a
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Figure 1.2: Simplistic concept for oblique detonation wave engine.

wedge, greatly increasing the pressure inside the engine. This high pressure forces

the combustion products to expand out the back of the engine at high speed, creating

thrust.

The ODWE is perceived to have the same advantage over a ramjet as the su-

personic combusting ramjet (SCramjet): improved efficiencies at high Mach numbers

due to the reduced total pressure losses possible with supersonic combustion [83].

In addition, it is a competitive alternative to the SCramjet because it would use a

smaller combustion chamber and not require an active ignition device [25]. On the

other hand, a number of issues remain to be addressed regarding the ODWE: Can

the supersonic fuel and air be sufficiently mixed? Will the mixture have enough time

to react fully before leaving the engine? Will the standing oblique detonations be

stable over a broad range of Mach numbers?

Another rapidly emerging application is the ram accelerator, first proposed and

studied by Hertzberg, et al. [38, 39]. This device uses oblique detonations to drive

projectiles to high speed. While currently undergoing basic feasibility studies, en-

visioned applications include weapons and inexpensive launch systems [7]. Figure

1.3 illustrates one of the theorized modes of propulsion for this device. A projectile

is injected at high speed (approximately 1,500 m/s), via a conventional powder or

light gas gun, into a tube filled with fuel and oxidizer (methane and oxygen at 20

atm, for example). A conical shock forms over the sharp tip of the projectile, and
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is reflected off the interior tube wall. This reflected shock induces rapid combustion,

which causes a large increase in pressure behind the projectile (approximately 600

atm). The pressure differential between the front and the back of the projectile then

accelerates the projectile forward. The projectile would continue to accelerate until

the end of the tube was reached, or until the lead shock became strong enough to

Projectile

Conical bow
shock

Oblique Detonation
Combustion

Products

oxidizer,
diluent

Fuel,

Figure 1.3: Schematic of ram accelerator flow field. [37]

induce combustion and thus increase the pressure on the front of the projectile to such

an extent as to balance the aft force. Hertzberg, et al. [39] have observed velocities

as high as 2,500 m/s at the end of the tube.

In order to optimize performance of these devices, it is important to gain a funda-

mental understanding of oblique detonation behavior. One factor which may degrade

performance is combustion instability. Experimental [49] and numerical [28, 9] studies

of fundamentally one-dimensional detonations have shown that under certain condi-

tions detonations have an unsteady, oscillating character, while under other conditions

they are stable. In the unsteady regime, peak flow quantities (such as pressure, den-

sity, or velocity) following the detonation can vary greatly from their average values.

Similar multi-dimensional phenomena have been observed experimentally (see chap-

ter 7 of [27]). Thus, for the proper design of devices utilizing oblique detonations, it

is important to obtain answers to the following questions:

• What is the relation between one-dimensional detonation instability and oblique

detonation instability?
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• What is the behavior of oblique detonations in the unstable regime?

Finally, as tools were developed to answer these questions, it became apparent that

these same tools could be easily applied to the ram accelerator in order to answer the

following questions:

• What is the maximum propagation speed for a ram accelerator?

• How long should it take a ram accelerator to reach steady state?

This study has attempted to answer these questions by numerically solving simpli-

fied equations which model oblique detonations. Real combustion phenomena are ex-

tremely complex, involving many chemical reactions between many different species.

Even in the combustion of simple systems, such as hydrogen and oxygen, it is diffi-

cult to determine all intermediate products and the elementary reactions that give

rise to those products. The situation is further complicated by the many disparate

time scales associated with the reactions, which can differ by as much as ten orders

of magnitude [55]. In a detonation, this complex chemistry interacts with a com-

plex flowfield. This is typically modeled with partial differential equations (PDE’s)

governing the evolution of each chemical species, as well as the standard PDE’s de-

scribing conservation of mass, momenta, and energy. The numerical solution of this

complex system is usually non-trivial due to the difficulty associated with sufficiently

resolving all length and time scales of the reacting flow, as well as the question of

how to correctly model turbulence.

As an alternative approach, the focus of this study is the solution of the simplest

system of equations that still captures the main features of an oblique detonation: the

Euler equations for a calorically perfect ideal gas combined with one equation for one

irreversible, one-step exothermic reaction with Arrhenius kinetics. These equations

are a subset of equation sets that model more complex physics; they are the most basic

system to be studied before more complex systems are considered. Consideration of
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such systems most efficiently exposes any inadequacies in our understanding. Though

the approach has the disadvantage of not modeling certain physical realities (such

as real gas effects, viscous effects, etc.) it has a long history as a useful tool for

understanding [28, 27, 9, 8].

The format of this dissertation is as follows: a general review of the detonation

literature will be presented, followed by a presentation of the model equations. Then a

number of analytical solutions to the model equations will be presented and discussed.

Next, the numerical method used to solve the model equations will be presented,

followed by numerical solutions to a number of one- and two-dimensional problems to

assess its accuracy. The numerical method will then be applied to oblique detonation

problems to determine their steady and unsteady behavior. Finally, conclusions will

be drawn from the aforementioned numerical solutions.
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Chapter 2

LITERATURE REVIEW

This review of the relevant literature will be divided into two sections: the first will

review detonations, while the second will focus on ram accelerators. The detonation

literature will be organized in two parts: the first will discuss one-dimensional det-

onations, covering analytical linear stability results, and then numerical studies of

unstable detonations, while the second will discuss oblique detonation results, cov-

ering experimental evidence for steady and unsteady oblique detonations, analytical

and numerical solutions for nonequilibrium flows with oblique shocks/detonations,

and finally, analytical and numerical studies focused on oblique detonation stability.

Finally, the ram accelerator literature will be divided into representative experimental

and numerical studies.

A number of detonation-related terms in this chapter are first defined. Detonations

are typically classified by the overdrive factor f ≡ (D/DCJ)2, where D is the wave

speed measured with respect to a laboratory frame of a piston-supported detonation;

DCJ is the speed of an unsupported, freely travelling detonation; and CJ refers to what

is known as the Chapman-Jouguet condition (see Fig. 2.1). The detonation becomes

unsupported when the piston velocity drops below a certain velocity denoted uCJ .

The freely travelling detonation is commonly referred to as a CJ detonation. When

f > 1 the detonation is referred to as overdriven, while for CJ waves f = 1.

7



u > uCJ f > 1
overdriven
detonation

piston

f = 1
CJ detonation

piston

D

DCJu < uCJ

Figure 2.1: Illustration of overdrive.

2.1 One-dimensional Detonations

In the early 1940’s Zeldovich [90], von Neumann [79], and Doering [24] independently

modeled detonations with what is now known as the ZND model [27]. The ZND

detonation is one-dimensional and modeled by reactive Euler equations; it is composed

of a travelling shock wave followed by a zone of chemical reaction. The reaction is

initiated in the fluid by the shock, which is treated as a discontinuity over which no

reaction occurs. The particular studies discussed here focused on the case of a ZND

detonation with one irreversible, exothermic chemical reaction.

The stability of ZND detonations has been studied both analytically, using lin-

earized equations, and numerically, using the complete, nonlinear equations. Fickett

and Davis [27] present a summary of the limited linear analytical stability results

available in 1979. The parameters varied in the studies were the activation energy (a

parameter in the chemical reaction model), the amount of heat released in the chem-

ical reaction, the wave number (which is inversely proportional to wavelength) of the

transverse disturbance, and the amount of overdrive for the detonation. The results’

general trends were as follows: for a transverse wave number of zero, increasing the

activation energy lowered the transition threshold to instability for finite heat release

and low values of overdrive. Sufficiently high overdrive resulted in stability. For an

activation energy of zero there was complete stability for all values of heat release

and overdrive. When the transverse wave number approached infinity, increasing
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the activation energy again resulted in instability. In this case, however, stability was

achieved for low and high levels of heat release and overdrive, but not for intermediate

values of the two. Once again, zero activation energy resulted in complete stability.

Finally, for intermediate values of transverse wave number, increasing the activation

energy resulted in the transition to instability occurring at ever lower values of heat

release for all values of overdrive. Even at zero activation energy, higher levels of heat

release yielded unstable results. Lee and Stewart [47] recently completed a linear an-

alytical study of the stability of ZND detonations to longitudinal disturbances. Using

modern techniques they were able to both support the results of the previous studies,

and then fill in and extend the range of parameters (activation energy, heat release,

longitudinal wave number) which determine stability boundaries.

Time-accurate numerical studies of ZND detonations have been performed to ver-

ify the linear stability analyses and to determine the nonlinear behavior of the det-

onation. Fickett and Wood [28] used the method of characteristics to find pulsating

detonations that were consistent with the linearized stability results. The unstable

detonations oscillated about the steady solution, with peak pressures approximately

50% higher than the steady pressure. Later, Bourlioux, Majda, and Roytburd [9]

studied unstable detonations and made detailed comparisons to the results of Lee and

Stewart [47]. Using an asymptotic analysis, they were able to show that their numeri-

cal method was predicting the correct unstable behavior. Then Bourlioux and Majda

[8] extended the study to two spatial dimensions, finding complex two-dimensional

cellular structures arising from the original one-dimensional, steady detonation. They

showed that for certain cases in which the ZND detonation profile was unstable to

long transverse wavelength disturbances, the cell spacing predicted by simple theo-

ries agreed well with the numerical simulation. When the ZND profile had a complex

stability diagram, such as instability to short wavelength transverse perturbations,

neither the simple theories nor more complex theories were able to predict the com-
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puted cell spacings accurately. Finally, their numerical solutions appeared to show

transition to something akin to turbulence in the wake of the unstable detonation

front as the activation energy and heat release were increased.

2.2 Oblique Detonations

Experimental results for oblique detonations fall into two categories: wind tunnel

data and hypervelocity projectile data. The observations suggest that oblique det-

onations have regimes of stability and instability. Gross and Chinitz [35] produced

apparently steady oblique detonations by injecting hydrogen upstream of a wedge

placed in a supersonic wind tunnel. Their main method of measurement was schlieren

photographs. Rubins and Rhodes [67] used a similar apparatus and also produced

apparently steady oblique detonations. Ruegg and Dorsey [68] obtained early evi-

dence of detonation instability by firing projectiles into combustible mixtures. Later,

Behrens, Struth, and Weckens [6] fired spherical projectiles into stoichiometric mix-

tures of hydrogen and air at low pressures (0.24-0.72 atm), and using high speed

shadow and schlieren photographs deduced shock pressures, stagnation temperatures,

and frequency of shock oscillation. They found that the period of shock oscillation

was the same as the induction time for self-ignition of the mixture. Lehr [49] addi-

tionally considered projectiles with both spherically and conically shaped noses. Both

studies found apparently steady and unsteady combustion phenomena following the

bow shock in front of the projectile. Many of these photographs are considered to

record examples of fundamentally one-dimensional instabilities (see left side of Fig.

2.2). However, Lehr obtained one photograph (see right side of Fig. 2.2) of what he

described as “an oblique Chapman-Jouguet detonation” away from the centerline of

the projectile. The photograph shows a straight oblique detonation followed by a

complicated, unsteady flowfield, and could be interpreted as an example of oblique

detonation instability.
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Figure 2.2: Unsteady detonations resulting from hypervelocity projectiles. [49]

There are a number of early representative analytical studies of the type of flow

depicted in Fig. 1.1. Vincenti [78] considered supersonic, nonequilibrium flow over a

thin wedge, and obtained asymptotic solutions by perturbing about a uniform, equi-

librium freestream flow. Capiaux and Washington [16] considered the hypersonic flow

of a diatomic, dissociating gas over a finite-angle wedge, and obtained flow solutions

using the method of characteristics. Lee [48] considered supersonic flow over a wedge

in which the fluid was in vibrational nonequilibrium. By perturbing about the frozen

shocked-state, he was able to obtain asymptotic solutions for the nonequilibrium flow

downstream.

Oblique detonations were originally studied with discontinuity analyses, in which

the detonation is considered to be a discontinuous wave with heat release. Siestrunck,

et al. [71] and Rutkowski and Nicholls [69] presented and discussed oblique detonation

polars based upon this analysis. Larisch [44], and later Gross [34], obtained analytical

jump equations for the flow properties across the detonation, with heat release as a
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parameter. Chernyi [18] discussed the formation of detonations over a number of

different bodies, including wedges and cones. Others studies of this sort include

Oppenheim, et al. [57], Buckmaster and Lee [12], and Pratt, et al. [64]. A more

complete review of this type of analysis is given by Pratt et al., who discuss and

synthesize much of the previous work.

More recently, many numerical solutions of the model partial differential equations

for reactive flows have been obtained. Examples include the work of Brackett and

Bogdanoff [10], Fujiwara, et al. [30, 29], Wang, et al. [81], Cambier, et al. [14, 15],

Yungster, et al. [87, 89, 88], Ahuja and Tiwari [2, 1], Li, et al. [51, 52, 53], and Tivanov

and Rom [77]. Recently, Powers and Stewart [63] obtained asymptotic solutions

for a steady oblique detonation which are valid in the limit of high Mach number.

Grismer and Powers [32] then calculated numerical solutions to the same equations

and compared their results to the asymptotic solutions. These calculations, to be

described in Ch. 4, show that at very high Mach numbers (∼ 20), the differences

between the two solutions were attributable almost entirely to numerical artifacts

and the truncation error of the numerical method. On the other hand, at lower

Mach numbers (∼ 10) the majority of the difference was due to the inaccuracy of

the asymptotic solution. The studies of Grismer and Powers were not time accurate,

however, and therefore cannot be used to ascertain the stability characteristics of

oblique detonations.

Also related to this work are recent studies involving the stability of shocks with

detonation. Jackson, Kapila, and Hussaini [42] and Lasseigne, Jackson, and Hussaini

[45] examined the passage of a weak vorticity disturbance through a reactive shock

wave (detonation) by linearizing about the steady shocked state, and by numerically

simulating the model partial differential equations. In particular, they found that

heat release due to chemical reaction acts to amplify the vorticity disturbance down-

stream of the detonation. By considering the asymptotic limit of high activation
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energy, they also determined that the vorticity disturbance affects the detonation by

causing the fire zone (a thin region of intense chemical reaction) position to oscil-

late. Buckmaster [11] examined small perturbations to an oblique detonation wave in

the high activation energy limit. He determined that these perturbations grow while

moving downstream along the wave, and thus concluded that the oblique detonation

is structurally unstable in the limit of infinite activation energy.

2.3 Ram Accelerators

The ram accelerator was first proposed and investigated by Hertzberg, Bruckner,

and Bogdanoff [38]. In order to test the concept, they built an experimental facility

consisting of a light gas gun to launch the projectile at high speed; three connected

steel tubes filled with varying amounts of fuel, oxidizer, and diluent; an evacuated

dump tank into which the projectile flew after exiting the tubes; and lastly, a large

bore decelerator tube filled with steel lathe turnings. Figure 2.3 illustrates this de-

vice. Using this facility, projectile velocities and accelerations as high as 1500 m/s

injection Fuel, oxidizer, diluent filled tubes

Evacuated
dump tank

Projectile

Decelerator tube
Steel turnings

High speed

Figure 2.3: Schematic of ram accelerator test facility.

and 16,000 g, respectively, were achieved. The authors suggested possible classes of

flowfields termed “propulsive modes” for the ram accelerator, and labeled them sub-

detonative and superdetonative. Subdetonative modes are limited to speeds below

the CJ speed for the gas mixture, while superdetonative modes exist above the CJ

speed. Hertzberg, Bruckner, and Knowlen [39] then studied these modes in more

detail. They found that by filling each of the three tubes with different mixtures of

fuel, oxidizer, and diluent, and thus altering the CJ speed, subdetonative propulsion

could be maintained and still accelerate the projectile. The same technique could
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also be used to force a transition from subdetonative propulsion in one tube to su-

perdetonative propulsion in the next. Finally, it was found that the projectile could

transition from subdetonative to superdetonative propulsion when the gas mixture

was the same throughout the tubes. Using these techniques, the maximum velocity

achieved by the projectile was increased to 2,500 m/s.

A number of numerical studies of ram accelerators have been performed. Brackett

and Bogdanoff [10] used a Godunov scheme to solve the Euler equations combined

with one global Arrhenius rate expression for all the chemical reactions. They found

that an oblique detonation could occur where the initial conical shock attached to

the projectile nose reflected off the tube wall. An oblique detonation could also be

induced by placing a small ramp at the midpoint of the projectile body. In either

case, they found positive thrust on the projectile. Yungster, Eberhardt, and Bruck-

ner [89] developed a code to solve the Euler equations with detailed multispecies,

multireaction chemistry and real gas effects. The code was verified using experi-

mental results for hypersonic, exothermic blunt body flows, and then applied to a

ram accelerator configuration at two flight speeds. In both cases there was a posi-

tive thrust on the projectile. Yungster and Bruckner [88] then performed a detailed

study using the code, investigating the performance characteristics of various projec-

tile configurations in the range of 5-10 km/s. They examined the effects of varying

projectile geometry, tube cross sectional area, and gas mixture on the net thrust

developed on the projectile. Positive thrusts were found in all cases. Yungster [87]

studied the shock-wave/boundary-layer interaction on a ram accelerator configuration

using a code developed to solve the Reynolds-averaged Navier-Stokes equations with

detailed multispecies, multireaction chemistry and a Baldwin-Lomax algebraic tur-

bulence model. The analysis centered on an oblique detonation propulsion mode, and

indicated that a reflected shock wave initiated significant combustion in the boundary

layer on the projectile. If the projectile speed was increased, significant combustion
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began in the boundary layer spontaneously. For one flight speed the thrust on the

projectile was determined, and it was found to be approximately ten percent lower

than the corresponding inviscid case.

Other representative experimental and numerical studies of ram accelerators in-

clude Kruczynski and Nusca [43], Srulijes, et al. [73], and Sinha, et al. [72]. These

are just a few of the studies on ram accelerators. Much of the most recent work in

this area is summarized in the proceedings of a recent international workshop [41].

None of the studies mentioned has addressed the nonlinear stability of oblique

detonations attached to wedges and modeled by the reactive Euler equations. The

early analytical studies did not consider stability, while the recent numerical studies

mentioned considered complicated, multireaction chemistry models. Jackson, et al.

and Buckmaster use a linearized analysis, while Lasseigne, et al. do not consider a

resolved reaction zone. The two-dimensional simulations of Bourlioux and Majda

consider the reactive Euler equations with a resolved reaction zone, but use periodic

boundary conditions; thus, they do not consider the effect of wall boundaries such as

a wedge. In this research oblique detonations attached to wedges and having resolved

reaction zones were studied in order to relate oblique detonation instability to one-

dimensional detonation instability, and to determine the behavior of unstable oblique

detonations.

Grismer and Powers [33] sought to determine the maximum steady propagation

speed of an idealized ram accelerator projectile. None of the studies referenced here

considered this aspect of the ram accelerator. In the experimental studies the pro-

jectile continuously accelerated through the end of the tube, and thus no steady

speeds were obtained. In the numerical studies only individual points of positive and

negative thrust on the projectile were studied; there was little emphasis placed on

determining steady speeds. A methodology will be presented here for determining

the steady speed, along with the results that were obtained for a model problem.
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Chapter 3

MODEL EQUATIONS

This chapter introduces the model equations employed in this research. The first sec-

tion presents the equations and their underlying assumptions. The equations are then

further simplified algebraically and nondimensionalized. The second section presents

the transformation of the equations to a generalized, curvilinear coordinate system.

This coordinate system allows for the solution of the equations within geometrically

arbitrary domains.

3.1 Cartesian Reactive Euler Equations

In a wide variety of scenarios, the model equations for a reactive, viscous, Newtonian

fluid can be taken to be the Navier-Stokes equations, with additional terms to account

for the chemical reactions [85, 13]. However, as the purpose of this research is to

ascertain the characteristics of oblique detonations by studying the simplest system

of equations having oblique detonation solutions, the following assumptions have been

made:

1. Molecular transport processes are negligible, i.e. there is no momentum, energy,

or species diffusion.

2. Body forces are negligible.

3. There are no internal heat generation or radiation effects.
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4. There is one irreversible reaction (A → B).

5. A and B are calorically perfect ideal gases.

6. The specific heats and molecular weights of A and B are identical.

7. Three-dimensional effects are negligible.

These simplifying assumptions remove many physical features that are contained

in the solution of the complete reactive Navier-Stokes equations. The physical flow

features that are being neglected can be qualitatively described by considering each

of the assumptions in turn. Neglecting transport processes eliminates the effects of

viscosity and thermal conduction on the flow. Therefore, there will be no viscous or

thermal boundary layers near solid bodies, and flow separation is not a possibility.

There is no mechanism for the solid surface to impart heat to the flow; it acts essen-

tially as an adiabatic body. The lack of viscosity and restriction to two dimensions

means momentum diffusion generated turbulence is also no longer possible, so nu-

merical resolution of the very small scales associated with this type of turbulence is

not necessary. Removing the viscous terms from the equations results in a hyperbolic

system of equations in time, instead of a mixed hyperbolic-elliptic system. The hy-

perbolic system has real characteristics, which will be taken advantage of later in the

numerical method. Also, since the dissipation mechanisms have been neglected, sharp

gradients contained in the solution of complete equations may become discontinuous

in the solution of the reduced equations.

Neglecting body forces eliminates the possibility of gravity driven flows; there

will be no gravity-induced density gradients. Disregarding internal heat generation

removes the possibility of using heat sources (or sinks) to affect the flow or to influence

the chemical reactions. This is not to say that the chemical reaction itself does not

release (or absorb) heat; this is accounted for in the internal energy of the flow.

Radiation is another transport process. It would tend to smooth sharp temperature
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gradients and equalize the temperature everywhere by transporting heat away from

local hot spots in the flow. Neglecting radiation, like the other transport effects, thus

permits for local high temperature regions and discontinuous solutions.

Finally, the remaining assumptions limit the complexity of the chemical reactions

and the fluid properties. Considering one irreversible reaction limits the equations to

only the very simplest possible reacting system. Real reacting flows have much more

complex chemistry involving multiple reversible reactions among multiple species.

The reactions can be both exo- and endothermic, and occur over widely varying time

scales. Thus, the one reaction model is only in the very broadest sense applicable to

real chemically reacting flows. Considering the species to be calorically perfect ideal

gases with identical properties further limits the applicability to real systems. This

is a very broad simplification, since real gas properties vary with the thermodynamic

state. This is particularly true for reacting systems, which often have large changes in

temperature and pressure. Additionally, the properties of the products and reactants

themselves are also in general different. Lastly, the ideal gas assumption does not

account for situations in which the gas reaches non-ideal conditions, such as very

high pressure and low temperature. It also does not account for gases that do not

behave ideally.

Though many of these assumptions are made for tractability, there also exist some

physical justifications. For the high speed flows considered here, transport processes

generally are not significant. The boundary layer is very thin, and thus most of

the detonation occurs in the essentially inviscid region outside of it. Heat and species

diffusion have very little time to occur as the flow is convected through the detonation

and downstream. Anderson [4] discusses many of the useful inviscid solutions that

have been obtained for both inert and reactive flows.

With the simplifying assumptions the equations of [85] reduce to the following:

∂ρ̃

∂t̃
+

∂

∂x̃
(ρ̃ũ) +

∂

∂ỹ
(ρ̃ṽ) = 0, (3.1)
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∂

∂t̃
(ρ̃ũ) +

∂

∂x̃
(ρ̃ũ2 + p̃) +

∂

∂ỹ
(ρ̃ũṽ) = 0, (3.2)

∂

∂t̃
(ρ̃ṽ) +

∂

∂x̃
(ρ̃ũṽ) +

∂

∂ỹ
(ρ̃ṽ2 + p̃) = 0, (3.3)

∂

∂t̃
(ρ̃Ẽ) +

∂

∂x̃
(ρ̃ũH̃) +

∂

∂ỹ
(ρ̃ṽH̃) = 0, (3.4)

∂

∂t̃
(ρ̃Y2) +

∂

∂x̃
(ρ̃ũY2) +

∂

∂ỹ
(ρ̃ṽY2) = ρ̃B̃T̃ αeÊ/&̃T̃ (1− Y2), (3.5)

where “˜” indicates a dimensional quantity. Equations (3.1-3.4) represent conserva-

tion of mass, momenta, and energy, respectively, and Eq. (3.5) represents evolution

of the product mass fraction. Dependent variables in the equations are the density

ρ̃, the Cartesian velocities ũ and ṽ, the pressure p̃, the total energy (internal and

kinetic) per unit mass Ẽ†, the total enthalpy per unit mass H̃†, the product mass

fraction Y2, and the temperature T̃ . Parameters in the equations are the Arrhenius

prefactor B̃, an exponent determining the temperature dependency of the reaction

α, the activation energy for the reaction Ê, and the universal gas constant %̃. The

total energy is related to the specific internal energy (ẽ) by Ẽ = ẽ+ (ũ2 + ṽ2)/2, and

to the total enthalpy by H̃ = Ẽ + p̃/ρ̃. Finally, since the species mass fractions must

add to one, the reactant mass fraction can be determined by

Y1 = 1− Y2. (3.6)

For a multispecies mixture, the ideal gas law and the caloric equation of state are

p̃ = ρ̃%̃T̃
Nsp∑

i=1

Yi

M̃i

, (3.7)

h̃i = h̃0
i +

∫ T̃

T̃ 0
c̃p,i dT̃ , (3.8)

respectively, where h̃i is the specific enthalpy of the ith species, h̃0
i is the standard

enthalpy of formation per unit mass for species i at the temperature T̃ 0, c̃p,i is the

specific heat at constant pressure for the ith species, M̃i is the molecular weight of

†This notation is common in computational fluid mechanics literature and should not be confused
with that of classical thermodynamics, which reserves capital letters for extensive properties
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the ith species, and Nsp is the total number of species. For Nsp = 2, M̃1 = M̃2 = M̃ ,

and c̃p,1 = c̃p,2 = c̃p, these reduce to

p̃ = ρ̃R̃T̃ , (3.9)

h̃1 = h̃0
1 + c̃p(T̃ − T̃0), (3.10)

h̃2 = h̃0
2 + c̃p(T̃ − T̃0), (3.11)

where R̃ = %̃/M̃ is the gas constant. Finally, these can be related to the specific

internal energy using the identity

ẽ = h̃1Y1 + h̃2Y2 −
p̃

ρ̃
, (3.12)

which in this case reduces to

ẽ =
p̃

ρ̃(γ − 1)
− Y2q̃. (3.13)

In (3.13) a heat release parameter, q̃ = h̃0
1−h̃0

2, has been defined, the heat of formation

of species one has been taken to be h̃0
1 = c̃pT̃ 0, c̃v = c̃p − R̃ is the specific heat at

constant volume, and γ = c̃p/c̃v is the ratio of specific heats. Finally, for a calorically

perfect ideal gas, the isentropic frozen speed of sound c̃ is

c̃ =
√
γp̃/ρ̃. (3.14)

The Mach number M can then be defined as

M =

√
ũ2 + ṽ2

c̃
. (3.15)

By defining the activation energy on a mass basis, Ẽa = Ê/M̃ , removing the

temperature dependency from the Arrhenius term, α ≡ 0, and using the ideal gas

law to replace temperature in favor of pressure and density, the species equation (Eq.

3.5) can be simplified to

∂

∂t̃
(ρ̃Y2) +

∂

∂x̃
(ρ̃ũY2) +

∂

∂ỹ
(ρ̃ṽY2) = ρ̃B̃(1− Y2)e

−Ẽaρ̃/p̃. (3.16)
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Equations (3.1, 3.2, 3.3, 3.4, and 3.16) can be nondimensionalized by the following

scheme:

x =
B̃x̃

M0

√
p̃0/ρ̃0

, y =
B̃ỹ

M0

√
p̃0/ρ̃0

, u =
ũ

M0

√
p̃0/ρ̃0

, v =
ṽ

M0

√
p̃0/ρ̃0

,

ρ =
ρ̃

ρ̃0
, p =

p̃

M2
0p̃0

, t = t̃B̃,

(3.17)

where M0, p̃0, and ρ̃0 are the freestream Mach number, pressure, and density, re-

spectively. Using this scheme, continuity (Eq. 3.1), momenta (Eqs. 3.2 and 3.3), and

energy (Eq. 3.4) do not change form:

∂ρ

∂t
+

∂

∂x
(ρu) +

∂

∂y
(ρv) = 0, (3.18)

∂

∂t
(ρu) +

∂

∂x
(ρu2 + p) +

∂

∂y
(ρuv) = 0, (3.19)

∂

∂t
(ρv) +

∂

∂x
(ρuv) +

∂

∂y
(ρv2 + p) = 0, (3.20)

∂

∂t
(ρE) +

∂

∂x
(ρuH) +

∂

∂y
(ρvH) = 0. (3.21)

The species equation (Eq. 3.16) becomes

∂

∂t
(ρY2) +

∂

∂x
(ρuY2) +

∂

∂y
(ρvY2) = ρ(1 − Y2)e

−Θρ/p. (3.22)

The supplementary algebraic relations for secondary variables become

e =
p

ρ(γ − 1)
− Y2q, (3.23)

T =
p

ρ
, (3.24)

c =
√
γp/ρ, (3.25)

E = e+
1

2
(u2 + v2), (3.26)

H = E +
p

ρ
, (3.27)

respectively, where Θ = Ẽaρ̃0/M2
0p̃0, e = ẽρ̃0/M2

0p̃0, q = q̃ρ̃0/M2
0p̃0, T = T̃ /M2

0T̃0,

c = c̃/M0

√
p̃0/ρ̃0, E = Ẽρ̃0/M2

0p̃0, and H = H̃ρ̃0/M2
0p̃0. Powers and Stewart

[63] show that in the limit as M0 → ∞, the reaction zone length is O(ũ0B̃−1 =
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M0

√
γp̃0/ρ̃0B̃−1). The time to cross the reaction zone is thus O(B̃−1). Noting that

γ is O(1) and comparing these quantities to the nondimensionalization scheme, it is

apparent that the variables have essentially been nondimensionalized by the charac-

teristic length and time scales of the flow. Thus, the variables have been nondimen-

sionalized based upon characteristic freestream quantities, and, in the limit of high

Mach number, the characteristic length of the reaction zone and time for the reaction

to take place.

3.2 Generalized Curvilinear Reactive Euler Equa-
tions

For the numerical portion of this research, Eqs. (3.18-3.22) are not the preferred form;

it is more useful to have the equations written in the conservative form for an arbitrary

curvilinear coordinate system. The curvilinear coordinate system allows the equations

to be solved over arbitrary, complex shapes, unlike the Cartesian equivalents. As is

commonly done with the two-dimensional, Cartesian Euler equations [40], Eqs. (3.18-

3.22) can be written in a vector conservative form

∂q

∂t
+
∂f

∂x
+
∂g

∂y
= w, (3.28)

where

q =





ρ
ρu
ρv
ρE
ρY2




, f =





ρu
ρu2 + p
ρuv
ρuH
ρuY2




, g =





ρv
ρuv

ρv2 + p
ρvH
ρvY2




, w =





0
0
0
0

ρ(1 − Y2)e−Θρ/p




.

The vectors f and g are commonly called the flux vectors. These equations can be

transformed to the curvilinear space (ξ,η,τ) by taking

ξ = ξ(x, y, t), η = η(x, y, t), τ = t, (3.29)

and using the chain rule

∂

∂x
=

∂ξ

∂x

∂

∂ξ
+
∂η

∂x

∂

∂η
,
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∂

∂y
=

∂ξ

∂y

∂

∂ξ
+
∂η

∂y

∂

∂η
,

∂

∂t
=

∂ξ

∂t

∂

∂ξ
+
∂η

∂t

∂

∂η
+

∂

∂τ
. (3.30)

The terms ξx, ξy, ξt, ηx, ηy, and ηt (where subscripts denote partial derivatives with re-

spect to the subscripted variables) are referred to as the grid metrics. Since the trans-

formation defined in Eqs. (3.29) is general, the particular form chosen for ξ(x, y, t)

and η(x, y, t) is arbitrary. Given a computational grid of points in Cartesian space,

Fig. 3.1 illustrates the chosen transformation to curvilinear space: each grid point
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Figure 3.1: Illustration of the transformation from Cartesian space to the generalized,
curvilinear space.

is defined to lie at integer locations of ξ and η. In this way ∆ξ = ∆η = 1, which

simplifies the computations necessary to determine the grid metrics. The metrics can

be determined from known derivatives in Cartesian space once a computational grid

has been defined. This is accomplished as follows [3]. The changes in ξ, η, and τ can

be written

dξ = ξxdx+ ξydy + ξtdt,

dη = ηxdx+ ηydy + ηtdt, (3.31)

dτ = dt,

or in matrix form 


dξ
dη
dτ



 =




ξx ξy ξt
ηx ηy ηt
0 0 1








dx
dy
dt



 . (3.32)
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Similarly, assuming Eqs. (3.29) can be inverted such that x = x(ξ, η, τ), y = y(ξ, η, τ),

and t = τ , the changes in x, y, and t can be written



dx
dy
dt



 =




xξ xη xτ

yξ yη yτ
0 0 1








dξ
dη
dτ



 . (3.33)

Solving Eq. (3.33) for dξ, dη, and dτ ,




dξ
dη
dτ



 =




xξ xη xτ

yξ yη yτ
0 0 1





−1 


dx
dy
dt



 . (3.34)

and comparing to Eq. (3.32), it is apparent that




ξx ξy ξt
ηx ηy ηt
0 0 1



 =




xξ xη xτ

yξ yη yτ
0 0 1





−1

. (3.35)

The inverse matrix can be written explicitly as




xξ xη xτ

yξ yη yτ
0 0 1





−1

=




yηJ −xηJ (xηyτ − xτyη)J
−yξJ xξJ (xτyξ − xξyτ )J
0 0 1



 , (3.36)

where J = 1/(xξyη − yξxη). Thus a term by term comparison shows that

ξx = yηJ, ξy = −xηJ, ξt = (xηyτ − xτyη)J = −xτ ξx − yτξy,

ηx = −yξJ, ηy = xξJ, ηt = (xτyξ − xξyτ)J = −xτηx − yτηy.

(3.37)

All of the terms on the right hand sides of Eqs. (3.37) can be determined through finite

differencing using the grid point locations in Cartesian space and the transformation

to curvilinear space defined previously.

Applying Eqs. (3.30) to Eqs. (3.28) results in

∂q

∂τ
+ ξt

∂q

∂ξ
+ ηt

∂q

∂η
+ ξx

∂f

∂ξ
+ ηx

∂f

∂η
+ ξy

∂g

∂ξ
+ ηy

∂g

∂η
= w. (3.38)

Writing out the metric quantities using Eqs. (3.37) and dividing through by J leads

to

1

J

∂q

∂τ
+(yτxη−xτyη)

∂q

∂ξ
+yη

∂f

∂ξ
−xη

∂g

∂ξ
+(xτyξ−yτxξ)

∂q

∂η
−yξ

∂f

∂η
+xξ

∂g

∂η
=

w

J
. (3.39)
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Since the conservative form of the equations is necessary to capture shock speeds

accurately [50], it is necessary to have the curvilinear equations in the form of Eqs.

(3.28). To this end the following groups are useful:

∂

∂ξ

[
(yτxη − xτyη)q+ yηf − xηg

]
= (yτxη − xτyη)

∂q

∂ξ
+ yη

∂f

∂ξ
− xη

∂g

∂ξ
− gxξη +

q[yτξxη + yτxξη − xτξyη − xτyηξ] + fyξη (3.40)

∂

∂η

[
(xτyξ − yτxξ)q− yξf + xξg

]
= (xτyξ − yτxξ)

∂q

∂η
− yξ

∂f

∂η
+ xξ

∂g

∂η
+ gxηξ +

q[xτηyξ + xτyηξ − yτηxξ − yτxξη]− fyξη (3.41)

Comparing the last three sets of equations, it is apparent that the first three terms

on the right sides of Eqs. (3.40) and (3.41) match the last six terms on the left side

of Eqs. (3.39). Substituting and canceling terms results in

1

J

∂q

∂τ
+

∂

∂ξ

[
(yτxη − xτyη)q+ yηf − xηg

]
+

∂

∂η

[
(xτyξ − yτxξ)q−

yξf + xξg
]
− q[yτξxη + xτηyξ − xτξyη − yτηxξ] =

w

J
. (3.42)

Noting that

∂

∂τ

(
q

J

)
=

∂

∂τ
[q(xξyη − yξxη)] =

1

J

∂q

∂τ
+ q(xξτyη + xξyητ − yξτxη − yξxητ ), (3.43)

Eqs. (3.42) becomes

∂

∂τ

(
q

J

)
+
∂

∂ξ

[
(yτxη−xτyη)q+yηf−xηg

]
+
∂

∂η

[
(xτyξ−yτxξ)q−yξf+xξg

]
=

w

J
. (3.44)

Finally, resubstituting the metric quantities from Eqs. (3.37) leads to

∂

∂τ

(
q

J

)
+

∂

∂ξ

[
ξtq + ξxf + ξyg

J

]

+
∂

∂η

[
ηtq+ ηxf + ηyg

J

]

=
w

J
. (3.45)

Thus, the conservative, curvilinear form of the governing equations is

∂q̂

∂τ
+
∂f̂

∂ξ
+
∂ĝ

∂η
= ŵ, (3.46)
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where

q̂ =
q

J
= J−1





ρ
ρu
ρv
ρE
ρY2




,

f̂ =
ξtq+ ξxf + ξyg

J
= J−1





ρU c

ρuU c + ξxp
ρvU c + ξyp
ρHU c − ξtp
ρY2U c




,

ĝ =
ηtq+ ηxf + ηyg

J
= J−1





ρV c

ρuV c + ηxp
ρvV c + ηyp
ρHV c − ηtp
ρY2V c




,

ŵ =
w

J
= J−1





0
0
0
0

ρ(1 − Y2)e−Θρ/p




.

The contravariant velocities, U c = ξt + ξxu+ ξyv and V c = ηt + ηxu+ ηyv, represent

the velocities along the coordinate directions ξ and η, respectively.

Because the numerical scheme to be used in this research takes advantage of the

characteristic formulation of the Euler equations, it is necessary to modify the equa-

tions further. In particular, it necessary to obtain the eigenvalues, right eigenvectors,

and left eigenvectors of the flux Jacobian matrices (defined below) in the curvilinear

coordinate system. This is done as follows: Eqs. (3.28) can be written in the following

form
∂q

∂t
+A

∂q

∂x
+B

∂q

∂y
= w, (3.47)

where A and B are the flux Jacobians

A =
∂f

∂q
=





0 1 0 0 0
γ−1
2 (u2 + v2)− u2 (3− γ)u (1− γ)v (γ − 1) (γ − 1)q

−uv v u 0 0
γ−1
2 u(u2 + v2)− uH H + (1− γ)u2 (1− γ)uv γu (γ − 1)uq

−uY2 Y2 0 0 u




,
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B =
∂g

∂q
=





0 0 1 0 0
−uv v u 0 0

γ−1
2 (u2 + v2)− v2 (1− γ)u (3− γ)v (γ − 1) (γ − 1)q

γ−1
2 v(u2 + v2)− vH (1− γ)uv H + (1− γ)v2 γv (γ − 1)vq

−vY2 0 Y2 0 v




.

As before, the curvilinear version of these equations is desired. Thus, Eqs. (3.46) can

be written
∂q̂

∂τ
+ Â

∂q̂

∂ξ
+ B̂

∂q̂

∂η
= ŵ. (3.48)

Knowing the definitions of the flux terms f̂ and ĝ in Eq. (3.46), the chain rule, and

the Cartesian flux Jacobians, the curvilinear flux Jacobians can be determined:

f̂ =
ξtq+ ξxf + ξyg

J

= f [q(q̂), f(q(q̂)), g(q(q̂))] , (3.49)

Â =
∂f̂

∂q̂
=

∂f

∂q

∂q

∂q̂
+
∂f

∂f

∂f

∂q

∂q

∂q̂
+
∂f

∂g

∂g

∂q

∂q

∂q̂

=
ξt
J
J I+

ξx
J

∂f

∂q
J +

ξy
J

∂g

∂q
J

= ξt I+ ξx
∂f

∂q
+ ξy

∂g

∂q
, (3.50)

and similarly

ĝ =
ηtq + ηxf + ηyg

J

= g [q(q̂), f(q(q̂)), g(q(q̂))] , (3.51)

B̂ =
∂ĝ

∂q̂
=

∂g

∂q

∂q

∂q̂
+
∂g

∂f

∂f

∂q

∂q

∂q̂
+
∂g

∂g

∂g

∂q

∂q

∂q̂

=
ηt
J
J I+

ηx
J

∂f

∂q
J +

ηy
J

∂g

∂q
J

= ηt I+ ηx
∂f

∂q
+ ηy

∂g

∂q
, (3.52)

where I is the identity matrix. Carrying out the operations in Eqs. (3.50) and (3.52),

and substituting the definitions of U c and V c yields

Â =





ξt ξx
ξx

γ−1
2 (u2 + v2)− u(U c − ξt) (2− γ)ξxu+ U c

ξy
γ−1
2 (u2 + v2)− v(U c − ξt) ξxv + (1− γ)ξyu

(U c − ξt)[
1
2(γ − 1)(u2 + v2)−H ] ξxH + (1− γ)u(U c − ξt)
−(U c − ξt)Y2 ξxY2
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ξy 0 0
ξyu+ (1− γ)ξxv ξx(γ − 1) ξx(γ − 1)q
(2− γ)ξyv + U c ξy(γ − 1) ξy(γ − 1)q

ξyH + (1− γ)v(U c − ξt) ξt + γ(U c − ξt) (U c − ξt)(γ − 1)q
ξyY2 0 U c




,

B̂ =





ηt ηx
ηx

γ−1
2 (u2 + v2)− u(V c − ηt) (2− γ)ηxu+ V c

ηy
γ−1
2 (u2 + v2)− v(V c − ηt) ηxv + (1− γ)ηyu

(V c − ηt)[
1
2(γ − 1)(u2 + v2)−H ] ηxH + (1− γ)u(V c − ηt)
−(V c − ηt)Y2 ηxY2

ηy 0 0
ηyu+ (1− γ)ηxv ηx(γ − 1) ηx(γ − 1)q
(2− γ)ηyv + V c ηy(γ − 1) ηy(γ − 1)q

ηyH + (1− γ)v(V c − ηt) ηt + γ(V c − ηt) (V c − ηt)(γ − 1)q
ηyY2 0 V c




.

The right eigenvectors and eigenvalues of Â are obtained from the eigenvalue

problem:

ÂR = Rλ, (3.53)

where λ is the diagonal matrix of eigenvalues, and R = [r1|r2|r3|r4|r5] is the matrix

of right eigenvectors (r1, r2 . . . are columns containing the right eigenvectors of Â).

Since only fixed computational grids were used in the numerical studies, ξt = ηt = 0.

Using standard methods the eigenvalues of Â were determined to be

λ =





λ1 0 0 0 0
0 λ2 0 0 0
0 0 λ3 0 0
0 0 0 λ4 0
0 0 0 0 λ5




=





U c 0 0 0 0
0 U c 0 0 0
0 0 U c − c

√
ξ2x + ξ2y 0 0

0 0 0 U c + c
√
ξ2x + ξ2y 0

0 0 0 0 U c





(3.54)

and the corresponding matrix of right eigenvectors is

R =





ξx 0 1 1 0
U c ξy u− ξx√

ξ2x+ξ2y
c u+ ξx√

ξ2x+ξ2y
c 0

0 −ξx v − ξy√
ξ2x+ξ2y

c v + ξy√
ξ2x+ξ2y

c 0

(u2 − v2) ξx2 + ξyuv ξyu− ξxv H − c√
ξ2x+ξ2y

U c H + c√
ξ2x+ξ2y

U c −q

0 0 Y2 Y2 1





.

(3.55)
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The left eigenvector problem for Â is

TÂ = λT, (3.56)

where T is the matrix of left eigenvectors (the rows of T are the left eigenvectors of

Â). Solving Eqs. (3.53) and (3.56) for Â

Â = RλR−1, (3.57)

Â = T−1λT, (3.58)

it is apparent that T = R−1. Thus, the left eigenvector matrix is simply:

R−1 =





1
ξx

+ 1−γ
2ξxc2

(u2 + v2) γ−1
ξxc2

u
γ−1
2ξxc2

v(u2 + v2)− ξy
ξx(ξ2x+ξ2y)

U c 1−γ
ξxc2

uv + ξy
ξ2x+ξ2y

γ−1
4c2 (u

2 + v2) + Uc

2c
√

ξ2x+ξ2y

1−γ
2c2 u− ξx

2c
√

ξ2x+ξ2y
γ−1
4c2 (u

2 + v2)− Uc

2c
√

ξ2x+ξ2y

1−γ
2c2 u+ ξx

2c
√

ξ2x+ξ2y
1−γ
2c2 (u

2 + v2)Y2
γ−1
c2 uY2

γ−1
ξxc2

v 1−γ
ξxc2

1−γ
ξxc2

q
1−γ
ξxc2

v2 − ξx
ξ2x+ξ2y

γ−1
ξxc2

v γ−1
ξxc2

vq
1−γ
2c2 v −

ξy

2c
√

ξ2x+ξ2y

γ−1
2c2

γ−1
2c2 q

1−γ
2c2 v +

ξy

2c
√

ξ2x+ξ2y

γ−1
2c2

γ−1
2c2 q

γ−1
c2 vY2

1−γ
c2 Y2 1 + 1−γ

c2 qY2





(3.59)

The eigenvalues, µ , right eigenvector matrix, U, and left eigenvector matrix, U−1,

of B̂ are

µ =





V c 0 0 0 0
0 V c 0 0 0
0 0 V c − c

√
ξ2x + ξ2y 0 0

0 0 0 V c + c
√
ξ2x + ξ2y 0

0 0 0 0 V c




(3.60)

U =





ηy 0 1 1 0
0 ηy u− ηx√

η2x+η2y
c u+ ηx√

η2x+η2y
c 0

V c −ηx v − ηy√
η2x+η2y

c v + ηy√
η2x+η2y

c 0

(v2 − u2)ηy2 + ηxuv ηyu− ηxv H − c√
η2x+η2y

V c H + c√
η2x+η2y

V c −q

0 0 Y2 Y2 1





,

(3.61)
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U−1 =





1
ηy

+ 1−γ
2ηyc2

(u2 + v2) γ−1
ηyc2

u
1−γ
2ηyc2

u(u2 + v2) + ηx
ηy(η2x+η2y)

V c γ−1
ηyc2

u2 + ηy
η2x+η2y

γ−1
4c2 (u

2 + v2) + V c

2c
√

η2x+η2y

1−γ
2c2 u− ηx

2c
√

η2x+η2y
γ−1
4c2 (u

2 + v2)− V c

2c
√

η2x+η2y

1−γ
2c2 u+ ηx

2c
√

η2x+η2y
1−γ
2c2 (u

2 + v2)Y2
γ−1
c2 uY2

γ−1
ηyc2

v 1−γ
ηyc2

1−γ
ηyc2

q
γ−1
ηyc2

uv − ηx
η2x+η2y

1−γ
ηyc2

u 1−γ
ηyc2

uq
1−γ
2c2 v −

ηy

2c
√

η2x+η2y

γ−1
2c2

γ−1
2c2 q

1−γ
2c2 v +

ηy

2c
√

η2x+η2y

γ−1
2c2

γ−1
2c2 q

γ−1
c2 vY2

1−γ
c2 Y2 1 + 1−γ

c2 qY2





. (3.62)

Even though the flux Jacobian arrays Â and B̂ really only differ in terms of their

metric quantities, slightly different forms for the eigenvector arrays R and U were

chosen. Had the same form been used for both eigenvector arrays, there would have

been singularities in one of the inverse eigenvector arrays. In particular, one of the

arrays would have had either ξy or ηx in the denominator of a term, leading to a

singularity when one of those quantities became zero. For example, ξy and ηx would

become zero on a Cartesian mesh. On the other hand, ξx and ηy will not normally

become zero, and so R−1 and U−1 have no mesh related singularities.
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Chapter 4

FUNDAMENTAL DETONATION
SOLUTIONS

This chapter will present three steady analytical solutions to the model equations:

the one-dimensional ZND solution, the two-dimensional straight shock detonation

solution for supersonic flow past a curved wall (the two-dimensional analog of the

ZND solution), and the two-dimensional detonation solution for supersonic flow past

a straight wall. These solutions were used to verify the numerical methods used in

the research, as well as to provide initial conditions for some of the numerical studies.

4.1 One-dimensional Steady Solution

Figure 4.1 illustrates the steady ZND detonation problem. At t = 0 a detonation

wave is initiated in a tube of quiescent premixed fuel and oxidizer by striking the

x
x

D
detonation

x = Dt upiston

ˇ

Figure 4.1: Illustration of the steady detonation problem and the Galilean coordinate
transformation.

mixture with a sharp blow from a piston (for example). After an initial transient,

the detonation proceeds into the tube at a steady velocity D, and induces the fluid
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following it to move with velocity u. The flow is modeled by the Euler equations

and is one-dimensional, with shocks treated as discontinuities over which no chemical

reaction occurs. The reaction is assumed to be initiated by the passage of the shock,

and then to proceed to completion at a finite rate. If we consider only one dimension,

the model presented in Eqs. (3.18–3.22) is a ZND model:

∂ρ

∂t
+

∂

∂x
(ρu) = 0, (4.1)

∂

∂t
(ρu) +

∂

∂x
(ρu2 + p) = 0, (4.2)

∂

∂t
(ρE) +

∂

∂x
(ρuH) = 0, (4.3)

∂

∂t
(ρY2) +

∂

∂x
(ρuY2) = ρ(1− Y2)e

−Θρ/p. (4.4)

Since the detonation is propagating at the steady velocityD, the following Galilean

coordinate transformation will place the equations of motion in the detonation frame

of reference (see Fig. 4.1):

x̌ = Dt− x ť = t. (4.5)

The relation between the velocity in the new frame and the velocity in the old frame

is obtained by taking the derivative of Eq. (4.5)

ǔ =
dx̌

dt
= D − dx

dt
= D − u. (4.6)

The equations are transformed in the much the same manner as they were in the

previous chapter: derivatives in the old frame of reference are replaced with equivalent

derivatives in the new frame of reference using the chain rule. The detonation is

assumed steady in the new frame of reference, thus ∂/∂ť ≡ 0.

∂

∂t
=

∂x̌

∂t

∂

∂x̌
+
∂ť

∂t

∂

∂ť
= D

∂

∂x̌
+
∂

∂ť
= D

d

dx̌
∂

∂x
=

∂x̌

∂x

∂

∂x̌
+
∂ť

∂x

∂

∂ť
= − d

dx̌
(4.7)
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Applying this transformation to Eqs. (4.1–4.4) and using Eq. (4.6) results in (after

simplifying)
d

dx̌
(ρǔ) = 0, (4.8)

d

dx̌
(ρǔ2 + p) = 0, (4.9)

d

dx̌
(ρǔȞ) = 0, (4.10)

d

dx̌
(ρǔY2) = ρ(1 − Y2)e

−Θρ/p, (4.11)

where Ȟ = Ě + p/ρ = e+ ǔ2/2 + p/ρ.

Figure 4.2 illustrates the problem in the new coordinate system. The detonation

sees an incoming flow with known initial conditions ρ0, p0, e0 and velocity D. The

x

l0, p0, e0 l, p, e

x = 0

u0 = D
(u0 = 0) u = D - u

detonation
front

ˇ

ˇ

ˇ

ˇ

Figure 4.2: Diagram of detonation in the x̌ coordinate system.

flow variables change through the reaction zone, eventually reaching a fixed final

state. Using the initial conditions and the definition for Ȟ , Eqs. (4.8–4.10) can be

integrated directly to give

ρǔ = ρ0D, (4.12)

ρǔ2 + p = ρ0D
2 + p0, (4.13)

ρǔ

(

e +
ǔ2

2
+

p

ρ

)

= ρ0D

(

e0 +
D2

2
+

p0
ρ0

)

. (4.14)

Equation (4.12) can be used in Eq. (4.13) to eliminate ǔ

R = ρ20D
2 − p− p0

ϕ0 − ϕ
= 0, (4.15)
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where ϕ = 1/ρ is the specific volume. This is the equation for the Rayleigh line R.

Similarly, the equation for a Hugoniot curve H can be obtained by using Eqs. (4.12)

and (4.13) to eliminate ǔ and D from Eq. (4.14)

H = e− e0 −
(p+ p0)(ϕ0 − ϕ)

2
= 0. (4.16)

The Hugoniot equation can be written in terms of p, ϕ, and Y2 by using the equation

of state to eliminate e from Eq. (4.16). The equation of state is Eq. (3.23) written in

terms of the specific volume

e =
pϕ

γ − 1
− Y2q. (4.17)

The Hugoniot equation then becomes

H =
pϕ− p0ϕ0

γ − 1
− 1

2
(p+ p0)(ϕ0 − ϕ)− Y2q = 0, (4.18)

where Y20 = 0 (there are no products in the quiescent mixture). This equation may

be written in the form of rectangular hyperbola [27]

(
p

p0
+ µ2

)(
ϕ

ϕ0
− µ2

)

= 1− µ4 + 2µ2 Y2q

p0v0
, (4.19)

centered on the point ϕ/ϕ0 = µ2, p/p0 = −µ2, where µ2 = (γ − 1)/(γ + 1).

The intersection of the Rayleigh line with the Hugoniot curve determines the

state (p,ϕ) for a given detonation velocity D. This is illustrated in Fig. 4.3. Three

Rayleigh lines are shown for different values of the detonation velocity D; increasing

D results in increasingly negatively sloped lines. Three Hugoniot curves are shown for

increasing values of the product mass fraction: Y2 = 0 is no reaction (H0), Y2 = 0.5

is a half-complete reaction (H1/2), and Y2 = 1 is complete reaction (H1). The initial

state is denoted O where all three Rayleigh lines and the Y2 = 0 Hugoniot curve

intersect. The detonation wave first shocks the flow to state N, the Neumann point,

which is the leftmost intersection of the Rayleigh lines with the zero mass fraction

Hugoniot curve. As expected, detonations with larger velocities shock the flow to
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Figure 4.3: Rayleigh lines and Hugoniot curves for ZND detonation.

higher pressures and lower specific volumes. Following the shocked state the flow

reacts, proceeding along the Rayleigh lines through Hugoniot curves of increasing

Y2. The final constant end state S is achieved only for detonation velocities above a

certain value, denoted the Chapman-Jouguet velocity DCJ , when the Rayleigh lines

intersect the Hugoniot curve of complete reaction (Y2 = 1).

Examining the curves more carefully, it is apparent that below a certain velocity

there is no solution; the Rayleigh line does not intersect the end state Hugoniot curve

H1. At DCJ there is one unique intersection at C. Above the CJ velocity there are

two intersections; the upper intersection is called the strong solution S, and the lower

intersection W is called the weak solution. The weak solution is discarded on the

grounds that there is no path from the shocked state to point W for this model.

Thus, the CJ velocity is the minimum speed at which the detonation with a lead

shock can travel.
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It can also be argued to be the speed of an unsupported, freely travelling deto-

nation wave. It can be shown that the flow velocity with respect to the front at S

is subsonic ǔ = D − u < c, at the CJ point is sonic ǔ = D − u = c, and at W

is supersonic ǔ = D − u > c. Because of the subsonic condition at S, the strong

solution requires support from the piston depicted in Fig. 4.1. If the piston is slowed

below the end state velocity at S, rarefactions travelling at u + c will overtake the

detonation and weaken it. The detonation velocity will then slow until it reaches

D = u + c = DCJ , the point at which the detonation speed matches the speed of

following disturbances.

The complete solution ZND solution requires that all of Eqs. (4.8–4.11) be con-

sidered. Solution of Eq. (4.11) in general cannot be done analytically, and requires

that ϕ, ǔ, and p be written only in terms of Y2. Equations (4.12–4.14, 4.17) can be

manipulated to give

ǔ =
−γC2 +

√
[γC2 − (1 + γ)C1ǔs]2 + 2(1 + γ)(1− γ)C2

1qY2

−(1 + γ)C1
, (4.20)

ϕ =
−γC2 +

√
[γC2 − (1 + γ)C1ǔs]2 + 2(1 + γ)(1− γ)C2

1qY2

−(1 + γ)C2
1

, (4.21)

p = C2 +
−γC2 +

√
[γC2 − (1 + γ)C1ǔs]2 + 2(1 + γ)(1− γ)C2

1qY2

−(1 + γ)
, (4.22)

where C1 = ρ0D and C2 = ρ0D2+p0 are constants. Only the positive roots are shown

because the negative roots correspond to an unshocked initial state. Equations (4.12–

4.14) can also be manipulated to give the shocked velocity ǔs

ǔs

ǔ0
=

2 + (γ − 1)M2
0

(γ + 1)M2
0

, (4.23)

where M0 = D/
√
γp0ϕ0 is the Mach number of the travelling detonation. Note that

the CJ condition can be determined from Eq. (4.21), for example. At the CJ point

(Y2 = 1), ϕ must be single-valued and real. This occurs when the radical in Eq. (4.21)
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is zero:

[γC2 − (1 + γ)C1ǔs]
2 + 2(1 + γ)(1− γ)C2

1q = 0. (4.24)

The nondimensional constants C1 and C2 can be written more simply by noting the

preshocked state has been used to nondimensionalize the flow variables:

ρ0 =
ρ̃0
ρ̃0

= 1, (4.25)

D =
D̃

M0

√
p̃0/ρ̃0

=
M0c̃

M0

√
p̃0/ρ̃0

=

√
γp̃0/ρ̃0
√
p̃0/ρ̃0

=
√
γ, (4.26)

p0 =
p̃0

M2
0p̃0

=
1

M2
0

. (4.27)

This results in C1 =
√
γ and C2 = γ + 1/M2

0. Substituting for C1, C2, and ǔs in Eq.

(4.24) results in (note ǔ0 = D =
√
γ)

[
γ

M2
0

+ γ2 − γ[2 + (γ − 1)M2
0]

M2
0

]2
+ 2γ(1− γ2)q = 0. (4.28)

The only unknown in this equation is M0, the Mach number of the detonation at the

CJ condition; this will be denoted M0CJ . Before this equation can be solved, however,

q must be rewritten so as not to depend on M0. A commonly chosen nondimensional

form is q̄ = q̃ρ̃0/p̃0 = M2
0q. Equation (4.28) then becomes

[
γ

M2
0CJ

+ γ2 −
γ[2 + (γ − 1)M2

0CJ
]

M2
0CJ

]2
+

2γ(1− γ2)q̄

M2
0CJ

= 0, (4.29)

which can be solved to give

M2
0CJ

=
γ2 + q̄(γ3 − γ) +

√
[γ2 + q̄(γ3 − γ)]2 − γ4

γ2
. (4.30)

Thus, the CJ Mach number depends only upon the fluid properties, initial fluid

conditions, and the heat release due to the chemical reaction.

Substituting Eqs. (4.20–4.23) into Eq. (4.11) results in an ordinary differential

equation in Y2 and x̌. This can be integrated numerically using standard techniques

to obtain Y2(x̌), which then determines ǔ(x̌), ϕ(x̌), and p(x̌). Figure 4.4 shows the
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ǔ

ˇ
0 20 40 60

x

0.2

0.4

0.6

0.8

1

 

ˇ

0 20 40 60
x

0

0.2

0.4

0.6

0.8

1

p

ˇ
0 20 40 60

x

0

0.2

0.4

0.6

0.8

1

Y
2

ˇ

Figure 4.4: Overdriven ZND detonation solution (f = 1.8, q = 0.719, Θ = 0.719,
γ = 1.2).

solution for a strong ZND detonation when f = 1.8 (recall the definition of overdrive

from the beginning of Ch. 2), q = 0.719, Θ = 0.719, and γ = 1.2. Examining Fig. 4.4

more closely, it can be seen that ǔ and ϕ are initially shocked from their freestream

values to a minimum value, and then increase through the reaction zone. The pressure

acts in the opposite way, peaking at the detonation front and decreasing through the

reaction zone. The product mass fraction curve shows there is no induction zone; Y2

immediately begins increasing following the detonation front. As Y2 asymptotically

approaches 1, ǔ, ϕ, and p asymptotically approach constant values predicted by the

jump analysis.

Figure 4.5 illustrates a CJ detonation for the same q, Θ, and γ. Comparing to

Fig. 4.4 it is apparent that the reaction zone is much longer than in the overdriven

case; the weaker lead shock of the CJ detonation results in the reaction rate being

38



0 200 400 600

x

0.2

0.4

0.6

0.8

1

 

ˇ

0 200 400 600

x

0

0.2

0.4

0.6

0.8

1

Y
2

ˇ
0 200 400 600

x

0

0.2

0.4

0.6

0.8

1

p

ˇ

0 200 400 600

x

0.2

0.4

0.6

0.8

1

u

ˇ

ˇ

Figure 4.5: Chapman-Jouguet detonation solution (f = 1.0, q = 0.719, Θ = 0.719,
γ = 1.2).

much lower initially. There is an induction zone and then a narrow region in which

the reaction proceeds very quickly to completion. The other flow variables follow Y2,

remaining close to the shocked state and then undergoing a rapid transition to their

final values.

4.2 Two-dimensional Steady Solutions

4.2.1 Straight Shock, Curved Wall

The straight shock, curved wall detonation solution is the two-dimensional analog of

the one-dimensional ZND detonation. In this case consider steady flow over a curved

wedge. The wall is assumed to be curved in such a fashion that the resulting oblique

detonation is straight, as shown in Fig. 4.6. The exact shape of the wedge is initially

unknown; it will be determined by the solution of the equations of motion.

39



str
aig

ht 
det

on
ati

on

x

y curved wedge

x

y
yw(x)

l0

p0

e0

u0

l

p
e

u

v

`

ˇ

ˇ

Figure 4.6: Schematic of straight shock, curved wall detonation flowfield.

Once again Eqs. (3.18–3.22) are appropriate, except the time derivatives are zero;

the detonation is considered to be steady in the fixed frame attached to the wedge. In

this case it is useful to consider the equations in the coordinate system (x̌,y̌) oriented

with the detonation as indicated in Fig. 4.6:

∂

∂x̌
(ρǔ) +

∂

∂y̌
(ρv̌) = 0, (4.31)

∂

∂x̌
(ρǔ2 + p) +

∂

∂y̌
(ρǔv̌) = 0, (4.32)

∂

∂x̌
(ρǔv̌) +

∂

∂y̌
(ρv̌2 + p) = 0, (4.33)

∂

∂x̌
(ρǔȞ) +

∂

∂y̌
(ρv̌Ȟ) = 0, (4.34)

∂

∂x̌
(ρǔY2) +

∂

∂y̌
(ρv̌Y2) = ρ(1− Y2)e

−Θρ/p. (4.35)

The velocities ǔ and v̌ are in the x̌ and y̌ directions, respectively, and Ȟ = Ě+p/ρ =

e+(ǔ2+ v̌2)/2+p/ρ. The detonation coordinate system and wedge coordinate system
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may be related using the detonation angle β:

x = x̌ sin β + y̌ cos β, (4.36)

y = −x̌ cos β + y̌ sin β. (4.37)

The relation between the velocities in the two coordinate systems is found by taking

the derivative with respect to time of the coordinate transformation above. The

resulting relations are:

u = ǔ sin β + v̌ cos β, (4.38)

v = −ǔ cos β + v̌ sin β. (4.39)

As in the ZND model, the detonation is initiated by a lead shock. In this case

the shock is an oblique shock, and it is assumed that there are no changes in the y̌

direction; thus ∂
∂y̌ ≡ 0. Equations (4.31–4.35) then become

d

dx̌
(ρǔ) = 0, (4.40)

d

dx̌
[ρǔ2 + p] = 0, (4.41)

d

dx̌
(ρǔv̌) = 0, (4.42)

d

dx̌
(ρǔȞ) = 0. (4.43)

d

dx̌
(ρǔY2) = ρ(1 − Y2)e

−Θρ/p. (4.44)

Equations (4.40–4.41, 4.43–4.44) are exactly the same as Eqs. (4.8–4.11) for the ZND

detonation, and therefore have the same solution. Equations (4.42, 4.40) are easily

solved to give ρǔv̌ = constant and ρǔ = constant. Combining the two it is apparent

that

v̌ = constant. (4.45)

Thus, the straight shock, curved wall detonation solution is simply the one-dimen-

sional ZND solution with an added constant v̌ component. Note that since shock
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curvature is the only vorticity production mechanism in an inviscid flow, the flow is

irrotational

ωz = ∇× 3V =
∂v̌

∂x̌
− ∂ǔ

∂y̌
= 0. (4.46)

Since there is no flow through a streamline, the wall function y̌w(x̌) may be ob-

tained by finding any streamline in the flow. The velocity vector must be tangent to

the streamlines; therefore, the slope of the streamlines and velocity vector must be

equal
dy̌w
dx̌

=
v̌

ǔ(x̌)
. (4.47)

Taking the origin to be at the wedge tip so y̌w(0) = 0, this can be solved to give

y̌w(x̌) = v̌
∫ x̌

0

dx̂

ǔ(x̂)
. (4.48)

Much in the same way as one-dimensional detonations, oblique detonations are

typically classified using the results of a Rankine-Hugoniot analysis. Figure 4.7 illus-

trates the case in which an oblique detonation is considered to be a shock discontinuity

with heat release [34, 64]. Just as in oblique shock theory, the equations of motion

are reduced to algebraic relations via a Rankine-Hugoniot discontinuity analysis, and

then manipulated to give a relation between the detonation wave angle and the sup-

porting wedge angle. This equation contains an extra parameter for the heat release

Y2q, and reduces to the oblique shock relation when Y2 = 0. Unlike the inert state,

adding heat to the flow leads to closed curves in which decreasing the wedge angle

below a certain minimum value results in increasing wave angles (see Fig. 4.7). In-

creasing the amount of reaction results in the closed area shrinking toward the upper

left corner of the plot. For a given q, detonation angles below a certain angle βCJ

are not possible. At β = βCJ there is one solution, and above βCJ there are two.

As in oblique shock theory, there is a strong regime (S) in which the Mach number

following the detonation (M2) is subsonic, and a weak regime (W) in which M2 > 1

but the Mach number normal to the wave (M2n) is less than unity. Following one-
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Figure 4.7: Variation of oblique detonation wave angle with wedge angle and heat
release (γ = 1.2, M0 = 5).

dimensional detonation theory, there is a state when the Mach number normal to the

wave (M2n) is unity. This leads to an underdriven (UD) regime where M2n > 1,

and an overdriven (OD) regime where M2n < 1. Thus, oblique detonations are clas-

sified as strong (which is always overdriven), weak overdriven, and weak underdriven.

As in the one-dimensional theory, the weak underdriven state is inaccessible from

the shocked state for a one-step, irreversible reaction. Recent work [62], however,

has demonstrated that when a two-step, exothermic-endothermic scheme is consid-

ered, the weak underdriven solution is accessible from the shocked state. Lastly, the

straight shock, curved wall solution can be classified according to an overdrive pa-

rameter, in this case termed the normal overdrive fn = (M0n/M0CJ )
2, where M0n is

the component of the freestream Mach number normal to the detonation.

Figure 4.8 shows a weak overdriven straight shock, curved wall detonation solu-

tion for fn = 1.6. The plots show contours of constant pressure and product mass
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Figure 4.8: Weak, overdriven straight shock, curved wall detonation solutions for
pressure and product mass fraction (fn = 1.6, M0 = 9, q = 0.719, Θ = 0.719,
γ = 1.2).

fraction, as well as the wall shape. As expected the solution contours are straight

(any jaggedness in the contours is an artifact of the discretization necessary for plot-

ting), while the wall curves. The detonation angle is β = 61◦, while the wall angle is

a maximum at the apex (θmax = 50◦) and decreases to a minimum constant value at

the end of the reaction zone (θmin = 35◦). Figure 4.9 shows a strong solution with the

same normal overdrive value of fn = 1.6. In this case the detonation angle is greater

at β = 79◦, the initial wall angle is the same to this precision, θmax = 50◦, and the

final wall angle is less at θmin = 24◦.
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4.2.2 Curved Shock, Straight Wall

The straight shock, curved wall detonation solution was simple to obtain because

it was only pseudo-two-dimensional; the assumption of a straight shock leads to an

essentially one-dimensional solution. Powers and Stewart [63] considered the more

complex problem of the oblique detonation resulting from a wedge with a straight

wall. In this case the oblique detonation has curvature and a truly two-dimensional

character. A general description of their solution procedure will be presented here,

followed by some example solutions. The reader is referred to [63] for the complete,

detailed analysis.

The governing equations studied were the steady versions of Eqs. (3.18–3.22).

This model was studied in the limit of high Mach number, linearized about the inert

oblique shocked state. In this limit the kinetic energy of the flow is much greater

than the heat release from chemical reaction. The leading order solution was an inert

shock, and the linear asymptotic theory corrected for the effects of small heat release.

Also in this limit the induction zone length was effectively zero; the assumption of

large activation energy, which gives rise to a thick induction zone and thin reaction

zone, was not made. Consequently, a simple leading order solution of the kinetic rate

law was available. At the following order, acoustic equations with chemical reaction

forcing terms generated at leading order were solved to determine the pressure and

velocity fields. The resulting solution was rotational and characterized by a curved

shock attached to a straight wedge.

The solution procedure of [63] was as follows. To simplify application of the

boundary conditions, the Euler equations were first transformed to a non-orthogonal

coordinate system fixed to the inert shock and wedge. The equations and shock

conditions were then written as linear equations in the high Mach number limit.

Assuming the oblique shock was weak and the trailing flow was supersonic allowed

the equations to be written in characteristic form. These equations were then solved
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with the shock position function as a parameter. The shock position function was

then specified such that a downstream boundary condition on the wedge surface was

met.

Figures 4.10 and 4.11 show asymptotic solution contours for vorticity and product

mass fraction. The flow features follow the description of an oblique detonation given

in Ch. 1 (see Fig. 1.1). As shown by the vorticity contours, the detonation front is

curved; curvature is a maximum near the wedge apex, and then decreases to zero

away from the apex. The curved detonation front generates vorticity which then is

convected downstream along the wedge. The highest vorticity is generated by the

maximum curvature near the wedge apex, and then convected downstream along

the wedge surface. The vorticity decreases away from the wedge surface, eventually

reaching zero when the shock curvature reaches zero. The product mass fraction

contours show the reaction initiated by the front, and then proceeding to completion

over a finite distance.

Figure 4.12 shows the asymptotic solution contours for pressure. The minimum

detonation pressure occurs near the wedge apex where the detonation front is essen-

tially an inert shock. The maximum pressure occurs where the curvature is zero and

the detonation front has reached its maximum angle. Just as in a ZND detonation,

the pressure peaks at the front and then decreases as the reaction progresses.

Grismer and Powers [32] demonstrated the utility of the asymptotic solutions

as benchmarks to which numerical solutions can be compared. Figure 4.13 shows

a numerical pressure solution obtained with RPLUS, a code under development at

NASA Lewis Research Center [70]. Comparing Figs. 4.12 and 4.13 it is apparent

that the numerical solution is very similar to the asymptotic solution, but some

of the details in the flow are somewhat different. In order to better quantify the

comparison between the asymptotic and numerical solutions, the asymptotic solution

was “written” on the same grid used for the numerical calculations. The two solutions

47



were then compared using a fractional error [86] defined as

e1 =
N∑

i=1

|pai − pni|/N, (4.49)

where pai is the asymptotic pressure at a point, pni is the numerical solution at

a point, and N is the total number of points. Thus, e1 is essentially an average

pressure difference between the two solutions at a given point.

Figure 4.14 shows a plot of e1 versus freestream Mach number M0. Asymptotic

and numerical solutions were calculated for different cases of freestream Mach number

and heat release, and then the corresponding e1 values determined (filled symbols). To

aid in interpreting the results, asymptotic and numerical solutions for zero heat release

were also compared to the exact oblique shock solution (open symbols). Finally, the

predicted order of the error of the asymptotic and numerical solutions was plotted.

The error in the asymptotic solution is the next highest order not considered, or

O(ε2) = 1/M4
0. The error in the numerical solution is the order of accuracy of the

finite differencing scheme used, or O(∆x2). Since the same fixed grid was used for

all calculations, this was constant. Measured order of accuracy results in Ch. 6 and

from other researchers [86] suggest that for nonlinear flows with discontinuities the

actual order of accuracy is much lower; however, as no order of accuracy testing was

done with RPLUS, the initial estimate was retained.

The trend of the comparisons to the exact oblique shock solution highlights the

behavior of the asymptotic and numerical solutions. The exact/numerical comparison

shows that the error of the numerical solution remains nearly constant regardless of

the Mach number. On the other hand, the exact/asymptotic comparison shows that

the error of the asymptotic solution decreases with increasing Mach number. These

are both consistent with the behavior of the respective predicted error curves shown.

The large difference between the magnitude of the predicted errors and the calculated

errors is likely due to the smeared shock profile of the numerical solution and the

error in the prediction of the shock location of the asymptotic solution. Examining
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the asymptotic/numerical errors for q̄ = 0 in light of the comparisons to the exact

solution, it is apparent that for low Mach number the difference in the solutions is

due to the error of the asymptotic method. At high Mach number the difference is

due to the error of the numerical method. Adding a small amount of heat to the

flow (q̄ = 1) retains the same behavior. Adding a larger amount of heat to the flow

(q̄ = 10) results in a curve with the same trends as q̄ = 0 and 1, but having much

higher values. This is due to large errors in the asymptotic solution; this level of heat

release is inconsistent with the initial assumptions made in obtaining the asymptotic

solution. Thus, for low heat release and high Mach number, the asymptotic solution

was shown to be a useful quantitative benchmark for numerical solutions of high speed

flows. At lower Mach numbers or high heat release, it has value as a qualitative tool

for predicting general flowfield features.
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Chapter 5

NUMERICAL METHOD

This chapter will present the numerical algorithm implemented for this study. The

chapter will be broken into four sections: a brief description of Godunov schemes, a

discussion of Roe’s approximate Riemann solver and its use in a first order scheme,

extension of the scheme to second order accuracy in space and time, and the actual

implementation of the second order scheme for the reactive Euler equations in the

two-dimensional generalized coordinate system.

5.1 Godunov Schemes

Roe’s scheme is part of a broader class of methods referred to as Godunov schemes.

Unlike finite difference methods, in which the solution is assumed to be smooth,

Godunov’s [31] idea was to average a series of exact, nonlinear, discontinuous solutions

of the conservation equations to arrive at an overall solution. This type of scheme

captures discontinuous flow solutions, such as shocks, naturally without resorting to

the artificial dissipation methods necessary in finite difference methods. Godunov

chose the exact solution of the Riemann problem as his discontinuous solution. The

Riemann problem may be thought of as follows: consider a tube filled with inviscid gas

and divided into two sections by a diaphragm. In each section the gas is at different

conditions of pressure, density, and/or temperature. At t̃ = 0 the diaphragm breaks,

sending a shock into the gas of lower pressure. Convected along at the particle velocity
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Figure 5.1: x-t diagram of the Riemann problem.

the high pressure side is an expansion wave. This is illustrated in Fig. 5.1; each

of the waves moves at a constant velocity, thus the curves in the x-t diagram are

linear. The solution between the waves, denoted by 1–4 in Fig. 5.1, is a constant

state. Details of the Riemann solution are well known [40]. In fact, the Riemann

solution is a similarity solution; along lines of x/t = constant the solution remains

constant. Figure 5.2 shows a Riemann problem solution at t̃ = 0.0061 s in which the

diaphragm was located at x̃ = 0, the initial velocity was zero everywhere, the initial

ratio between the left and right state density was 8, the initial pressure ratio was

10, γ = 1.4, and the total dimensional domain length was 10 m. These parameters

were chosen for direct comparison with published results [40]. The variables have

been scaled by their peak values, and the spatial coordinate has been scaled by the

domain length. The contact discontinuity (evident as the first step in the density

plot) and shock are moving to the right, while the expansion wave moves to the left.

The solution varies smoothly and continuously through the expansion region, while

remaining constant or varying discontinuously in the other regions.

Godunov utilized the Riemann solution by considering the flow variables to be

constant across a given computational cell i, but different on a cell by cell basis (see

Fig. 5.3). The different constant states in each cell led to a Riemann problem at the
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Figure 5.2: Exact solution to Riemann problem at t̃ = 0.0061 s (diaphragm initially
at x̃ = 0, initial pressure ratio = 10, initial density ratio = 8, initial velocity = 0,
γ = 1.4, total domain length = 10 m).

cell interfaces (i − 1/2) and (i + 1/2). The Riemann problem for each interface was

then solved, taking ∆t sufficiently small such that there was no interaction between

adjacent interface solutions. Finally, the resulting Riemann solutions were averaged

in each cell to obtain the overall flow solution for that time step.

The perceived deficiency of Godunov’s method was that each Riemann problem

must be solved with an iteration process. For a large number of cells this requires

significant computational time, making the scheme inefficient compared to other com-

mon methods. However, since the detail of each Riemann problem is lost in the av-

eraging process, the necessity of obtaining the exact solution is questionable. In the

interest of efficiency, a number of approximate Riemann solutions have been developed

that do not require iteration.
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Figure 5.3: Illustration of Godunov’s method.

5.2 The Roe Scheme

Roe [66] published his approximate Riemann solution in 1981, and since that time

it has been widely used, e.g. [84, 80, 5, 46, 54]. In particular, in a recent article on

unsteady detonations [19], Roe’s method was chosen following a detailed comparison

between a number of different schemes. The largest concern in the study was that

the shock/detonation front be captured cleanly and oscillation free without resorting

to artificial dissipation methods. Artificial dissipation is undesirable because it could

dampen physical oscillations in the unsteady solutions of interest. Roe was able to

show that his approximate Riemann solver reduces to the standard Rankine-Hugoniot

jump conditions for a shock discontinuity; thus it seemed well equipped to handle our

problem. Much of the following discussion is based upon a book by LeVeque [50],

which focuses on numerical methods for hyperbolic systems of conservation equations.

For the control volume defined by i−1/2 and i+1/2 in Fig. 5.3, the integral form

of the one-dimensional conservation equations (Eqs. 3.46) is

d

dτ

∫ ξi+1/2

ξi−1/2

q̂(ξ, τ) dξ = f̂(q̂(ξi−1/2, τ))− f̂(q̂(ξi+1/2, τ)). (5.1)

where ξi = i(∆ξ). It is noted that this form is actually more fundamental in that

the governing partial differential equations are typically derived from an integral

formulation after the assumption of a continuously varying integrand is made. The

integral form allows discontinuities to be present in the domain. Equation (5.1) can
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be integrated to give

∫ ξi+1/2

ξi−1/2

q̂(ξ, τn+1) dξ =
∫ ξi+1/2

ξi−1/2

q̂(ξ, τn) dξ +
∫ τn+1

τn
f̂(q̂(ξi−1/2, τ)) dτ

−
∫ τn+1

τn
f̂(q̂(ξi+1/2, τ)) dτ. (5.2)

By defining

Q̂n
i =

1

∆ξ

∫ ξi+1/2

ξi−1/2

q̂(ξ, τn) dξ, (5.3)

F̂(Q̂n
i , Q̂

n
i+1) =

1

∆τ

∫ τn+1

τn
f̂(q̂(ξi+1/2, τ)) dτ (5.4)

F̂(Q̂n
i−1, Q̂

n
i ) =

1

∆τ

∫ τn+1

τn
f̂(q̂(ξi−1/2, τ)) dτ (5.5)

Eqs. (5.2) become

Q̂n+1
i = Q̂n

i −
∆τ

∆ξ
[F̂(Q̂n

i , Q̂
n
i+1)− F̂(Q̂n

i−1, Q̂
n
i )]. (5.6)

Equations (5.3) define an average q̂ over the spatial interval ξi−1/2 to ξi+1/2. Equations

(5.4) and (5.5) define average fluxes over the temporal interval τn to τn+1. For

Godunov’s scheme and the Roe scheme to be used here, the initial data q̂(ξi, τn) is

considered to be constant across the interval, thus Q̂n
i = q̂(ξi, τn). The integral in

Eqs. (5.4) is actually simpler than it appears. For Godunov’s scheme, the value of

q̂(ξi+1/2, τ) remains constant over the interval τn to τn+1 due to the similarity nature

of the Riemann solution (along (ξ−ξi+1/2)/τ = constant = 0 the solution is constant).

This is also true of the approximate Riemann solution of Roe. Thus,

F̂(Q̂n
i , Q̂

n
i+1) = f̂(q̂(ξi+1/2, τ)) = f̂(q̂∗(Q̂n

i , Q̂
n
i+1)), (5.7)

where q̂∗(Q̂n
i , Q̂

n
i+1)) denotes the value of q̂ at the interface due to the Riemann

solution between cell i and i+ 1. If the piecewise constant solution for q at the new

time is taken the be the averaged value, q̂(ξi, τn+1) = Q̂n+1
i , then Eqs. (5.6) become

q̂n+1
i = q̂n

i −
∆τ

∆ξ
(̂fni+1/2 − f̂ni−1/2), (5.8)
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where q̂n
i = q̂(ξi, τn) and f̂ni+1/2 = f̂(q̂∗(Q̂n

i , Q̂
n
i+1)). Equations (5.8) define the nu-

merical scheme for a general Godunov-type method; the way in which the interface

fluxes f̂ni+1/2 are determined distinguishes the various schemes.

Roe’s approach was to approximate the Riemann solution by considering a linear

system of equations:

∂q̂

∂τ
+ ¯̄A

∂q̂

∂ξ
= 0,

q̂(ξ, 0) = q̂0(ξ), (5.9)

where ¯̄A is a constant matrix. Note that since ¯̄A is constant, the flux vector for this

system is simply ¯̄f(q̂) = ¯̄Aq̂. For the moment, consider this to be the one-dimensional,

linear version of Eqs. (3.48) without the source term ŵ. This system of equations

has an exact solution which can be more easily seen by considering a simpler one

equation system:

∂q̂

∂τ
+ ¯̄A

∂q̂

∂ξ
= 0,

q̂(ξ, 0) = q̂0(ξ), (5.10)

where ¯̄A is a scalar constant. A characteristic solution for this can be obtained by

noting that

dq̂ =
∂q̂

∂τ
dτ +

∂q̂

∂ξ
dξ, (5.11)

and dividing through by dτ
dq̂

dτ
=
∂q̂

∂τ
+
∂q̂

∂ξ

dξ

dτ
. (5.12)

Comparing Eqs. (5.10) and (5.12) it is apparent that along the characteristic dξ/dτ =

¯̄A
dq̂

dτ
= 0. (5.13)

Simply integrating Eq. (5.13) shows that q̂ is constant along dξ/dτ = ¯̄A, and can be

determined everywhere using the initial condition

q̂(ξ, τ) = q̂0(ξ0), (5.14)

58



where ξ0 is the intersection with the ξ-axis of the characteristic passing through (ξ, τ).

This can be written more simply by considering the solution for the characteristic

equation

ξ − ξ0 =
¯̄A(τ − τ0). (5.15)

Solving for ξ0 (τ0 = 0)

ξ0 = ξ − ¯̄Aτ, (5.16)

and substituting leads to

q̂(ξ, τ) = q̂0(ξ − ¯̄Aτ). (5.17)

Note that if the initial condition is discontinuous, q̂(ξ, τ) will be discontinuous.

The same type of treatment can be used on Eqs. (5.9), provided the system of

equations can be decoupled into a set of independent equations. This is accomplished

by diagonalizing ¯̄A, which can always be done for the flux Jacobian matrix of a

hyperbolic system of equations [50]. The matrix ¯̄A can be written

¯̄A = ¯̄R ¯̄λ ¯̄R
−1
, (5.18)

where ¯̄R and ¯̄λ are the right eigenvector matrix and eigenvalue matrix of ¯̄A, respec-

tively. Substituting into Eqs. (5.9) and multiplying by ¯̄R
−1

results in

¯̄R
−1∂q̂

∂τ
+ ¯̄λ ¯̄R

−1∂q̂

∂ξ
= 0. (5.19)

Since ¯̄R
−1

is constant, it can be brought within the derivative. With a new variable

v defined as

v = ¯̄R
−1
q̂. (5.20)

Eq. (5.19) transforms to
∂v

∂τ
+ ¯̄λ

∂v

∂ξ
= 0. (5.21)

Since ¯̄λ is a diagonal matrix of eigenvalues, this is a decoupled system of equations

which can be written

∂vm
∂τ

+ ¯̄λm
∂vm
∂ξ

= 0 m = 1, 2, . . . , N, (5.22)
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where N is the number of equations. The solutions are then simply

vm(ξ, τ) = vm(ξ − ¯̄λmτ) m = 1, 2, . . . , N, (5.23)

where the initial conditions for v are found using Eqs. (5.20)

v(ξ, 0) = ¯̄R
−1

q̂0(ξ). (5.24)

Finally, the solution in terms of the original variables is found by solving for q in Eqs.

(5.20):

q̂(ξ, τ) = ¯̄Rv(ξ, τ). (5.25)

Working out the matrix multiplication on the right hand side, this can be written as

an eigenvector expansion

q̂(ξ, τ) =
N∑

m=1

vm(ξ, τ) ¯̄rm, (5.26)

where ¯̄rm are the right eigenvectors.

The Riemann problem is simply a discontinuous initial condition

q̂0(ξ) =






q̂l ξ < 0

q̂r ξ ≥ 0

, (5.27)

where q̂l and q̂r are constant left and right states, respectively. Likewise, the charac-

teristic variables have constant left and right initial states

vm(ξ, 0) =






vml
ξ < 0

vmr ξ ≥ 0

m = 1, 2, . . . , N, (5.28)

which can be used in the eigenvector expansion of Eqs. (5.26) to give

q̂l =
N∑

m=1

vml
¯̄rm q̂r =

N∑

m=1

vmr
¯̄rm. (5.29)

Following Eq. (5.23) the characteristic solution is simply

vm(ξ, τ) =






vml
if ξ − ¯̄λmτ < 0

vmr if ξ − ¯̄λmτ ≥ 0

m = 1, 2, . . . , N. (5.30)
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Assuming the eigenvalues ¯̄λm are arranged such that

¯̄λ1 ≤ ¯̄λ2 ≤ . . . ≤ ¯̄λN , (5.31)

the solution for q̂ can be written

q̂(ξ, τ) =
N∑

m=1

vm¯̄rm =
((ξ,τ)∑

m=1

vmr
¯̄rm +

N∑

m=((ξ,τ)+1

vml
¯̄rm, (5.32)

where '(ξ, τ) is defined as the maximum value of m such that ξ − ¯̄λmτ ≥ 0. Figure

5.4 shows an example of a solution; characteristics emanating from the negative side

dj/do = h1

dj/do = h2

dj/do = h3

j

o

j < h3o j < h2o j < h1o

q(j,o) = v1r
 r1 + v2r

 r2 + v3l
 r3

0

^ = = =

=

= =

== =

qrql^ ^

A

B
C

D

Figure 5.4: Diagram of linear Riemann solution.

of the ξ-axis result in vm = vml
, while those emanating from the positive side lead to

vm = vmr . Thus, v1 = v1r , v2 = v2r , and v3 = v3l , and the solution from Eqs. (5.32) is

q̂(ξ, τ) = v1r¯̄r1 + v2r¯̄r2 + v3l¯̄r3. (5.33)

Additionally, the value of q̂ is constant within the wedge defined by dξ/dτ = ¯̄λ2 and

dξ/dτ = ¯̄λ3 (regionC of Fig. 5.4). Since the characteristics emanating from the points

ξ − ¯̄λmτ (solid lines) parallel the characteristics dξ/dτ = ¯̄λm at the origin (dashed

lines), moving the point of interest (ξ, τ) within region C will not result in any of the

emanating characteristics (solid lines) crossing the origin; therefore the values of vm
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will not change. The same reasoning applies to each of the four regions defined by

dξ/dτ = ¯̄λm.

Figure 5.5 indicates the constant value of q̂ for each region. The solution changes

j

o

0

qr = v1r
 r1 + v2r

 r2 + v3r
 r3

ql = v1l
r1 + v2l

r2 + v3l
 r3

q(j,o) = v1r
 r1 + v2r

 r2 + v3l
 r3

q(j,o) = v1r
 r1 + v2l

 r2 + v3l
 r3

h1

h2

h3

= = =
= = =

= = == = =

=

=

=

^ ^

^
^

Figure 5.5: Linear Riemann solution by quadrant.

discontinuously across each characteristic; the jump across the mth characteristic is

([] denotes the difference operator)

[q̂] = (vmr − vml
)¯̄rm. (5.34)

By beginning with the left state and summing the differences for the characteristics

that would be crossed to reach the point of interest, the Riemann problem solution

may be written

q̂(ξ, τ) = q̂l +
∑

¯̄λm<ξ/τ

(vmr − vml
)¯̄rm. (5.35)

Likewise, the solution may be written by beginning with the right state and subtract-

ing the differences for the characteristics crossed:

q̂(ξ, τ) = q̂r −
∑

¯̄λm≥ξ/τ

(vmr − vml
)¯̄rm. (5.36)

The jump from the left to right state is then made up of a series of smaller jumps

q̂r − q̂l = (v1r − v1l)¯̄r1 + (v2r − v2l)¯̄r2 + (v3r − v3l)¯̄r3. (5.37)
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Since the eigenvectors ¯̄rm and left and right states q̂l and q̂r are known, this equation

can be used to solve for αm = vmr − vml
. Adding the terms together and rearranging,

Eqs. (5.37) can be written

q̂r − q̂l =
¯̄Rα, (5.38)

which is then easily solved by multiplying by the inverse eigenvector matrix

α = ¯̄R
−1
(q̂r − q̂l). (5.39)

The previous derivation is true for any constant matrix ¯̄A with real eigenvalues. In

order to make the linear Riemann solution and the actual nonlinear Riemann solution

of the Euler equations as alike as possible, it would make sense to define ¯̄A as some

function of the left and right states, ¯̄A(q̂l, q̂r). An important contribution of Roe was

defining ¯̄A(q̂l, q̂r) according to the following criteria [66]:

1. It constitutes a linear mapping from q̂ to f̂ .

2. As q̂l → q̂r → q̂, then ¯̄A(q̂l, q̂r) → Â(q̂) where Â = ∂f̂/∂q̂.

3. For any q̂l, q̂r,
¯̄A · (q̂r − q̂l) = f̂r − f̂l (· indicates matrix multiplication for

clarity).

4. The eigenvectors of ¯̄A are linearly independent.

Conditions 1, 2, and 4 are satisfied by straightforward averaging processes such as

¯̄A = 1
2(Âl + Âr), but Condition 3 is not. Condition 3 is motivated by the desire to

have ¯̄A satisfy the Rankine-Hugoniot jump conditions.

The general Rankine-Hugoniot conditions can be derived by considering a one-

dimensional shock moving at speed s (see Fig. 5.6). The shock has travelled a distance

sτ , and the states to the left and right of the shock are constant at q̂l and q̂r,

respectively. The Rankine-Hugoniot equations relating the states can be obtained by
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Figure 5.6: Illustration of one-dimensional travelling shock.

considering the integral form of the conservation equations over the control volume

(−Γ,Γ) at time τ (where Γ , sτ):

d

dτ

∫ Γ

−Γ
q̂(ξ, τ) dξ = f̂(q̂l)− f̂(q̂r) = f̂l − f̂r. (5.40)

The integral in this equation is divided as

∫ Γ

−Γ
q̂(ξ, τ) dξ =

∫ sτ

−Γ
q̂(ξ, τ) dξ +

∫ Γ

sτ
q̂(ξ, τ) dξ, (5.41)

and since q̂ is constant in each interval

∫ Γ

−Γ
q̂(ξ, τ) dξ = (Γ+ sτ)q̂l + (Γ− sτ)q̂r. (5.42)

Taking the derivative with respect to time of the right-hand side results in the fol-

lowing Rankine-Hugoniot relation

s(q̂l − q̂r) = f̂l − f̂r, (5.43)

or, in terms of the difference operator,

s[q̂] = [̂f ]. (5.44)

For the linear Riemann solution the flux is simply ¯̄f = ¯̄Aq̂, and thus the difference

in the flux is [̄̄f ] = ¯̄A[q̂]. Using Eqs. (5.34), the difference in the linear flux across the

mth characteristic can be written

[̄̄f ] = ¯̄A[q̂]

= ¯̄Aαm¯̄rm. (5.45)
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Using ¯̄A¯̄rm = ¯̄λm¯̄rm results in

[̄̄f ] = ¯̄λmαm¯̄rm

= ¯̄λm[q̂]. (5.46)

Since each jump is propagating at ¯̄λm, this shows that each jump satisfies the Rankine-

Hugoniot conditions. If the initial jump q̂r − q̂l is an eigenvector of ¯̄A, then it will

propagate with the speed of one eigenvalue ¯̄λm, and the other jumps will have zero

strength. Returning to Roe’s conditions on ¯̄A, number 3 requires that ¯̄A be defined

such that [̄̄f ] = [̂f ]. All shock waves must satisfy Eq. (5.44), therefore the shock speed

must be an eigenvalue of ¯̄A, s = ¯̄λm. Condition 4 requires that ¯̄λm correspond to only

one eigenvector equal to q̂r − q̂l. Thus, any shock encountered would be captured

exactly with one eigenvector of ¯̄A, and automatically satisfy the Rankine-Hugoniot

conditions.

It is now possible to find the flux at an interface from the approximate solution.

Using Eqs. (5.37) with condition 3 results in

f̂r − f̂l = ¯̄A(q̂r − q̂l)

= ¯̄A
N∑

m=1

αm¯̄rm

=
N∑

m=1

αm
¯̄λm¯̄rm

=
N∑

m=1

df̂m (5.47)

where df̂m = αm
¯̄λm¯̄rm is the jump in f̂ across each characteristic in Fig. 5.5. If ξ = 0

is considered a cell interface in Fig. 5.5, the flux at the interface, denoted ¯̄f i+1/2, can

be determined from Eqs. (5.47) by beginning with the left state and summing over

only the negatively sloped characteristics

¯̄f i+1/2 = f̂l +
∑

¯̄λm<0

αm
¯̄λm¯̄rm. (5.48)
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Likewise, the interface flux can be determined by beginning with the right state and

summing over only the positively sloped characteristics

¯̄f i+1/2 = f̂r −
∑

¯̄λm>0

αm
¯̄λm¯̄rm. (5.49)

A third form can be obtained by adding Eqs. (5.48) and (5.49) together and dividing

by two

¯̄f i+1/2 =
1

2
(̂fl + f̂r)−

1

2

N∑

m=1

αm|¯̄λm |̄̄rm. (5.50)

All that remains is to determine the proper averaging process such that ¯̄A satisfies

conditions 1–4. Following Roe, this is accomplished for the reactive Euler equations

by defining another vector

z =
√
ρ

J





1
u
v
H
Y2




, (5.51)

and writing q̂ and f̂ in terms of it (z1, z2, . . . , z5 are the components of z):

q̂ = J−1





ρ
ρu
ρv
ρE
ρY2




=





z21
z1z2
z1z3

z1z4/γ − γ−1
γ z1z5q +

γ−1
2γ (z22 + z23)

z1z5




, (5.52)

f̂ = J−1





ρU c

ρuU c + ξxp
ρvU c + ξyp
ρHU c − ξtp
ρY2U c




=





ξxz1z2 + ξyz1z3
ξxz22 + ξyz2z3 + ξx

γ−1
γ [z1z4 + z1z5q − 1

2(z
2
2 + z23)]

ξxz2z3 + ξyz23 + ξy
γ−1
γ [z1z4 + z1z5q − 1

2(z
2
2 + z23)]

z4(ξxz2 + ξyz3)
z5(ξxz2 + ξyz3)




.

(5.53)

In general, the jump in q̂, [q̂] = q̂r − q̂l, can be written in terms of the jump in z,

[z] = zr − zl, as follows

[q̂] = C̄[z], (5.54)

where C̄ is a matrix. C̄ is determined by writing the difference for each component of

q̂ in terms of the components of z. In doing this, the following identities are useful:

[ab] = arbr − albl
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=
1

2
(ar + al)(br − bl) +

1

2
(br + bl)(ar − al)

= ā[b] + b̄[a], (5.55)

[a2] = [aa]

= ā[a] + ā[a]

= 2ā[a], (5.56)

where x̄ = (xl + xr)/2 is the arithmetic mean. Thus, for example,

[q̂1] = [z21 ] = 2z̄1[z1]

[q̂2] = [z1z2] = z̄1[z2] + z̄2[z1], (5.57)

which leads to

C̄ =





2z̄1 0 0 0 0
z̄2 z̄1 0 0 0
z̄3 0 z̄1 0 0

z̄4/γ − γ−1
γ qz̄5

γ−1
γ z̄2

γ−1
γ z̄3 z̄1/γ −γ−1

γ qz̄1
z̄5 0 0 0 z̄1




. (5.58)

In the same way the change in f̂ can be written in terms of the change in z

[̂f ] = D̄[z], (5.59)

where D̄ can be determined to be

D̄ =





ξxz̄2 + ξyz̄3 ξxz̄1 ξyz̄1 0 0
ξx

γ−1
γ (z̄4 + qz̄5)

γ+1
γ ξxz̄2 + ξyz̄3 ξyz̄2 − γ−1

γ ξxz̄3
γ−1
γ ξxz̄1

γ−1
γ ξxqz̄1

ξy
γ−1
γ (z̄4 + qz̄5) ξxz̄3 − γ−1

γ ξyz̄2 ξxz̄2 +
γ+1
γ ξyz̄3

γ−1
γ ξyz̄1

γ−1
γ ξyqz̄1

0 ξxz̄4 ξyz̄4 ξxz̄2 + ξyz̄3 0
0 ξxz̄5 ξyz̄5 0 ξxz̄2 + ξyz̄3




.

(5.60)

Roe’s matrix ¯̄A can now be obtained by combining Eqs. (5.54) and (5.59) to get

[̂f ] = D̄C̄−1[q̂], (5.61)
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which matches condition 3 for ¯̄A = D̄C̄−1. Inverting C̄ and multiplying by D̄ results

in the following element of ¯̄A, for example:

¯̄A2,1 =
ξx(γ − 1)(z̄22 + z̄23)− 2(ξxz̄22 + ξyz̄2z̄3)

2z̄21

=
1

2
ξx(γ − 1)(

z̄22
z̄21

+
z̄23
z̄21
)− z̄2

z̄1
(ξx

z̄2
z̄1

+ ξy
z̄3
z̄1
). (5.62)

Writing out the terms in detail

z̄22
z̄21

=
1
4 [(
√

ρ
Ju)r + (

√
ρ
Ju)l]

2

1
4 [(
√

ρ
J )r + (

√
ρ
J )l]

2
=




(
√

ρ
Ju)r + (

√
ρ
Ju)l

(
√

ρ
J )r + (

√
ρ
J )l




2

= ¯̄u2, (5.63)

z̄23
z̄21

=
1
4 [(
√

ρ
J v)r + (

√
ρ
J v)l]

2

1
4 [(
√

ρ
J )r + (

√
ρ
J )l]

2
=




(
√

ρ
J v)r + (

√
ρ
J v)l

(
√

ρ
J )r + (

√
ρ
J )l




2

= ¯̄v2, (5.64)

z̄2
z̄1

= ¯̄u, (5.65)

z̄3
z̄1

= ¯̄v, (5.66)

it is apparent that each term is essentially a mass weighted average of the left and

right state velocity component. This leads to

¯̄A2,1 =
1

2
ξx(γ − 1)(¯̄u2 + ¯̄v2)− ¯̄u(ξx¯̄u+ ξy¯̄v), (5.67)

which has exactly the same form as Â2,1 (since ξt = 0), except u and v have been

replaced by their averaged quantities, ¯̄u and ¯̄v. In fact, all the elements of ¯̄A match

those of Â if the variables are replaced by the following “Roe” averaged variables:

¯̄u =
(
√

ρ
J u)r+(

√
ρ
J u)l

(
√

ρ
J )r+(

√
ρ
J )l

, ¯̄v =
(
√

ρ
J v)r+(

√
ρ
J v)l

(
√

ρ
J )r+(

√
ρ
J )l

,

¯̄H =
(
√

ρ
J
H)r+(

√
ρ
J
H)l

(
√

ρ
J )r+(

√
ρ
J )l

, ¯̄Y 2 =
(
√

ρ
J
Y2)r+(

√
ρ
J
Y2)l

(
√

ρ
J )r+(

√
ρ
J )l

.

(5.68)

Since ¯̄A and Â have the same form, their eigenvalues have the same form

¯̄λ1 = ¯̄λ2 =
¯̄λ3 =

¯̄U
c
,

¯̄λ4 = ¯̄U
c
− ¯̄c

√
ξ2x + ξ2y , (5.69)

¯̄λ5 = ¯̄U
c
+ ¯̄c

√
ξ2x + ξ2y ,
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where ¯̄U
c
= ξx¯̄u + ξy¯̄v and ¯̄c =

√
(γ − 1)[ ¯̄H + ¯̄Y 2q − (¯̄u2 + ¯̄v2)/2]. Likewise, the

eigenvector array ¯̄R retains the same form as R̂, except the variables have been

replaced by their Roe averaged quantities

¯̄R =





ξx 0 1 1 0

¯̄U
c

ξy ¯̄u− ξx√
ξ2x+ξ2y

¯̄c ¯̄u+ ξx√
ξ2x+ξ2y

¯̄c 0

0 −ξx ¯̄v − ξy√
ξ2x+ξ2y

¯̄c ¯̄v + ξy√
ξ2x+ξ2y

¯̄c 0

(¯̄u2 − ¯̄v2) ξx2 + ξy ¯̄u¯̄v ξy ¯̄u− ξx¯̄v
¯̄H − ¯̄c√

ξ2x+ξ2y

¯̄U
c ¯̄H + ¯̄c√

ξ2x+ξ2y

¯̄U
c

−q

0 0 ¯̄Y 2
¯̄Y 2 1





.

(5.70)

Thus, Roe’s matrix ¯̄A is simply the flux Jacobian matrix Â with Roe averaged vari-

ables, and as such satisfies Roe’s conditions 1–4.

The implementation of the first order Roe scheme in one dimension is relatively

straightforward. Each cell in the domain is initialized to some value. Using the cell

quantities to the left and right of each cell interface as the left and right states, the

appropriate Roe averaged variables, eigenvalues, and eigenvectors are calculated. The

flux at each interface is then calculated using one of Eqs. (5.48, 5.49, or 5.50), and

the solution advanced in time using the appropriate form of Eqs. (5.8):

q̂n+1
i = q̂n

i −
∆τ

∆ξ
(̄̄f

n

i+1/2 − ¯̄f
n

i−1/2). (5.71)

5.3 Extension of the Roe Scheme to Second-Order
Accuracy

The scheme presented in the previous section was first-order accurate in both time

and space. The first order spatial accuracy is the result of assuming piece-wise con-

stant states in each cell, which is entirely decoupled from the Riemann solution step.

Second-order accuracy has been achieved for these types of schemes in two ways:
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extrapolating the cell-centered dependent variables to the cell interfaces, and extrap-

olating the cell-centered fluxes to the cell interfaces [40]. The spatial accuracy of

the scheme then depends upon the accuracy of the extrapolation; assuming a linear

variation results in second-order accuracy, while a quadratic variation leads to third-

order accuracy. Essentially, the accuracy of these schemes is increased by using more

points, much like a finite-difference method.

The second-order scheme chosen for this research was based upon flux extrapola-

tion. The linear extrapolation of a variable s (see Fig. 5.7) to the interface i+ 1/2 is

i-1 i

i+1/2i-1/2

j

s

si-1

si

6j = 1

Figure 5.7: Linear extrapolation for si+1/2.

simply

si+1/2 − si = ms(ξi+1/2 − ξi). (5.72)

Using the cell-centered values, ms = (si − si−1)/∆ξ = si − si−1 and ξi+1/2 − ξi =

∆ξ/2 = 1/2, since ∆ξ ≡ 1. This leads to

si+1/2 = si +
1

2
(si − si−1). (5.73)

The general second-order scheme can be derived as follows [40]: the flux at a cell

center can be divided into contributions from waves travelling along positive and

negative characteristics

f̂i = f̂−i + f̂+i . (5.74)
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One way of obtaining a higher-order flux at the interface i + 1/2 is to linearly ex-

trapolate fluxes from positive (rightward travelling) characteristics using cells i and

i− 1,

f̂+b
i+1/2 = f̂+i +

1

2
(̂f+i − f̂+i−1), (5.75)

while linearly extrapolating fluxes from negative (leftward travelling) characteristics

using cells i+ 1 and i+ 2,

f̂−f
i+1/2 = f̂−i+1 −

1

2
(̂f−i+2 − f̂−i+1). (5.76)

The second-order flux at the interface is then (from Eqs. (5.74))

¯̄f
(2)

i+1/2 = f̂−f
i+1/2 + f̂+b

i+1/2

= f̂−i+1 + f̂+i − 1

2
(̂f−i+2 − f̂−i+1) +

1

2
(̂f+i − f̂+i−1) (5.77)

To relate this to the first-order scheme, the differences in the positive and negative

fluxes can be defined as the difference between a first-order numerical flux and the

physical flux

¯̄f
(1)

i+1/2 − f̂i = f̂−i+1 − f̂−i , (5.78)

f̂i − ¯̄f
(1)

i−1/2 = f̂+i − f̂+i−1. (5.79)

Using Eqs. (5.78) and (5.79) in Eqs. (5.77) results in

¯̄f
(2)

i+1/2 =
¯̄f
(1)

i+1/2 +
1

2
(̂fi+1 − ¯̄f

(1)

i+3/2) +
1

2
(̂fi − ¯̄f

(1)

i−1/2). (5.80)

The second-order flux using Roe’s first-order flux is simply

¯̄f
(2)

i+1/2 =
¯̄f i+1/2 +

1

2
(̂fi+1 − ¯̄f i+3/2) +

1

2
(̂fi − ¯̄f i−1/2), (5.81)

which can be written as

¯̄f
(2)

i+1/2 = ¯̄f i+1/2 +
1

2
[(
∑

¯̄λm>0

αm
¯̄λm¯̄rm)i−1/2 − (

∑

¯̄λm<0

αm
¯̄λm¯̄rm)i+3/2],

= ¯̄f i+1/2 +
1

2
[

N∑

m=1

df̂ m+
i−1/2 −

N∑

m=1

df̂ m−
i+3/2] (5.82)
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using Eqs. (5.48) and (5.49). Thus, the second-order interface flux can be seen to be

the first-order flux plus corrections from the surrounding flux values.

Unfortunately, replacing the first-order flux terms in Eqs. (5.71) with the second-

order flux as defined by Eqs. (5.82) results in solutions that have unphysical oscil-

lations near discontinuities [40]. This is a general property of linear, second-order

upwind schemes [26]. One approach for avoiding this behavior is to “limit” the

schemes in such a way as to make them only first-order accurate near discontinuities,

while remaining second-order accurate in smooth regions of the flow. This is the

general approach for so-called high resolution methods [50], which have second-order

accuracy in smooth regions of the flow and resolve discontinuities crisply and without

oscillations.

Hirsch [40] contains a fairly complete review of the basis for high resolution meth-

ods; what follows is a brief synopsis of the underlying ideas as presented by Hirsch. It

can be shown in one dimension that physical solutions of the Euler and Navier-Stokes

equations do not admit new extrema in the evolution of the flow; this is thought to be

true of multidimensional flows also. Thus, physical solutions of the conservation equa-

tions are monotone, and therefore numerical approximations to the solutions should

also be monotone. Godunov [31], however, showed that monotone linear schemes are

at most first-order accurate. This is a severe restriction, since first-order schemes are

very dissipative and have solutions with very smeared shocks. This suggests that in

order to achieve higher accuracy, the numerical scheme must use nonlinear limiting.

A less restrictive criteria than monotonicity is based on the solutions of a scalar,

one-dimensional conservation law: any physical solution has the property that its

total variation

TV(q) =
∫ ∣∣∣∣∣

∂q

∂ξ

∣∣∣∣∣ dξ, (5.83)

does not increase with time. For a discrete solution, the total variation can be ex-

72



pressed as

TV(q) =
∑

m

|qnm+1 − qnm|, (5.84)

and a numerical scheme is described as total variation diminishing (TVD) if

TV(qn+1) ≤ TV(qn). (5.85)

A scheme is described as monotonicity preserving if in the evolution of the solution no

new local extrema are created, and a local minimum or maximum is non-decreasing

or non-increasing, respectively. Put another way, if qn is monotone, then qn+1 will

also be monotone. The monotonicity and TVD property are related in the following

way: all monotone schemes are TVD, and all TVD schemes are monotonicity pre-

serving. As alluded to above, a scheme can be made TVD by using limiting functions

(“limiters”) to reduce to first-order accuracy near discontinuities. For linear limiters

(and thus a linear scheme), monotonicity preservation leads to the same conditions

as monotonicity, and thus the scheme is first-order accurate. This does not apply

to nonlinear schemes, however. Thus, if a second-order scheme can be made TVD

using nonlinear limiters, it will be monotonicity preserving and remain higher-order

in smooth regions of the flow. Since the initial data for the scheme can be specified as

monotone, any resulting solution will be monotone and (presumably) physically cor-

rect. This presumes that the scheme satisfies the entropy condition, which is the last

criteria for a high resolution scheme. In fact, for the case of an rarefaction through

a sonic point, Roe’s scheme does not satisfy the entropy condition and a correction

must be included [40]. Except for a one-dimensional test case, the problems studied

in this research did not have any rarefactions of this type, so the correction was not

included in the general two-dimensional code.

Chakravarthy and Osher [17] have determined a “TVD” form of Eqs. (5.82). They

note that the TVD property can so far only be rigorously proven for scalar equations

or systems of linear equations in one (spatial) dimension. Their TVD formulation of
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Eqs. (5.82) is

¯̄f
(2)

i+1/2 =
¯̄f i+1/2 +

1

2
[

N∑

m=1

df̆ m+
i−1/2 −

N∑

m=1

d˘̆f
m−

i+3/2], (5.86)

where df̆ and d˘̆f may now be limited based upon neighboring values. The limited

flux increments are defined as follows:

df̆ m+
i−1/2 = σ̆m+

i−1/2(¯̄rm)i+1/2, (5.87)

d˘̆f
m−

i+3/2 = ˘̆σ
m−
i+3/2(¯̄rm)i+1/2, (5.88)

where

σ̆m+
i−1/2 = L[σm+

i−1/2, σ
m+
i+1/2], (5.89)

˘̆σ
m−
i+3/2 = L[σm−

i+3/2, σ
m−
i+1/2], (5.90)

and

σm±
i+1/2 = (αm

¯̄λm±)i+1/2. (5.91)

The L[] indicates a nonlinear limiting function, and ¯̄λm± indicates eigenvalues with

positive or negative signs, respectively. The choice of a limiting function is not unique;

Whitfield [84] suggests one of the following:

Superbee : L[a, b] = sign(a)max{0,min[|a|,ψb sign(a)],min[ψ|a|, b sign(a)]}

where 1 ≤ ψ ≤ 2, (5.92)

van Leer : L[a, b] =
ab+ |ab|
a+ b

. (5.93)

In the next chapter the Riemann problem was used to differentiate the solutions

obtained with the various limiters; based upon this the van Leer limiter was chosen

for the numerical studies.

The implementation of the second-order scheme remains the same, except the

first-order fluxes are simply replaced by their second-order counterparts:

q̂n+1
i = q̂n

i −
∆τ

∆ξ
(̄̄f

(2)n

i+1/2 − ¯̄f
(2)n

i−1/2). (5.94)
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For both the first and second order schemes, the time step is determined by the

restriction that Roe’s approximate Riemann solution does not account for the inter-

action of multiple Riemann problems. Thus, the time step must be chosen such that

the Riemann problems at neighboring cell interfaces do not interact. This can be

done by basing the time step on the time it takes for the fastest wave in the domain

to cross half of a computational cell. Since the waves propagate with a speed equal

to the magnitude of the eigenvalues, and ∆ξ = ∆η ≡ 1

∆τ =
0.5

max[max(ki,j),max(li,j)]
. (5.95)

where

ki,j = [max(|¯̄λ1|, |¯̄λ2|, . . . , |¯̄λ5|)]i,j (5.96)

li,j = [max(|¯̄µ1|, |¯̄µ2|, . . . , |¯̄µ5|)]i,j (5.97)

In practice, to obtain a slightly more restrictive criteria, the following formulation

was used

∆τ =
0.5

max(m)
, (5.98)

where mi,j =
√
k2
i,j + l2i,j. Rearranging this

max(m)∆τ

∆ξ
= 0.5 = CFL, (5.99)

it is apparent that the left-hand side is the Courant-Friedrichs-Lewy (CFL) criteria.

Thus, the maximum attainable CFL number for this scheme is 0.5; typically a more

conservative estimate of CFL = 0.4 was used in the numerical studies.

Higher temporal accuracy may be achieved by using a two step procedure, in this

case a second-order Runge-Kutta scheme [65]. Basically, the solution is advanced a

half time step, and the resulting information is used to obtain an improved approxi-

mation to the solution over an entire time step. This is illustrated as follows:

q̂†
i = q̂n

i − 0.5
∆τ

∆ξ
(̄̄f

(2)n

i+1/2 − ¯̄f
(2)n

i−1/2) (5.100)

q̂n+1
i = q̂n

i −
∆τ

∆ξ
(̄̄f

(2) †
i+1/2 − ¯̄f

(2) †
i−1/2), (5.101)
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where ¯̄f
(2) †

is the second-order flux determined from the half time step solution, q̂†.

5.4 The Roe Scheme for the Reactive Euler Equa-
tions in a Two-Dimensional, Curvilinear Co-
ordinate System

The proceeding development was essentially for the one-dimensional Euler equations.

The following issues remain to be addressed in order to obtain solutions of the reactive

Euler equations: the scheme must be extended to more than one spatial dimension,

the source term in the reactive Euler equations must be incorporated into the scheme,

and lastly, inflow, outflow, and wall boundary conditions must be implemented in a

rational way.

Fortuitously, a method exists whereby the first and second issues may be ad-

dressed; it is commonly called fractional stepping [40, 50]. Instead of solving the

complete two-dimensional problem in one step, it is broken into a number of one-

dimensional problems in the respective coordinate directions. Each of these is then

solved one after another to arrive at the final solution. Thus, Eqs. (3.48) would

become

∂q̂

∂τ
+
∂f̂

∂ξ
= 0, (5.102)

∂q̂

∂τ
+
∂ĝ

∂η
= 0, (5.103)

∂q̂

∂τ
= ŵ. (5.104)

In the solution of the first two equations the chemistry is assumed to be frozen, and

thus Roe’s scheme can be applied directly for each direction. The Roe averaged

versions of the eigenvalue and eigenvector arrays (Eqs. (3.54, 3.55, 3.59)) would be

used for the solution of Eqs. (5.102), while the Roe averaged versions of Eqs. (3.60,

3.61, 3.62) would be used in the solution of Eqs. (5.103).
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Colella, et al. [20] suggest solving Eqs. (5.104) analytically. Writing out the indi-

vidual equations

d

dτ

(
ρ

J

)
= 0, (5.105)

d

dτ

(
ρu

J

)
= 0, (5.106)

d

dτ

(
ρv

J

)
= 0, (5.107)

d

dτ

(
ρE

J

)
= 0, (5.108)

d

dτ

(
ρY2

J

)
=

ρ

J
(1− Y2) e

−Θρ/p, (5.109)

it is apparent that ρ, u, v, and E are constant (J is constant for a fixed grid). Equation

(5.109) can be simplified by bringing ρ/J out of the derivative

dY2

dτ
= (1− Y2)e

−Θρ/p, (5.110)

which makes it apparent that the equation is separable and can be integrated directly

∫ dY2

1− Y2
=
∫
e−Θρ/pdτ. (5.111)

The left-hand side can be integrated to give

∫ Y n+1
2

Y n
2

dY2

1− Y2
= − log(1− Y2)

∣∣∣
Y n+1
2

Y n
2

= log

(
1− Y n

2

1− Y n+1
2

)

, (5.112)

and, assuming p remains constant over ∆τ , the right-hand side can be integrated to

∫ τn+1

τn
e−Θρ/pdτ = e−Θρn/pn∆τ. (5.113)

Setting Eq. (5.112) equal to Eq. (5.113) and solving for Y n+1
2 results in

Y n+1
2 = 1 + (Y n

2 − 1)e−∆τ exp(−Θρn/pn). (5.114)

The fractional stepping procedure can be written as follows: let L∆τ
ξ , L∆τ

η , and

L∆τ
Y be the solution operators for Eqs. (5.102, 5.103, 5.104), respectively, over time

∆τ . One fractional stepping scheme would be

q̂n+1 = L∆τ
Y L∆τ

η L∆τ
ξ q̂n. (5.115)
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Unfortunately, splitting the equations in this manner results in a scheme that has

only first-order temporal accuracy [50], i.e. even though each step of the solution

has second-order temporal accuracy (or better), the actual splitting has an error of

O(∆τ). Strang [75] found that the following type of splitting retained second-order

temporal accuracy:

q̂n+1 = L∆τ/2
ξ L∆τ/2

η L∆τ/2
Y L∆τ/2

Y L∆τ/2
η L∆τ/2

ξ q̂n. (5.116)

Since the time step restriction for each step of the solution is still ∆τ , Colella, et al.

[20] suggest the following for maximum efficiency:

q̂n+2 = L∆τ
ξ L∆τ

η L∆τ
Y L∆τ

Y L∆τ
η L∆τ

ξ q̂n. (5.117)

Thus, using the second-order Roe fluxes and the second-order Runge-Kutta time

stepping with the splitting procedure of Eqs. (5.117) results in a scheme with second-

order spatial and temporal accuracy in smooth regions of the flow.

The issue of boundary conditions is somewhat more difficult to address. Figure

5.8 indicates the types of boundary conditions needed for the various boundaries of

the computational space. The flow was considered to be entering the domain from

j
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wall or outflow boundary

wall boundary
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w
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Figure 5.8: Types of conditions required for the computational domain boundaries.

the left at the inflow boundary, and exiting the domain on the right at the outflow

boundary. The incoming flow was always supersonic, while the outgoing flow could

be either supersonic or subsonic. An impenetrable wall was considered to be along
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the bottom of the domain, while the top of the domain was treated as either a wall

or another outflow boundary.

To date, the best approach for handling inflow and outflow boundary conditions

is based on the characteristics of the one-dimensional form of the governing equa-

tions [58]. Essentially, the sign of the characteristics at the boundary determine the

direction in which information is physically propagating. For example, at the in-

flow boundary positive characteristics indicate that information is propagating into

the domain, while negative characteristics indicate information is propagating out

of the domain. Therefore, the boundary conditions that are used must adhere to

this physical mechanism. The inflow boundary is straightforward: all characteristics

are positive for supersonic inflow, therefore information is only propagating into the

domain. Numerically, this requires that all of the flow variables be specified at the

inflow boundary.

The right outflow boundary is less trivial. For a supersonic outflow, all character-

istics point out of the domain, while for a subsonic outflow four characteristics point

out and one points in. Physically this means that information is only propagating

out of the domain in a supersonic outflow, but both out of and into the domain for

a subsonic outflow. Numerically, a supersonic outflow requires that the variables at

the outflow boundary be entirely specified using quantities from within the domain.

The numerical condition for a subsonic outflow is very difficult, however, because it

requires information from outside the domain that is unknown (at least for the cases

studied in this research). Poinsot and Lele [58] suggest treating the outgoing waves

with the characteristic method of Thompson [76], and estimating the magnitude of

the incoming waves with a simple equation based upon pressure. The following de-

velopment is based upon this approach.

For the general, two-dimensional reactive (or inert) Euler equations, there is no

characteristic form directly analogous to a one-dimensional system (for example, Eqs.
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(5.19 or 5.21)). However, a reasonably close approximation suitable for determining

characteristically-based boundary conditions is possible. The vector conservative form

of the conservation equations (Eqs. (3.46)) may be written in the following form

M
∂p

∂τ
+G

∂p

∂ξ
+ Z

∂p

∂η
= ŵ, (5.118)

where p = [ρ, u, v, p, Y2]T is the vector of primitive variables, and M = ∂q̂/∂p,

G = ∂f̂/∂p, and Z = ∂ĝ/∂p are Jacobian matrices. The conservation equations in

terms of the primitive variables are then simply

∂p

∂τ
+H

∂p

∂ξ
+K

∂p

∂η
= b, (5.119)

where H = M−1G, K = M−1Z, and b = M−1ŵ. For the outflow boundary condition

desired, the ξ direction is of interest. Since

∂f̂

∂ξ
= G

∂p

∂ξ
, (5.120)

and G = MH, the conservative form of the equations (Eqs. (3.46)) may be written

∂q̂

∂τ
+MH

∂p

∂ξ
+
∂ĝ

∂η
= ŵ. (5.121)

The characteristic information is obtained by considering the eigenvalue problem

HY = Yζ, (5.122)

where, as before, Y is a right eigenvector array, and ζ is the diagonal array of eigen-

values. In fact, ζ has the same elements as λ, except they are in a different order.

Using this in Eqs. (5.121) results in

∂q̂

∂τ
+MY(ζY−1∂p

∂ξ
) +

∂ĝ

∂η
= ŵ. (5.123)

Defining

P = ζY−1∂p

∂ξ
, (5.124)
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and examining the form of its terms more closely

Pi = ζi
5∑

m=1

Y−1
i,m

∂pm
∂ξ

, (5.125)

it is apparent that each eigenvalue multiplies the sum of the ξ derivatives and their

coefficients (note: there are no derivatives in the components of Y−1). The outflow

boundary variables are then calculated as follows: for each ζi > 0, Pi is calculated

from Eq. (5.125) using upwind differencing for the derivatives; for the one possible

ζi < 0, Pi is estimated by

Pi = K(p− p∞), (5.126)

where p∞ is a constant far-field pressure, and K is a constant. For the cases studied

here, p∞ = p0, the freestream pressure. The Pi are then used in Eqs. (5.123), which

are solved using the same technique as the points on the interior of the domain. For

the method employed here, Eqs. (5.102) was solved using second-order upwind fi-

nite differencing for the spatial term, and explicit Euler time differencing. Equations

(5.103 and 5.104) were solved as described previously. If the top of the computa-

tional domain (see Fig. 5.8) is considered an outflow boundary, ∂ĝ/∂η is replaced by

MK(∂p/∂η) in Eqs. (3.46) and the same type of analysis applied.

The remaining boundary conditions to be determined lie along the top and bottom

of the domain. For the case of a solid wall at this boundary, Fig. (5.9) illustrates one

of the computational cells. The standard wall condition for inviscid equations is flow

tangency, i.e. there is no flow through the wall. In the curvilinear coordinate system

this results in V c = 0 at the wall. The numerical method requires the flux at the

wall, which would be

ĝi,j−1/2 = J−1





ρV c

ρuV c + ηxp
ρvV c + ηyp
ρHV c − ηtp
ρY2V c





i,j−1/2

= J−1





0
ηxp
ηyp
0
0





i,j−1/2

, (5.127)

from the definition of ĝ (recall that ηt = 0). Unfortunately, the value of p is only

81



jwall boundary

gi,j+1/2

fi-1/2,j

gi,j-1/2

fi+1/2,j
^

^

^

^

qi,j
^

Figure 5.9: Schematic of wall boundary computational cell.

determined at the cell center. The most straightforward form of the boundary con-

dition would be to take pi,j−1/2 = pi,j. This, however, leads to severe overshoots near

shocks and rarefactions for the cell-centered flow variables along the wall.

A better, more stable approach utilizing one-dimensional Riemann invariants was

suggested by Dadone and Grossman [23]. Consider the one-dimensional, nonreactive

form of Eqs. (5.119)
∂p

∂τ
+K

∂p

∂η
= 0. (5.128)

Using the eigenvalue problem (in this case κ has the same elements as µ, except in

a different order)

KX = Xκ, (5.129)

this can be written in characteristic form

X−1∂p

∂τ
+ κX−1∂p

∂η
= 0. (5.130)

The fifth equation in this system is

ηx
∂u

∂τ
+ ηy

∂v

∂τ
−

√
η2x + η2y

ρc

∂p

∂τ
+ (V c − c

√
η2x + η2y)



ηx
∂u

∂η
+ ηy

∂v

∂η
−

√
η2x + η2y

ρc

∂p

∂η



 = 0.

(5.131)

Along dη/dτ = V c − c
√
η2x + η2y this reduces to

ηx
du

dτ
+ ηy

dv

dτ
−

√
η2x + η2y

ρc

dp

dτ
= 0, (5.132)
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or

ηxdu+ ηudv −

√
η2x + η2y

ρc
dp = 0, (5.133)

which can be further simplified to

dV c −

√
η2x + η2y

ρc
dp = 0. (5.134)

This is one of the Riemann invariants; a second Riemann invariant along dη/dτ =

V c + c
√
η2x + η2y can be obtained from the fourth equation of Eqs. (5.130):

dV c +

√
η2x + η2y

ρc
dp = 0. (5.135)

At this point it is assumed the “downward” travelling characteristic from the cell

center (dη/dτ = V c − c
√
η2x + η2y < 0 since V c is small near the wall) intersects with

the wall at (i, j − 1/2). Thus, Eq. (5.134) holds, and can be approximated by

(V c
i,j − V c

i,j−1/2)−





√
η2x + η2y

ρc





i,j

(pi,j − pi,j−1/2) = 0. (5.136)

This can be solved to estimate the pressure at the wall

pi,j−1/2 = pi,j −


 V cρc
√
η2x + η2y





i,j

, (5.137)

since all quantities at (i, j) are known. For the case in which the top boundary of the

computational domain is considered a wall, Eq. (5.135) would hold and the estimated

wall pressure would be

pi,j+1/2 = pi,j +



 V cρc
√
η2x + η2y





i,j

. (5.138)
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Chapter 6

VERIFICATION OF
NUMERICAL ALGORITHM

This chapter will present the results obtained for various one- and two-dimensional

test problems used to verify the accuracy of the numerical algorithm. The following

test cases were considered: the Riemann problem, steady and unsteady ZND det-

onations, inert supersonic flow over a wedge, and the straight wall, curved oblique

detonation problem of Powers and Stewart [63]. Of the four test cases considered, only

the unsteady ZND detonation has no known analytical solution; it has been studied

extensively in the literature, however, so detailed numerical solutions are available.

6.1 Riemann Problem

Figures 6.1, 6.2, and 6.3 show comparisons of the the first- and second-order Roe

scheme solutions with the exact Riemann solution. All solutions here and in the rest

of this section used a common equally spaced grid of 200 points and CFL = 0.4. All of

the numerical studies here and in the remainder of the dissertation were performed on

IBM RS/6000 workstations. Because of the contact discontinuity and the shock, the

density solution is the hardest for the scheme to resolve. The first-order scheme can

be seen to be very dissipative, smearing the contact discontinuity rather severely, and

to a lesser degree, the shock. It does not, however, show any evidence of unphysical

oscillations near either discontinuity. The solutions for velocity and pressure show
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Figure 6.1: Comparison of Roe scheme solutions with the exact density solution of
the Riemann problem (p̃l/p̃r = 10, ρ̃l/ρ̃r = 8, ũl = ũr = 0 m/s, γ = 1.4, t̃ = 0.0061 s,
x̃diaphragm = 0 m, x̃max = 5 m).

the same behavior for the first-order scheme.

As expected, the second-order solution (using the van Leer limiter) is much more

accurate. The contact discontinuity and shock both exhibit much steeper profiles.

Though it is not apparent from this line plot, the shock was resolved in approximately

3 points and the contact discontinuity in 6 points. For the first-order scheme these

figures were approximately 13 and 30, respectively. Similar improvements are seen

in the velocity and pressure plots. The limiting functions work very well; there are

no apparent oscillations in the second-order solution. Overall, the slight increase in

computational effort required to obtain the second-order results is easily offset by the

significant improvement in the solution.

For completeness, Fig. 6.4 shows the solutions obtained for a Riemann problem

with much larger initial pressure and density ratios. In this case there is an expansion

through a sonic point, and a correction must be added to both the first- and second-
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Figure 6.2: Comparison of Roe scheme solutions with the exact velocity solution of
the Riemann problem (p̃l/p̃r = 10, ρ̃l/ρ̃r = 8, ũl = ũr = 0 m/s, γ = 1.4, t̃ = 0.0061 s,
x̃diaphragm = 0 m, x̃max = 5 m).

order Roe schemes. The following correction suggested by Harten and Hyman [36]

was used:

|¯̄λm|mod =






|¯̄λm|i+1/2 if |¯̄λm|i+1/2 ≥ ε

ε if |¯̄λm|i+1/2 < ε

(6.1)

where

ε = max{0, [(¯̄λm)i+1/2 − (λm)i][(λm)i+1 − (¯̄λm)i+1/2]}. (6.2)

This is described as introducing a local expansion fan in the approximate Riemann

solution when a rarefaction through a sonic point is detected [40]. As can be seen in

the figure, the correction works very well; there is no detrimental effect on either the

first- or second-order solution.

Figure 6.5 shows a comparison of the second-order scheme using the van Leer

and Superbee limiters. Three different values of the parameter ψ were used with

the Superbee limiter. Through the expansion region and the shock, both limiters
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Figure 6.3: Comparison of Roe scheme solutions with the exact pressure solution of
the Riemann problem (p̃l/p̃r = 10, ρ̃l/ρ̃r = 8, ũl = ũr = 0 m/s, γ = 1.4, t̃ = 0.0061 s,
x̃diaphragm = 0 m, x̃max = 5 m).

resulted in nearly identical solutions regardless of the value chosen for ψ. Through

the contact discontinuity and at the beginning of the expansion region the solutions

differ slightly. Figure 6.6 shows an expanded view of the contact discontinuity and

shock of Fig. 6.5. The solution obtained using the Superbee limiter with ψ = 2.0

is the best, and the solution for ψ = 1.0 is the worst; the van Leer limited solution

falls in between. Overall, the solutions obtained with both limiters are quite good.

In terms of complexity (see Eqs. (5.92) and (5.93)), the Superbee limiter has a much

higher operation count than the van Leer limiter. Since the limiter is used in the

innermost loop of the program, a significantly higher operation count could result in

significantly longer run times for the simulation, particularly for large two-dimensional

problems. For this reason, and the fact that the van Leer limited solution is only

slightly worse than the best Superbee limited solution, the van Leer limiter was used

for the remainder of the study.
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Figure 6.4: Comparison of Roe scheme solutions with the exact density solution of the
Riemann problem (p̃l/p̃r = 100, ρ̃l/ρ̃r = 100, ũl = ũr = 0 m/s, γ = 1.4, t̃ = 0.0039 s,
x̃diaphragm = 0 m, x̃max = 5 m).

Since an exact Riemann solution was known, a measurement was made of the

actual spatial order of accuracy of the scheme. The error of the numerical solution is

proportional to the truncation error of the scheme

e1 ∝ (∆ξ)n, (6.3)

where e1 is the fractional error defined in Eq. (4.49), and n = 2 for a second-order

scheme. The actual value of n can be determined by considering the log of this

equation

log e1 ∝ n log∆ξ, (6.4)

which indicates that the slope of a line on a plot of log e1 vs log∆ξ is the actual order

of accuracy of the scheme. Figure 6.7 shows the results obtained for the (nominally)

first- and second-order Roe schemes as ∆ξ was made increasingly smaller. In this

case ∆ξ is proportional to the inverse of the number of grid points (1/N), since the
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Figure 6.5: Comparison of 2nd order Roe scheme solutions using different limiters
with the exact density solution for the Riemann problem (p̃l/p̃r = 10, ρ̃l/ρ̃r = 8,
ũl = ũr = 0 m/s, γ = 1.4, t̃ = 0.0061 s, x̃diaphragm = 0 m, x̃max = 5 m).

grid spacing is uniform. The slope of the least-squares fitted lines through the data

are indicated on the graph. Obviously, neither the first nor the second-order solution

lives up to expectations. The much lower than expected accuracy of the second-

order scheme is likely the result of limiting the scheme to the first-order algorithm

near discontinuities. The error at the discontinuity then overwhelms the error in

the remainder of the solution. This type of behavior was noted by Woodward and

Colella [86] when they considered a number of different schemes applied to a one-

dimensional, non-linear problem. In fact, the value of n for their best second-order

(Godunov-based) scheme did not pass 1 either.
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Figure 6.6: Enlarged view of the contact and shock discontinuities in the comparison
of the 2nd order Roe scheme solutions. (p̃l/p̃r = 10, ρ̃l/ρ̃r = 8, ũl = ũr = 0 m/s,
γ = 1.4, t̃ = 0.0061 s, x̃diaphragm = 0 m, x̃max = 5 m)
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Figure 6.7: Measured order of accuracy for the first- and second-order Roe schemes
using the exact Riemann solution as a basis.
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6.2 One-dimensional Detonations

As previously discussed, one-dimensional detonations predicted by the model of Ch. 3

are known to be unstable for certain values of heat release and activation energy. The

linear stability boundaries for these detonations are well known [47], and a number

of researchers have numerically determined the unsteady solutions [28, 9]. Bourlioux,

et al. [9] performed a detailed study of such unsteady detonations, and showed that

they provide a stringent test of a numerical algorithm’s capability to accurately de-

termine unsteady phenomena in reacting systems. In particular, because the linear

stability characteristics of these detonations are known, it is straightforward to deter-

mine whether a given numerical solution is correctly predicting steady or unsteady

behavior.

The second-order algorithm was tested by starting with the exact “steady” ZND

solution of Ch. 4. An equally spaced one-dimensional grid was constructed, and

the desired exact solution written on the left end of the grid; the remaining cell

centers were initialized to the quiescent conditions ahead of the detonation. The

calculations were then started, and the detonation would travel from the left side

of the grid towards the right side. During the calculation the leftmost boundary

fluxes were held constant at the end state conditions of the exact steady solution.

The rightmost boundary fluxes were set to the quiescent values; the calculation was

always terminated before the detonation reached this boundary, so it had no effect

upon the solution.

6.2.1 Unsteady Solutions

The linear stability results indicate that for a nondimensional activation energy Ēa =

Ẽaρ̃0/p̃0 = 50, nondimensional heat release q̄ = 50, and γ = 1.2, ZND detonations

with an overdrive ratio f > 1.73 are stable, while those with f < 1.73 are unstable.

Bourlioux, et al. reported detailed results for f = 1.6 and 1.8 using a higher-order
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Godunov method with a front tracking, adaptive mesh algorithm. Their predictions

of unsteady peak pressure for f = 1.6 compare favorably with those obtained using

the second-order Roe scheme (see Fig. 6.8). The peak pressure is simply the maximum
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Figure 6.8: Unsteady detonation peak pressures (f = 1.6, CFL = 0.4, 14 points L̃1/2).

pressure of the detonation at a given instant, and is a good indicator of the time-

dependent nature of the detonation. The solution exhibits regular oscillations in the

peak pressure, and thus the detonation is indeed unsteady. For reference, the peak

pressure of the exact ZND solution is also shown; the unsteady detonation exhibits

peaks more than 50% higher than the steady solution. The time scales were chosen for

direct comparison with [9]; t̃1/2 is the dimensional time required for a fluid particle

to cross the dimensional half reaction zone length (L̃1/2). The half reaction zone

length is defined as the distance between the detonation front and the point at which

the reaction is halfway to completion. An important criteria in these studies is the

number of computational points within the half reaction zone length; the more points
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there are, the more resolved the reaction zone structure is. In this case, there were

14 points per L̃1/2, and 8000 total computational points.

For this case Bourlioux, et al. obtained a nearly identical plot with maximum peak

pressures in the range of 100.6-102.7, and periods of oscillation in the range 7.4-7.5.

As indicated in the figure, the peak values are nearly 100, and the periods are very

close at 7.57. Figure 6.9 shows the results of doubling the number of grid points.
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Figure 6.9: Unsteady detonation peak pressures (f = 1.6, CFL = 0.4, 27 points L̃1/2).

Overall, the plot appears nearly identical to Fig. 6.8, except that the peak has moved

slightly higher to 98.0, and the period has decreased slightly to 7.46. Thus, even

better agreement with Bourlioux, et al. was obtained. Fourteen and 27 points per

L̃1/2 is not unreasonable; in comparison, Bourlioux, et al. used 20 points per L̃1/2.

Figures 6.8 and 6.9 do exhibit one apparent artifact of the scheme. This is partic-

ularly noticeable in the transition region of each plot (t̃/t̃1/2 < 20), where portions of

the peak pressure curve appear somewhat thicker. A closer inspection revealed these
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to be slight changes in the peak pressure as the detonation front moved from cell to

cell during the simulation. Reducing the CFL number lessened this effect somewhat,

but did not seem to eliminate it entirely (see Fig. 6.10). As will be shown in the
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Figure 6.10: Unsteady detonation peak pressures (f = 1.6, CFL = 0.35, 27 points
L̃1/2).

following discussion, however, this artifact did not seem to have any effect on the

schemes ability to correctly predict stable and unstable detonation solutions.

In order to more fully evaluate the scheme, a case closer to the stability boundary

was studied. Figures 6.11 and 6.12 show the results for f = 1.72, which is slightly

within the unstable regime. For 5 points per L̃1/2 the solution oscillates regularly

with a very slightly decreasing amplitude as time progresses. Doubling the num-

ber of points results in the solution oscillating with increasing magnitude as time

progresses. Thus, the correct unstable behavior is predicted even very close to the

stability boundary.
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Figure 6.11: Unsteady detonation peak pressures (f = 1.72, CFL = 0.4, 5 points
L̃1/2).
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Figure 6.12: Unsteady detonation peak pressures (f = 1.72, CFL = 0.4, 10 points
L̃1/2).
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6.2.2 Steady Solutions

Figure 6.13 shows a solution obtained in the steady regime (f = 1.8) using 9 and

18 points per L̃1/2. As expected, the initial transients are damped, and the solutions
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Figure 6.13: Steady detonation peak pressures (f = 1.8, CFL = 0.4).

asymptotically approach a steady peak pressure. For linearly stable cases the steady

peak pressure should equal that of the exact ZND solution; increasing the number

of points in the half reaction zone length resulted in the solutions more closely ap-

proaching this value. As before, a case closer to the stability boundary was considered.

Figure 6.14 shows the results obtained slightly within the stable regime (f = 1.74). In

this case using 5 and 20 points per L̃1/2 led to solutions that are slowly approaching

a steady value close to the expected value.

Finally, as was done using the exact Riemann solution, the order of accuracy of

the scheme was determined using the exact ZND solution at f = 1.8 (see Fig. 6.15).

In this case only the portions of the solutions near the wave front were compared due

to the initial transients in the numerical solution. As before, the indicated order of
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Figure 6.14: Steady detonation peak pressures (f = 1.74, CFL = 0.4).

accuracy is around 1; in this case the fit to the points is not nearly as good as in Fig.

6.7. The poor fit is likely a result of the ambiguity in “lining up” the final numerical

solution with the exact solution for the comparison.

Overall, when an adequate number of points within the half reaction zone length

is used, the second-order Roe scheme is capable of obtaining the correct steady and

unsteady features of a one-dimensional reactive flow.
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Figure 6.15: Measured order of accuracy for the second-order Roe scheme using the
exact ZND solution as a basis (f = 1.8).
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6.3 Inert Supersonic Flow over a Wedge

The numerical method was tested in two dimensions by considering inert supersonic

flow over a wedge. This flow is characterized by oblique shock waves whose strength

and angle can be determined exactly using a Rankine-Hugoniot analysis. A program

was written to generate smooth, somewhat orthogonal, clustered computational grids

over arbitrary shapes. Figure 6.16 indicates the computational mesh generated for this

problem: the wedge angle is θ = 20◦; there are 49 cell centers in each direction; and

the mesh has been clustered somewhat near the wedge surface. Following common
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Figure 6.16: Computational grid of cell centers used for 20◦ wedge.

convention, the grid points in the x direction are numbered i = 1, 2, . . . , 49, while

those in the y direction are numbered j = 1, 2, . . . , 49. This grid was used for all of

the following cases with CFL = 0.4.
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Figure 6.17 indicates the pressure and velocity vector solution obtained for a

freestream Mach number of M0 = 10. In this case the shock exits through the rear

of the domain, so the outflow condition at the top of the domain does not affect the

solution. As expected, the plots indicate a sharp pressure and velocity discontinuity at

the shock. The measured shock angle is 25◦±1◦, which compares well with the exact

value of 25.8◦. The effect of the rear outflow condition can be seen in the slight tilting

of the pressure contours at the exit of the domain. A few extraneous contours in the

region after the shock indicate the pressure is not quite constant at the post-shock

pressure. The tangency of the velocity vectors at the wall indicates the slip condition

is being enforced by the wall boundary condition. Figure 6.18 shows a comparison

between the numerical and exact density solutions along various j = constant grid

lines. In this and the following cases, the exact solution was written on the same

computation grid as the numerical solution. This is a more realistic portrayal of the

actual “best” solution that can be obtained for a given grid. Along each gridline the

numerical solution captures the shock in only 4 to 5 points, which is not much worse

than the scheme in one dimension. The worst agreement appears in the j = 1 and

j = 3 gridlines, where j = 1 is the row of cell centers nearest the wall. Along j = 1

the solution initially overshoots the exact solution, and then follows it more closely

farther downstream. Along j = 3 the solution undershoots the exact solution, and

then remains below it downstream. The solutions farther from the wall do not seem

to have this problem, though they do drop below the exact solution downstream of

the shock. The overshoot is likely a result of the discontinuity in the grid at the

wedge tip. The solutions at each grid line also exhibit slight oscillations, indicating

that the extension to two dimensions has not entirely preserved the TVD nature of

the one-dimensional scheme. Figure 6.19 is the same type of plot for the v component

of the velocity. In this case the agreement is even better; the v component shows no

over- or undershoots, but does oscillate slightly. Though not shown, the behavior of
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the u component solution is nearly identical to that of the v component. Lastly, Fig.

6.20 compares the pressure solutions. In this case there is a slight overshoot along

the j = 1 gridline, but otherwise the agreement between the numerical and exact

solutions is very good.

To get an idea of how well this scheme converged to a steady solution, Fig. 6.21

shows the density and u velocity component residuals as the solution progressed. The

residuals are defined as follows

Υres =

∑imax
i=1

∑jmax
j=1 |Υn+2

i,j −Υn
i,j|

N
, (6.5)

where Υ represents the variable of interest, and N is the total number of cells in the

grid. Thus, the residual is basically the average difference between the variable at

the old and new time step (the value at n+ 2 is used due to the splitting method of

Eqs. (5.117)). Ideally, the residuals would decrease to a machine zero of 10−15 for a

steady problem. Realistically, this does not always happen. As the figure indicates,

the residuals decreased about two orders of magnitude before leveling out. At this

point the solution was no longer changing. Slightly different grids resulted in different

levels of convergence, but the overall solution would change very little.
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Figure 6.17: Pressure contours and velocity vectors for M0 = 10.
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Figure 6.18: Comparison of numerical and exact density solutions along j = constant
gridlines for M0 = 10.
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Figure 6.19: Comparison of numerical and exact v velocity component solutions along
j = constant gridlines for M0 = 10.
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Figure 6.20: Comparison of numerical and exact pressure solutions along j = constant
gridlines for M0 = 10.
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Figure 6.21: Residual histories of density and u component of velocity for M0 = 10.
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In order to evaluate the subsonic outflow condition discussed in Ch. 5, the free-

stream Mach number was lowered such that the shock would exit through the top of

the computational domain (M0 = 2). In this case, one characteristic is entering the

top of the domain from outside, and Eq. 5.126 is needed to estimate its magnitude.

The value of the constant K in the equation will be determined by the solution that

best matches the exact solution. Ideally, there should be no reflections from the top

of the domain, and the flow state following the shock should be constant and equal

to the exact solution. Figure 6.22 shows pressure and velocity solutions obtained for

K = 0.0. This is Thompson’s [76] nonreflective boundary condition; the magnitude of

any incoming waves is set equal to zero. As is very apparent in both figures, this leads

to large reflections from the boundary. In fact, a shock appears to be propagating

upstream into the domain, which is obviously opposite to the desired behavior. The

inadequacy of this value of K is not entirely unexpected, however, since it ignores the

actual physical propagation of information into the domain from above

Figure 6.23 shows the same information when K = 0.025. In this case there

is a different type of reflection. The pressure after some distance downstream of

the shock is decreasing slowly to an intermediate state between the freestream and

shocked pressure. The region between the reflection and the shock is at the correct

shocked pressure, however, and the reflection is stationary. The velocity vectors at

the boundary appear to have the correct magnitude and direction at the boundary,

but it is difficult to determine from this figure. Figures 6.24, 6.25, 6.26, and 6.27,

compare the solutions for ρ, p, u, and v with the exact solutions along j = constant

grid lines. In this case the row of cell centers along the top of the domain is shown

(j = 49). Unlike the case of M0 = 10, the density nearest the wall is consistently

less than the exact solution. Along interior grid lines the density follows the exact

solution fairly well to a point, and then begins to decrease to an intermediate density.

The point at which the decrease begins moves closer to the shock as the top of the
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domain is approached. Along the topmost grid line the density slightly overshoots the

exact value, and then immediately begins to decrease. For the pressure solution, the

comparison is much better. There is a good region of agreement between the exact

and numerical solutions for all but the last grid line. Along j = 49 the numerical

solution is shocked to the correct value, and then immediately begins to decrease.

The u component of velocity follows a pattern similar to the density. It is initially

shocked to a value lower than the exact solution along j = 1 and for some distance

downstream, and then begins to increase. Along interior grid lines the numerical

and exact solutions have relatively good agreement for a given distance, and then

the numerical solution begins to increase. Along the topmost gridline, the numerical

solution is shocked to a value above the exact solution, and immediately begins to

increase. Lastly, the v component of velocity is similar to ρ and u in that there are

regions of good agreement along the interior j = constant lines, with discrepancies

along the wall and the topmost gridline.
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Figure 6.22: Pressure contours and velocity vectors for M0 = 2 and K = 0.0.
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Figure 6.23: Pressure contours and velocity vectors for M0 = 2 and K = 0.025.
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Figure 6.24: Comparison of numerical and exact density solutions along j = constant
gridlines for M0 = 2 and K = 0.025.
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Figure 6.25: Comparison of numerical and exact pressure solutions along j = constant
gridlines for M0 = 2 and K = 0.025.
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Figure 6.26: Comparison of numerical and exact u velocity component solutions along
j = constant gridlines for M0 = 2 and K = 0.025.
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Figure 6.27: Comparison of numerical and exact v velocity component solutions along
j = constant gridlines for M0 = 2 and K = 0.025.
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Figures 6.28, 6.29, 6.30, 6.32, and 6.31 show the same types of data obtained for

K = 0.035. The main change in the solutions from K = 0.025 to K = 0.035 is that

the increase (or decrease, as the case may be) of the variables through the reflection

region is larger. For K somewhat less than 0.025, the opposite behavior occurred.

However, along the j = 49 grid line, the density and pressure solutions both begin to

overshoot the exact values at the shock. For a reactive flow, these two variables drive

the reaction through the right-hand side of Eq. 3.22. Overshoots in their shocked

values at the boundary could result in an increased reaction rate, which would lead

to the undesirable situation in which the boundary condition is forcing the reaction

to proceed. Based upon this, K = 0.025 was chosen as the optimal value to use in

the remaining numerical studies.
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Figure 6.28: Pressure contours and velocity vectors for M0 = 2 and K = 0.035.
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Figure 6.29: Comparison of numerical and exact density solutions along j = constant
gridlines for M0 = 2 and K = 0.035.

117



500 1000 1500

0.3

0.4

0.5

0.6

0.7

x

numerical
exact

j=1

p

500 1000 1500

0.3

0.4

0.5

0.6

0.7

xx

numerical
exact

j=3

p

500 1000 1500

0.3

0.4

0.5

0.6

0.7

xx

numerical
exact

j=15

p

500 1000 1500

0.3

0.4

0.5

0.6

0.7

xx

numerical
exact

j=5

p

500 1000 1500

0.3

0.4

0.5

0.6

0.7

xx

numerical
exact

p

j=49

500 1000 1500

0.3

0.4

0.5

0.6

0.7

xx

numerical
exact

p

j=30

Figure 6.30: Comparison of numerical and exact pressure solutions along j = constant
gridlines for M0 = 2 and K = 0.035.
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Figure 6.31: Comparison of numerical and exact v velocity component solutions along
j = constant gridlines for M0 = 2 and K = 0.035.
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Figure 6.32: Comparison of numerical and exact u velocity component solutions along
j = constant gridlines for M0 = 2 and K = 0.035.
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The chosen value of K was further evaluated by considering a second case in

which the shock exits through the top of the computational domain: M0 = 4. Figure

6.33 shows the pressure contours and velocity vectors obtained for this case. It is

immediately apparent in the pressure contours that the reflection due to the boundary

condition is much more localized than in the case of M0 = 2. As before, the velocity

vectors would seem to indicate the correct outflow at the boundary. Figures 6.34,

6.35, 6.36, and 6.37 show the comparisons with the exact solution for ρ, p, u and v,

respectively. In each case the agreement with the exact solution is very good for

all of the j = constant grid lines except the last. Along j = 49 the previously seen

behavior of the numerical solutions for ρ, p, and v reappear; the numerical solution

for u, however, maintains excellent agreement with the exact solution. Apparently,

the higher velocity of the flow at M0 = 4 acts to reduce the range of influence of the

outflow boundary condition.

As was done with the one-dimensional Riemann solutions, the average error over

the entire grid of the two-dimensional oblique shock solutions was determined on a

number of increasingly finer grids to ascertain the actual spatial order of accuracy of

the scheme. The results are shown in Fig. 6.38 for M0 = 4 and K = 0.025. As before,

the actual order of accuracy of the second-order scheme is slightly less than one. This

indicates that extending the scheme to two dimensions via fractional stepping, as

well as using the outflow boundary condition along the top of the domain, did not

adversely effect the spatial accuracy of the scheme.

Overall, the extension of the Roe scheme to two dimensions via operator splitting

resulted in essentially the correct inert shock solutions.

121



100 200 300 400 500 600 700 800

100

200

300

400

500

600

y

x

100 200 300 400 500 600 700 800

100

200

300

400

500

600

x

y

Figure 6.33: Pressure contours and velocity vectors for M0 = 4 and K = 0.025.
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Figure 6.34: Comparison of numerical and exact density solutions along j = constant
gridlines for M0 = 4 and K = 0.025.
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Figure 6.35: Comparison of numerical and exact pressure solutions along j = constant
gridlines for M0 = 4 and K = 0.025.
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Figure 6.36: Comparison of numerical and exact u velocity component solutions along
j = constant gridlines for M0 = 4 and K = 0.025.
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Figure 6.37: Comparison of numerical and exact v velocity component solutions along
j = constant gridlines for M0 = 4 and K = 0.025.
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Figure 6.38: Measured order of accuracy for the second-order Roe scheme in two
dimensions using the exact oblique shock solution as a basis (M0 = 4 andK = 0.025).
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6.4 StraightWall, Curved Oblique Detonation Prob-
lem

The asymptotic, curved oblique detonation solution of Powers and Stewart [63] was

used as the final test case for the numerical algorithm. The nature of the asymptotic

solution is such that chemical reaction only begins following the lead shock; there is no

reaction in the freestream. For a fair comparison, this requires that the same be true

for the numerical solution. For reactions modeled with the exponential dependence of

Arrhenius kinetics, such as is done here, there is always some level of reaction present

at all points in the flow. To eliminate this the Arrhenius kinetics were replaced with

a “switch” in the numerical simulation. For densities below a certain value the right-

hand side of Eq. 3.22 was set to zero, while for densities equal to or above this value

the right-hand side was set to ρ(1− Y2). The value of the switch density chosen was

somewhat below the density rise due to an inert oblique shock at the given freestream

Mach number, in this case M0 = 20.

Solutions were obtained for a wedge angle of θ = 20◦ and heat releases of q̄ = 10.

The grid resolution was 299 by 149 and CFL = 0.4. Figure 6.39 shows the pressure

contours for the numerical solution that was obtained. The contour values were

chosen so as to match those of the asymptotic solution shown in Fig. 4.12, which is

replotted here for ease of comparison (see Fig. 6.40). The numerical solution indicates

the correct trends in the pressure solution, with the indicated contours being similar

to those seen on the asymptotic solution. Towards the rear outflow boundary the

numerical solution appears to degrade somewhat, indicating that the small amplitude

oscillations apparent in the inviscid oblique shock solutions are here also. Figure

6.41 shows wedge surface pressure comparisons between the two methods, as well

as a comparison of the numerical and exact oblique shock solution. Both numerical

solutions show a fairly large overshoot at the wedge tip, and then proceed to follow the

asymptotic and exact solutions, respectively, for the remainder of the wedge surface.
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Except for the overshoot, the agreement is very good in both cases. The larger than

previously observed overshoot is apparently a result of the higher freestream Mach

number. Slight oscillations are apparent in the numerical oblique detonation solution

toward the end of the wedge. Figure 6.42 shows a comparison of the shock locations

determined by the two methods. The asymptotic and numerical shock locations are

relatively close to one another, but do not overlap. As discussed in Ch. 4, higher levels

of heat release are increasingly inconsistent with the assumptions of the asymptotic

solution, so the disagreement between the two solutions at q̄ = 10 is not unexpected.
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Figure 6.39: Oblique detonation pressure contours from Roe scheme numerical solu-
tion (M0 = 20, q̄ = 10, γ = 1.4, θ = 20◦).
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Figure 6.40: Oblique detonation pressure contours from asymptotic solution (M0 =
20, q̄ = 10, γ = 1.4, θ = 20◦).
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Chapter 7

UNSTEADY OBLIQUE
DETONATIONS

This chapter will present the results obtained for both steady and unsteady oblique

detonations. In order to make more direct comparisons with one-dimensional stability

results, only straight shock, curved wall detonations were studied. As discussed in Ch.

4, the exact steady solution for such detonations is simply the steady one-dimensional

detonation solution with an additional constant transverse velocity component. As

such, the stability threshold of the oblique detonation is expected to be close to the

stability threshold of the one-dimensional detonation. As for the one-dimensional

detonation results, the parameter varied in this study was the normal overdrive, fn;

the chapter has been divided into sections describing the results obtained for each

value of fn studied.

The solution procedure used for each case studied was as follows. An exact,

weak overdriven oblique detonation solution was determined, along with the wall

shape required to support it. This wall shape was entered into the computational

mesh program, and smooth grids were generated having grid points concentrated

near the wall. Figure 7.1 indicates a typical grid of cell centers used. The exact

detonation solution was then written on the grid of cell centers. As indicated by

the one-dimensional verification studies of Ch. 6, there is a need to maximize the

number of points within the reaction zone of the detonation in order to successfully
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Figure 7.1: Typical grid of cell centers used in oblique detonation studies.

capture detonation instability. For this reason, the grid was generated such that the

oblique detonation would exit through the top of the domain and not the rear; in

this way it was possible to increase grid resolution within the the reaction zone of the

detonation while minimizing the total number of points needed for the computation.

An additional parameter used to size the computational grid was the ratio of the

initial shock length within the domain to the initial half reaction zone width, Lratio =

Lsh/L1/2. The exact solution on the grid was then used as an initial condition for

the simulation, which was run continuously until the solution had reached a steady

state or could not continue. Steady state was typically achieved when the residuals

of the flow variables had decreased by 2-3 orders of magnitude. During execution,
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data files were written every 200 time steps to follow the time-dependent nature of

the solution. Complete solutions required anywhere from a 1
2 day to several days to

finish when run on one of the IBM RS/6000 workstations.

In all of the cases studied, the following parameters were held constant: Ēa = 50,

q̄ = 50, γ = 1.2, K = 0.025, and CFL = 0.4 (unless otherwise noted). Additionally,

the same constant dimensional tangential velocity of ˜̌v = 1379 m/s was used in all

cases to generate the exact solution. Different levels of normal overdrive fn were thus

achieved by varying the freestream Mach number M0. The values of heat release,

activation energy, γ, and CFL were chosen to match those used in the unsteady one-

dimensional detonation; the tangential velocity was chosen so the exact detonation

solutions would be weak and overdriven. A value of B̃ = 1.0 × 106 s−1 was chosen

simply to determine nondimensional values for the coordinate axes and the time; it

has no effect upon the solutions obtained. The value of K was chosen based on the

results of the verification studies in Ch. 6.

7.1 Normal Overdrive fn = 2.0

This level of overdrive was achieved with M0 = 9.822. The resulting detonation wave

angle was β = 63.5◦, and the wedge had an initial angle of θmax = 51.9◦. According to

the one-dimensional theory, this case should be well within the stable regime. Figures

7.2, 7.3, and 7.4 show shaded contours of the time-dependent solution obtained on a

grid of 99 by 99 cells. There were approximately 10 points in the initial half reaction

zone length L1/2 of the exact solution and Lratio = 21.5. For this and all remaining

plots of this type, the convention will be the same as that followed when reading

English text; the upper left plot is at the earliest time, the lower right is at the latest

time, and time advances from left to right and down. The contours plotted were

chosen based upon the interesting phenomena in the solution, and are not necessarily

sequential or equally spaced in time.
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The detonation front is apparent in each of the plots as the abrupt change from

the white freestream value to some shade of gray. As shown in Fig. 4.8, the exact

steady solution is characterized by straight contours parallel to the detonation front.

It is apparent in the earliest time shown in the figures that the solution has begun to

deviate from the exact solution. This small deviation progresses to become a concen-

trated region of high density and pressure, as well as increased reaction rate, at the

detonation front. As the pressure and density increase in this region, it slowly pro-

gresses up the length of the detonation, eventually passing out of the domain. After

the disturbance exits, the upper half of the detonation front begins to move forward

(to the left) slowly, leading to the formation of a second disturbance approximately

midway along the length of the front. This disturbance travels down along the det-

onation front, eventually hitting the wedge surface. The passage of the disturbance

results in the detonation moving forward into the freestream until it encounters the

inflow boundary. At this point the simulation was stopped, as the inflow bound-

ary condition was not configured to handle such an occurrence. A more detailed

description of this general phenomena will be given for the case of fn = 1.6.

Since this unsteady behavior was not expected for this level of overdrive, two more

cases were run, one with approximately 12 points per L1/2 (124 by 124 cell centers)

and the other with 14 points per L1/2 (149 by 149 cell centers). In both cases the

second, downward travelling disturbance did not form, and the solutions relaxed to a

steady state nearly identical to the exact steady solution. Figure 7.5 shows the time

history of the residuals for density and the u component of velocity; both residuals

decrease approximately three orders of magnitude (note that the curves actually begin

at the upper left of each plot, but are masked by the y axes). Figures 7.6, 7.7, and 7.8

show the time-dependent solutions obtained for density, pressure, and product mass

fraction on the grid of 149 by 149 cell centers. Similar to the previous less resolved

case, an initial disturbance forms and propagates out the top of the domain. In this
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case, however, the detonation front returns to its initial straight state following the

passage of the disturbance.

Figure 7.9 shows the velocity vectors for the final, steady solution. As expected,

these change discontinuously through the detonation front and parallel the wall

boundary. Note that the vectors within the freestream only appear to curve be-

cause they are plotted at cell centers which lie along curved grid lines. Figure 7.10

compares the final solution contours for density with the exact solution contours us-

ing the same contour levels. This quickly illustrates the slight discrepancies in the

numerical solution. The numerical contours closely parallel the exact contours, with

increasing discrepancies near the top of the domain. Along the wall there appears to

be a slight layer in the numerical solution, and in the upper right corner there is an

extra contour due to the outflow condition. Figures 7.11, 7.12, 7.13, 7.14, and 7.15

compare the numerical and exact solutions for ρ, u, v, p, and Y2, respectively, along

j = constant gridlines. As before, j = 1 is the row of cell centers nearest the wall,

while in this case j = 149 is the last row of cell centers at the top of the domain. It

is immediately apparent that there is a large spike in both the density and pressure

at the wedge tip along the wall. As in the verification studies, this is a result of the

discontinuity in the grid at the wedge tip; the grid was extended a slight distance in

front of the wedge tip to allow for some movement of the detonation in this region,

which results in a grid discontinuity where the wedge begins. By the j = 3 gridline

the spike has disappeared, and the numerical solution relatively closely tracks the ex-

act solution. Along j = 15 all of the flow variables show excellent agreement with the

exact solution. As expected, the agreement along the topmost grid line j = 149 has

degraded due to the outflow boundary condition; however, the numerical solutions

for ρ, u, and Y2, are relatively close to the exact solution. Finally, there are slight

oscillations in the numerical solution, particularly for the pressure and v component

of velocity.
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Overall, there appears to be good agreement between the steady numerical solu-

tion and the exact solution. As in the verification studies, the top outflow boundary

condition and the wall boundary condition induce the largest discrepancies in the

numerical solution. The two steady numerical solutions would seem to indicate that

at this level of overdrive, the oblique detonation is stable. The instability observed for

the least resolved case was apparently the result of an insufficient number of points

in the half reaction zone length.
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Figure 7.2: Shaded density contours as a function of time (fn = 2.0, 99 by 99 grid,
t = 409.8, 657.5, 1111.6, 2066.9, 2605.0, 3687.0).
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Figure 7.3: Shaded pressure contours as a function of time (fn = 2.0, 99 by 99 grid,
t = 409.8, 657.5, 1111.6, 2066.9, 2605.0, 3687.0).
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Figure 7.4: Shaded product mass fraction contours as a function of time (fn = 2.0,
99 by 99 grid, t = 409.8, 657.5, 1111.6, 2066.9, 2605.0, 3687.0).

140



5000 10000 15000

10-6

10-5

10-4

10-3

u 
V

el
oc

ity
 R

es
id

ua
l

Number of Timesteps

5000 10000 15000

10-4

10-3

D
en

sit
y 

Re
sid

ua
l

Number of Timesteps

Figure 7.5: Time histories of density and u component of velocity residuals (fn = 2.0,
149 by 149 grid).
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Figure 7.6: Shaded density contours as a function of time (fn = 2.0, 149 by 149 grid,
t = 246.8, 645.2, 845.0, 969.9, 1094.8, 1869.6).
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Figure 7.7: Shaded pressure contours as a function of time (fn = 2.0, 149 by 149 grid,
t = 246.8, 645.2, 845.0, 969.9, 1094.8, 1869.6).
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Figure 7.8: Shaded product mass fraction contours as a function of time (fn = 2.0,
149 by 149 grid, t = 246.8, 645.2, 845.0, 969.9, 1094.8, 1869.6).
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Figure 7.9: Velocity vectors for final, steady solution (fn = 2.0, 149 by 149 grid,
t = 1869.6).
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Figure 7.10: Comparison of numerical and exact density contours (fn = 2.0, 149 by
149 grid, t = 1869.6, dashed = numerical, line = exact).
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Figure 7.11: Comparison of numerical and exact density solutions along j = constant
grid lines (fn = 2.0, 149 by 149 grid, t = 1869.6).
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Figure 7.12: Comparison of numerical and exact u velocity component solutions along
j = constant grid lines (fn = 2.0, 149 by 149 grid, t = 1869.6).
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Figure 7.13: Comparison of numerical and exact v velocity component solutions along
j = constant grid lines (fn = 2.0, 149 by 149 grid, t = 1869.6).
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Figure 7.14: Comparison of numerical and exact pressure solutions along j = constant
grid lines (fn = 2.0, 149 by 149 grid, t = 1869.6).
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Figure 7.15: Comparison of numerical and exact product mass fraction solutions along
j = constant grid lines (fn = 2.0, 149 by 149 grid, t = 1869.6).
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7.2 Normal Overdrive fn = 1.6

Next, the case of fn = 1.6 was considered; this was expected to be unstable based upon

the one-dimensional results. This level of overdrive was achieved with M0 = 9.0, and

the detonation and initial wedge angles were β = 60.9◦ and θmax = 50.2◦, respectively.

The first grid used had 99 by 99 cell centers, approximately 14 points per L1/2,

and Lratio = 14.6. The increased number of points in L1/2 compared to the previous

case is a result of the thickening of the reaction zone as fn decreases. For this grid

the solution relaxed to a steady state; however, this final solution differed from the

exact steady solution. Figure 7.16 shows shaded contours of density and pressure for

the steady numerical solution. It is apparent, particularly in the pressure solution,

that the contours are no longer straight as in the exact solution. In the progression

of the solution to steady state, it appeared a disturbance was beginning to form and

progress upward along the detonation front. As it approached the top of the domain,

however, the formation of the disturbance slowed, eventually stopping at the steady

state shown. This appears in the figure as slight bulges of high density and pressure.

Since the upper boundary seemed to be affecting the progress of the solution,

a second case was run in which the grid was extended in the y direction such that

Lratio = 18.1. Approximately the same grid resolution was maintained by increasing

the number of points to 124 in this direction (approximately 14 points per L1/2). In

this case an unsteady solution somewhat similar to the initial unsteady solution at

fn = 2.0 was found. In order to determine if it would withstand grid refinement, a

third case with a grid resolution of 124 by 149 (16 points per L1/2) was considered. As

happened with the initial grid, the solution froze at a state different than the exact

steady solution. Once again the top boundary seemed to quell the formation of the

initial disturbance.

A final fourth case was run with the upper boundary extended even farther in the

y direction while maintaining approximately the same resolution of the previous case
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(139 by 184 cell centers, 15 points per L1/2, and Lratio = 22.4). The unsteady solution

returned once again. Figures 7.17, 7.18, and 7.19 show the time-dependent solutions

for ρ, p, and Y2. The initial formation of a disturbance is apparent in the first frame.

By the second frame the disturbance has become triangular in shape, and is a moving

region of very high density and pressure. Above this region the shock becomes very

strong and begins to bow outwards. The increased shock strenght leads to a region of

nearly complete reaction immediately behind it. The disturbance progresses upward

along the detonation front until it has left the domain through the top boundary.

At this point the upper half of the detonation front begins to move forward into

the freestream. A second triangular disturbance then forms about the midpoint of

the detonation, and progresses downward along the front (frame 4). Comparing the

density and pressure contours, it is apparent that the bottom side of the triangu-

lar region is a shock, but the top portion is a contact discontinuity. Courant and

Friedrichs [22] refer to this as a three-shock configuration, which is diagrammed in

Fig. 7.20. Two intersecting shock fronts S1 and S2 result in a reflected shock S ′ and a

contact discontinuity Dc. The reflected shock is necessary to turn the flow following

S1 such that it is parallel to the flow following S2; the contact discontinuity separates

the two parallel flows V ′
1 and V2.

The reflected shock S ′ emanating from the the three-shock configuration can be

seen to intersect the wall and form another reflected shock into the rear of the domain.

The mass fraction contours show that a “tongue” of complete reaction has progressed

downward with the three-shock. By frames five and six the three-shock reaches the

wall, resulting in even higher densities and pressures. The following detonation front

is highly curved and moving forward into the freestream. Small instabilities are

apparent at the front in the product mass fraction contours. Soon after the last frame

shown, the detonation reaches the forward computational boundary and attempts to

propagate out of the domain. As before, the simulation was stopped at this point.
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The forward propagation of the unstable detonation is expected from the one-

dimensional results; as the detonation becomes unstable, the detonation velocity

changes a great deal. For an attached oblique detonation such as this, the detona-

tion velocity of the exact steady solution is equal to the component of the freestream

velocity normal to the wave front. Thus, since the freestream velocity remains fixed,

the detonation propagates forward and out of the computational domain as the det-

onation velocity increases due to the instability. It is hypothesized that the forward

propagation of the detonation would eventually end as it was weakened by following

rarefactions. An attempt was not made to simulate this due to the prohibitively large

number of grid points that would be required to extend the computational domain a

large distance in the −x direction.

In order to somewhat quantify the effect of moving the outflow boundary at the

top of the domain, the two unsteady density solutions obtained (the second and fourth

cases considered) were plotted side-by-side in Fig. 7.21. These solutions should be

similar, since they have about the same number of points in the half reaction zone.

Three frames from each solution are shown with overlaid Cartesian coordinate grid

lines; the three frames on the left side of the plot are from the solution on the 99 by

124 grid, while the frames on the right are from the solution on the 139 by 184 grid.

The divisions along each coordinate axis were made the same for each case to ease

comparison. The frames were chosen so that the three-shock/disturbance structures

were evident and the elapsed times of the solutions were approximately the same.

Qualitatively, the solutions appear nearly identical; the approximate locations and

general appearance of the three-shock structures are very similar. Table 7.1 shows

the actual location and magnitude of the density peak in the three-shock structure of

each frame. The numbers show the agreement between the two solutions is relatively

good. These results would seem to indicate that once the three-shock structure has

formed, the location of the top outflow boundary does not have much effect on the
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99 by 124 139 by 184

grid grid

ρmax x y ρmax x y

10.692 204.7 339.9 10.400 202.3 341.9

10.366 155.9 300.8 10.562 159.8 304.5

11.319 82.4 144.6 11.408 84.9 147.9

Table 7.1: Magnitude and location of density peak in three-shock structure of numer-
ical solutions on two different grids (fn = 1.6).

ensuing solution.
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Figure 7.16: Shaded density and pressures contours for steady numerical solution
(fn = 1.6, 99 by 99 grid, t = 3128.2).
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Figure 7.17: Shaded density contours as a function of time (fn = 1.6, 139 by 184 grid,
t = 1176.3, 1929.1, 2776.0, 3481.7, 4234.5, 5175.5).
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Figure 7.18: Shaded pressure contours as a function of time (fn = 1.6, 139 by 184
grid, t = 1176.3, 1929.1, 2776.0, 3481.7, 4234.5, 5175.5).
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Figure 7.19: Shaded product mass fraction contours as a function of time (fn = 1.6,
139 by 184 grid, t = 1176.3, 1929.1, 2776.0, 3481.7, 4234.5, 5175.5).
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Figure 7.20: Illustration of three-shock structure [22].
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Figure 7.21: Comparison of progression of density solutions on different grids (left -
99 by 124 grid, right - 139 by 184 grid).
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7.3 Normal Overdrive fn = 1.7

Having demonstrated cases of stable and unstable oblique detonations, the next step

was to more accurately determine the location of the stability boundary. For a one-

dimensional detonation an overdrive value of 1.7 is just on the unstable side of the

stability boundary, so the equivalent case for the oblique detonation was considered

next. This level of overdrive was achieved at M0 = 9.2115, and the detonation and

initial wedge angles were β = 61.6◦ and θmax = 50.7◦, respectively.

The initial run on a 124 by 149 grid with approximately 13 points per L1/2 and

Lratio = 21.7 resulted in an unstable solution similar to those discussed. Increasing the

grid resolution to 149 by 149 and 15 points per L1/2 resulted in the solution stalling at

an incorrect steady solution, as described in the previous section. Once again, moving

the top outflow boundary upward while maintaining the grid resolution (159 by 184

grid, 15 points per L1/2, and Lratio = 27.1) resulted in the instability reoccurring.

Figures 7.22, 7.23, and 7.24 show ρ, p, and Y2 for the unsteady solution obtained. In

this case a disturbance has begun to form in frame 1, and by frame 2 it has become a

triple-shock and moved toward the upper boundary. Instead of exiting through the top

of the domain, however, it reverses direction and begins moving downward along the

detonation front (this was also the behavior observed on the 124 by 149 grid). At this

point an entirely new behavior occurred. As shown in frames 3 and 4, small “bursts”

of completely reacted material have jumped forward into the freestream. The densities

and pressures in this region are lower than the surrounding areas. Apparently a small

region at the detonation front became very unstable quickly, resulting in a localized

jump in the detonation velocity and the bursting phenomena observed. By the later

frames the bursting has completely disappeared, and the solution follows the same

pattern observed before, i.e. the three-shock hits the wall and the detonation front

moves into the inflow boundary.

Figures 7.25, 7.26, and 7.27 show magnified time series views of the bursting events
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for ρ, p, and Y2. The initial bursting begins slightly above the triple-shock in frame

1, and frames 2 and 3 show the growth and decay of the two events. By frame 4 the

first two bursts have disappeared and two new ones have occurred slightly further

above the triple-shock. These also grow and decay, and by the last frame the only

structure remaining is the triple-shock. Figure 7.28 shows two magnified views of

the bursting regions in frames 2 and 5. These plots combine velocity vectors with

shaded density contours. The velocity vectors show an interesting result; within the

bursts the flow direction has reversed, and recirculation regions have developed. The

reversal of the flow direction can be explained once again by the increased unstable

detonation velocity. For a propagating normal shock or detonation, the passage of the

wave through a quiescent medium induces a velocity in the medium in the direction

of propagation. For the high-speed bursting, the induced velocity to the left due to

the burst is greater than the shocked freestream velocity to the right. Thus, the net

effect is that the flow reverses direction immediately behind the burst. Apparently,

the flow reversal combined with the large generation of vorticity due to the highly

curved bursting detonation front result in the recirculation zones. It should be noted

that no bursting events occurred in the unsteady solution on the 124 by 149 grid.
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Figure 7.22: Shaded density contours as a function of time (fn = 1.7, 159 by 184 grid,
t = 960.5, 1870.6, 2831.1, 3791.7, 7077.8, 9251.7).
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Figure 7.23: Shaded pressure contours as a function of time (fn = 1.7, 159 by 184
grid, t = 960.5, 1870.6, 2831.1, 3791.7, 7077.8, 9251.7).
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Figure 7.24: Shaded product mass fraction contours as a function of time (fn = 1.7,
159 by 184 grid, t = 960.5, 1870.6, 2831.1, 3791.7, 7077.8, 9251.7).
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Figure 7.25: Shaded density contours as a function of time for bursting events (fn =
1.7, 159 by 184 grid, t = 2527.8, 2831.1, 3336.7, 3741.1, 3892.8, 4145.6).
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Figure 7.26: Shaded pressure contours as a function of time for bursting events (fn =
1.7, 159 by 184 grid, t = 2527.8, 2831.1, 3336.7, 3741.1, 3892.8, 4145.6).
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Figure 7.27: Shaded product mass fraction contours as a function of time for bursting
events (fn = 1.7, 159 by 184 grid, t = 2527.8, 2831.1, 3336.7, 3741.1, 3892.8, 4145.6).
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Figure 7.28: Shaded density contours and velocity vectors within the bursting regions
(fn = 1.7, 159 by 184 grid, t = 2831.1 and 3892.8).
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7.4 Normal Overdrive fn = 1.76

For a one-dimensional detonation, f = 1.76 is slightly on the stable side of the stability

boundary. For the oblique detonation, however, fn = 1.76 led to an unstable solution.

For this case the freestream Mach number, detonation angle, and initial wedge angle

were M0 = 9.3363, β = 62.0◦, and θmax = 50.9◦.

Five different cases were run to verify the unsteady nature of the detonation at

this level of overdrive. The first grid had 124 by 149 cell centers (approximately 12

points per L1/2 and Lratio = 24.9) and resulted in a typical unstable solution. The

grid resolution was increased to 149 by 149 (approximately 13 points per L1/2), which

led to a stalled, incorrect steady solution. Moving the top boundary and maintaining

the resolution (159 by 184 grid, approximately 13 points per L1/2, and Lratio = 31.2)

restored the instability once again. As a further check the grid resolution was in-

creased again to 184 by 209 (approximately 15 points per L1/2), which still resulted

in an unstable solution. Finally, to ensure that the slight artifacts apparent in the

one-dimensional detonation verification studies were not influencing the solution, the

simulation was rerun on this final grid using a CFL number of 0.35. This also led to

an unstable solution.

Figures 7.29, 7.30, and 7.31 show the unsteady solutions for density, pressure,

and product mass fraction obtained on the 184 by 209 grid with CFL = 0.35. As

with the previous unsteady solutions, the disturbance begins to develop in the first

frame and has transitioned to a three-shock structure by the second frame. In this

case, however, a second three-shock began to develop near the top of the domain, but

slowly dissipated as the first three-shock structure began to move upwards. The rate

at which the three-shock moved upward along the detonation front was much slower in

this case than in unsteady results of the previous sections. By frame three its upward

progress has stopped, and it very slowly begins to move downward. Though difficult

to see in these figures, the remanents of the second structure follow the remaining
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CFL = 0.4 CFL = 0.35

ρmax x y ρmax x y

11.785 170.0 277.5 12.149 169.6 275.8

11.529 174.7 324.7 11.534 177.1 323.6

11.374 58.9 107.6 11.448 53.1 93.4

Table 7.2: Magnitude and location of density peak in three-shock structure of numer-
ical solutions for different time step criteria (fn = 1.76).

three-shock downward. As before, the three-shock eventually hits the wedge and the

detonation front moves forward into the inflow boundary.

In order to quantify any differences between the solutions due to the different

time step restriction, another side-by-side comparison was made. Figure 7.32 shows

the density solutions at different times on the 184 by 209 grid for CFL = 0.35 and

0.4. As before, the elapsed time is approximately the same for each row of the figure.

Qualitatively, the first two frames of each solution appear nearly identical; however, it

is apparent at the last time that the three-shock structure is closer to the wedge surface

for the case of CFL = 0.35 than it is for CFL = 0.4. Table 7.2 lists the locations and

magnitudes of the density peak within the three-shock for both solutions. The peak

densities agree relatively well for all three times, with the worst agreement occurring

at the first time. The peak density locations agree well for the first two times, but

not well for the last time, as suggested by the qualitative assessment. For instabilities

such as this, slight differences in the initial development of the solution can lead to

relatively large differences later on. This is apparently the case here. Overall, both

solutions are very similar and indicate instability at this level of normal overdrive.
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Figure 7.29: Shaded density contours as a function of time (fn = 1.76, CFL = 0.35,
184 by 209 grid, t = 754.5, 1349.9, 2660.1, 4168.8, 7146.5, 8655.2).
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Figure 7.30: Shaded pressure contours as a function of time (fn = 1.76, CFL = 0.35,
184 by 209 grid, t = 754.5, 1349.9, 2660.1, 4168.8, 7146.5, 8655.2).
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Figure 7.31: Shaded product mass fraction contours as a function of time (fn = 1.76,
CFL = 0.35, 184 by 209 grid, t = 754.5, 1349.9, 2660.1, 4168.8, 7146.5, 8655.2).
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Figure 7.32: Comparison of progression of density solutions on identical grids for
different time step criteria (left - CFL = 0.4, right - CFL = 0.35).
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7.5 Normal Overdrive fn = 1.78

The stability threshold was finally crossed when fn = 1.78 was considered. The

freestream Mach number, detonation angle, and initial wedge angle for this case were

M0 = 9.3776, β = 62.2◦, and θmax = 51.0◦, respectively. Figures 7.33, 7.34, and

7.35 show the time series solutions obtained for ρ, p, and Y2 on a 184 by 209 grid

with approximately 16 points per L1/2 and Lratio = 29.8. This grid was chosen to

approximately match the characteristics of the final grid used for fn = 1.76, as there

was a relatively high degree of confidence in those results. As with fn = 1.76 a three-

shock structure forms and slowly moves upward along the detonation front; a second

three-shock also begins to form, but propagates out the top of the domain. Instead of

slowing and then reversing direction, however, the first three-shock continues to move

slowly upward until it has also left the domain. Following its passage, the detonation

front returns to a nearly straight configuration.

Figure 7.36 shows a comparison of the steady numerical and exact solution con-

tours for identical contour values. It is apparent that the agreement between the

solutions is not as good as the case of fn = 2.0. In this case the numerical detonation

front bows out slightly in the upper half of the domain. There are also extraneous

numerical contours in the rear of the domain, indicating the rear boundary condition

was not doing as well as before. Figures 7.37, 7.38, and 7.39 show comparisons be-

tween the numerical and exact solutions for ρ, p, and Y2 along various j = constant

gridlines. Along the interior gridlines (j = 15 and j = 50) the numerical solutions for

ρ and Y2 show good agreement with the exact solutions. The pressure initially shows

relatively good agreement, but then oscillations seem to overtake the solution towards

the rear of the domain. Along the j = 1 and j = 3 gridlines the numerical solutions

for ρ and Y2 do not agree very well with the exact solution, while the solution for p is

about the same as it was on the interior grid lines. Along the upper gridlines (j = 125

and j = 184), each of the numerical solutions is offset somewhat in front of the exact
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solutions, as was indicated in the contour comparison. Other than the offset, once

again the numerical density and product mass fraction solutions look relatively good,

while the pressure solution is somewhat lacking. As in the verification studies, the

effect of the top outflow boundary condition can be seen particularly at j = 184, as

well as at the larger values of x on some of the lower j = constant gridlines. A likely

reason for the relatively poor agreement between the numerical and exact solutions is

the estimated nature of the boundary conditions at the top and rear of the domain.

The formation and passage of the three-shock structure altered the flowfield to such

a degree that the boundary conditions were no longer able to maintain the original

steady solution.
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Figure 7.33: Shaded density contours as a function of time (fn = 1.78, 184 by 209
grid, t = 290.9, 756.3, 1105.4, 2181.7, 2647.2, 3839.9).
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Figure 7.34: Shaded pressure contours as a function of time (fn = 1.78, 184 by 209
grid, t = 290.9, 756.3, 1105.4, 2181.7, 2647.2, 3839.9).
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Figure 7.35: Shaded product mass fraction contours as a function of time (fn = 1.78,
184 by 209 grid, t = 290.9, 756.3, 1105.4, 2181.7, 2647.2, 3839.9).
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Figure 7.36: Comparison of numerical and exact density contours (fn = 1.78, 184 by
209 grid, t = 3839.9, dashed = numerical, line = exact).
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Figure 7.37: Comparison of numerical and exact density solutions along j = constant
grid lines (fn = 1.78, 184 by 209 grid, t = 3839.9).
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Figure 7.38: Comparison of numerical and exact pressure solutions along j = constant
grid lines (fn = 1.78, 184 by 209 grid, t = 3839.9).
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Figure 7.39: Comparison of numerical and exact product mass fraction solutions along
j = constant grid lines (fn = 1.78, 184 by 209 grid, t = 3839.9).
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7.6 Normal Overdrive fn = 1.8

As a final check on the steady results obtained in the previous section, a number of

cases at fn = 1.8 were considered. The freestream Mach number, detonation angle,

and initial wedge angle were M0 = 9.419, β = 62.3◦, and θmax = 51.1◦, respectively.

Five cases in all were considered, with the number of cell centers ranging from 99

by 99 to 184 by 209, the approximate number of points per L1/2 ranging from 12 to

16, and Lratio ranging from 14.7 to 30.7. As was done at fn = 1.76, a final case was

run on the largest, most resolved grid with CFL = 0.35. In all cases a stable, steady

solution was obtained.

Figures 7.40, 7.41, and 7.42 show the time series solutions for ρ, p, and Y2 on

the 184 by 209 grid with CFL = 0.35. In this case it is immediately apparent that

two three-shock structures form, and then both begin to propagate up and out of

the domain. Figure 7.43 compares the final steady numerical solution contours for

density to the exact steady solution contours. As was the case with fn = 1.78, the

final numerical solution bulges somewhat in front of the exact solution in the upper

half of the domain. Figures 7.44, 7.45, 7.46, 7.47, and 7.48 show comparisons of the

exact and numerical solutions along various j = constant gridlines for ρ, u, v, p, and

Y2. The numerical solutions for ρ, p, and Y2 follow essentially the same pattern of

relative agreement/disagreement as they did for fn = 1.78. This pattern also holds

true for u and v.

It should be noted that the results of this and previous sections are in some

sense similar to the results obtained by Bourlioux and Majda [8] for an unstable

two-dimensional detonation. Their results show detonation fronts having multiple

cusps with reflected shocks and contact discontinuities behind the front. However,

the flow structures generated downstream of the unstable detonation front were much

more complex than those observed here. Part of the reason for this may be that the

detonations observed here may not have developed fully before leaving the wedge and
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exiting through the front of the domain. Bourlioux and Majda considered moving

detonations with a grid tracking scheme, and perturbed them initially so as to observe

the instability more quickly. In any case, this previous research supports the general

form of the detonation front structures observed here.

186



0 100 200 300 400 500

100

200

300

400

x

y

l

11.9255
11.1930
10.4605
9.7279
8.9954
8.2629
7.5304
6.7979
6.0654
5.3328
4.6003
3.8678
3.1353
2.4028
1.6703

0 100 200 300 400 500

100

200

300

400

x

y

l

12.0974
11.3536
10.6099
9.8661
9.1224
8.3786
7.6349
6.8911
6.1474
5.4036
4.6599
3.9161
3.1724
2.4286
1.6848

0 100 200 300 400 500

100

200

300

400

x

y

l

12.0728
11.3304
10.5880
9.8457
9.1033
8.3609
7.6185
6.8761
6.1338
5.3914
4.6490
3.9066
3.1642
2.4219
1.6795

0 100 200 300 400 500

100

200

300

400

x

y

l

13.6939
12.8435
11.9930
11.1426
10.2921
9.4417
8.5913
7.7408
6.8904
6.0399
5.1895
4.3390
3.4886
2.6382
1.7877

0 100 200 300 400 500

100

200

300

400

x

y

l

12.5278
11.7552
10.9825
10.2099
9.4373
8.6646
7.8920
7.1194
6.3467
5.5741
4.8014
4.0288
3.2562
2.4835
1.7109

0 100 200 300 400 500

100

200

300

400

x

y

l

11.9744
11.2386
10.5028
9.7670
9.0313
8.2955
7.5597
6.8239
6.0881
5.3523
4.6165
3.8808
3.1450
2.4092
1.6734

Figure 7.40: Shaded density contours as a function of time (fn = 1.8, CFL = 0.35,
184 by 209 grid, t = 253.1, 810.1, 1316.6, 1924.2, 2658.5, 4557.5).
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Figure 7.41: Shaded pressure contours as a function of time (fn = 1.8, CFL = 0.35,
184 by 209 grid, t = 253.1, 810.1, 1316.6, 1924.2, 2658.5, 4557.5).
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Figure 7.42: Shaded product mass fraction contours as a function of time (fn = 1.8,
CFL = 0.35, 184 by 209 grid, t = 253.1, 810.1, 1316.6, 1924.2, 2658.5, 4557.5).
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Figure 7.43: Comparison of numerical and exact density contours (fn = 1.8, 184 by
209 grid, t = 4557.5, dashed = numerical, line = exact).
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Figure 7.44: Comparison of numerical and exact density solutions along j = constant
grid lines (fn = 1.8, 184 by 209 grid, t = 4557.5).
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Figure 7.45: Comparison of numerical and exact u component of velocity solutions
along j = constant grid lines (fn = 1.8, 184 by 209 grid, t = 4557.5).
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Figure 7.46: Comparison of numerical and exact v component of velocity solutions
along j = constant grid lines (fn = 1.8, 184 by 209 grid, t = 4557.5).
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Figure 7.47: Comparison of numerical and exact pressure solutions along j = constant
grid lines (fn = 1.8, 184 by 209 grid, t = 4557.5).
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Figure 7.48: Comparison of numerical and exact product mass fraction solutions along
j = constant grid lines (fn = 1.8, 184 by 209 grid, t = 4557.5).
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Chapter 8

RAM ACCELERATOR
CALCULATIONS

This chapter will present a methodology for determining the steady propagation speed

of a ram accelerator. The chosen methodology will then be applied to a ram ac-

celerator configuration using a version of the two-dimensional code developed in the

preceding chapters. This earlier version used explicit Euler time stepping (eq. (5.71)),

and thus had only first-order temporal accuracy; it was verified with the same tests

used in Ch. 6. The results of this chapter were recently accepted for publication in a

reviewed journal [33].

8.1 Methodology

As discussed in Ch. 2, most recent theoretical studies of ram accelerators and ODWE’s

have not given analysis to determine a steady propagation speed. Typically the

related problem of flow with a fixed incoming Mach number over a fixed geometry is

examined. Emphasis is placed on characterizing the resulting flow field, and only a

small number of incoming Mach numbers is studied. With this approach, the thrust

can be determined as a function of flight speed. This is useful in a transient analysis

which presumes that fluid relaxation time scales are short compared to the time it

takes for the projectile to relax to a steady velocity.

A general theoretical approach to predict the steady speed is as follows: a math-
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ematical model for the fluid and a representative geometry are selected. The model

equations are studied in the reference frame in which the projectile is stationary; thus,

the incoming flow velocity, which is the steady propagation speed, is thought of as

an adjustable parameter at this stage. For a given incoming velocity, solution of the

model equations leads to a stress distribution on the projectile surface which may

or may not result in a net force on the projectile. Should the particular incoming

velocity lead to zero net force on the projectile, that velocity is a candidate for a

steady propagation speed. The static stability of the candidate solutions is easily

determined. Should a perturbation in the incoming velocity lead to a net force which

tends to restore the projectile to a speed at which there is zero net force, the solution

is stable in a static sense (we call such solutions stable); otherwise the solution is

unstable. A further step, not considered here, is to account for the inertia of the

projectile and surrounding fluid so as to determine the dynamic stability.

8.2 Model Problem

The methodology is illustrated through the use of a model problem which is related

to the ram accelerator and ODWE. For tractability, an idealized model and geometry

are considered which retain the essential features of real systems. The geometry,

shown in Fig. 8.1, is a symmetric double wedge with half angle θ and length L̃p. Two

cowl surfaces are placed symmetrically about the wedge and are separated by height

H̃c. The depth of the double wedge and cowl is taken to be infinite and the flow

is assumed to have no variation in this direction. The Cartesian coordinate system,

with its origin at the leading edge and with the x̃ axis aligned with the incoming flow

is also indicated. It is appropriate to think of a ram accelerator as the axisymmetric

analog of Fig. 8.1 in which the projectile moves while the cowl is stationary; likewise,

an aerospace plane powered by an ODWE can be thought of as the axisymmetric

analog of Fig. 8.1 in which the cowl moves with the wedge. In both scenarios one
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must assume that the incoming fuel and oxidizer are completely mixed; in actuality
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Figure 8.2: Detailed schematic for H̃c → ∞
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devices, but has the advantage of being amenable to simple analysis.

As discussed previously, the flow model employed also has only a rudimentary

resemblance to commonly used models for real devices. Fig. 8.2 indicates the general

flow features. The ambient, premixed freestream fluid encounters an attached oblique

shock at the leading edge of the projectile. No appreciable reaction occurs within the

shock or near the front of the projectile. Near the apex of the wedge appreciable

reaction begins, and at the apex the flow is turned through a centered Prandtl-Meyer

expansion until it attains a velocity parallel to the lee wedge surface. The reaction

then proceeds to completion on the leeward side of the projectile. The flow passes

through a final oblique shock at the tail of the projectile, resulting in a velocity only

in the x̃ direction. The net force on the projectile is determined by integrating the

pressure over the entire surface area. The lead oblique shock wave is strengthened by

the reaction such that in the far-field the shock angle reaches the Chapman-Jouguet

wave angle; this will be demonstrated in the following section. Chapman-Jouguet

detonations are known to be unstable with this reaction mechanism, however, so

additional study is needed to completely verify this result.

8.3 Results

For the unconfined double wedge, steady propagation speeds were sought which gave

rise to a force balance as the heat release parameter q̄ was varied, 11.908 ≤ q̄ ≤ 13.456.

Other parameters were held constant at γ = 7/5, θ = 5◦, and Ēa = 12.32. For pre-

sentation of results the corresponding dimensional values were p̃0 = 1.01325 × 105

Pa, ρ̃0 = 1.225 kg/m3, Ẽa = 1.019× 106 J/kg, L̃p = 0.1 m, 0.985× 106 J/kg ≤ q̃ ≤

1.113 × 106 J/kg, and B̃ = 2.64 × 107 s−1. These values were chosen not so much

to model a real system but so that the method could be successfully illustrated and

an interesting bifurcation phenomenon predicted. For models which better represent

physical systems, it is certain that the method given here can be applied and plausible
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that the predictions will have the same essence. A common 199 x 99 fixed compu-

tational grid was used in all cases, and convergence to steady-state was typically

achieved in about 5000 time iterations.

As shown in Eq. 4.30, the CJ Mach number M0CJ is determined solely by q̄ and

γ; for the parameters listed 4.275 ≤ M0CJ ≤ 4.517. For cases attempted in which

M0 ≤ M0CJ , a normal detonation would form and propagate forward in the domain

until it hit the inflow boundary. This corresponds to the detonation attempting

to reach its natural, unsupported propagation speed. All cases considered here in

which force balances were found had an incoming Mach number well above M0CJ

(5.5 ≤ M0 ≤ 8.5); consequently, the steady propagation speeds found are in the

superdetonative regime.

The projectile achieves a steady velocity when the force due to pressure wave drag,

which tends to retard the motion, is balanced by forces induced by combustion, which

tend to accelerate the projectile. The dimensionless net force per unit depth Fnet is

given by the pressure force integrated over the circumference of the diamond-shaped

wedge:

Fnet =
∮

pnids, (8.1)

where ds is an element of arc length of the diamond-shaped wedge of Fig. 8.1. Due

to symmetry, the only non-zero component of Fnet is in the x direction. This force

is defined to be positive if it points in the negative x direction. For the numerical

analysis, numerical integration of the pressure field gave the net thrust. Figure 8.3

shows Fnet plotted vs. M0 for the four indicated values of q̃.

For low heat release Fnet is negative; the thrust force induced by combustion is

not sufficient to overcome the wave drag. At a critical value of heat release, q̃ =

0.992 MJ/kg (q̄ = 11.993), there is a balance of combustion-induced thrust and

drag such that Fnet = 0. This occurs at M0 = 7.95. As heat release continues to

increase, there are two distinct Mach numbers for which there is no net thrust. A
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Figure 8.3: Net thrust force versus Mach number for varying heat release.

perturbation in the Mach number for the steady solution at the lower Mach number

results in a net force which tends to accelerate the projectile away from the equilibrium

Mach number. Consequently, this is a statically unstable equilibrium. In the same

manner, the equilibrium solution at the higher Mach number is statically stable to

such perturbations. As heat release is increased, the stable equilibrium Mach number

increases and the reaction zone is located closer to the expansion fan, while the

unstable Mach number decreases and the reaction zone is located closer to the trailing

edge. The same trends of these numerical results can be predicted with a simple

Rankine-Hugoniot analysis combined with thermal explosion theory [61, 60].

These results are summarized in the bifurcation diagram shown in Fig. 8.4, where

Mach number versus heat release q̃ are plotted. The lower branch is unstable while the

upper branch is stable. On the stable branch near the bifurcation point, an increase

in q̃ causes the flight speed to increase. The curve of M0CJ versus q̃ is also shown

on this figure to demonstrate that the cases considered were all above the CJ point.
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The solutions shown here correspond to stable flight speeds in the range of 2, 700 m/s

<∼ ũ0
<∼ 2, 900 m/s, 7.9

<∼ M0
<∼ 8.5.

For a particular value of heat release, q̃ = 1.014 MJ/kg, detailed plots of pressure

contours and product mass fraction contours are given for the stable case (M0 = 8.4)

and the unstable case (M0 = 7.1) in Figs. 8.5, 8.6, 8.7, 8.8, respectively. In the

stable configuration, the lead oblique shock undergoes a sudden increase in angle of

inclination from approximately 11◦ to 31◦. A similar rise from 12◦ to 38◦ occurs

for the unstable case. This appears to be associated with the chemical reaction.

The reaction occurs sooner for the stable case which is at the higher Mach number.

This is readily apparent in the product mass fraction contours. Along the wedge

surface chemical reaction reaches completion very near the apex for the stable case,

while in the unstable case the reaction completes further downstream. This may be

explained in the following way: for low M0, chemical reaction occurs off the leeward

wedge surface far downstream, resulting in a net drag force. As the Mach number
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is increased, the reaction moves forward onto the wedge, eventually reaching a point

at which the wave drag of the projectile is balanced by the thrust due to chemical

reaction. Increasing M0 past this equilibrium point moves the reaction closer to the

wedge apex on the leeward side, resulting in positive Fnet. Increasing M0 still further

pushes the reaction over the apex and onto the front of the wedge. The pressure

increase due to chemical reaction on the front of the wedge is then balanced by the

resulting higher pressure on the leeward side of the wedge.
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Figure 8.5: Pressure contours for statically stable steady configuration.

Figure 8.9 shows plots of the pressures along the lines of symmetry and projectile

surface for the stable and unstable cases of interest. Here there are about 90 grid

points distributed on the wedge surface. As a further verification of the code’s ability

to predict two-dimensional flows, plots of the exact and numerical pressure traces for

an inert flow over the projectile are also given. The numerical pressure closely follows

the exact solution, showing the biggest discrepancies at the shock and rarefaction

discontinuities. The discontinuities are still captured well, however, and there is no
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Figure 8.6: Product mass fraction contours for statically stable configuration.

evidence of the Gibbs phenomena observed in some of the verification studies of Ch.

6. Between the discontinuities, the numerical solution reaches constant states very

close to those of the exact solution. Drag calculations for the exact and numerical

solutions show that they are in excellent agreement.

Considering the surface pressure for the stable case in Fig. 8.9, it is apparent that

significant reaction occurs on the front face of the wedge. The pressure begins to rise

slowly following the initial shock, and then very suddenly prior to the rarefaction at

the wedge apex. Following the apex the pressure remains well above the inert case,

and then jumps again because of the trailing shock at the end of the projectile. The

unstable case shows a much different solution. Once again the pressure begins to rise

slowly following the initial shock, but in this case the peak prior to the rarefaction is

much lower. The pressure drops through the rarefaction discontinuity, but once again

remains above the inert pressure. The pressure peaks on the back of the wedge where

the reaction reaches completion, and then jumps through the trailing shock. This is
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Figure 8.7: Pressure contours for statically unstable steady configuration.

consistent with the prior discussion.

In order to determine the performance characteristics of the simple configuration

studied, a number of additional calculations were made using the results obtained for

q̃ = 1.014 MJ/kg. As indicated in Fig. 8.3, the maximum thrust on the projectile

was obtained at this heat release. For reference, the heats of combustion of propane,

methane, and hydrogen are 50, 56, and 120 MJ/kg, respectively [82]; thus, this level

of heat release is small compared to real systems. Approximate position, velocity

and acceleration histories for the projectile were obtained by fitting the thrust curve

of Fig. 8.3 with a sixth order polynomial to get F̃net(ũp) (see Fig. 8.10), and then

integrating Newton’s second law

F̃net(ũp) = m̃
dũp

dt̃
, (8.2)

where m̃ is the dimensional projectile mass per unit depth. Equation (8.2) was

integrated from a speed slightly greater than that of the unstable steady propagation

point (it was assumed that t̃ = x̃ = 0 initially), to a speed slightly less than that
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Figure 8.8: Product mass fraction contours for statically unstable steady configura-
tion.

of the stable point. The projectile was assumed to be constructed of aluminum,

which resulted in a mass per depth of m̃ = 1.2108 kg/m. Figures 8.11 and 8.12

show acceleration as a function of time and distance. As expected, the acceleration

peaks at the point of maximum thrust. The accelerations found here are much lower

than those which Hertzberg reported (approx. 160,000 m/s2 [38]). The low value

obtained here is a result of the low levels of heat release considered, and the lack of

cowl surfaces, which would increase F̃net by creating a system of shock reflections on

the rear of the projectile. Figures 8.13 and 8.14 show the velocity histories for the

same projectile mass. The velocity changes quickly in the region of maximum thrust,

but changes very slowly near the equilibrium points. In this case the total velocity

change ∆ũp . 430 m/s (∆up . 0.19) is only slightly less than that observed by

Hertzberg (approx. 500 m/s). Figure 8.15 shows the projectile position as a function

of time. In this case the curve is almost perfectly straight, since the velocity change

due to the chemical reaction is relatively small compared to the overall speed of the
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projectile. The time required for the projectile to transition from the unstable point

to the stable point was ∆t̃ . 17 s (∆t . 4.6× 108), while the corresponding distance

covered was ∆x̃ . 44, 000 m (∆x . 5.2× 108). This length is obviously impractical;

the experimental studies covered a total length of slightly less than 5 m [38].

Finally, it is noted that in the far-field limit the oblique detonation apparently

becomes an obliquely travelling, unsupported CJ detonation; the wave angle β of the

detonation is such that the component of the Mach number normal to the wave is

equal to M0CJ . This is illustrated in Fig. 8.16, which compares the exact CJ wave

angle to the wave angle predicted from the numerical results for the steady speeds

of propagation (Fig. 8.4). Error bars of ±1◦ are shown on the numerical results to

indicate the estimated error in measuring the numerical detonation angle. Note that

β is a function of both M0 and q̄, both of which are different for each plotted point

on the figure. Figure 8.17 shows the same type of comparison, except that in this case

the freestream Mach number has been held fixed at M0 = 8.4. Thus, it is possible
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Figure 8.10: Sixth-order polynomial curve fit of thrust curve for q̃ = 1.014 MJ/kg.

to plot an exact curve for the CJ wave angle. In both figures it can be seen that the

numerical prediction and the exact solution are equal within the measurement error.

This result gives numerical confirmation to ideas put forth by Chernyi [18].

Figure 8.18 shows a comparison between the exact CJ detonation pressure solution

and the numerically predicted far-field pressure solution along a line normal to the

oblique detonation (M0 = 8.4 and q̃ = 0.985 MJ/kg). The numerical solution is

interpolated since the computational grid does not follow this line. It is apparent

that the numerically predicted peak pressure is significantly lower than the exact

pressure, and that the numerical solution drops well below the exact solution for

larger values of x̃. The discrepancy in the peak pressures is likely the result of

an insufficient number of cell centers (approx. 3–4) within the reaction zone of the

numerical solution. The increased pressure drop in the numerical solution is due to the

Prandtl-Meyer expansion emanating from the apex of the projectile. As previously

mentioned, CJ detonations are known to be unstable with this reaction mechanism,

208



0 5 10 15
t, Time (s)

0

50

100

150

a p
, P

ro
je

ct
ile

 A
cc

el
er

at
io

n 
(m

/s2 )

0 1�108 2�108 3�108 4�108
t, Time

0

1�10-9

2�10-9

a p
, P

ro
je

ct
ile

 A
cc

el
er

at
io

n

~

~

Figure 8.11: Projectile acceleration as a function of time (q̃ = 1.014 MJ/kg, m̃ =
1.2108 kg/m).

and yet no instabilities were found in the cases studied. The verification studies of

Ch. 6 indicated, however, that a much greater number of points within the reaction

zone is required to accurately capture detonation instability.
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Figure 8.12: Projectile acceleration as a function of distance (q̃ = 1.014 MJ/kg,
m̃ = 1.2108 kg/m).
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Figure 8.13: Projectile velocity as a function of time (q̃ = 1.014 MJ/kg, m̃ =
1.2108 kg/m).
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Figure 8.14: Projectile velocity as a function of position (q̃ = 1.014 MJ/kg, m̃ =
1.2108 kg/m).
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Chapter 9

CONCLUSIONS

9.1 Unsteady Oblique Detonations

The results presented here suggest that straight shock, curved wall oblique detona-

tions have a stability threshold slightly higher than their one-dimensional counter-

parts. For the parameters studied, the oblique detonation stability threshold was

at a normal overdrive value of approximately fn = 1.77, while the corresponding

one-dimensional detonation threshold occurs at an overdrive of f = 1.73. The unsta-

ble oblique detonation solutions were characterized by the formation of one or more

three-shock structures at the detonation front. These structures would move down-

ward along the front, and eventually impact with the wedge surface. The passage

of the three-shock resulted in a curved detonation front which propagated forward

into the freestream until encountering the front computational boundary. The ini-

tial transient stages of the stable oblique detonations were also characterized by the

three-shock structures; however, in those cases the disturbance would simply propa-

gate out the top of the domain, and the detonation would return approximately to

its initial steady state. The slightly higher stability threshold for the straight oblique

detonation suggests that the initial “one-dimensional” instability, which decayed in

one dimension, transitions to unstable two-dimensional structures for a small range

of normal overdrive values. Above that range the two-dimensional structures that

form are too weak to destabilize the detonation.
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As suggested by the one-dimensional detonation stability results, an important

parameter in the two-dimensional studies was the number of computational cells

within the half reaction zone length of the initial steady detonation. The numerical

algorithm was able to correctly predict one-dimensional instability with as few as

10 points per L1/2. For all of the two-dimensional studies the points per L1/2 was

kept above this value. A second parameter that became important in the oblique

detonation studies was the length in units of L1/2 of the initial detonation within

the computational domain. Defining the domains such that Lratio was less than

approximately 20-25 tended to result in incorrectly predicted stability. It is entirely

possible that further extending the top of the domain to increase Lratio past the values

used could change the stability threshold observed. The instability in the solution at

fn = 1.76 occurred away from the upper boundary, however, so it is unlikely that the

threshold would decrease. Finally, it is also possible that extending the computational

domain horizontally to allow the curved detonation room to move forward could result

in the eventual return of the detonation to a (straight) steady state.

As with any numerical study, particularly one involving the study of stability,

there are a number of caveats concerning the above conclusions. The implementation

of accurate wall boundary conditions along the bottom of the computational domain,

and outflow boundary conditions along the top of the domain, presented the biggest

challenge in this study; entirely satisfactory results were never obtained. It was

deemed necessary to extend the computational grid somewhat in front of the wedge

tip in order to allow the detonation room to adjust in this region; however the density

and pressure spikes resulting from the grid discontinuity along the wall grid line are

problematic. Additionally, downstream of the wedge tip and along the wall there was

always some discrepancy between the exact solution and the numerical solution, even

for those variables in which there was not an initial overshoot. This was partly a

result of the spike in density and pressure, but was also observed to a lesser degree
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in inert cases for which the grid discontinuity was much smaller. The net effect of

these two problems was the creation of an unphysical numerical boundary layer in

the region near the wall. As for the outflow condition along the top of the domain,

there were obvious discrepancies that occurred when a shock exited through this

boundary. Certainly the method used to determine the value of K was simplistic;

however, there still remain fundamental problems in accurately estimating unknown

physical quantities entering the domain along inflowing characteristics.

A second issue is the unknown effect on the observed detonation instability of

the slight oscillations observed in the numerical solutions when compared to exact

solutions. Certainly where issues of stability are concerned these are undesirable ar-

tifacts. Other researchers [21] have advocated adding very small amounts of artificial

dissipation in higher-order Godunov schemes in order to eliminate such phenomena.

This was avoided here due to the possible effects on the numerical prediction of in-

stability. Without exact two-dimensional steady and unsteady solutions with which

to compare, it is difficult to know which is the correct choice. A related issue is the

nonunique choice of a limiter for the second order scheme. Two were compared here,

but there are many more possibilities invented each year. Which limiter is used will

certainly affect the solution, but, as with artificial dissipation, the correct choice is

not necessarily evident.

The last issue is the numerical modelling of reactive flows, even those with very

simple chemistry models. A recent report by Stewart and Bdzil notes some of the

difficulties being encountered by researchers in this area [74]:
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“In this case, the test problem was for the physically important case of a
Chapman-Jouguet detonation, with large temperature sensitivity in the reac-
tion rate. The attempts at solving the problem with different state-of-the-art
codes seemed to have produced a wide variation in results. A main objective of
the Workshop was to illustrate the variation in results obtained by the different
methods. Our experience with CAVEAT and CMHOG [two different codes]
shows that there can be profound qualitative and quantitative differences in
the solutions obtained with different codes . . . The dramatic differences in the
solutions obtained by these two codes, that had both passed many tests and
that were being used with reasonable (numerical) parameters, is disconcerting
at best. The binary difference in the qualitative behavior obtained with these
codes points out that advanced algorithms must reduce accuracy errors wher-
ever possible, if realistic engineering problems are to be solved accurately.”

According to the report, the equations being solved were exactly the reactive Euler

equations with a one-step reaction model which were considered for this study.

Much work remains to be done in this area. Some of the above issues could be

resolved by tracking the detonation front and using it as a boundary of the domain.

This would allow exact Rankine-Hugoniot jump conditions to be used at the discon-

tinuity, thus eliminating any Gibbs phenomena following the shock. Using an even

higher order scheme could resolve some of the issues concerning the modelling of re-

active flows. Perhaps most important of all, better numerical boundary conditions

for finite domains need to be devised. In terms of more fully understanding oblique

detonation stability, parametric studies of such parameters as the wall shape and

initial detonation wave angle remain to be considered. Real devices, such as the ram

accelerator, have walls instead of open boundaries, thus it would be useful to consider

that effect as well.

9.2 Steady Propagation of a Ram Accelerator

This study has given indication of the importance of the interaction of kinetic length

scales with geometric length scales in determining steady propagation velocities for

high Mach number propulsion devices. The trends of our variation of net thrust

with Mach number for fixed heat release are consistent with those of Ref. [10] and
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[88]. Most importantly, the idea of using the heat release to vary the propagation

speed, as shown in the bifurcation diagrams, has been demonstrated. In an ODWE

environment, the equivalence ratio could presumably be varied to achieve this effect.

Alternatively, one may be able to use the wedge angle as a bifurcation parameter to

vary the propagation speed.

Due to the relatively low values of heat release considered in the study and the lack

of cowl surfaces in the configuration, performance parameters, such as the maximum

projectile acceleration, were much lower than what has been reported in the literature.

Even with these limitations, however, large accelerations and changes in velocity were

predicted, indicating the potential for this type of propulsion.

The relevance of the CJ state for this model and configuration has also been

demonstrated. Since the CJ velocity is independent of the reaction kinetics, while

the steady flight speed is dependent on the kinetics, the only relevance of the CJ Mach

number was as an overly conservative lower bound for flight speeds. Additionally, the

CJ oblique detonation angle was predicted in the far-field for cases with and without

force balances, and thus does not have any particular relevance in the determination

of the flight speed.

In the results presented here the oblique detonations exhibited no instabilities,

which is consistent with the results of other researchers [10, 89, 88, 87]. However,

there were as few as 3-4 cells within the reaction zones of the detonations. The

one-dimensional ZND results indicate that this is too few to accurately capture the

possible unsteady behavior of the detonation, though unsteady solutions were still

found with relatively few cells in the reaction zone. Certainly it is of interest to

consider more resolved solutions, as the unsteady detonation phenomena observed in

Ch. 7 may appear.

For the future it would be useful to consider the case of dynamic stability. This

would be accomplished by considering the equations of motion in an accelerating
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frame of reference. The computed forces on the projectile would enter into the ac-

celeration of the reference frame, which would then alter the inflow Mach number

dynamically. Also as suggested in a review by Powers [59], it would be useful to

study this problem in the context of other well-documented inert flows such as a

Busemann biplane or flow over a thin airfoil.
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Appendix A

PROGRAM LISTING

The following is a listing of the FORTRAN program and subroutines written to solve

the reactive Euler equations using the second-order Roe scheme.

A.1 roe2d.f

program roe2d
c This program solves the 2D,unsteady, reactive Euler equations for an
c arbitrary mesh using the Roe scheme decomposed into one-dimensional
c sweeps (fractional step method). The chemistry is assumed frozen
c while the fluid mechanics is solved, and then the fluid mechanics
c is held frozen while the chemistry is solved (half steps).
c The Van Leer flux limiter is being used. Used 2nd order Runge Kutta
c time integration and symmetric splitting to obtain second-order
c temporal accuracy. Also, analytically integrated species equation
c following Colella, Majda and Roytburd.
c by Matt Grismer, 5/4/94

implicit double precision (a-h,o-z)
parameter (nx=100,ny=100,gamma=1.4d0)
dimension xv(nx,ny),yv(nx,ny),xc(0:nx,0:ny),yc(0:nx,0:ny),

+ xixc(0:nx,0:ny),xiyc(0:nx,0:ny),etaxc(0:nx,0:ny),
+ etayc(0:nx,0:ny),xixii(nx,ny-1),xiyii(nx,ny-1),
+ etaxij(nx-1,ny),etayij(nx-1,ny)
double precision jacc(0:nx,0:ny),jacii(nx,ny-1),jacij(nx-1,ny),

+ m0,m02,jac
dimension rhoc(0:nx,0:ny),pc(0:nx,0:ny),uc(0:nx,0:ny),

+ vc(0:nx,0:ny),bigec(0:nx,0:ny),bighc(0:nx,0:ny),
+ q(0:nx,0:ny,5),fflux(nx,ny-1,5),gflux(nx-1,ny,5),
+ y2c(0:nx,0:ny),qbar(0:nx,0:ny,5),
+ eigvlx(nx,5),eigvcx(nx,5,5),dwx(nx,5),
+ eigvly(ny,5),eigvcy(ny,5,5),dwy(ny,5)
dimension rhoold(nx-1,ny-1),pold(nx-1,ny-1),uold(nx-1,ny-1),

+ vold(nx-1,ny-1),beold(nx-1,ny-1)
logical rerun,dimens,intrvl,topwal
character*20 intnam
common gam1,gam12,speed,uin,vin,pin,rhoin,bigen,bighn
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common /chemistry/ y2in,qheat,theta,m02
c
200 format(2(e25.18,2x),e25.18)
220 format(4(e14.7,1x),e14.7)
c

gam1 = gamma - 1.0d0
gam12 = gam1/2.0d0

c Read in data file or start from scratch
rerun = .true.

c even number better
ncount = 500
dimens = .true.
topwal = .false.
init = 1

c choose whether to write data files at intervals, after how many steps
c choose even number of intervals

intrvl = .false.
intcnt = 500

c
c Read dimensional grid file for cell vertex locations

open(12,file=’grid.dat’,status=’old’,form=’unformatted’)
do 90 i=1,nx
do 90 j=1,ny
read(12) xv(i,j),yv(i,j)

90 continue
close(12)

c
c dimensional inflow conditions

rho0 = 1.225d0
p0 = 101325.0d0
m0 = 4.0d0
u0 = m0*sqrt(gamma*p0/rho0)
v0 = 0.0d0
bige0 = p0/(rho0*gam1) + 0.5d0*(u0**2 + v0**2)
bigh0 = bige0 + p0/rho0

c (dimensional) arrhenius prefactor, activation energy, and heat
c release (for chemistry)

bigb0 = 1.0d6
qheat0 = 0.0d0
acte = 4135714.28571d0

c nondimensionalize (write out just to indicate method of nondim.)
m02 = m0*m0
const1 = m0*sqrt(p0/rho0)
const2 = m02*p0
rhoin = rho0/rho0
pin = p0/const2
uin = u0/const1
vin = v0/const1
bigen = bige0*rho0/const2
bighn = bigh0*rho0/const2
y2in = 0.0d0
qheat = qheat0*rho0/const2
theta = acte*rho0/const2

c nondimensionalize grid vertices
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do 100 j=1,ny
do 100 i=1,nx
xv(i,j) = bigb0*xv(i,j)/const1
yv(i,j) = bigb0*yv(i,j)/const1

100 continue
c
c calculate cell centers

call center(nx,ny,xv,yv,xc,yc)
c determine K factor from Poinsot and Lele for subsonic outflow

bigk = 0.025d0
c write out centers data file

open(15,file=’centers.dat’,status=’unknown’)
write(15,*) nx-1,ny-1
if(dimens) then
write(15,200) ((xc(i,j)*const1/bigb0,i=1,nx-1),j=1,ny-1)
write(15,200) ((yc(i,j)*const1/bigb0,i=1,nx-1),j=1,ny-1)
close(15)
else
write(15,200) ((xc(i,j),i=1,nx-1),j=1,ny-1)
write(15,200) ((yc(i,j),i=1,nx-1),j=1,ny-1)
close(15)
endif

c calculate ghost cell centers and associated metrics
call ghost(nx,ny,xv,yv,xc,yc,xixc,xiyc,etaxc,etayc,jacc)

c calculate metrics at centers
call metrcc(nx,ny,xv,yv,xixc,xiyc,etaxc,etayc,jacc)

c calculate metrics at interfaces in i an j directions, respectively
call metrci(nx,ny,xv,yv,xc,yc,xixii,xiyii,jacii)
call metrcj(nx,ny,xv,yv,xc,yc,etaxij,etayij,jacij)

c
c Read in previous run or initialize grid

if(rerun) then
open(16,file=’roe2d.dat’,status=’old’)
read(16,*) junk1,junk2
if((junk1+1).ne.nx.or.(junk2+1).ne.ny) pause ’Problem

+ w/dimensions.’
read(16,*) ((rhoc(i,j),i=1,nx-1),j=1,ny-1)
read(16,*) ((uc(i,j),i=1,nx-1),j=1,ny-1)
read(16,*) ((vc(i,j),i=1,nx-1),j=1,ny-1)
read(16,*) ((bigec(i,j),i=1,nx-1),j=1,ny-1)
read(16,*) ((pc(i,j),i=1,nx-1),j=1,ny-1)
read(16,*) ((y2c(i,j),i=1,nx-1),j=1,ny-1)
read(16,*) nstep,t
n0 = nstep
close(16)

c dimensional data must be nondimensionalized
if(dimens) then
do 103 j=1,ny-1
do 103 i=1,nx-1
rhoc(i,j) = rhoc(i,j)/rho0
uc(i,j) = uc(i,j)/const1
vc(i,j) = vc(i,j)/const1
bigec(i,j) = bigec(i,j)*rho0/const2
pc(i,j) = pc(i,j)/const2
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103 continue
endif
do 105 j=1,ny-1
do 105 i=1,nx-1
bighc(i,j) = bigec(i,j) + pc(i,j)/rhoc(i,j)

105 continue
else

c Initialize grid
c Choose from among different ways with init variable
c init = 1, set constant state throughout domain

if(init.eq.1) then
do 110 j=1,ny-1
do 110 i=1,nx-1

c primitive variables
rhoc(i,j) = rhoin
pc(i,j) = pin
uc(i,j) = uin
vc(i,j) = vin
bigec(i,j) = bigen
bighc(i,j) = bighn
y2c(i,j) = y2in

110 continue
c init = 2, set zero velocity, constant state throughout domain

elseif(init.eq.2) then
do 111 j=1,ny-1
do 111 i=1,nx-1
rhoc(i,j) = rhoin
pc(i,j) = pin
uc(i,j) = 0.0d0
vc(i,j) = 0.0d0
bigec(i,j) = pin/(rhoin*gam1)
bighc(i,j) = bigec(i,j) + pin/rhoin
y2c(i,j) = 0.0d0

111 continue
c init = 3 or more, set linearly varying u initial state

else
dm = (m0 - 1.01d0)/(nx-1)
do 112 j=1,ny-1
do 112 i=1,nx-1
rhoc(i,j) = rhoin
pc(i,j) = pin
xm = m0 - dm*dble(i)
uc(i,j) = sqrt(gamma*pin*xm*xm/rhoin - vin*vin)
vc(i,j) = vin
bigec(i,j) = pin/(rhoin*gam1) + 0.5d0*(uc(i,j)*uc(i,j) +

+ vc(i,j)*vc(i,j))
bighc(i,j) = bigec(i,j) + pin/rhoin
y2c(i,j) = 0.0d0

112 continue
endif
t = 0.0d0
nstep = 0
n0 = 0
endif
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c
c dependent variable vector

do 115 j=1,ny-1
do 115 i=1,nx-1
jac = jacc(i,j)
rho = rhoc(i,j)
q(i,j,1) = rho/jac
q(i,j,2) = rho*uc(i,j)/jac
q(i,j,3) = rho*vc(i,j)/jac
q(i,j,4) = rho*bigec(i,j)/jac
q(i,j,5) = rho*y2c(i,j)/jac

115 continue
c
c Set inflow flux based upon inflow quantities
c assumes supersonic flow, so all characteristics point in

do 120 j=1,ny-1
fflux(1,j,1) = rhoin*(xixc(0,j)*uin + xiyc(0,j)*vin)

+ /jacc(0,j)
fflux(1,j,2) = fflux(1,j,1)*uin + xixc(0,j)*pin/jacc(0,j)
fflux(1,j,3) = fflux(1,j,1)*vin + xiyc(0,j)*pin/jacc(0,j)
fflux(1,j,4) = fflux(1,j,1)*bighn
fflux(1,j,5) = fflux(1,j,1)*y2in

c Need ghost cells to contain inflow quanitities for higher order
c terms in flxxi subroutine

rhoc(0,j) = rhoin
pc(0,j) = pin
uc(0,j) = uin
vc(0,j) = vin
bigec(0,j) = bigen
bighc(0,j) = bighn
y2c(0,j) = y2in

c
jac = jacc(0,j)
rho = rhoc(0,j)
q(0,j,1) = rho/jac
q(0,j,2) = rho*uc(0,j)/jac
q(0,j,3) = rho*vc(0,j)/jac
q(0,j,4) = rho*bigec(0,j)/jac
q(0,j,5) = rho*y2c(0,j)/jac

120 continue
c make sure unused outflow interface quantities are zero

do 300 k=1,5
eigvlx(nx,k) = 0.0d0
dwx(nx,k) = 0.0d0

c
eigvly(1,k) = 0.0d0
dwy(1,k) = 0.0d0
eigvly(ny,k) = 0.0d0
dwy(ny,k) = 0.0d0

300 continue
ccccccccccccccccccccccccccccccc
c Begin main iteration loop
c Use fractional stepping to get entire solution
c Use seond-order Runge Kutta time integration for each step,
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c and then combine steps symmetrically to maintain second-order
c accuracy with splitting. One complete step will advance solution
c 2*dt in time.
cccccccccccccccccccccccccccccccc

total = dble((nx-1)*(ny-1))
c keep old values of variables for calculating residuals
50 do 122 j=1,ny-1

do 122 i=1,nx-1
rhoold(i,j) = rhoc(i,j)
uold(i,j) = uc(i,j)
vold(i,j) = vc(i,j)
pold(i,j) = pc(i,j)
beold(i,j) = bigec(i,j)

122 continue
c get timestep

call timest(nx,ny,rhoc,pc,uc,vc,xixc,xiyc,etaxc,etayc,dt)
dt2 = 0.5d0*dt

ccccccccccc
c Fractional step in xi direction
ccccccccccc
c Integrate forward in time dt/2
c determine fluxes at xi interfaces using Roe scheme

call flxxi(nx,ny,rhoc,pc,uc,vc,bighc,y2c,q,xixc,xiyc,jacc,
+ xixii,xiyii,eigvlx,eigvcx,dwx,fflux)

c update outflow boundary cells using Poinsot and Lele idea
c use 2nd order runge kutta here also, so advance half step

call boundx(nx,ny,bigk,rhoc,uc,vc,pc,y2c,bighc,q,qbar,fflux,
+ xixc,xiyc,jacc,dt2,.true.)

c determine estimate qbar after half timestep
c counting cell centers

do 130 k=1,5
do 130 j=1,ny-1
do 130 i=1,nx-2
qbar(i,j,k) = q(i,j,k)-dt2*(fflux(i+1,j,k) - fflux(i,j,k))

130 continue
c decode qbar into primitive variables

call decode(nx,ny,rhoc,pc,uc,vc,bigec,bighc,y2c,qbar,jacc)
c determine new fluxes based upon qbar

call flxxi(nx,ny,rhoc,pc,uc,vc,bighc,y2c,qbar,xixc,xiyc,jacc,
+ xixii,xiyii,eigvlx,eigvcx,dwx,fflux)

c determine new q based up intermediate qbar values at boundary
call boundx(nx,ny,bigk,rhoc,uc,vc,pc,y2c,bighc,q,qbar,fflux,

+ xixc,xiyc,jacc,dt,.false.)
c use qbar fluxes to determine new q after dt
c counting cell centers

do 135 k=1,5
do 135 j=1,ny-1
do 135 i=1,nx-2
q(i,j,k) = q(i,j,k)-dt*(fflux(i+1,j,k) - fflux(i,j,k))

135 continue
c decode q into primitive variables for next step

call decode(nx,ny,rhoc,pc,uc,vc,bigec,bighc,y2c,q,jacc)
cccccccccccccc
c fractional step in eta direction
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ccccccccccccccc
c determine fluxes at eta interfaces using Roe scheme

call flxeta(nx,ny,rhoc,pc,uc,vc,bighc,y2c,q,etaxc,etayc,
+ jacc,etaxij,etayij,jacij,eigvly,eigvcy,dwy,gflux,topwal)

c
c If topwal=true, then use wall condition at top of domain
c (inside flxeta), else use outflow condition of Poinsot and Lele

if(topwal) then
c wall boundary conditions handled inside flxeta
c determine intermediate qbar over dt/2

do 140 k=1,5
do 140 j=1,ny-1
do 140 i=1,nx-1
qbar(i,j,k) = q(i,j,k)-dt2*(gflux(i,j+1,k) - gflux(i,j,k))

140 continue
c
c decode qbar into primitive variables

call decode(nx,ny,rhoc,pc,uc,vc,bigec,bighc,y2c,qbar,jacc)
c determine new fluxes based upon qbar

call flxeta(nx,ny,rhoc,pc,uc,vc,bighc,y2c,qbar,etaxc,etayc,
+ jacc,etaxij,etayij,jacij,eigvly,eigvcy,dwy,gflux,topwal)

c determine new q after dt using intermediate fluxes from qbar
do 142 k=1,5
do 142 j=1,ny-1
do 142 i=1,nx-1
q(i,j,k) = q(i,j,k) - dt*(gflux(i,j+1,k) - gflux(i,j,k))

142 continue
ccccccccc

else
ccccccccc
c use Poinsot and Lele outflow condition at top of domain
c determine intermediate qbar along top of domain

call boundn(nx,ny,bigk,rhoc,uc,vc,pc,y2c,bighc,q,qbar,gflux,
+ etaxc,etayc,jacc,etaxij,etayij,jacij,xixc,xiyc,
+ dt2,.true.)

c determine intermediate values qbar over dt/2
do 145 k=1,5
do 145 j=1,ny-2
do 145 i=1,nx-1
qbar(i,j,k) = q(i,j,k)-dt2*(gflux(i,j+1,k) - gflux(i,j,k))

145 continue
c
c decode qbar into primitive variables

call decode(nx,ny,rhoc,pc,uc,vc,bigec,bighc,y2c,qbar,jacc)
c calculate intermediate flux values based upon qbar

call flxeta(nx,ny,rhoc,pc,uc,vc,bighc,y2c,qbar,etaxc,etayc,
+ jacc,etaxij,etayij,jacij,eigvly,eigvcy,dwy,gflux,topwal)

c Determine new q along top of domain
call boundn(nx,ny,bigk,rhoc,uc,vc,pc,y2c,bighc,q,qbar,gflux,

+ etaxc,etayc,jacc,etaxij,etayij,jacij,xixc,xiyc,
+ dt,.false.)

c determine new q using intermediate flux values
do 147 k=1,5
do 147 j=1,ny-2
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do 147 i=1,nx-1
q(i,j,k) = q(i,j,k) - dt*(gflux(i,j+1,k) - gflux(i,j,k))

147 continue
endif

c decode into new primitive variables for next fractional step
call decode(nx,ny,rhoc,pc,uc,vc,bigec,bighc,y2c,q,jacc)

ccccccccccccccc
c fractional step for chemistry (species equation)
ccccccccccccccc

do 150 j=1,ny-1
do 150 i=1,nx-1
rho = rhoc(i,j)
y2c(i,j) = 1.0d0+(y2c(i,j)-1.0d0)*exp(-dt*

+ exp(-theta*rho/pc(i,j)))
c update primitive variables, but only need to do p and H because
c all other variables stay fixed (except Y2 above)

pc(i,j) = rho*gam1*(bigec(i,j) + y2c(i,j)*qheat-0.5d0*
+ (uc(i,j)*uc(i,j) + vc(i,j)*vc(i,j)))

bighc(i,j) = bigec(i,j) + pc(i,j)/rho
q(i,j,5) = rho*y2c(i,j)/jacc(i,j)

150 continue
cccccccccccccccccccccc
c First timestep done, but reverse to get second order accuracy
c for splitting. do chemistry first and then flow
c When done have advanced two delta t
cccccccccccccccccccccc

do 155 j=1,ny-1
do 155 i=1,nx-1
rho = rhoc(i,j)
y2c(i,j) = 1.0d0+(y2c(i,j)-1.0d0)*exp(-dt*

+ exp(-theta*rho/pc(i,j)))
pc(i,j) = rho*gam1*(bigec(i,j) + y2c(i,j)*qheat-0.5d0*

+ (uc(i,j)*uc(i,j) + vc(i,j)*vc(i,j)))
bighc(i,j) = bigec(i,j) + pc(i,j)/rho
q(i,j,5) = rho*y2c(i,j)/jacc(i,j)

155 continue
cccccccccccccc
c fractional step in eta direction
ccccccccccccccc

call flxeta(nx,ny,rhoc,pc,uc,vc,bighc,y2c,q,etaxc,etayc,
+ jacc,etaxij,etayij,jacij,eigvly,eigvcy,dwy,gflux,topwal)

if(topwal) then
do 160 k=1,5
do 160 j=1,ny-1
do 160 i=1,nx-1
qbar(i,j,k) = q(i,j,k)-dt2*(gflux(i,j+1,k) - gflux(i,j,k))

160 continue
call decode(nx,ny,rhoc,pc,uc,vc,bigec,bighc,y2c,qbar,jacc)
call flxeta(nx,ny,rhoc,pc,uc,vc,bighc,y2c,qbar,etaxc,etayc,

+ jacc,etaxij,etayij,jacij,eigvly,eigvcy,dwy,gflux,topwal)
do 165 k=1,5
do 165 j=1,ny-1
do 165 i=1,nx-1
q(i,j,k) = q(i,j,k) - dt*(gflux(i,j+1,k) - gflux(i,j,k))
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165 continue
ccccccccc

else
ccccccccc

call boundn(nx,ny,bigk,rhoc,uc,vc,pc,y2c,bighc,q,qbar,gflux,
+ etaxc,etayc,jacc,etaxij,etayij,jacij,xixc,xiyc,
+ dt2,.true.)

do 175 k=1,5
do 175 j=1,ny-2
do 175 i=1,nx-1
qbar(i,j,k) = q(i,j,k)-dt2*(gflux(i,j+1,k) - gflux(i,j,k))

175 continue
call decode(nx,ny,rhoc,pc,uc,vc,bigec,bighc,y2c,qbar,jacc)
call flxeta(nx,ny,rhoc,pc,uc,vc,bighc,y2c,qbar,etaxc,etayc,

+ jacc,etaxij,etayij,jacij,eigvly,eigvcy,dwy,gflux,topwal)
call boundn(nx,ny,bigk,rhoc,uc,vc,pc,y2c,bighc,q,qbar,gflux,

+ etaxc,etayc,jacc,etaxij,etayij,jacij,xixc,xiyc,
+ dt,.false.)

do 180 k=1,5
do 180 j=1,ny-2
do 180 i=1,nx-1
q(i,j,k) = q(i,j,k) - dt*(gflux(i,j+1,k) - gflux(i,j,k))

180 continue
endif
call decode(nx,ny,rhoc,pc,uc,vc,bigec,bighc,y2c,q,jacc)

ccccccccccc
c Fractional step in xi direction
ccccccccccc

call flxxi(nx,ny,rhoc,pc,uc,vc,bighc,y2c,q,xixc,xiyc,jacc,
+ xixii,xiyii,eigvlx,eigvcx,dwx,fflux)

call boundx(nx,ny,bigk,rhoc,uc,vc,pc,y2c,bighc,q,qbar,fflux,
+ xixc,xiyc,jacc,dt2,.true.)

do 190 k=1,5
do 190 j=1,ny-1
do 190 i=1,nx-2
qbar(i,j,k) = q(i,j,k)-dt2*(fflux(i+1,j,k) - fflux(i,j,k))

190 continue
call decode(nx,ny,rhoc,pc,uc,vc,bigec,bighc,y2c,qbar,jacc)
call flxxi(nx,ny,rhoc,pc,uc,vc,bighc,y2c,qbar,xixc,xiyc,jacc,

+ xixii,xiyii,eigvlx,eigvcx,dwx,fflux)
call boundx(nx,ny,bigk,rhoc,uc,vc,pc,y2c,bighc,q,qbar,fflux,

+ xixc,xiyc,jacc,dt,.false.)
do 195 k=1,5
do 195 j=1,ny-1
do 195 i=1,nx-2
q(i,j,k) = q(i,j,k)-dt*(fflux(i+1,j,k) - fflux(i,j,k))

195 continue
call decode(nx,ny,rhoc,pc,uc,vc,bigec,bighc,y2c,q,jacc)

c determine residuals for output
c determine average difference of variables over grid

bigdr = 0.0d0
bigdu = 0.0d0
bigdv = 0.0d0
bigdp = 0.0d0

228



bigde = 0.0d0
do 170 j=1,ny-1
do 170 i=1,nx-1
drho = abs(rhoc(i,j) - rhoold(i,j))
du = abs(uc(i,j) - uold(i,j))
dv = abs(vc(i,j) - vold(i,j))
dp = abs(pc(i,j) - pold(i,j))
de = abs(bigec(i,j) - beold(i,j))

c
bigdr = bigdr + drho
bigdu = bigdu + du
bigdv = bigdv + dv
bigdp = bigdp + dp
bigde = bigde + de

170 continue
bigdr = bigdr/total
bigdu = bigdu/total
bigdv = bigdv/total
bigdp = bigdp/total
bigde = bigde/total

c
nstep = nstep + 2
t = t + 2.0d0*dt

c
c write out data at intervals

if(intrvl.and.mod(nstep,intcnt).eq.0) then
c figure out data file name

jcnt = nstep/intcnt
if(jcnt.lt.10) then
intnam = ’roe2d_int’//char(48+jcnt)//’.dat’
elseif(jcnt.lt.100) then
jcnt10 = jcnt/10
jcnt1 = jcnt - jcnt10*10
intnam = ’roe2d_int’//char(48+jcnt10)//char(48+jcnt1)//’.dat’
elseif(jcnt.lt.1000) then
jcnt100 = jcnt/100
jcnt10 = (jcnt - jcnt100*100)/10
jcnt1 = (jcnt - jcnt100*100 - jcnt10*10)
intnam = ’roe2d_int’//char(48+jcnt100)//char(48+jcnt10)

+ //char(48+jcnt1)//’.dat’
endif

c write data
open(19,file=intnam,status=’new’)
write(19,*) nx-1,ny-1
if(dimens) then
write(19,220) ((rhoc(i,j)*rho0,i=1,nx-1),j=1,ny-1)
write(19,220) ((uc(i,j)*const1,i=1,nx-1),j=1,ny-1)
write(19,220) ((vc(i,j)*const1,i=1,nx-1),j=1,ny-1)
write(19,220) ((bigec(i,j)*const2/rho0,i=1,nx-1),j=1,ny-1)
write(19,220) ((pc(i,j)*const2,i=1,nx-1),j=1,ny-1)
write(19,220) ((y2c(i,j),i=1,nx-1),j=1,ny-1)
else
write(19,220) ((rhoc(i,j),i=1,nx-1),j=1,ny-1)
write(19,220) ((uc(i,j),i=1,nx-1),j=1,ny-1)
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write(19,220) ((vc(i,j),i=1,nx-1),j=1,ny-1)
write(19,220) ((bigec(i,j),i=1,nx-1),j=1,ny-1)
write(19,220) ((pc(i,j),i=1,nx-1),j=1,ny-1)
write(19,220) ((y2c(i,j),i=1,nx-1),j=1,ny-1)
endif
write(19,*) nstep,t
close(19)
endif

c
if(nstep-n0.ge.ncount) then
write(*,’(i5,2x,5(e12.5,2x))’) nstep,bigdr,bigdu,bigdv,

+ bigdp,bigde
open(14,file=’roe2d.dat’,status=’unknown’)
write(14,*) nx-1,ny-1
if(dimens) then
write(14,200) ((rhoc(i,j)*rho0,i=1,nx-1),j=1,ny-1)
write(14,200) ((uc(i,j)*const1,i=1,nx-1),j=1,ny-1)
write(14,200) ((vc(i,j)*const1,i=1,nx-1),j=1,ny-1)
write(14,200) ((bigec(i,j)*const2/rho0,i=1,nx-1),j=1,ny-1)
write(14,200) ((pc(i,j)*const2,i=1,nx-1),j=1,ny-1)
write(14,200) ((y2c(i,j),i=1,nx-1),j=1,ny-1)

else
write(14,200) ((rhoc(i,j),i=1,nx-1),j=1,ny-1)
write(14,200) ((uc(i,j),i=1,nx-1),j=1,ny-1)
write(14,200) ((vc(i,j),i=1,nx-1),j=1,ny-1)
write(14,200) ((bigec(i,j),i=1,nx-1),j=1,ny-1)
write(14,200) ((pc(i,j),i=1,nx-1),j=1,ny-1)
write(14,200) ((y2c(i,j),i=1,nx-1),j=1,ny-1)

endif
write(14,*) nstep,t
close(14)
else
write(*,’(i5,2x,5(e12.5,2x))’) nstep,bigdr,bigdu,bigdv,

+ bigdp,bigde
goto 50
endif
end

A.2 center.f

subroutine center(nx,ny,xv,yv,xc,yc)
c calculates center of cell using cell vertices. Simplistic approach:
c find intersection of lines connecting opposite face centers.

implicit double precision (a-h,o-z)
dimension xv(nx,ny),yv(nx,ny),xc(0:nx,0:ny),yc(0:nx,0:ny)
double precision m1,m2

c
c xv and yv are the cell vertices, while xc and yc are the center
c
c i,j+1 ----4----- i+1,j+1
c | |
c 1 2
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c | |
c i,j ----3----- i+1,j
c

do 100 j=1,ny-1
do 100 i=1,nx-1

c face 1
xc1 = 0.5d0*(xv(i,j) + xv(i,j+1))
yc1 = 0.5d0*(yv(i,j) + yv(i,j+1))

c face 2
xc2 = 0.5d0*(xv(i+1,j) + xv(i+1,j+1))
yc2 = 0.5d0*(yv(i+1,j) + yv(i+1,j+1))

c face 3
xc3 = 0.5d0*(xv(i,j) + xv(i+1,j))
yc3 = 0.5d0*(yv(i,j) + yv(i+1,j))

c face 4
xc4 = 0.5d0*(xv(i,j+1) + xv(i+1,j+1))
yc4 = 0.5d0*(yv(i,j+1) + yv(i+1,j+1))

c line connecting centers of face 1 and 2
c y = m*x + b

m1 = (yc2 - yc1)/(xc2 -xc1)
b1 = yc2 - m1*xc2

c line connecting centers of face 3 and 4
c x = m*y + b (avoids problem with vertical lines)

m2 = (xc4 - xc3)/(yc4 - yc3)
b2 = xc4 - m2*yc4

c intersection = centers
yc(i,j) = (m1*b2 + b1)/(1.0d0 - m1*m2)
xc(i,j) = m2*yc(i,j) + b2

100 continue
return
end

A.3 ghost.f

subroutine ghost(nx,ny,xv,yv,xc,yc,xixc,xiyc,etaxc,etayc,jacc)
c Determines locations of vertices and cell centers of "ghost" cells.
c These ghost cells will be used to (hopefully) smooth the metrics
c near the boundaries of the domain. Ghost cells also postulated for
c determining the proper boundary conditions at walls, etc.
c This routine kind of assumes that the grid lines are orthogonal at
c the boundaries. This is not really a restriction, since the grid
c lines should be nearly orthogonal everywhere for the best performance
c of the code.

implicit double precision (a-h,o-z)
dimension xv(nx,ny),yv(nx,ny),xc(0:nx,0:ny),yc(0:nx,0:ny),

+ xixc(0:nx,0:ny),xiyc(0:nx,0:ny),etaxc(0:nx,0:ny),
+ etayc(0:nx,0:ny)
double precision jacc(0:nx,0:ny),jacob

c
c Determine vertices for ghost cells before i=1 and after i=nx
c Do this by finding the line that connects i=1 vertices with
c i=2 vertices, and then extending it behind i=1. Similarly for
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c i=nx. Extend behind the cell based upon the percent change between
c the first two real vertices.
c first ghost vertice
c i=0

slope1 = (yv(2,1) - yv(1,1))/(xv(2,1) - xv(1,1))
b1 = yv(1,1) - slope1*xv(1,1)
gxv1 = xv(1,1) - (xv(2,1)-xv(1,1))**2/(xv(3,1)-xv(2,1))
gyv1 = slope1*gxv1 + b1

c
do 100 j=2,ny

c second ghost vertice
slope2 = (yv(2,j) - yv(1,j))/(xv(2,j) - xv(1,j))
b2 = yv(1,j) - slope2*xv(1,j)
gxv2 = xv(1,j) - (xv(2,j)-xv(1,j))**2/(xv(3,j)-xv(2,j))
gyv2 = slope2*gxv2 + b2

c get center of cell by finding intersection of lines connecting
c interface centers, as done in center subroutine

xc1 = 0.5d0*(gxv1 + gxv2)
yc1 = 0.5d0*(gyv1 + gyv2)
xc2 = 0.5d0*(xv(1,j) + xv(1,j-1))
yc2 = 0.5d0*(yv(1,j) + yv(1,j-1))
xc3 = 0.5d0*(gxv1 + xv(1,j-1))
yc3 = 0.5d0*(gyv1 + yv(1,j-1))
xc4 = 0.5d0*(gxv2 + xv(1,j))
yc4 = 0.5d0*(gyv2 + yv(1,j))
slope1 = (yc2 - yc1)/(xc2 -xc1)
slope2 = (xc4 - xc3)/(yc4 - yc3)
b1 = yc2 - slope1*xc2
b2 = xc4 - slope2*yc4
yc(0,j-1) = (slope1*b2 + b1)/(1.0d0 - slope1*slope2)
xc(0,j-1) = slope2*yc(0,j-1) + b2

c determine ghost center metric quantities (needed for BC’s)
c to do this find grid line centers ("interface" centers) and finite
c difference

xxi = 0.5d0*(xv(1,j-1)+xv(1,j)) - 0.5d0*(gxv1+gxv2)
yxi = 0.5d0*(yv(1,j-1)+yv(1,j)) - 0.5d0*(gyv1+gyv2)
xeta = 0.5d0*(gxv2+xv(1,j)) - 0.5d0*(gxv1+xv(1,j-1))
yeta = 0.5d0*(gyv2+yv(1,j)) - 0.5d0*(gyv1+yv(1,j-1))
jacob = 1.0d0/(xxi*yeta - xeta*yxi)
jacc(0,j-1) = jacob
xixc(0,j-1) = yeta*jacob
xiyc(0,j-1) = -xeta*jacob
etaxc(0,j-1) = -yxi*jacob
etayc(0,j-1) = xxi*jacob

c get ready for next loop through
gxv1 = gxv2
gyv1 = gyv2

100 continue
c
c i=nx

slope1 = (yv(nx,1) - yv(nx-1,1))/(xv(nx,1) - xv(nx-1,1))
b1 = yv(nx,1) - slope1*xv(nx,1)
gxv1 = xv(nx,1) + (xv(nx,1)-xv(nx-1,1))**2

+ /(xv(nx-1,1)-xv(nx-2,1))
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gyv1 = slope1*gxv1 + b1
c

do 110 j=2,ny
slope2 = (yv(nx,j) - yv(nx-1,j))/(xv(nx,j)-xv(nx-1,j))
b2 = yv(nx,j) - slope2*xv(nx,j)
gxv2 = xv(nx,j) + (xv(nx,j)-xv(nx-1,j))**2

+ /(xv(nx-1,j)-xv(nx-2,j))
gyv2 = slope2*gxv2 + b2

c
c get center of cell by finding intersection of lines connecting
c interface centers, as done in center subroutine

xc2 = 0.5d0*(gxv1 + gxv2)
yc2 = 0.5d0*(gyv1 + gyv2)
xc1 = 0.5d0*(xv(nx,j) + xv(nx,j-1))
yc1 = 0.5d0*(yv(nx,j) + yv(nx,j-1))
xc3 = 0.5d0*(gxv1 + xv(nx,j-1))
yc3 = 0.5d0*(gyv1 + yv(nx,j-1))
xc4 = 0.5d0*(gxv2 + xv(nx,j))
yc4 = 0.5d0*(gyv2 + yv(nx,j))
slope1 = (yc2 - yc1)/(xc2 -xc1)
slope2 = (xc4 - xc3)/(yc4 - yc3)
b1 = yc2 - slope1*xc2
b2 = xc4 - slope2*yc4
yc(nx,j-1) = (slope1*b2 + b1)/(1.0d0 - slope1*slope2)
xc(nx,j-1) = slope2*yc(nx,j-1) + b2

c determine ghost center metric quantities (needed for BC’s)
c to do this find grid line centers ("interface" centers) and finite
c difference

xxi = 0.5d0*(gxv1+gxv2) - 0.5d0*(xv(nx,j-1)+xv(nx,j))
yxi = 0.5d0*(gyv1+gyv2) - 0.5d0*(yv(nx,j-1)+yv(nx,j))
xeta = 0.5d0*(gxv2+xv(nx,j)) - 0.5d0*(gxv1+xv(nx,j-1))
yeta = 0.5d0*(gyv2+yv(nx,j)) - 0.5d0*(gyv1+yv(nx,j-1))
jacob = 1.0d0/(xxi*yeta - xeta*yxi)
jacc(nx,j-1) = jacob
xixc(nx,j-1) = yeta*jacob
xiyc(nx,j-1) = -xeta*jacob
etaxc(nx,j-1) = -yxi*jacob
etayc(nx,j-1) = xxi*jacob

c
gxv1 = gxv2
gyv1 = gyv2

110 continue
c
c Determine ghost cells for j=1 and j=ny, same way as before.
c j=0

slope1 = (xv(1,2) - xv(1,1))/(yv(1,2) - yv(1,1))
b1 = xv(1,1) - slope1*yv(1,1)
gyv1 = yv(1,1) - (yv(1,2) - yv(1,1))**2/(yv(1,3) - yv(1,2))
gxv1 = slope1*gyv1 + b1

c
do 120 i=2,nx
slope2 = (xv(i,2) - xv(i,1))/(yv(i,2)-yv(i,1))
b2 = xv(i,1) - slope2*yv(i,1)
gyv2 = yv(i,1) - (yv(i,2) - yv(i,1))**2/(yv(i,3) - yv(i,2))
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gxv2 = slope2*gyv2 + b2
c get center of cell by finding intersection of lines connecting
c interface centers, as done in center subroutine

xc3 = 0.5d0*(gxv1 + gxv2)
yc3 = 0.5d0*(gyv1 + gyv2)
xc4 = 0.5d0*(xv(i,1) + xv(i-1,1))
yc4 = 0.5d0*(yv(i,1) + yv(i-1,1))
xc1 = 0.5d0*(gxv1 + xv(i-1,1))
yc1 = 0.5d0*(gyv1 + yv(i-1,1))
xc2 = 0.5d0*(gxv2 + xv(i,1))
yc2 = 0.5d0*(gyv2 + yv(i,1))
slope1 = (yc2 - yc1)/(xc2 -xc1)
slope2 = (xc4 - xc3)/(yc4 - yc3)
b1 = yc2 - slope1*xc2
b2 = xc4 - slope2*yc4
yc(i-1,0) = (slope1*b2 + b1)/(1.0d0 - slope1*slope2)
xc(i-1,0) = slope2*yc(i-1,0) + b2

c
xxi = 0.5d0*(xv(i,1)+gxv2) - 0.5d0*(xv(i-1,1)+gxv1)
yxi = 0.5d0*(yv(i,1)+gyv2) - 0.5d0*(yv(i-1,1)+gyv1)
xeta = 0.5d0*(xv(i,1)+xv(i-1,1)) - 0.5d0*(gxv1+gxv2)
yeta = 0.5d0*(yv(i,1)+yv(i-1,1)) - 0.5d0*(gyv1+gyv2)
jacob = 1.0d0/(xxi*yeta - xeta*yxi)
jacc(i-1,0) = jacob
xixc(i-1,0) = yeta*jacob
xiyc(i-1,0) = -xeta*jacob
etaxc(i-1,0) = -yxi*jacob
etayc(i-1,0) = xxi*jacob

c
gxv1 = gxv2
gyv1 = gyv2

120 continue
c
c
c j=ny

slope1 = (xv(1,ny) - xv(1,ny-1))/(yv(1,ny)-yv(1,ny-1))
b1 = xv(1,ny) - slope1*yv(1,ny)
gyv1 = yv(1,ny) + (yv(1,ny)-yv(1,ny-1))**2/

+ (yv(1,ny-1) - yv(1,ny-2))
gxv1 = slope1*gyv1 + b1

c
do 130 i=2,nx
slope2 = (xv(i,ny) - xv(i,ny-1))/(yv(i,ny)-yv(i,ny-1))
b2 = xv(i,ny) - slope2*yv(i,ny)
gyv2 = yv(i,ny) + (yv(i,ny)-yv(i,ny-1))**2/

+ (yv(i,ny-1) - yv(i,ny-2))
gxv2 = slope2*gyv2 + b2

c get center of cell by finding intersection of lines connecting
c interface centers, as done in center subroutine

xc4 = 0.5d0*(gxv1 + gxv2)
yc4 = 0.5d0*(gyv1 + gyv2)
xc3 = 0.5d0*(xv(i,ny) + xv(i-1,ny))
yc3 = 0.5d0*(yv(i,ny) + yv(i-1,ny))
xc1 = 0.5d0*(gxv1 + xv(i-1,ny))
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yc1 = 0.5d0*(gyv1 + yv(i-1,ny))
xc2 = 0.5d0*(gxv2 + xv(i,ny))
yc2 = 0.5d0*(gyv2 + yv(i,ny))
slope1 = (yc2 - yc1)/(xc2 -xc1)
slope2 = (xc4 - xc3)/(yc4 - yc3)
b1 = yc2 - slope1*xc2
b2 = xc4 - slope2*yc4
yc(i-1,ny) = (slope1*b2 + b1)/(1.0d0 - slope1*slope2)
xc(i-1,ny) = slope2*yc(i-1,ny) + b2

c
xxi = 0.5d0*(xv(i,ny)+gxv2) - 0.5d0*(xv(i-1,ny)+gxv1)
yxi = 0.5d0*(yv(i,ny)+gyv2) - 0.5d0*(yv(i-1,ny)+gyv1)
xeta = 0.5d0*(gxv1+gxv2) - 0.5d0*(xv(i,ny)+xv(i-1,ny))
yeta = 0.5d0*(gyv1+gyv2) - 0.5d0*(yv(i,ny)+yv(i-1,ny))
jacob = 1.0d0/(xxi*yeta - xeta*yxi)
jacc(i-1,ny) = jacob
xixc(i-1,ny) = yeta*jacob
xiyc(i-1,ny) = -xeta*jacob
etaxc(i-1,ny) = -yxi*jacob
etayc(i-1,ny) = xxi*jacob

c
gxv1 = gxv2
gyv1 = gyv2

130 continue
return
end

A.4 metrcc.f

subroutine metrcc(nx,ny,xv,yv,xix,xiy,etax,etay,jac)
c determine metrics at cell centers using finite differencing.

implicit double precision (a-h,o-z)
dimension xv(nx,ny),yv(nx,ny),xix(0:nx,0:ny),

+ xiy(0:nx,0:ny),etax(0:nx,0:ny),etay(0:nx,0:ny)
double precision jac(0:nx,0:ny),jacob

c
c use (2nd order) central differencing to determine metrics on interior
c Do these first because they are easy. Assume delta xi and delta eta
c are 1 for simplicty.

do 100 j=1,ny-1
xvci1 = 0.5d0*(xv(1,j+1) + xv(1,j))
yvci1 = 0.5d0*(yv(1,j+1) + yv(1,j))
do 100 i=1,nx-1
xvci2 = 0.5d0*(xv(i+1,j+1) + xv(i+1,j))
yvci2 = 0.5d0*(yv(i+1,j+1) + yv(i+1,j))
xvcj1 = 0.5d0*(xv(i,j) + xv(i+1,j))
yvcj1 = 0.5d0*(yv(i,j) + yv(i+1,j))
xvcj2 = 0.5d0*(xv(i,j+1) + xv(i+1,j+1))
yvcj2 = 0.5d0*(yv(i,j+1) + yv(i+1,j+1))

c
xxi = xvci2 - xvci1
yeta = yvcj2 - yvcj1
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xeta = xvcj2 - xvcj1
yxi = yvci2 - yvci1
jacob = 1.0d0/(xxi*yeta - xeta*yxi)

c
jac(i,j) = jacob
xix(i,j) = yeta*jacob
xiy(i,j) = -xeta*jacob
etax(i,j) = -yxi*jacob
etay(i,j) = xxi*jacob

c
xvci1 = xvci2
yvci1 = yvci2

100 continue
return
end

A.5 metrci.f

subroutine metrci(nx,ny,xv,yv,x,y,xixi,xiyi,jaci)
c determine metrics at cell interfaces using finite differencing
c for interfaces along the i direction only.

implicit double precision (a-h,o-z)
dimension xv(nx,ny),yv(nx,ny),x(0:nx,0:ny),y(0:nx,0:ny),

+ xixi(nx,ny-1),xiyi(nx,ny-1)
double precision jaci(nx,ny-1),jacob

c
c use (2nd order) central differencing with cell centers to determine
c metrics on interior cell interfaces. Assume delta xi and delta eta
c are one, and interface is halfway between. Thus, h for central
c difference=0.5, c and 2h = 1.0.

do 100 j=1,ny-1
do 100 i=1,nx

c this is central differencing, even though it looks like one sided.
xxi = x(i,j) - x(i-1,j)
yeta = yv(i,j+1) - yv(i,j)
xeta = xv(i,j+1) - xv(i,j)
yxi = y(i,j) - y(i-1,j)
jacob = 1.0d0/(xxi*yeta - xeta*yxi)

c
jaci(i,j) = jacob
xixi(i,j) = yeta*jacob
xiyi(i,j) = -xeta*jacob

100 continue
c

return
end

A.6 metrcj.f

subroutine metrcj(nx,ny,xv,yv,x,y,etaxj,etayj,jacj)
c determine metrics at cell interfaces using finite differencing
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c for interfaces along the j direction only.
implicit double precision (a-h,o-z)
dimension xv(nx,ny),yv(nx,ny),x(0:nx,0:ny),y(0:nx,0:ny),

+ etaxj(nx-1,ny),etayj(nx-1,ny)
double precision jacj(nx-1,ny),jacob

c
c use (2nd order) central differencing to determine metrics on
c interior cell interfaces. Assume delta xi and delta eta are one,
c and interface is halfway between. Thus, h for central difference=0.5,
c and 2h = 1.0.

do 100 j=1,ny
do 100 i=1,nx-1

c this is central differencing, even though it looks like one sided.
xxi = xv(i+1,j) - xv(i,j)
yeta = y(i,j) - y(i,j-1)
xeta = x(i,j) - x(i,j-1)
yxi = yv(i+1,j) - yv(i,j)
jacob = 1.0d0/(xxi*yeta - xeta*yxi)

c
jacj(i,j) = jacob
etaxj(i,j) = -yxi*jacob
etayj(i,j) = xxi*jacob

100 continue
c

return
end

A.7 timest.f

subroutine timest(nx,ny,rhoc,pc,uc,vc,xixc,xiyc,etaxc,etayc,dt)
c Determines timestep by considering magnitudes of eigenvalues at cell
c centers.

implicit double precision (a-h,o-z)
dimension rhoc(0:nx,0:ny),pc(0:nx,0:ny),uc(0:nx,0:ny),

+ vc(0:nx,0:ny),xixc(0:nx,0:ny),xiyc(0:nx,0:ny),
+ etaxc(0:nx,0:ny),etayc(0:nx,0:ny)
double precision m02
common gam1,gam12,speed,uin,vin,pin,rhoin,bigen,bighn
common /chemistry/ y2in,qheat,theta,m02

c
c Determine max eigenvalues at cells, which corresponds to the
c fastest travelling wave. Determine how long it would take this wave
c to cover half of a cell.

gamma = gam1 + 1.0d0
speed = 0.0d0
do 100 j=1,ny-1
do 100 i=0,nx-1
xix = xixc(i,j)
xiy = xiyc(i,j)
etax = etaxc(i,j)
etay = etayc(i,j)
xi2 = sqrt(xix*xix + xiy*xiy)
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eta2 = sqrt(etax*etax + etay*etay)
c = sqrt(gamma*pc(i,j)/rhoc(i,j))
ucc = xix*uc(i,j) + xiy*vc(i,j)
vcc = etax*uc(i,j) + etay*vc(i,j)

c absolute eigenvalues
ei1 = abs(ucc - c*xi2)
ei2 = abs(ucc + c*xi2)
ej1 = abs(vcc - c*eta2)
ej2 = abs(vcc + c*eta2)

c max eigenvalues in each direction
e1 = max(ei1,ei2)
e2 = max(ej1,ej2)

c take magnitude of two max eigenvalues as greatest wave speed
e = sqrt(e1*e1 + e2*e2)

c finally, get maximum over entire grid
speed = max(speed,e)

100 continue
c thus, the time to cross half a cell (1 by 1 in xi-eta space)
c plus a safety factor.

dt = (0.5d0/speed)*0.8d0
return
end

A.8 flxxi.f

subroutine flxxi(nx,ny,rhoc,pc,uc,vc,bighc,y2c,q,xixc,xiyc,
+ jacc,xixi,xiyi,eigval,eigvec,dw,fflux)

c Determines interface fluxes in the xi direction using the Roe
c scheme.

implicit double precision (a-h,o-z)
dimension rhoc(0:nx,0:ny),pc(0:nx,0:ny),

+ uc(0:nx,0:ny),vc(0:nx,0:ny),y2c(0:nx,0:ny),
+ bighc(0:nx,0:ny),q(0:nx,0:ny,5),xixc(0:nx,0:ny),
+ xiyc(0:nx,0:ny)
dimension xixi(nx,ny-1),xiyi(nx,ny-1),fflux(nx,ny-1,5)
dimension eigval(nx,5),eigvec(nx,5,5),dw(nx,5)
double precision metsq,inveig(5,5),jacc(0:nx,0:ny),m02
common gam1,gam12,speed,uin,vin,pin,rhoin,bigen,bighn
common /chemistry/ y2in,qheat,theta,m02

c
c loop through xi interfaces of entire grid

do 100 j=1,ny-1
c Determine Roe averaged variables
c i counting interfaces
c count from 1 to nx so that roe quantities are calculated at inflow
c for use in the higher order flux terms below.
c Assume the ghost cells have been properly set for this to work.

do 110 i=1,nx-1
rr = sqrt(rhoc(i,j)/jacc(i,j))/sqrt(rhoc(i-1,j)/jacc(i-1,j))
ua = (rr*uc(i,j) + uc(i-1,j))/(rr+1.0d0)
va = (rr*vc(i,j) + vc(i-1,j))/(rr+1.0d0)
bigha = (rr*bighc(i,j) + bighc(i-1,j))/(rr+1.0d0)
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y2a = (rr*y2c(i,j) + y2c(i-1,j))/(rr+1.0d0)
ca = sqrt(gam1*(bigha + y2a*qheat - 0.5d0*(ua*ua + va*va)))

c other useful quantities
xix = xixi(i,j)
xiy = xiyi(i,j)
uacont = xix*ua + xiy*va
sqrmet = sqrt(xix*xix + xiy*xiy)
metsq = xix*xix + xiy*xiy
ca2 = ca*ca
usq = ua*ua + va*va
con1 = gam1/(xix*ca2)
con2 = gam1/(2.0d0*ca2)
con3 = 2.0d0*ca*sqrmet

c eigenvalues of generalized flux jacobian
eigval(i,1) = uacont
eigval(i,2) = uacont
eigval(i,3) = uacont - ca*sqrmet
eigval(i,4) = uacont + ca*sqrmet
eigval(i,5) = uacont

c eigenvectors of generalized flux jacobian
c number 1

eigvec(i,1,1) = xix
eigvec(i,2,1) = uacont
eigvec(i,3,1) = 0.0d0
eigvec(i,4,1) = (ua*ua - va*va)*xix/2.0d0 + xiy*ua*va
eigvec(i,5,1) = 0.0d0

c number 2
eigvec(i,1,2) = 0.0d0
eigvec(i,2,2) = xiy
eigvec(i,3,2) = -xix
eigvec(i,4,2) = xiy*ua - xix*va
eigvec(i,5,2) = 0.0d0

c number 3
eigvec(i,1,3) = 1.0d0
eigvec(i,2,3) = ua - xix*ca/sqrmet
eigvec(i,3,3) = va - xiy*ca/sqrmet
eigvec(i,4,3) = bigha - ca*uacont/sqrmet
eigvec(i,5,3) = y2a

c number 4
eigvec(i,1,4) = 1.0d0
eigvec(i,2,4) = ua + xix*ca/sqrmet
eigvec(i,3,4) = va + xiy*ca/sqrmet
eigvec(i,4,4) = bigha + ca*uacont/sqrmet
eigvec(i,5,4) = y2a

c number 5
eigvec(i,1,5) = 0.0d0
eigvec(i,2,5) = 0.0d0
eigvec(i,3,5) = 0.0d0
eigvec(i,4,5) = -qheat
eigvec(i,5,5) = 1.0d0

c inverse eigenvector array for obtaining Roe coefficients
inveig(1,1) = (1.0d0/xix) - 0.5d0*con1*usq
inveig(1,2) = con1*ua
inveig(1,3) = con1*va
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inveig(1,4) = -con1
inveig(1,5) = -con1*qheat

c
inveig(2,1) = 0.5d0*con1*usq*va - xiy*uacont/(xix*metsq)
inveig(2,2) = xiy/metsq - con1*ua*va
inveig(2,3) = -(con1*va*va + xix/metsq)
inveig(2,4) = con1*va
inveig(2,5) = con1*va*qheat

c
inveig(3,1) = 0.5d0*con2*usq + uacont/con3
inveig(3,2) = -(con2*ua + xix/con3)
inveig(3,3) = -(con2*va + xiy/con3)
inveig(3,4) = con2
inveig(3,5) = con2*qheat

c
inveig(4,1) = 0.5d0*con2*usq - uacont/con3
inveig(4,2) = xix/con3 - con2*ua
inveig(4,3) = xiy/con3 - con2*va
inveig(4,4) = con2
inveig(4,5) = con2*qheat

c
inveig(5,1) = -con2*usq*y2a
inveig(5,2) = con2*2.0d0*ua*y2a
inveig(5,3) = con2*2.0d0*va*y2a
inveig(5,4) = -con2*2.0d0*y2a
inveig(5,5) = 1.0d0 - con2*2.0d0*qheat*y2a

c determine Roe coefficients using inverse eigenvector array and
c dependent variables

qrql1 = q(i,j,1) - q(i-1,j,1)
qrql2 = q(i,j,2) - q(i-1,j,2)
qrql3 = q(i,j,3) - q(i-1,j,3)
qrql4 = q(i,j,4) - q(i-1,j,4)
qrql5 = q(i,j,5) - q(i-1,j,5)
do 120 k=1,5
dw(i,k) = inveig(k,1)*qrql1 + inveig(k,2)*qrql2 +

+ inveig(k,3)*qrql3 + inveig(k,4)*qrql4 +
+ inveig(k,5)*qrql5

120 continue
110 continue
c
c Determine fluxes at xi interfaces using Roe scheme
c i counting interfaces

do 130 i=2,nx-1
sum1 = 0.0d0
sum2 = 0.0d0
sum3 = 0.0d0
sum4 = 0.0d0
sum5 = 0.0d0
suml1 = 0.0d0
suml2 = 0.0d0
suml3 = 0.0d0
suml4 = 0.0d0
suml5 = 0.0d0
do 140 k=1,5
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ajm1 = eigval(i-1,k)
aj = eigval(i,k)
ajp1 = eigval(i+1,k)
dwjm1 = dw(i-1,k)
dwj = dw(i,k)
dwjp1 = dw(i+1,k)

c first-order flux terms
sum1 = sum1 + abs(aj)*dwj*eigvec(i,1,k)
sum2 = sum2 + abs(aj)*dwj*eigvec(i,2,k)
sum3 = sum3 + abs(aj)*dwj*eigvec(i,3,k)
sum4 = sum4 + abs(aj)*dwj*eigvec(i,4,k)
sum5 = sum5 + abs(aj)*dwj*eigvec(i,5,k)

c higher-order flux terms
if(aj.gt.0.0d0.and.ajm1.gt.0.0d0.and.dwj.ne.0.0d0) then
biglp = (ajm1*dwjm1*aj*dwj + abs(ajm1*dwjm1*aj*dwj))/

+ (ajm1*dwjm1 + aj*dwj)
suml1 = suml1 + biglp*eigvec(i,1,k)
suml2 = suml2 + biglp*eigvec(i,2,k)
suml3 = suml3 + biglp*eigvec(i,3,k)
suml4 = suml4 + biglp*eigvec(i,4,k)
suml5 = suml5 + biglp*eigvec(i,5,k)

elseif(aj.lt.0.0d0.and.ajp1.lt.0.0d0.and.dwj.ne.0.0d0) then
biglm = (aj*dwj*ajp1*dwjp1 + abs(aj*dwj*ajp1*dwjp1))/

+ (aj*dwj + ajp1*dwjp1)
suml1 = suml1 - biglm*eigvec(i,1,k)
suml2 = suml2 - biglm*eigvec(i,2,k)
suml3 = suml3 - biglm*eigvec(i,3,k)
suml4 = suml4 - biglm*eigvec(i,4,k)
suml5 = suml5 - biglm*eigvec(i,5,k)

endif
140 continue
c calculate interface fluxes according to complicated Roe flux
c equation in case need sonic correction

const1 = rhoc(i-1,j)*(xixc(i-1,j)*uc(i-1,j) +
+ xiyc(i-1,j)*vc(i-1,j))/jacc(i-1,j)

const2 = rhoc(i,j)*(xixc(i,j)*uc(i,j) +
+ xiyc(i,j)*vc(i,j))/jacc(i,j)

c
fflux(i,j,1) = 0.5d0*(const1 + const2 - sum1 + suml1)
fflux(i,j,2) = 0.5d0*(const1*uc(i-1,j) + xixc(i-1,j)*pc(i-1,j)

+ /jacc(i-1,j) + const2*uc(i,j) + xixc(i,j)*
+ pc(i,j)/jacc(i,j) - sum2 + suml2)

fflux(i,j,3) = 0.5d0*(const1*vc(i-1,j) + xiyc(i-1,j)*pc(i-1,j)
+ /jacc(i-1,j) + const2*vc(i,j) + xiyc(i,j)*
+ pc(i,j)/jacc(i,j) - sum3 + suml3)

fflux(i,j,4) = 0.5d0*(const1*bighc(i-1,j) + const2*bighc(i,j)
+ - sum4 + suml4)

fflux(i,j,5) = 0.5d0*(const1*y2c(i-1,j) + const2*y2c(i,j) -
+ sum5 + suml5)

130 continue
100 continue

return
end
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A.9 boundx.f

subroutine boundx(nx,ny,bigk,rhoc,uc,vc,pc,y2c,bighc,q,qbar,
+ fflux,xixc,xiyc,jacc,dt,intmed)

c Calculates values for boundary cells at exit.
c For use after xi direction integration step

implicit double precision (a-h,o-z)
dimension rhoc(0:nx,0:ny),pc(0:nx,0:ny),uc(0:nx,0:ny),

+ vc(0:nx,0:ny),bighc(0:nx,0:ny),qbar(0:nx,0:ny,5),
+ q(0:nx,0:ny,5),fflux(nx,ny-1,5),y2c(0:nx,0:ny)
dimension xixc(0:nx,0:ny),xiyc(0:nx,0:ny)
double precision jacc(nx,ny),jac,metsq,m02
logical intmed
common gam1,gam12,speed,uin,vin,pin,rhoin,bigen,bighn
common /chemistry/ y2in,qheat,theta,m02

c
gamma = gam1+1.0d0

c Do outlet conditions first
c setup conditions to handle both supersonic and subsonic outflow,
c following Poinsot and Lele’s suggestions for nonreflecting subsonic

nn = nx-1
do 100 j=1,ny-1

c Calculate xi derivatives using one sided differencing (d xi=1)
drodx = 0.5d0*(3.0d0*rhoc(nn,j) - 4.0d0*rhoc(nx-2,j) +

+ rhoc(nx-3,j))
dudx = 0.5d0*(3.0d0*uc(nn,j)- 4.0d0*uc(nx-2,j) + uc(nx-3,j))
dvdx = 0.5d0*(3.0d0*vc(nn,j)- 4.0d0*vc(nx-2,j) + vc(nx-3,j))
dpdx = 0.5d0*(3.0d0*pc(nn,j)- 4.0d0*pc(nx-2,j) + pc(nx-3,j))
dy2dx = 0.5d0*(3.0d0*y2c(nn,j) - 4.0d0*y2c(nx-2,j) +

+ y2c(nx-3,j))
c build script H values (assume Uc is positive)

xix = xixc(nn,j)
xiy = xiyc(nn,j)
jac = jacc(nn,j)
metsq = xix*xix + xiy*xiy
sqrmet = sqrt(metsq)
ucont = xix*uc(nn,j) + xiy*vc(nn,j)
c = sqrt(gamma*pc(nn,j)/rhoc(nn,j))

c
scrh1 = ucont*(-drodx + xiy*dudx/metsq - xix*dvdx/metsq +

+ dpdx/(c*c) - dy2dx)
scrh2 = ucont*(drodx - dpdx/(c*c))
scrh3 = ucont*dy2dx
scrh4 = (ucont + c*sqrmet)*((xix*dudx + xiy*dvdx)/(2.0d0*

+ c*metsq) + dpdx/(2.0d0*gamma*pc(nn,j)*sqrmet))
if((ucont-c*sqrmet).gt.0.0d0) then
scrh5 = (ucont - c*sqrmet)*(-(xix*dudx + xiy*dvdx)/(2.0d0*

+ c*metsq) + dpdx/(2.0d0*gamma*pc(nn,j)*sqrmet))
else

c K factor from Poinsot and Lele
scrh5 = bigk*(pc(nn,j) - pin)
endif

c use script H values in integration to get new q’s at exit
con = rhoc(nn,j)*sqrmet
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xixr = xix*rhoc(nn,j)
xiyr = xiy*rhoc(nn,j)
if(intmed) then
qbar(nn,j,1) = q(nn,j,1)-dt*(scrh2 + con*(scrh4+scrh5))/jac
qbar(nn,j,2) = q(nn,j,2)-dt*(xiyr*(scrh1+scrh2+scrh3) +

+ uc(nn,j)*scrh2 + xixr*c*(scrh4-scrh5) +
+ con*uc(nn,j)*(scrh4+scrh5))/jac

qbar(nn,j,3) = q(nn,j,3)-dt*(vc(nn,j)*scrh2 - xixr*(scrh1+
+ scrh2+scrh3) + xiyr*c*(scrh4-scrh5) + con*
+ vc(nn,j)*(scrh4+scrh5))/jac

qbar(nn,j,4) = q(nn,j,4)-dt*((xiyr*uc(nn,j)-xixr*vc(nn,j))*
+ (scrh1+scrh2+scrh3) + ((uc(nn,j)*uc(nn,j)+
+ vc(nn,j)*vc(nn,j))/2.0d0 - qheat*y2c(nn,j))*scrh2-
+ rhoc(nn,j)*qheat*scrh3 + rhoc(nn,j)*c*ucont*
+ (scrh4-scrh5) + con*bighc(nn,j)*(scrh4+scrh5))/jac

qbar(nn,j,5) = q(nn,j,5)-dt*(y2c(nn,j)*scrh2 + rhoc(nn,j)*
+ scrh3 + con*y2c(nn,j)*(scrh4+scrh5))/jac

else
q(nn,j,1) = q(nn,j,1) - dt*(scrh2 + con*(scrh4+scrh5))/jac
q(nn,j,2) = q(nn,j,2) - dt*(xiyr*(scrh1+scrh2+scrh3) +

+ uc(nn,j)*scrh2 + xixr*c*(scrh4-scrh5) +
+ con*uc(nn,j)*(scrh4+scrh5))/jac

q(nn,j,3) = q(nn,j,3) - dt*(vc(nn,j)*scrh2 - xixr*(scrh1+
+ scrh2+scrh3) + xiyr*c*(scrh4-scrh5) + con*
+ vc(nn,j)*(scrh4+scrh5))/jac

q(nn,j,4) = q(nn,j,4) - dt*((xiyr*uc(nn,j)-xixr*vc(nn,j))*
+ (scrh1+scrh2+scrh3) + ((uc(nn,j)*uc(nn,j)+
+ vc(nn,j)*vc(nn,j))/2.0d0 - qheat*y2c(nn,j))*scrh2-
+ rhoc(nn,j)*qheat*scrh3 + rhoc(nn,j)*c*ucont*
+ (scrh4-scrh5) + con*bighc(nn,j)*(scrh4+scrh5))/jac

q(nn,j,5) = q(nn,j,5) - dt*(y2c(nn,j)*scrh2 + rhoc(nn,j)*
+ scrh3 + con*y2c(nn,j)*(scrh4+scrh5))/jac
endif

100 continue
c

return
end

A.10 decode.f

subroutine decode(nx,ny,rhoc,pc,uc,vc,bigec,bighc,y2c,q,jacc)
c Decodes the dependent variable vector into primitive variables.

implicit double precision (a-h,o-z)
dimension rhoc(0:nx,0:ny),pc(0:nx,0:ny),uc(0:nx,0:ny),

+ vc(0:nx,0:ny),bigec(0:nx,0:ny),bighc(0:nx,0:ny),
+ q(0:nx,0:ny,5),y2c(0:nx,0:ny)
double precision jacc(0:nx,0:ny),jac,m02
common gam1,gam12,speed,uin,vin,pin,rhoin,bigen,bighn
common /chemistry/ y2in,qheat,theta,m02

c
do 100 j=1,ny-1
do 100 i=1,nx-1
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jac = jacc(i,j)
rho = q(i,j,1)*jac

c
rhoc(i,j) = rho
uc(i,j) = q(i,j,2)*jac/rho
vc(i,j) = q(i,j,3)*jac/rho
bigec(i,j) = q(i,j,4)*jac/rho
y2c(i,j) = q(i,j,5)*jac/rho

c
pc(i,j) = rho*gam1*(bigec(i,j) + y2c(i,j)*qheat - 0.5d0*

+ (uc(i,j)*uc(i,j) + vc(i,j)*vc(i,j)))
bighc(i,j) = bigec(i,j) + pc(i,j)/rho

100 continue
return
end

A.11 flxeta.f

subroutine flxeta(nx,ny,rhoc,pc,uc,vc,bighc,y2c,q,etaxc,etayc,
+ jacc,etaxi,etayi,jaci,eigval,eigvec,dw,gflux,topwal)

c Determines interface fluxes in the eta direction using the Roe
c scheme.

implicit double precision (a-h,o-z)
dimension rhoc(0:nx,0:ny),pc(0:nx,0:ny),

+ uc(0:nx,0:ny),vc(0:nx,0:ny),y2c(0:nx,0:ny),
+ bighc(0:nx,0:ny),q(0:nx,0:ny,5),etaxc(0:nx,0:ny),
+ etayc(0:nx,0:ny)
dimension etaxi(nx-1,ny),etayi(nx-1,ny),gflux(nx-1,ny,5)
dimension eigval(ny,5),eigvec(ny,5,5),dw(ny,5)
double precision inveig(5,5),jacc(0:nx,0:ny),jaci(nx-1,ny),

+ metsq,m02,jac
logical topwal
common gam1,gam12,speed,uin,vin,pin,rhoin,bigen,bighn
common /chemistry/ y2in,qheat,theta,m02

c
c loop through eta interfaces of entire grid

do 100 i=1,nx-1
c Determine Roe averaged variables
c j counting interfaces

do 110 j=2,ny-1
rr = sqrt(rhoc(i,j)/jacc(i,j))/sqrt(rhoc(i,j-1)/jacc(i,j-1))
ua = (rr*uc(i,j) + uc(i,j-1))/(rr+1.0d0)
va = (rr*vc(i,j) + vc(i,j-1))/(rr+1.0d0)
bigha = (rr*bighc(i,j) + bighc(i,j-1))/(rr+1.0d0)
y2a = (rr*y2c(i,j) + y2c(i,j-1))/(rr+1.0d0)
ca = sqrt(gam1*(bigha + y2a*qheat - 0.5d0*(ua*ua + va*va)))

c other useful quantities
etax = etaxi(i,j)
etay = etayi(i,j)
vacont = etax*ua + etay*va
sqrmet = sqrt(etax*etax + etay*etay)
metsq = etax*etax + etay*etay
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ca2 = ca*ca
usq = ua*ua + va*va
con1 = gam1/(etay*ca2)
con2 = gam1/(2.0d0*ca2)
con3 = 2.0d0*ca*sqrmet

c eigenvalues of generalized flux jacobian
eigval(j,1) = vacont
eigval(j,2) = vacont
eigval(j,3) = vacont - ca*sqrmet
eigval(j,4) = vacont + ca*sqrmet
eigval(j,5) = vacont

c eigenvectors of generalized flux jacobian
c number 1

eigvec(j,1,1) = etay
eigvec(j,2,1) = 0.0d0
eigvec(j,3,1) = vacont
eigvec(j,4,1) = (va*va-ua*ua)*etay/2.0d0 + etax*ua*va
eigvec(j,5,1) = 0.0d0

c number 2
eigvec(j,1,2) = 0.0d0
eigvec(j,2,2) = etay
eigvec(j,3,2) = -etax
eigvec(j,4,2) = etay*ua - etax*va
eigvec(j,5,2) = 0.0d0

c number 3
eigvec(j,1,3) = 1.0d0
eigvec(j,2,3) = ua - etax*ca/sqrmet
eigvec(j,3,3) = va - etay*ca/sqrmet
eigvec(j,4,3) = bigha - ca*vacont/sqrmet
eigvec(j,5,3) = y2a

c number 4
eigvec(j,1,4) = 1.0d0
eigvec(j,2,4) = ua + etax*ca/sqrmet
eigvec(j,3,4) = va + etay*ca/sqrmet
eigvec(j,4,4) = bigha + ca*vacont/sqrmet
eigvec(j,5,4) = y2a

c number 5
eigvec(j,1,5) = 0.0d0
eigvec(j,2,5) = 0.0d0
eigvec(j,3,5) = 0.0d0
eigvec(j,4,5) = -qheat
eigvec(j,5,5) = 1.0d0

c inverse eigenvector array for obtaining Roe coefficients
inveig(1,1) = (1.0d0/etay) - 0.5d0*con1*usq
inveig(1,2) = con1*ua
inveig(1,3) = con1*va
inveig(1,4) = -con1
inveig(1,5) = -con1*qheat

c
inveig(2,1) = etax*vacont/(etay*metsq) - 0.5d0*con1*usq*ua
inveig(2,2) = etay/metsq + con1*ua*ua
inveig(2,3) = con1*ua*va - etax/metsq
inveig(2,4) = -con1*ua
inveig(2,5) = -con1*ua*qheat
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c
inveig(3,1) = 0.5d0*con2*usq + vacont/con3
inveig(3,2) = -(con2*ua + etax/con3)
inveig(3,3) = -(con2*va + etay/con3)
inveig(3,4) = con2
inveig(3,5) = con2*qheat

c
inveig(4,1) = 0.5d0*con2*usq - vacont/con3
inveig(4,2) = etax/con3 - con2*ua
inveig(4,3) = etay/con3 - con2*va
inveig(4,4) = con2
inveig(4,5) = con2*qheat

c
inveig(5,1) = -con2*usq*y2a
inveig(5,2) = con2*2.0d0*ua*y2a
inveig(5,3) = con2*2.0d0*va*y2a
inveig(5,4) = -con2*2.0d0*y2a
inveig(5,5) = 1.0d0 - con2*2.0d0*qheat*y2a

c determine Roe coefficients using inverse eigenvector array and
c dependent variables

qrql1 = q(i,j,1) - q(i,j-1,1)
qrql2 = q(i,j,2) - q(i,j-1,2)
qrql3 = q(i,j,3) - q(i,j-1,3)
qrql4 = q(i,j,4) - q(i,j-1,4)
qrql5 = q(i,j,5) - q(i,j-1,5)
do 120 k=1,5
dw(j,k) = inveig(k,1)*qrql1 + inveig(k,2)*qrql2 +

+ inveig(k,3)*qrql3 + inveig(k,4)*qrql4 +
+ inveig(k,5)*qrql5

120 continue
110 continue
c
c Determine values of variables at walls for wall flux and eigvals
c and dw at walls by using fact that contravariant velocity is zero
c at the wall. Then use riemann invariants to estimate p and c at wall
c bottom wall

etay = etayc(i,1)
etax = etaxc(i,1)
sqrmet = sqrt(etax*etax + etay*etay)
c = sqrt((gam1+1.0d0)*pc(i,1)/rhoc(i,1))
vcont = etax*uc(i,1) + etay*vc(i,1)
p = pc(i,1) - rhoc(i,1)*c*vcont/sqrmet

c integrated riemann invariant to estimate c
con = vcont - sqrmet*(2.0d0*c)/gam1
sqrmtw = sqrt(etaxi(i,1)**2 + etayi(i,1)**2)
cwalsq = -gam1*con/2.0d0

c set flux at wall and rest of variables
gflux(i,1,1) = 0.0d0
gflux(i,1,2) = etaxi(i,1)*p/jaci(i,1)
gflux(i,1,3) = etayi(i,1)*p/jaci(i,1)
gflux(i,1,4) = 0.0d0
gflux(i,1,5) = 0.0d0

c estimate dw using Roe method and knowing Vc=0 and p and c
eigval(1,4) = cwalsq
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dw(1,4) = (rhoc(i,1)*vcont/jacc(i,1))/eigval(1,4)
c
c top wall
c if topwal=true then setup fluxes for wall condition, otherwise
c set to zero as boundn subroutine will take care of this

gflux(i,ny,1) = 0.0d0
gflux(i,ny,4) = 0.0d0
gflux(i,ny,5) = 0.0d0
if(topwal) then
etay = etayc(i,ny-1)
etax = etaxc(i,ny-1)
sqrmet = sqrt(etax*etax + etay*etay)
c = sqrt((gam1+1.0d0)*pc(i,ny-1)/rhoc(i,ny-1))
vcont = etax*uc(i,ny-1) + etay*vc(i,ny-1)
p = pc(i,ny-1) + rhoc(i,ny-1)*c*vcont/sqrmet

c integrated riemann invariant to estimate c
con = vcont + sqrmet*(2.0d0*c)/gam1
sqrmtw = sqrt(etaxi(i,1)**2 + etayi(i,1)**2)
cwalsq = gam1*con/2.0d0

c set flux at wall and rest of variables
gflux(i,ny,2) = etaxi(i,ny)*p/jaci(i,ny)
gflux(i,ny,3) = etayi(i,ny)*p/jaci(i,ny)

c estimate dw using Roe method and knowing Vc=0 and p and c
eigval(ny,3) = -cwalsq
dw(ny,3) = (rhoc(i,ny-1)*vcont/jacc(i,ny-1))/(-eigval(ny,3))
else
gflux(i,ny,2) = 0.0d0
gflux(i,ny,3) = 0.0d0
eigval(ny,3) = 0.0d0
dw(ny,3) = 0.0d0
endif

c
c Determine fluxes at xi interfaces using Roe scheme
c Skip boundary fluxes, because higher order terms will cause problems
c i counting interfaces

do 130 j=2,ny-1
sum1 = 0.0d0
sum2 = 0.0d0
sum3 = 0.0d0
sum4 = 0.0d0
sum5 = 0.0d0
suml1 = 0.0d0
suml2 = 0.0d0
suml3 = 0.0d0
suml4 = 0.0d0
suml5 = 0.0d0
do 140 k=1,5
ajm1 = eigval(j-1,k)
aj = eigval(j,k)
ajp1 = eigval(j+1,k)
dwjm1 = dw(j-1,k)
dwj = dw(j,k)
dwjp1 = dw(j+1,k)

c first-order flux terms
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sum1 = sum1 + abs(aj)*dwj*eigvec(j,1,k)
sum2 = sum2 + abs(aj)*dwj*eigvec(j,2,k)
sum3 = sum3 + abs(aj)*dwj*eigvec(j,3,k)
sum4 = sum4 + abs(aj)*dwj*eigvec(j,4,k)
sum5 = sum5 + abs(aj)*dwj*eigvec(j,5,k)

c higher-order flux terms
if(aj.gt.0.0d0.and.ajm1.gt.0.0d0.and.dwj.ne.0.0d0) then
biglp = (ajm1*dwjm1*aj*dwj + abs(ajm1*dwjm1*aj*dwj))/

+ (ajm1*dwjm1 + aj*dwj)
suml1 = suml1 + biglp*eigvec(j,1,k)
suml2 = suml2 + biglp*eigvec(j,2,k)
suml3 = suml3 + biglp*eigvec(j,3,k)
suml4 = suml4 + biglp*eigvec(j,4,k)
suml5 = suml5 + biglp*eigvec(j,5,k)

elseif(aj.lt.0.0d0.and.ajp1.lt.0.0d0.and.dwj.ne.0.0d0) then
biglm = (aj*dwj*ajp1*dwjp1 + abs(aj*dwj*ajp1*dwjp1))/

+ (aj*dwj + ajp1*dwjp1)
suml1 = suml1 - biglm*eigvec(j,1,k)
suml2 = suml2 - biglm*eigvec(j,2,k)
suml3 = suml3 - biglm*eigvec(j,3,k)
suml4 = suml4 - biglm*eigvec(j,4,k)
suml5 = suml5 - biglm*eigvec(j,5,k)

endif
140 continue
c calculate interface fluxes according to complicated Roe flux
c equation in case need sonic correction

const1 = rhoc(i,j-1)*(etaxc(i,j-1)*uc(i,j-1) +
+ etayc(i,j-1)*vc(i,j-1))/jacc(i,j-1)

const2 = rhoc(i,j)*(etaxc(i,j)*uc(i,j) +
+ etayc(i,j)*vc(i,j))/jacc(i,j)

c
gflux(i,j,1) = 0.5d0*(const1 + const2 - sum1 + suml1)
gflux(i,j,2)= 0.5d0*(const1*uc(i,j-1) + etaxc(i,j-1)*pc(i,j-1)

+ /jacc(i,j-1) + const2*uc(i,j) + etaxc(i,j)*
+ pc(i,j)/jacc(i,j) - sum2 + suml2)

gflux(i,j,3)= 0.5d0*(const1*vc(i,j-1) + etayc(i,j-1)*pc(i,j-1)
+ /jacc(i,j-1) + const2*vc(i,j) + etayc(i,j)*
+ pc(i,j)/jacc(i,j) - sum3 + suml3)

gflux(i,j,4) = 0.5d0*(const1*bighc(i,j-1) + const2*bighc(i,j)
+ - sum4 + suml4)

gflux(i,j,5) = 0.5d0*(const1*y2c(i,j-1) + const2*y2c(i,j) -
+ sum5 + suml5)

130 continue
100 continue

return
end

A.12 boundn.f

subroutine boundn(nx,ny,bigk,rhoc,uc,vc,pc,y2c,bighc,q,qbar,
+ gflux,etaxc,etayc,jacc,etaxi,etayi,jaci,
+ xixc,xiyc,dt,intmed)
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c Calculates values for boundary cells at top.
c For use after eta direction integration step

implicit double precision (a-h,o-z)
dimension rhoc(0:nx,0:ny),pc(0:nx,0:ny),uc(0:nx,0:ny),

+ vc(0:nx,0:ny),bighc(0:nx,0:ny),qbar(0:nx,0:ny,5),
+ q(0:nx,0:ny,5),gflux(nx-1,ny,5),y2c(0:nx,0:ny)
dimension etaxc(0:nx,0:ny),etayc(0:nx,0:ny),etaxi(nx-1,ny),

+ etayi(nx-1,ny),xixc(0:nx,0:ny),xiyc(0:nx,0:ny)
double precision jacc(nx,ny),jaci(nx-1,ny),jac,metsq,m02
logical intmed
common gam1,gam12,speed,uin,vin,pin,rhoin,bigen,bighn
common /chemistry/ y2in,qheat,theta,m02

c
gamma = gam1+1.0d0

c Do outlet conditions first
c setup conditions to handle both supersonic and subsonic outflow,
c following Poinsot and Lele’s suggestions for nonreflecting subsonic

nn = ny-1
do 100 i=1,nx-1

c Calculate eta derivatives using one sided differencing (d eta=1)
drodn = 0.5d0*(3.0d0*rhoc(i,nn) - 4.0d0*rhoc(i,ny-2) +

+ rhoc(i,ny-3))
dudn = 0.5d0*(3.0d0*uc(i,nn)- 4.0d0*uc(i,ny-2) + uc(i,ny-3))
dvdn = 0.5d0*(3.0d0*vc(i,nn)- 4.0d0*vc(i,ny-2) + vc(i,ny-3))
dpdn = 0.5d0*(3.0d0*pc(i,nn)- 4.0d0*pc(i,ny-2) + pc(i,ny-3))
dy2dn = 0.5d0*(3.0d0*y2c(i,nn) - 4.0d0*y2c(i,ny-2) +

+ y2c(i,ny-3))

c
etax = etaxc(i,nn)
etay = etayc(i,nn)
jac = jacc(i,nn)
metsq = etax*etax + etay*etay
sqrmet = sqrt(metsq)
vcont = etax*uc(i,nn) + etay*vc(i,nn)
c = sqrt(gamma*pc(i,nn)/rhoc(i,nn))

c
if(vcont.le.0.0d0) then

c If Vc <= 0 then set top interface flux equal to freestream
c conditions and integrate q forward in time

con1 = rhoin*(uin*etaxi(i,ny) + vin*etayi(i,ny))/jaci(i,ny)
gflux(i,ny,1) = con1
gflux(i,ny,2) = con1*uin + etaxi(i,ny)*pin/jaci(i,ny)
gflux(i,ny,3) = con1*vin + etayi(i,ny)*pin/jaci(i,ny)
gflux(i,ny,4) = con1*bighn
gflux(i,ny,5) = con1*y2in
if(intmed) then
do 150 k=1,5
qbar(i,nn,k) = q(i,nn,k)-dt*(gflux(i,ny,k)-gflux(i,ny-1,k))

150 continue
else
do 145 k=1,5
q(i,nn,k) = q(i,nn,k) - dt*(gflux(i,ny,k)-gflux(i,ny-1,k))

145 continue
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endif
else

c else build script H values (assume Vc is positive)
c and use one sided integration for outflow boundary

scrh1 = vcont*(-drodn + etay*dudn/metsq - etax*dvdn/metsq +
+ dpdn/(c*c) - dy2dn)

scrh2 = vcont*(drodn - dpdn/(c*c))
scrh3 = vcont*dy2dn
scrh4 = (vcont + c*sqrmet)*((etax*dudn + etay*dvdn)/(2.0d0*

+ c*metsq) + dpdn/(2.0d0*gamma*pc(i,nn)*sqrmet))
if((vcont-c*sqrmet).gt.0.0d0) then
scrh5 = (vcont - c*sqrmet)*(-(etax*dudn + etay*dvdn)/(2.0d0*

+ c*metsq) + dpdn/(2.0d0*gamma*pc(i,nn)*sqrmet))
else

c K factor from Poinsot and Lele
scrh5 = bigk*(pc(i,nn) - pin)
endif

c use script H values in integration to get new q’s at exit
con = rhoc(i,nn)*sqrmet
etaxr = etax*rhoc(i,nn)
etayr = etay*rhoc(i,nn)
if(intmed) then
qbar(i,nn,1) = q(i,nn,1)-dt*(scrh2 + con*(scrh4+scrh5))/jac
qbar(i,nn,2) = q(i,nn,2)-dt*(etayr*(scrh1+scrh2+scrh3) +

+ uc(i,nn)*scrh2 + etaxr*c*(scrh4-scrh5) +
+ con*uc(i,nn)*(scrh4+scrh5))/jac

qbar(i,nn,3) = q(i,nn,3)-dt*(vc(i,nn)*scrh2 - etaxr*(scrh1+
+ scrh2+scrh3) + etayr*c*(scrh4-scrh5) + con*
+ vc(i,nn)*(scrh4+scrh5))/jac

qbar(i,nn,4) = q(i,nn,4)-dt*((etayr*uc(i,nn)-etaxr*vc(i,nn))*
+ (scrh1+scrh2+scrh3) + ((uc(i,nn)*uc(i,nn)+
+ vc(i,nn)*vc(i,nn))/2.0d0 - qheat*y2c(i,nn))*scrh2-
+ rhoc(i,nn)*qheat*scrh3 + rhoc(i,nn)*c*ucont*
+ (scrh4-scrh5) + con*bighc(i,nn)*(scrh4+scrh5))/jac

qbar(i,nn,5) = q(i,nn,5)-dt*(y2c(i,nn)*scrh2 + rhoc(i,nn)*
+ scrh3 + con*y2c(i,nn)*(scrh4+scrh5))/jac

else
q(i,nn,1) = q(i,nn,1) - dt*(scrh2 + con*(scrh4+scrh5))/jac
q(i,nn,2) = q(i,nn,2) - dt*(etayr*(scrh1+scrh2+scrh3) +

+ uc(i,nn)*scrh2 + etaxr*c*(scrh4-scrh5) +
+ con*uc(i,nn)*(scrh4+scrh5))/jac

q(i,nn,3) = q(i,nn,3) - dt*(vc(i,nn)*scrh2 - etaxr*(scrh1+
+ scrh2+scrh3) + etayr*c*(scrh4-scrh5) + con*
+ vc(i,nn)*(scrh4+scrh5))/jac

q(i,nn,4) = q(i,nn,4) - dt*((etayr*uc(i,nn)-etaxr*vc(i,nn))*
+ (scrh1+scrh2+scrh3) + ((uc(i,nn)*uc(i,nn)+
+ vc(i,nn)*vc(i,nn))/2.0d0 - qheat*y2c(i,nn))*scrh2-
+ rhoc(i,nn)*qheat*scrh3 + rhoc(i,nn)*c*ucont*
+ (scrh4-scrh5) + con*bighc(i,nn)*(scrh4+scrh5))/jac

q(i,nn,5) = q(i,nn,5) - dt*(y2c(i,nn)*scrh2 + rhoc(i,nn)*
+ scrh3 + con*y2c(i,nn)*(scrh4+scrh5))/jac

endif
endif

100 continue
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c
return
end
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