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SLOW INVARIANT MANIFOLDS FOR REACTION-DIFFUSION SYSTEMS

Abstract

by

Joshua David Mengers

The method of Slow Invariant Manifolds (SIMs), as developed to model the

reduced kinetics of spatially homogeneous reactive systems, is extended to systems

with diffusion. Using a Galerkin projection, the governing partial differential equa-

tions are cast into a finite system of ordinary differential equations to be solved

on an approximate inertial manifold. The SIM construction technique of identify-

ing equilibria and connecting heteroclinic orbits is extended by identifying steady

state solutions to the governing partial differential equations and connecting anal-

ogous orbits in the Galerkin-projected space. In parametric studies varying the

domain length, the time scale spectrum is shifted, and various classes of non-linear

dynamics are identified. A critical length scale is identified at which a bifurcation

occurs in the equilibria used to construct the one-dimensional SIM. Above this

length scale additional real non-singular steady state solutions are found which

lead to a diffusion-modified SIM. At these longer lengths, the spectral gap in the

time scales indicates that an appropriate manifold for a reduction technique is

higher than one-dimensional. This is shown for three examples in closed reaction-

diffusion systems: a generic chemical reaction mechanism, an oxygen dissociation

reaction mechanism, and the Zel’dovich reaction mechanism of NO production.

The extension of SIMs to adiabatic reaction systems is also considered, and re-

sults are shown for the Zel’dovich mechanism. Finally, two open chemical systems
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are considered: the Gray-Scott reaction mechanism, and a hydrogen-air reaction

mechanism. Multiple branches of the SIM are identified, complicating the im-

plementation of the SIM as a reduction technique. Limit cycles are studied and

a projection to the SIM across a basin of attraction is shown to provide erro-

neous results. Low-dimensional Galerkin projections are shown to provide correct

order of magnitude predictions for length scales in patterns. The examples are

evaluated in the spatially homogeneous case (a one-term projection), a two-term

projection capturing the coarsest effects of diffusion, and a high order projection

that is fully resolved. The results cast into doubt the SIM as a robust rational

reduction technique for reaction dynamics.
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CHAPTER 1

INTRODUCTION

Combustion has been an important source of power for many centuries; since

the industrial revolution, it has been a dominant power source. Even today, as

society is pushing for faster computing on smaller devices, we still use chemical

reactions to generate power for nearly every supercomputer and smartphone. In

2009, the United States generated 87% of its energy through combustion of various

fuels [1]. We also burns fuels to move people and goods from place to place.

Combustion will continue to play a major role as we seek alternative solutions to

generate the power that we demand.

Since it is the driving force in our economy, we desire a better understanding of

combustion processes. We seek to learn more about how reactions interact with

transport processes such as diffusion with a goal of improving the accuracy of

numerical simulations of reactive flows. Better simulations can help to increase our

efficient use of fuels, reduce polluting byproducts, and assist in the development

of alternative fuel sources.

In addition to combustion modeling, numerical simulations of partial differ-

ential equations (PDEs) that model multiscale continuum physics are prevalent

across many fields of engineering. To obtain results with fidelity to the underly-

ing continuum model, discrete simulations must generally resolve the entire range

of scales present, both spatial and temporal; a large disparity in these scales is

1



typically referred to as stiffness. The computational costs associated with these

stiff simulations grows with the disparity of scales [2], which commonly span eight

orders of magnitude.

To computationally solve any set of governing differential equations, they must

be approximated as a series of algebraic equations, which can be done using a

number of different techniques. The technique chosen, along with the number

of equations used to approximate the system, will dictate the accuracy of the

solution. Adding more equations (refining the grid) is one simple way to increase

the accuracy, but at a direct expense of larger computational costs.

Reactive flows are typically governed by a system of nonlinear PDEs that

models the conservation of mass, momentum, energy, and the evolution of a large

number of chemical species on domains with generally complicated boundaries.

One technique to accurately solve the PDEs is to use a finite difference method

with the spatial and temporal grid resolved to the smallest physical scales present

in the problem, and evaluate the dependent variables throughout the entire do-

main. This technique is referred to as direct numerical simulation (DNS). Stiff

problems can result in such a large number of computations that DNS techniques

are currently intractable for many practical problems on typical engineering scales.

To demonstrate this, we examine the typical scales involved in a DNS of an

internal combustion engine. The fastest reaction time scales, based on molecular

collisions, are O(10−9 s), and the shortest length scales, based on the mean free

path, are O(10−7 m). For an engine idling at 1000 RPM, one cylinder is O(10−1 m)

and one cycle is O(10−2 s). Assuming there are O(102) species and, therefore,

operations per grid point, a full three-dimensional DNS that resolves all scales

executed on an O(1015 flops) computer would take O(1012 s) to simulate, which is

2



approximately 30,000 years. Figure 1.1 depicts the typical range of scales resolved

in DNS and other common solution techniques.
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Figure 1.1. Range of scales in combustion processes. Reprinted with
permission from Manley et al. [3]. c© 2008, American Institute of Physics

To reduce computational costs, many numerical methods use ad hoc approxi-

mations, and are therefore prone to error. One näıve reduction technique assumes

instantaneous combustion. By ignoring all reaction time scales, these simulation

predictions are prone to errors and will likely be inconsistent with the observed

physical kinetics. If in the design of a SCRAMJET, a prediction is made based on

a simulation that omits the small but finite time scale, that engine would likely
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fail. This result is due to the small reaction time scales, which were neglected,

being larger than the advection time scales. The energy released from combustion

would be realized downstream from where predicted. Other techniques are built on

better assumptions, but there is room for improvement in those approximations,

especially in the case of reaction with transport.

Three options for continuing combustion research are to i) continue to use ad

hoc approximations with uncertain error bounds, ii) run costly DNS or physical

experiments, or iii) develop improved rational reduction techniques. We choose to

pursue option iii), because it can increase the accuracy of less costly simulations,

allowing for a larger quantity of reliable tests to be run during the design process.

The method we study is an approximation based on isolating the slow time

scales of the system’s actual dynamics. We implement a geometric analysis tech-

nique to identify the slow dynamics. This technique uses a concept called phase

space, where the dependent variables of a system are plotted and time is implicit.

As the dependent variables evolve, a path is generated in phase space describ-

ing this evolution, which is called a trajectory. This dissertation describes how

to use the mathematical properties of the dynamical system in phase space to

find a canonical trajectory, a slow invariant manifold (SIM), that captures the

slow dynamics present in the full system. The goal is to produce a less costly

simulation by projecting the initial conditions onto this lower dimensional mani-

fold. This technique has the potential to reduce the errors associated with ad hoc

approximations since it can identify the slowest dynamics of the system. Since

the fast dynamics equilibrate more quickly, the long time dynamics of the system

are governed by the slowest time scales. The fast dynamics equilibrating can be

thought of as a trajectory in phase space relaxing onto a slow manifold, where

4



the dynamics on the manifold then govern the system as it approaches equilib-

rium. A sketch of this is presented in Figure 1.2, which depicts slow manifolds in

a three-dimensional phase space for dependent variables z. The sheet outlined

z1 z2

z3

Figure 1.2. Slow manifolds in phase space, adapted from Singh [4].

in thin red is a two-dimensional slow manifold on which slow dynamics evolve.

The bold red line is a one-dimensional slow manifold which is a sub-manifold of

the two-dimensional slow manifold. The one-dimensional manifold contains the

system’s slowest dynamics; therefore, neighboring trajectories collapse onto it as

their fast dynamics equilibrate. The black dot is an equilibrium sink, which is the

steady state solution of the system.

5



We construct a SIM that is based on the governing PDEs of a reaction-diffusion

system. For trajectories to rapidly collapse onto the SIM, there must be a sufficient

spectral gap in the time scales. This same separation of scales typically makes

simulations costly. Using the SIM, however, allows us to leverage the time scale

disparity; by identifying the slowest dynamics, the SIM accurately captures the

long time behavior of the system. We will employ the construction technique

pioneered by Davis and Skodje [5] for spatially homogeneous reactive systems.

In this method, branches of the one-dimensional SIM are specific heteroclinic

orbits that connect the systems’ equilibria; therefore, one must first identify all

equilibria of the system. To be a branch of the SIM, the heteroclinic orbit must

connect a non-physical saddle equilibrium that has one positive eigenvalue to the

physical equilibrium sink. Trajectories are integrated from initial conditions that

are perturbed from the non-physical saddle along its only unstable eigenvector;

any such trajectory that osculates with the eigenvector of the physical equilibrium

whose eigenvalue corresponds to the slowest local time scale is a branch of the one-

dimensional SIM. As sketched in Figure 1.3, the SIM connects the saddle to the

sink, and ideally trajectories originating away from the SIM are drawn toward it;

however, we find that nonlinearities can cause nearby trajectories to diverge from

SIMs that are constructed by integrating heteroclinic orbits as sketched in Figure

1.4.

We extend this SIM construction technique to reaction-diffusion systems by

using the method of weighted residuals to reduce the governing PDEs into a system

of ordinary differential equations (ODEs); specifically, we employ the Galerkin

method. This reaction-diffusion equation is inherently dissipative, meaning that

as time increases, higher spatial frequency terms decay exponentially, which proves
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Saddle

Sink

Figure 1.3. Sketch of one-dimensional SIM construction.

SIM

Saddle

Sink

Figure 1.4. Sketch of nonlinear repulsive SIM.
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useful in the subsequent analysis.

We thus project solutions to the governing reaction-diffusion PDEs onto an

Approximate Inertial Manifold (AIM) [6, 7]. Here we emphasize that this AIM

is not an invariant manifold as the acronym can be easily confused. This is the

same technique that Lorenz [8] used to simplify the Navier-Stokes equations. The

resulting low-dimensional dynamical system has steady state solutions, or equi-

libria, that lend themselves to the same SIM construction techniques as spatially

homogeneous systems. These equilibria in the Galerkin projection correspond to

steady state solutions to the governing PDE. We then construct a one-dimensional

SIM using heteroclinic orbits which approximates the time-evolution of a spatial

function from a non-physical steady state to the physical equilibrium. Thus, our

work is distinguished from previous reaction-diffusion reduction techniques, which

were developed independent of inertial manifold theories [9, 10].

Our method results in a concise analytical coupling of reaction and diffusion

time scales. Other methods, such as operator splitting [11–13], consider reaction

and diffusion independently. To apply operator splitting, one integrates reaction

terms implicitly and separately integrates diffusion and advection terms explic-

itly. This contrasts with our approach, which is built upon an underlying physical

coupling of reaction and diffusion processes. Our results will demonstrate a full

coupling between reaction and diffusion length and time scales in a fashion consis-

tent with Al-Khateeb et al. [14], Mazaheri et al. [15], as well as classical diffusion

theory [16, p. 126 and §19.1] and [17, p.475]. This coupling of scales has impli-

cations on the necessary grid resolution in discrete simulations which implement

spatially homogeneous manifold methods. The lower bound of wavelengths mod-

eled is dependent on the spatial resolution; if a grid is too coarse, the slowest time
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scale present in a discrete cell will represent diffusion across the longest unresolved

length scale. Since the SIM is dependent on capturing the slowest time scales, a

spatially homogeneous manifold proves inadequate across long length scales.

We model reaction-diffusion systems that exhibit an infinite set of time scales

that arise from the combined effects of reaction and diffusion. In the spatially

homogeneous limit we find a finite set of reaction time scales. By treating the

domain length as a variable parameter, we change the spectrum of length scales

and, therefore, change the spectrum of diffusion time scales. This allows us to

study various classes of behavior of reaction-diffusion systems.

We then study the use of the SIM as a reduction technique for open reaction-

diffusion systems. Well resolved simulations of these systems exhibit limit cycle

behavior and pattern formation. Our method of SIM construction employes het-

eroclinic orbits, and is therefore unable to predict limit cycle behavior, since the

set of all heteroclinic orbits is disjoint from the set of all limit cycles. We show the

pitfalls of projecting onto a SIM for systems with limit cycle behavior. We also ex-

plore pattern formation and show that analysis of a low order Galerkin projection

of these systems can predict the length scale of the pattern. The construction of

SIM branches for these examples identifies many concerns about the implementa-

tion of the SIM as a rational reduction technique, which are summarized in Table

1.1.

This dissertation is organized into six chapters. Chapter 2 provides a review of

the relevant literature. Chapter 3 describes the mathematical model and our meth-

ods of reduction. The next two chapters examine the results of closed (Chapter

4) and open (Chapter 5) reaction-diffusion systems. Finally, Chapter 6 provides

a discussion of our methods and results and includes details on future work.
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TABLE 1.1

LIST OF SHORTCOMINGS IN SIM IMPLEMENTATION

Examples

Shortcomings Description Section Pages

Multiple branches Using heteroclinic orbits to construct the SIM, 4.1.3.2 99-101

multiple branches were found for the same 5.1.1 111-115

system. This presents a problem in identifying 5.2 144-150

the branch on which to project.

Projection out of Care is necessary when projecting onto a SIM 5.1.1 112-115

basin of attraction in systems with multiple basin of attraction to

ensure that the projection does not cross the

boundary of a basin of attraction.

Heteroclinic orbit SIMs constructed using heteroclinic orbits are 4.1.1 59-60

attractiveness not necessarily attractive along the entire 5.2 147-150

manifold. Attractiveness of the SIM needs to F 173-188

evaluated to ensure nearby trajectories

decay onto the manifold.

Reaction-diffusion Spatially homogeneous SIMs only accurately 4.1.1 56-59

SIM length scales describe the long time dynamics of reaction- 4.1.2 68-70

diffusion systems with domains shorter than 4.1.3.1 85-88

a critical length scale where reaction and

diffusion processes have the same time scales.
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CHAPTER 2

LITERATURE REVIEW

In this chapter we review relevant topics in the literature, which we split into

two sections. In the first section we review reduction techniques that are similar

to the ones we employ. In the second section we discuss other topics relevant to

our study such as limit cycles, pattern formation, and verification and validation.

2.1 Reduction models

There have been efforts over many decades in model reduction techniques to

decrease the computational costs of simulating reactive flows while maintaining as

much consistency with the underlying physics as possible. The reviews of Griffiths

[18] and Lu and Law [19] provide background information on the strength and

weaknesses of many reduction techniques such as principal component analysis,

repro-modelling, and skeletal reduction. We shall limit the focus of this review

to reduction techniques that are more relevant to our extension of the SIM to

reaction-diffusion systems.

Two of the simplest reduction methods are the frozen reaction assumption and

the equilibrium flow assumption, described by Vincenti and Kruger [20]. In the

frozen reaction assumption the chemical source term is set to zero. This assumes

no reactions and is only valid in the limit of low temperatures where reaction
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times are slow. The opposite limit is equilibrium flow, which assumes all species

are in chemical equilibrium throughout the flow. This requires infinitely fast

reaction times and is only valid if reaction times are much shorter than transport

times. While these methods are simple and apply to flows with chemistry and

transport, they neglect either the chemical or transport time scales, and often

fail to accurately describe the coupling of the two mechanisms. To find a better

reduction, we investigate spatially homogeneous systems since they simplify the

analysis in a rational limit of the full reaction-diffusion systems.

2.1.1 Spatially homogeneous

When a simplification is made that the transport terms in the governing PDEs

are negligible, the result is a reduction to a spatially homogeneous system which

is governed by ODEs. For such systems, a large number of reaction methods

have been developed. The first of these methods requires reducing the elementary

reactions to one- or two-step models [21, 22]. This method is ad hoc in fitting the

reaction rates but greatly simplifies the evaluation of the chemistry. Sensitivity

analysis [23] is a similar technique that is used to determine which species and

elementary reactions are important and which ones can be removed. Another set

of methods, optimization approaches [24], again reduces the number of reactions

and species. These three methods reduce the number of dependent variables in

the reaction model, but they are not concerned with reducing the stiffness of the

system. This is problematic because the fastest time scales must still be resolved.

As an alternative, manifold methods were developed to address the effects of

stiffness. Manifold methods are a class of reduction technique that attempt to

reduce the computational cost by projecting dynamics onto lower dimensional
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manifolds which are chosen to capture the long time dynamics of the system. The

justification for manifold methods as a reduction technique is based on a geometric

phase space analysis where families of nearby trajectories are predicted to collapse

onto low-dimensional manifolds.

One method that is built to reduce the stiffness of the system is the lumping

method [25, 26] where the reduced dependent variables are a linear or nonlin-

ear [27, 28] function of the original dependent variables. The nonlinear lumping

method isolates the slow variables using a singular perturbation analysis, which

restricts it to simple systems. A difficult step in lumping methods is finding the

lumping and inverse lumping transformations. The quasi-steady state assump-

tion (QSSA) [29] is another technique used in an attempt to reduce the stiffness

of the system. Certain species that react with fast time scales are assumed to

be in a quasi-steady state, which yields algebraic constraints for those species in-

stead of differential equations. A similar simplification is the partial equilibrium

assumption, where elementary reactions that are deemed fast are assumed to be

in equilibrium. This assumption also yields algebraic constraints for some vari-

ables. Partial equilibrium and QSSA can be used in conjunction with each other

to create a larger set of algebraic constraints. Similar to these methods, rate-

controlled constrained-equilibrium (RCCE) [30–32] reduces differential equations

to algebraic constraints based on the reaction progressing through states of con-

strained equilibrium at the rate of the slowly changing constraints. More recently,

Tang and Pope [33] used the RCCE to build the constrained equilibrium mani-

fold (CEM) and introduced the idea of a close parallel inertial manifold (CPIM).

The close parallel assumption is made based on the rate of change vector being

close enough to the manifold to be approximated by the linear dynamics of the
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system, and exists in the tangent space of the CEM. While lumping methods,

QSSA, RCCE, and CPIM are built to reduce the stiffness of the system, they do

not necessarily succeed because they do not consider the time scales of the entire

dynamical system.

The following methods use local properties of the dynamical system to evaluate

and segregate time scales of the ODEs. These methods examine the eigenvalues of

the Jacobian matrix to identify time scales. Computational singular perturbation

(CSP) [34, 35] identifies and eliminates local fast exhausted modes, leaving the

slower currently active modes. CSP segregates these modes by an iterative scheme

that identifies the corresponding local basis. The intrinsic low dimensional man-

ifold (ILDM) [36] is also based on the local fast and slow eigenvalues. Using the

corresponding eigenvectors as a basis, algebraic constraints are built for the basis

corresponding to the fast eigenvectors, while the differential equations remain for

the basis corresponding to the slow eigenvectors. This makes the ILDM similar to

the QSSA and RCCE, but the ILDM is based on the system’s dynamics while the

others are based on ad hoc assumptions. Bykov et al. [37] presented global quasi-

linearization (GQL), which is built on the framework of ILDM but has global

character based on a singularly perturbed vector field. The GQL method is differ-

ent than the CSP and ILDM in that it evaluates a modified linearization, not the

Jacobian matrix. Another reduction technique is the G-Scheme by Valorani and

Paolucci [38]. The local dynamics in this method are segregated into four types of

modes: fast, active, slow, and conserved. The G-Scheme reduces the stiffness and

number of dependent variables integrated, since it only solves for the evolution

of the active modes and uses projections and algebraic constraints for the other

modes. CSP, ILDM, GQL, and G-Scheme all approximate the manifold in the
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system that embodies the slowest dynamics; however, one shortcoming of these

methods is they are not invariant manifolds (IMs).

For a manifold to be invariant, the trajectory of an initial condition on the

manifold must lie completely within the manifold for all later times. This is

advantageous for a reduction technique since after the projection onto an invariant

manifold, additional errors will not be incurred. While there has been some dispute

about definition of a slow manifold [39–41], we seek the Slow Invariant Manifold

(SIM), which we define as the canonical IM that encompasses the slowest dynamics

of the system. Our definition of the SIM is consistent with other usage in the

combustion community [5, 42–50].

There have been many methods proposing how to calculate the SIM. The first

is an iterative technique, where an initial guess is refined through iterations to

find the SIM. This method was introduced using algebraic functional iteration

by Fraser [42–44]. A computational improvement to this method was made by

Davis and Skodje [5]. For some systems the SIM can be found analytically by

a perturbation analysis, as shown by Kaper and Kaper [45]. Another method of

finding SIMs is by connecting heteroclinic orbits between a saddle equilibrium of

the system and the physical equilibrium sink [5, 47–49]. Lebiedz [50] suggests

a variational principle be used as a construction technique which asymptotically

converges to the SIM. The saddle equilibria may be located at infinity [51], in

which case a transformed coordinate system must be used to find them [5, 49].

While these methods find the canonical SIM, it is difficult to extend them to

higher dimensional manifolds [4, 48, 49], and they do not guarantee that a SIM

will exist for the system [49].

Our preferred method to calculate the SIM is by connecting the system’s equi-
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libria through integration of heteroclinic orbits [5]. This method is based on find-

ing and characterizing the system’s equilibria points. Powers and Paolucci [52]

clarified an earlier proof by Zel’dovich [53] that shows there is a unique physical

equilibrium for closed spatially homogeneous systems. There are many techniques

in the literature to find that equilibrium, such as the one given by Pope [54]. To

find the system’s other equilibria, an efficient method based on homotopy con-

tinuation [55] has been shown to be effective for polynomial systems that would

arise from isothermal chemistry [49]. These methods can still be used to find

equilibria for systems which are not isothermal, but would have to be applied iter-

atively. Characterizing each of the points is typically done following the Hartman-

Grobman theorem for hyperbolic critical points [51]. A hyperbolic critical point

is an equilibrium with no zero eigenvalues, and the Hartman-Grobman theorem

states that a hyperbolic equilibrium’s character is described by its linearized sys-

tem. The linearized system is evaluated by the eigenvalues of the Jacobian. Equi-

libria with zero eigenvalues are nonhyperbolic and must be characterized using

the more rigorous technique of the normal form theory [51, 56].

Because of the difficulties in constructing the SIM, there have been other meth-

ods proposed that find IMs other than the SIM. One is the minimum entropy

production trajectory (MEPT), presented by Lebiedz [57]. MEPT finds a trajec-

tory that has minimized the system’s entropy production rate. This technique

is based on Prigogine’s minimum entropy production principle [58], despite the

fact that many have shown [59–61] that the principle is only valid on a stationary

state of a non-equilibrium system. The method of invariant manifolds (MIM)

[62, 63] is an iterative technique to build an invariant manifold based on an arbi-

trary thermodynamic projector. The quality of the MIM depends on the choice of
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the thermodynamic projector. The invariant constrained equilibrium edge (ICE)

[64, 65] manifold is constructed from the trajectories initiating at a manifold of

constrained equilibria on the boundary of the system’s physical domain. The ICE

manifold is also presented with the idea of a pre-image curve (ICE-PIC) as a simple

way to construct higher dimensional manifolds. However, Al-Khateeb et al. [49]

show that the MEPT and ICE manifolds are not the SIM of the system, and give

a detailed discussion on using thermodynamic quantities far from equilibrium.

Another manifold is presented by Davis and Tomlin [66, 67] in a study of the

spatial dynamics of low-dimensional manifolds on steady one-dimensional laminar

flames. Steady flames are described by Davis and Tomlin [66] as “trajectories on

the stable manifold of a saddle fixed point.” They present the idea that these

stable manifolds have lower dimensional attracting sub-manifolds as the trajec-

tories approach the saddle point, and they use iterative techniques to generate

one-dimensional and two-dimensional attracting sub-manifolds. While these man-

ifolds are not spatially homogeneous, they are still governed by ODEs since they

are steady and in one spatial dimension.

2.1.2 Reaction and transport

Since most systems in combustion are not spatially homogeneous or steady, we

are interested in reduction techniques for systems governed by PDEs instead of

ODEs. This does not mean that the spatially homogeneous reaction models are

without merit, as these models have been extended to reaction-diffusion systems

in different ways. A review of these extensions is given by Ren and Pope [68],

where they categorize the approaches into two types: i) those in which a slow

manifold is built based on the governing PDEs, which include transport, and ii)
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those in which the slow manifold used is the spatially homogeneous manifold, and

the method must account for reaction-transport coupling. A review of both types

of approaches follows.

Maas and Pope [69, 70] extend the spatially homogeneous ILDM to PDEs by

viewing transport processes as disturbances of the chemical reacting system and

projecting those disturbances onto the ILDM. The justification is based on the

assumption that the time scales of the perturbation are slow compared to the

fast chemical time scales. This causes the components of the perturbation in the

direction of the fast chemical time scales to relax back to the slow dynamics repre-

sented on the ILDM. This approach is typically called the Maas-Pope projection

(MPP).

A similar approach, presented by Ren et al. [71], extends the ICE-PIC to spa-

tially inhomogeneous systems. This approach applies a close-parallel assumption

similar to the one that builds a CPIM for spatially homogeneous systems [33].

For reaction transport systems the close parallel assumption leads to a transport

correction factor that is added to the spatially homogeneous rate of change vec-

tor. The close parallel assumption is not unique to the ICE-PIC method; Ren and

Pope [72] present it using the ILDM.

The CSP method is also extended to PDEs by Lam [73], who uses a projector

operator on the transport terms. Lam also emphasizes the importance of the

modification of diffusion terms to compensate for the use of spatially homogeneous

reduced chemistry approximations, as using unmodified terms ignores important

coupling in the system.

The other approach uses a new reduction technique for the PDEs rather than

adjusting the spatially homogeneous technique to account for transport. This

18



technique is based on the idea of reducing the infinite dimensional system to just

a few dimensions on a manifold. An example of this approach is given by Hadjini-

colaou and Goussis [74]. They present an extension of CSP to reaction-diffusion

systems by segregating the system on a basis of local slow and fast vectors, which

are functions of space and time. These bases are then used to construct a new

system of slow PDEs, along with algebraic constraints that represent the fast

modes.

Another technique given by Singh et al. [75] is the approximate slow invariant

manifold (ASIM). This method again segregates the local time scales into basis

vectors based on the local eigenvectors of the Jacobian of the spatially homoge-

neous reaction term. The dynamics of the full PDEs are then projected onto this

basis and algebraic and differential constraints are found which define the infinite

dimensional ASIM. It is noted that the ideal basis for projection is the eigen-

functions that include the spatial operator; however, this makes the basis infinite

dimensional, complicating the analysis.

Similar to the ASIM, Bykov and Maas [76] extend the ILDM to PDE systems

by relaxation to reaction-diffusion manifold (REDIM). REDIM is a method similar

to the ASIM, except it is given explicitly as the stationary solution of a parabolic

system using the ILDM as an initial guess. Another modification to the ASIM

is given by Ren and Pope [72]; by using assumptions similar to the close-parallel

approach, they formulate the governing PDEs for the ASIM explicitly in terms of

prescribed variables.

The SIM has also been extended to reaction-diffusion systems by Davis [9, 77].

Low-dimensional manifolds are built in the infinite dimensional function space by

using the predictor corrector method, presented by Davis and Skodje [5], and by
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modifying the MPP [69, 70].

Another technique presented by Adrover et al. [10] is the stretching-based re-

duction (SBR) approach for reduced kinetics on reaction-diffusion systems. SBR

uses a normal stretching rate analysis of local linear dynamics to generate a lo-

cal coordinate that segregates the slow stretching directions from the other time

scales. The SBR approach to PDEs treats the reaction and diffusion operators as

a single entity. Adrover et al. [10] note that the other reduction techniques based

on PDEs described here are developed independent of inertial manifold theories;

Davis [9] notes this as well.

2.1.3 Inertial manifold techniques

An inertial manifold is defined as a finite-dimensional Lipschitz manifold which

is positively invariant and attracts all trajectories exponentially [6, 7]. Because

reaction-diffusion systems are dissipative, they can be projected onto an AIM.

One standard technique of doing this is the Galerkin method, where the solution

to the governing PDE is approximated as an infinite series of the product of

time-dependent amplitudes and their corresponding basis functions. An ideal

choice for basis functions is the eigenfunctions of the spatial operator, which can

be approximated if they are not easily found. If the spatial operator is self-

adjoint, its eigenfunctions will be orthogonal [78]. The infinite series solution

can be accurately approximated by truncating at a sufficiently large finite value.

ODEs for the time evolution of each amplitude can then be obtained by taking the

inner product of the governing PDE with each basis function. This larger system

of ODEs approximates the dynamics of the PDEs on a linear space. One classic

example of an inertial manifold is the system presented by Lorenz [8], which is
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built using a three term standard Galerkin method to represent an atmospheric

flow. The resulting deterministic system of ODEs has the well known chaotic

attractor in phase space. Other studies have examined the accuracy of Galerkin

methods [6, 7, 63, 79–81], which describe the desirable properties of AIMs for

dissipative systems. Temam and Wirosoetisno [82] include a concise distinction

between AIM and slow manifolds: inertial manifolds consider a spectral truncation

of a Laplacian operator, while slow manifolds consider the eigenvalues of a general

forcing term.

One specific method, the nonlinear Galerkin method [83], extends this idea by

adding what Robinson [6] calls “slaving rules.” This method assumes a similar

series solution as the standard Galerkin approach, but it retains twice as many

terms. The first half of the amplitudes (long wavelength) are still approximated

with ODEs, but are now coupled to the second half of the amplitudes (short

wavelength). The short wavelength amplitudes are approximated with algebraic

constraints (slaving rules) to minimize an error. This creates a system of differ-

ential algebraic equations that project the solution of the governing PDEs onto a

nonlinear manifold. The nonlinear Galerkin method creates a reduction in error

because the long wavelength amplitudes may have large contributions from the

short wavelength, despite the short wavelengths having small amplitudes from the

dissipative governing equations. Garcia-Archilla and de Frutos [84] present results

that compare the nonlinear and standard Galerkin methods, and they find that

the nonlinear Galerkin methods require a higher computational cost to converge

to the same error. Therefore, we do not employ slaving rules in our analysis.

These Galerkin techniques all project large or infinite-dimensional systems

onto lower-dimensional AIMs. The benefit of this is exponential attraction of the
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trajectories, which allows for a high order of convergence for dissipative systems,

such as those arising from reaction-diffusion problems. This implies that using

an inertial manifold can provide a smaller error while retaining fewer terms than

other methods, such as a finite difference approximation.

2.2 Related topics

In this dissertation we explore reduction techniques in the context of various

chemical systems. We therefore include some relevant discussion of the chemi-

cal systems considered. We also discuss the important topic of verification and

validation.

2.2.1 Limit cycles

Some open reactive systems exhibit limit cycles, chaos, and pattern formation,

such as continuous flow stirred tank reactors (CSTRs) [85]. In CSTRs, species

flow in and out of a tank as the reaction proceeds; the feed flow can provide more

reactants while removing some products. The tank is assumed to be spatially

homogeneous from mixing. An extension of this idea models reaction-diffusion

systems in a similar fashion to CSTRs by allowing spatial variations in the reactor.

Many simple chemical systems that display limit cycles and pattern formation

have been studied, such as Belousov-Zhabotinsky mechanisms [86–88], the Brus-

selator [89], and the Gray-Scott mechanism [90–92]. Desroches et al. [88] consider

many systems that display mixed mode oscillations and establish a systematic

framework for studying their properties. Adrover et al. [10] also study limit cycles

and chaotic reaction-diffusion systems in the context of SBR, which shows that

SBR is able to capture asymptotic behavior of oscillations. Construction of many
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reduction techniques (SIM, ILDM, ICE-PIC) rely on a fixed point equilibrium

and constant elemental constraints. These properties are not guaranteed in open

systems.

Following the studies of Pearson [93], Marchant [81], and others [12, 94, 95],

we examine the Gray-Scott mechanism in the context of constructing a SIM and

analyzing pattern formation in a low-dimensional Galerkin projection. Marchant’s

[81] study of the Gray-Scott reaction system is particularly relevant. Galerkin

methods are used to study the spatial structure of the system’s patterns, showing

that low-order approximations can reasonably predict stability of various patterns.

2.2.2 Verification and validation

Following Boehm [96], Blottner [97], Roache [98, §2.3], Oberkampf et al. [99],

Oberkampf and Roy [100], and others, we adopt a nuanced distinction between

the terms “verification” and “validation.” Verification is the practice of ensuring

that the simulation approximates the model equations correctly; it is a purely

mathematical exercise. On the other hand, validation is the practice of ensuring

that the model system is correctly approximating a physical experiment. The dif-

ference between these two terms is subtle but important. Verification is important

whenever a model system is implemented, to ensure the system is solved correctly.

Validation is necessary when the model system’s credibility comes into question.

We evaluate systems using a variety of simplifying assumptions such as trivial

geometries, isothermal or adiabatic reactions, and micrometer domains. A conse-

quence of these assumptions is that no physical experiments are readily available

for comparison, preventing validation. We will, however, use well-resolved simula-

tions to verify our results. The reasons for analyzing these mechanisms is to gain
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a better understanding of typical dynamical systems in combustion in the context

of simple systems. We study isothermal systems to allow us to use algebraic and

homotopy continuation methods to find the equilibria of low-order polynomial

systems. When we consider an adiabatic system, we do so for a simple reaction

mechanism to facilitate the analysis. The insight we gain from studying these

simple systems assists in developing a general reduction technique that can be

applied to realistic systems. Many others [5, 47–49, 57, 64] have studied manifold

methods in the context of similar simplifying assumptions.
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CHAPTER 3

METHODOLOGY

In this chapter we introduce the mathematical model which we will evaluate.

We then show a series of reductions to this model and describe our technique for

analysis.

3.1 Mathematical background

We are interested in a rational reduction of systems of PDEs of the form

∂z

∂t
= f(z) − Lx(z), (3.1)

where z ∈ R
R are dependent variables, f are non-linear functions that represent

rates of change due to reaction, and Lx is a self-adjoint, positive semi-definite,

linear spatial differential operator that models diffusion. These restrictions on

Lx allow for a simple examination of the coupling between reaction and diffusion

processes. The one-dimensional spatial domain is of length ℓ, x ∈ [0, ℓ], and

the temporal domain is t ∈ [0,∞). We choose to study two types of boundary

conditions: i) homogeneous Neumann boundary conditions,

∂z

∂x

∣
∣
∣
∣
x=0

=
∂z

∂x

∣
∣
∣
∣
x=ℓ

= 0, (3.2)
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and ii) periodic boundary conditions,

z(0) = z(ℓ) and
∂z

∂x

∣
∣
∣
∣
x=0

=
∂z

∂x

∣
∣
∣
∣
x=ℓ

. (3.3)

The choice of these boundary conditions enables a direct comparison of reduc-

tion methods developed for spatially homogeneous systems to those that include

diffusion. More general boundary conditions could be studied at the expense of

introducing additional thin layers into the solution, which would complicate the

analysis.

We approximate a solution to Eqs. (3.1–3.2) by using separation of variables

coupled with the method of weighted residuals. The dependent variables, z, are

approximated by a series of the product of time-dependent amplitudes, ζm(t), and

a set of spatial basis functions, φm(x):

z(x, t) ≈ z̃M(x, t) =
M∑

m=0

ζm(t)φm(x), (3.4)

where M is the number of terms in the approximation.

If we consider a simple model for diffusive flux, we can choose the basis func-

tions to be the eigenfunctions of the diffusion operator,

Lx(φm) = µmφm, for m = 0, . . . ,M, (3.5)

where the eigenvalues, µm, are guaranteed to be non-negative and real, and the

eigenfunctions orthogonal,

〈φm(x), φn(x)〉







= 0, for m 6= n,

6= 0, for m = n.
(3.6)
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We require the eigenfunctions to match the boundary conditions of Eq. (3.2),

yielding

dφm

dx

∣
∣
∣
∣
x=0

=
dφm

dx

∣
∣
∣
∣
x=ℓ

= 0, (3.7)

or the boundary conditions of Eq. (3.3), yielding

φm(0) = φm(ℓ) and
dφm

dx

∣
∣
∣
∣
x=0

=
dφm

dx

∣
∣
∣
∣
x=ℓ

for x ∈ [0, ℓ). (3.8)

Our choice of boundary conditions allow for spatially homogeneous basis functions;

We choose φ0 to be the spatially homogeneous basis function whose eigenvalue is

zero, µ0 = 0.

When the approximation from Eq. (3.4) is substituted into the form from

Eq. (3.1), the result does not satisfy the equation exactly, but will have a non-

zero residual,

r(x, t) =
M∑

m=0

dζm

dt
φm(x) − f

(
M∑

m̂=0

ζm̂(t)φm̂(x)

)

+
M∑

m=0

µmζm(t)φm(x), (3.9)

whenM is finite. This residual is not the error, e(x, t) = z(x, t)−
∑M

m=0 ζm(t)φm(x);

however, if the residual is zero, the error will be zero as well. To formulate evo-

lution equations for the amplitudes, we take a series of M spatially weighted

averages of the residual and require each be zero,

〈r(x, t), ψm(x)〉 = 0, for all m = 0, . . . ,M and t ∈ [0,∞), (3.10)

where ψm(x) is a set of M spatial weighting functions. There are many viable

choices for weighting functions. If we make the common [6, 7] choice of the basis

functions as the weighting functions, ψm(x) = φm(x), our method is a Galerkin
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method. Substituting Eq. (3.9) (with dummy indices changed from m to n) into

Eq. (3.10) and distributing the inner product linear operator to each term in the

residual yields

〈
M∑

n=0

dζn

dt
φn(x), φm(x)

〉

−
〈

f

(
M∑

m̂=0

ζm̂(t)φm̂(x)

)

, φm(x)

〉

+

〈
M∑

n=0

µnζn(t)φn(x), φm(x)

〉

= 0. (3.11)

Further simplification removes spatially independent terms from the inner prod-

ucts and arranges the terms in the order they were in Eq. (3.1),

M∑

n=0

dζn

dt
〈φn(x), φm(x)〉 =

〈

f

(
M∑

m̂=0

ζm̂(t)φm̂(x)

)

, φm(x)

〉

−

M∑

n=0

µnζn(t)〈φn(x), φm(x)〉. (3.12)

Because of the orthogonality of our basis functions, Eq. (3.12) can be reformulated

to express the evolution of the amplitudes as

dζm

dt
=

〈

f

(
M∑

m̂=0

ζm̂(t)φm̂(x)

)

, φm(x)

〉

〈φm(x), φm(x)〉 − µmζm(t), for m = 0, . . . ,M, (3.13)

which yields a system of R(M + 1) ODEs. We define the reactions’ contribution

to the amplitude evolution as

Ω̇m(ζm̂) =

〈

f

(
M∑

m̂=0

ζm̂(t)φm̂(x)

)

, φm(x)

〉

〈φm(x), φm(x)〉 . (3.14)

To obtain the exact solution of Eq. (3.1), the residual must be driven to zero,
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which requires the limit of M → ∞. In this sense, the PDE of Eq. (3.1) can be

considered to be an infinite set of ODEs. While the exact solution to an infinite-

dimensional system is intractable, approximations with finite M project the tra-

jectories of solutions to the infinite-dimensional system onto a finite-dimensional

AIM [6]. The dynamics on this finite-dimensional approximation are governed by

a system of ODEs,

dζm

dt
= Ω̇m(ζm̂) − µmζm, for m, m̂ = 0, . . . ,M. (3.15)

Robinson [6, p. 387] shows that this AIM exponentially attracts all of the trajec-

tories of solutions to the PDE of Eq. (3.1). Note that we choose not to employ

slaving rules. Our approximate solutions are obtained by integrating this finite-

dimensional system of ODEs to obtain the amplitude evolution, and then employ-

ing Eq. (3.4) to reconstruct an approximation of z(x, t). The evolution of ampli-

tudes in Eq. (3.15) is forced by a nonlinear function, Fm(ζm̂) = Ω̇m(ζm̂)−µmζm(t),

for m, m̂ = 0, . . . ,M . The projection of the function f(z) onto the AIM, Ω̇m(ζm̂),

represents the rate of change of each amplitude due to reaction, and the projection

of Lx(z) onto the AIM, µmζm(t), represents the contribution from diffusion.

In the case where the Galerkin projection is truncated at M = 0, the spatially

homogeneous case is recovered, and Eq. (3.15) reduces to

dζ0

dt
= Ω̇0(ζ0). (3.16)

If our spatially homogeneous basis function is unity, φ0 = 1, then Eq. (3.16) is
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identical to the spatially homogeneous system in the original variables,

dz

dt
= f(z). (3.17)

Since many manifold methods, including the SIM, focus on the spatially homoge-

neous system, we consider this case for comparison. Since spatially homogeneous

dynamics are present in a subspace of all truncations of this Galerkin projection,

we can use the results from the higher order truncations to identify deviations

from the slow dynamics of the spatially homogeneous approximation.

3.1.1 Governing equations

We now specialize Eqs. (3.1–3.2) to consider isothermal, isochoric, reaction-

diffusion systems of ideal gases which are described by Dalton’s law and detailed

mass-action Arrhenius kinetics. Our system consists of N species composed of L

elements interacting in J reactions. We model spatial dynamics using Fick’s law

of diffusion with a constant mass diffusivity and neglect advection.

The governing equations for our reaction-diffusion system are the species evo-

lution equations,

ρ
∂Yi

∂t
= M̄iω̇i +

ṁ

V
(Y f

i − Yi) −
∂ji
∂x

, for i = 1, . . . , N, (3.18)

where Yi, Y
f
i , ji, ω̇i, and M̄i, are mass fraction, feed flow mass fraction, diffusive

mass flux, molar production rate, and molecular mass of species i, respectively; ṁ

is the mass feed flow rate, V is the volume of the tank, and ρ is the mixture density.

By demanding that the initial conditions have the same elemental composition as

the feed flow conditions, stoichiometric constraints can be exactly applied, and
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the density will remain constant for this isothermal, isochoric, open system.

In addition to considering open systems in Eq. (3.18), we will also consider the

case where the system is closed, ṁ = 0:

ρ
∂Yi

∂t
= M̄iω̇i −

∂ji
∂x

, for i = 1, . . . , N. (3.19)

We allow the initial conditions for each species to have spatial variations,

Yi(x, t = 0) = Y ∗
i (x), for i = 1, . . . , N, (3.20)

and we model both sets of boundary conditions considered: homogeneous Neu-

mann boundary conditions,

∂Yi

∂x

∣
∣
∣
∣
x=0

=
∂Yi

∂x

∣
∣
∣
∣
x=ℓ

= 0, for i = 1, . . . , N, (3.21)

and periodic boundary conditions,

Yi(0) = Yi(ℓ) and
∂Yi

∂x

∣
∣
∣
∣
x=0

=
∂Yi

∂x

∣
∣
∣
∣
x=ℓ

, for i = 1, . . . , N. (3.22)

We consider a general set of J reactions with N species, χi, i = 1, . . . , N ,

N∑

i=1

ν ′ijχi ⇌

N∑

i=1

ν ′′ijχi, (3.23)

where j = 1, . . . , J . The forward and reverse stoichiometric coefficients, ν ′ij and

ν ′′ij , are combined to a single net stoichiometric coefficient,

νij = ν ′′ij − ν ′ij , (3.24)
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such that each reaction can be represented as

N∑

i=1

χiνij = 0, for all j = 1, . . . , J. (3.25)

Note that νij has dimension N × J and rank R, where R ≤ N − L. Stoichiomet-

ric constraints, which require elements to be conserved in each reaction, can be

written as
N∑

i=1

ϕliνij = 0, for l = 1, . . . , L and j = 1, . . . , J, (3.26)

where ϕli is the number of elements, l, in species i; this constrains νij to be in the

right null space of ϕli.

We sum Eq. (3.18) over all species,

N∑

i=1

ρ
∂Yi

∂t
=

N∑

i=1

M̄iω̇i +
N∑

i=1

ṁ

V
(Y f

i − Yi) −
N∑

i=1

∂ji
∂x

. (3.27)

Since
∑N

i=1 Yi = 1, which does not change over time, the left hand side of Eq. (3.27)

and the feed flow terms are both zero. The reaction source term also sums to zero

because of stoichiometric constraints; therefore, we demand a choice of mass flux

whose spatial derivative sums to zero,
∑N

i=1 ∂ji/∂x = 0, to have a consistent

system.

3.1.2 Constitutive equations

To complete the system, the following constitutive equations are specified. The

mass flux is given by Fick’s law of diffusion,

ji = −ρ
N∑

î=1

Dîi

∂Yî

∂x
, for i = 1, . . . , N, (3.28)
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where Dîi are the mass diffusivities, which are assumed to be constant. We are

primarily concerned with systems which model all species with identical mass

diffusivities, in which case Dii = D for i = 1, . . . , N and Dîi = 0 for i 6= î.

However, when we consider unequal species mass diffusivities, we assume Dii = Di

for i = 1, . . . , N − 1; we use the algebraic constraint,
∑N

i=1 Yi = 1, to solve for the

Nth species and need not consider its complicated diffusivity. More details are

provided in Buckmaster and Ludford [21, pp. 7–8].

The spatial gradient of mass flux in Eq. (3.28) is a self-adjoint, positive semi-

definite, linear differential operator which is in the form of Lx from Eq. (3.15). As

a result of Eq. (3.28), along with our chosen boundary conditions (either homo-

geneous Neumann or periodic), there is no net mass flux out of the domain. The

pressure, P , is given by the ideal gas equation of state for a mixture that obeys

Dalton’s law:

P = ρR̄T
N∑

i=1

Yi

M̄i

, (3.29)

where R̄ = 8.314 × 107 erg/(mol K) is the universal gas constant, and T is

the constant temperature. The reaction source terms, ω̇i, are given by detailed

mass-action Arrhenius kinetics:

ω̇i =

J∑

j=1

νijrj, for i = 1, . . . , N, (3.30a)

rj = kj

(
N∏

i=1

(
ρYi

M̄i

)ν′

ij

− 1

Kc
j

N∏

i=1

(
ρYi

M̄i

)ν′′

ij

)

, for j = 1, . . . , J, (3.30b)

kj = ajT
βj exp

(−Ēj

R̄T

)

, for j = 1, . . . , J, (3.30c)

Kc
j =

(
P o

R̄T

)PN
i=1 νij

exp

(

−
∑N

i=1 µ̄
o
iνij

R̄T

)

, for j = 1, . . . , J, (3.30d)

µ̄o
i = M̄i(hi − Tso

i ), for i = 1, . . . , N, (3.30e)
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where rj , kj, and Kc
j are the reaction rate, Arrhenius rate, and equilibrium con-

stant of reaction j, respectively, and µ̄o
i is the chemical potential of species i

evaluated at the reference pressure, P o. The Arrhenius rate depends on the col-

lision frequency factor, aj, the temperature-dependency exponent, βj , and the

activation energy, Ēj ; the equilibrium constant depends on the reference pressure

and chemical potentials; and the chemical potential depends on specific enthalpy,

hi, and the specific entropy evaluated at the reference pressure, so
i . Equations

(3.18–3.21) and (3.28–3.30) form a complete set.

3.1.3 Model reduction

In this section a series of reductions to Eqs. (3.18–3.21) and (3.28–3.30) will

be described in detail.

3.1.3.1 Generalized Shvab-Zel’dovich relations

First, we implement a reduction technique using the generalized Shvab-Zel’dovich

relations similar to the reduction found in Lam and Bellan [101]. Similar to

Eq. (3.26), we use a modified species-element matrix, ϕ̂li, that spans the left null

space of matrix νij,

N∑

i=1

ϕ̂liνij = 0, for l = 1, . . . , L̂ and j = 1, . . . , J, (3.31)

to replace L̂ differential equations with algebraic constraints. We note that L̂ =

N −R because of the dimension and rank of νij . This reduction allows algebraic

constraints to couple the evolution of L̂ species to a reduced set of R species. Note

that L̂ ≥ L is the total number of linear constraints for the reaction mechanism,
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which includes all L stoichiometric constraints, as well as any others. Operating

on the molar production rates, Eq. (3.30a), with ϕ̂li, and summing over all species,

i, we get

N∑

i=1

ϕ̂liω̇i =
N∑

i=1

ϕ̂li

J∑

j=1

νijrj =
J∑

j=1

rj

N∑

i=1

ϕ̂liνij = 0, for l = 1, . . . , L̂. (3.32)

We apply the operator ϕ̂li to Eq. (3.18), use the diffusive mass flux from Eq. (3.28),

and sum over all species to obtain

∂

∂t

(
N∑

i=1

ϕ̂li
Yi

M̄i

)

−D ∂2

∂x2

(
N∑

i=1

ϕ̂li
Yi

M̄i

)

=

N∑

i=1

ϕ̂liω̇i = 0, for l = 1, . . . , L̂. (3.33)

We now restrict our evaluation to systems whose initial conditions are spatially

homogeneous in the values
∑N

i=1 ϕ̂liYi/M̄i, for l = 1, . . . , L̂, which implies the

initial element distribution is spatially homogeneous, as would typically be found

in premixed combustion. Since the homogeneous Neumann boundary conditions

yield no perturbations in the spatial distributions of these linear combinations of

species, Eq. (3.33) can be integrated to yield

N∑

i=1

ϕ̂li
Yi

M̄i

=
N∑

i=1

ϕ̂li
Y ∗

i

M̄i

, for l = 1, . . . , L̂; (3.34)

therefore, these linear combinations of species will remain spatially homogeneous

for all time. Note that, similar to premixed combustion, individual species are

not required to be spatially homogeneous; only the distribution of the linear con-

straints (i.e. elements) given in Eq. (3.34) has this requirement. The set of L̂ al-

gebraic relations implies that we need not solve for the dynamics of all N species.

Instead, we focus our attention on R = N− L̂ reduced species, then use Eq. (3.34)
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to determine the dynamics of the remaining species.

3.1.3.2 Transformation to reduced variables

Following Ren et al. [64] and Al-Khateeb et al. [49], we now transform the

mass fractions into specific mole concentrations, ẑi, where

ẑi ≡
Yi

M̄i

, for i = 1, . . . , N. (3.35)

We can use the constraints in Eq. (3.34) to obtain a set of reduced variables.

We choose the first R linearly independent species as our reduced variables, zn,

n = 1, . . . , R, and then couple the values of ẑi for i = 1, . . . , N to those reduced

variables by the linear relation

ẑi(x, t) = zi +
R∑

n=1

Dinzn(x, t), for i = 1, . . . , N. (3.36)

Here, zn are the R reduced specific mole concentrations, zi are the values of specific

mole concentration when zn = 0 mol/g for all n = 1, . . . , R, and Din is a coefficient

matrix of dimension N×R that couples the variations in zn to ẑi. We define Din to

be an N ×R full rank matrix that spans the column space of νij ,
∑N

i=1 ϕ̂liDin = 0

for l = 1, . . . , L̂ and n = 1, . . . , R. This reduction is not unique. The following

is a technique to obtain Din: reduce the transpose of νij to a row-echelon form,

truncate the final J−R rows of zeros in this echelon form, and take the transpose

of this truncation to form Din. In this construction of Din, the first R rows form

a sub-matrix which is an R × R identity matrix; this fact, along with the choice
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of zi = 0 mol/g for i = 1, . . . , R, renders

zi = ẑi, for i = 1, . . . , R. (3.37)

This leaves the initial and boundary conditions in the reduced variables as

z∗i =
Y ∗

i

M̄i

, for i = 1, . . . , R, (3.38)

and

∂zi

∂x

∣
∣
∣
∣
x=0

=
∂zi

∂x

∣
∣
∣
∣
x=ℓ

= 0, for i = 1, . . . , R. (3.39)

The remaining zi, i = R + 1, . . . , N , are chosen to satisfy the L̂ algebraic con-

straints, Eq. (3.34), which are simplified to

N∑

i=1

ϕ̂li

(

zi +

R∑

n=1

Dinzn

)

=

N∑

i=1

ϕ̂liz
∗
i , for l = 1, . . . , L̂, (3.40)

and have the solution,

zi = z∗i −
R∑

n=1

Dinz
∗
n, for i = R + 1, . . . , N. (3.41)

Substituting specific mole concentrations, Eq. (3.35), along with the constitu-

tive equation for mass flux, Eq. (3.28), into Eq. (3.18) yields N evolution equations

for ẑi, i = 1, . . . , N , where only the first R equations are linearly independent.

Therefore, we only consider the evolution equations for the reduced variables,

∂zi

∂t
=
ω̇i(zn)

ρ
+ D∂

2zi

∂x2
, for i, n = 1, . . . , R, (3.42)

where we define a scaled chemical source term, fi(zn) = ω̇i(zn)/ρ, and diffusive
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flux term, Lx(zi) = −D ∂2zi/∂x
2, so Eq. (3.42) is in identical form to Eq. (3.1).

3.1.3.3 Galerkin reduction to ODEs

To analyze Eq. (3.42), we apply a Galerkin projection onto an AIM [6]. We

accomplish this by assuming the reduced variables are approximated in the form

of Eq. (3.4),

zi(x, t) ≈
M∑

m=0

ζi,m(t)φm(x), for i = 1, . . . , R, (3.43)

where φm(x) are chosen as basis functions and ζi,m(t) are the corresponding time-

dependent amplitudes of species i. For a given domain length, we choose the

truncation of our approximation by setting M to a value above which the ampli-

tude evolution is dominated by diffusion; diffusion causes the amplitudes, ζi,m for

all i and m > M , to decay rapidly before substantial reaction dynamics occur.

We choose basis functions that are the eigenfunctions of the diffusion opera-

tor that match the boundary conditions. For the remainder of the analysis we

consider the homogeneous Neumann boundary conditions with eigenfunctions,

φm = cos(mπx/ℓ). Appendix A gives details of the analogous analysis for peri-

odic boundary conditions. The series of cosines is a complete orthogonal basis in

the limit as M → ∞, and the corresponding eigenvalues are non-negative and real,

µm = Dm2π2/ℓ2. Our solution is decomposed into a Fourier cosine series whose

m = 0 amplitudes model the spatially homogeneous components and m > 0 am-

plitudes model the spatial variations. By substituting Eq. (3.43) into Eq. (3.42)

and taking the inner product with each basis function, φn(x), we obtain a finite

system of ODEs for the evolution of the amplitudes in the form of Eq. (3.13). Since

our molar production rates are low-order polynomials and our basis functions are

cosines, the integration of the Ω̇m(ζm̂) terms in Eq. (3.14) can be performed ana-
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lytically using trigonometric identities, as shown in Appendix B. We can therefore

focus on the evaluation of our finite-dimensional system in the form of Eq. (3.15),

dζi,m
dt

= Ω̇i,m(ζj,n) −
Dm2π2

ℓ2
ζi,m, for i, j = 1, . . . , R and m,n = 0, . . . ,M. (3.44)

The initial conditions of the reduced species amplitudes are given by

ζi,m(0) =
〈φm, z

∗
i 〉

〈φm, φm〉
, for i = 1, . . . , R and m = 0, . . . ,M. (3.45)

For very small ℓ, a truncation at M = 0 is appropriate, in which case Eqs. (3.44)

and (3.45) reduce to a spatially homogeneous system in the form of Eq. (3.17),

dzi

dt
= fi(zn), for i, n = 1, . . . , R, (3.46)

zi(0) = z∗i , for i = 1, . . . , R. (3.47)

For this to be the case, ℓ must be sufficiently small such that the diffusion term,

Dm2π2/ℓ2, will dominate the evolution equation for m ≥ 1. At this small length

scale, diffusion alone will cause all spatial inhomogeneities to equilibrate quickly,

and the remaining reaction dynamics can be accurately modeled as the spatially

homogeneous system given in Eqs. (3.46–3.47).

3.2 SIM construction for reaction-diffusion systems

In this section we describe our extension of SIM construction from spatially

homogeneous systems to reaction-diffusion systems and describe some of the ram-

ifications of our approach. The approach we take to SIM construction is an ex-

tension of the spatially homogeneous technique given by Davis and Skodje [5]
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and Al-Khateeb et al. [49]. This technique requires the construction of individual

branches of the one-dimensional SIM by integrating a heteroclinic orbit from a

non-physical saddle equilibrium, along its only unstable eigenvector, to the phys-

ical equilibrium sink, which the SIM approaches along the equilibrium’s slowest

eigenvector. We label the non-physical saddle equilibrium from which a SIM

branch emanates the SIM Branch Initial Condition (SIM-BIC). The evaluation of

the entire dynamical system, including the equilibria with negative concentrations

and other non-physical mathematical artifacts, provides useful insights into the

physical dynamics, as shown by Davis and Skodje [5] and Al-Khateeb et al. [49].

This technique is extended to the infinite-dimensional PDEs governing a reaction-

diffusion equation by use of the Galerkin projection onto an AIM, as described in

Section 3.1.3.3. This AIM is an R(M + 1)-dimensional system of ODEs, whose

equilibria are amenable to a similar SIM construction technique as used for the

spatially homogeneous system of ODEs. While the SIM is invariant for the govern-

ing ODEs in each Galerkin projection, it only approximates an invariant manifold

for the governing PDEs. The SIM will converge to an invariant manifold for the

governing PDEs in the limit as M → ∞. Here we make a distinction between our

terminology of equilibrium and chemical equilibrium. What we call an equilib-

rium is a fixed point in our finite-dimensional projection of an infinite-dimensional

dynamical system which is the steady state solution to Eq. (3.1),

f(ze) − Lx(z
e) = 0, (3.48)

not necessarily the chemical equilibrium. This solution, or equilibrium manifold, is

a spatial function, ze(x), which can be approximated by the steady state solution
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of the Galerkin projection in Eq. (3.15),

Fm(ζe
m̂) = Ω̇m(ζe

m̂) − µmζe
m = 0, for m, m̂ = 0, . . . ,M. (3.49)

The solution to Eq. (3.49) is a fixed point in the finite-dimensional phase space

which can be reconstructed into the approximation z̃e
M(x) using Eq. (3.4). In

the M = 0 truncation, the spatially homogeneous reaction-only equilibria are

recovered,

f(ze:SH) = 0. (3.50)

The concentrations of one of these spatially homogeneous equilibria are equal to

their chemical equilibrium values.

The spatially homogeneous equilibria, ze:SH, which satisfy the steady state

M = 0 Galerkin projection, Eq. (3.50), will have no contribution from the diffu-

sion operator Lx(z
e:SH) = 0, and will also satisfy the full steady state equation,

Eq. (3.48). The spatially homogeneous equilibria are also exact steady state so-

lutions to any Galerkin projection, where ζ0 = ze:SH and ζm = 0 for m > 0.

Furthermore, all spatially homogeneous dynamics of the M > 0 Galerkin pro-

jections occur in a subspace of these larger AIMs; when ζi,m = 0 for all i and

for m > 0, all dynamics occur on the M = 0 AIM, which we call the spatially

homogeneous subspace.

We seek additional equilibria to the steady state Galerkin projection, Eq. (3.49).

Since the reaction-diffusion AIM projection has a higher dimension than the spa-

tially homogeneous system, its Jacobian has additional eigenvalues. We analyti-

cally examine the additional eigenvalues at an arbitrary point in the spatially ho-

mogeneous subspace, focusing first on the spatially homogeneous equilibria. From
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local linear analysis of the spatially homogeneous system, we find a reaction-only

Jacobian matrix, defined as

Jij =
∂fi

∂zj
, for i, j = 1, . . . , R. (3.51)

This Jacobian has R eigenvalues, λi,0, i = 1, . . . , R, which we sort from largest

to smallest by their real parts (Re(λi,0) ≥ Re(λi+1,0) for i = 1, . . . , R − 1). By

defining the local chemical time scales as the reciprocal of the eigenvalues,

τi,0 =
1

|λi,0|
, for i = 1, . . . , R, (3.52)

we see that when all eigenvalues have negative real parts (as they do in the neigh-

borhood of the physical equilibrium), this ordering becomes slowest (at i = 1) to

fastest (at i = R). Local linear analysis of any point in the spatially homogeneous

subspace in M > 0 truncations of the Galerkin projection, Eq. (3.44), yields a

Jacobian matrix that is of block diagonal form

JAIM =



















J 0 . . . 0 . . . 0

0 J − µ1I . . . 0 . . . 0

...
...

. . .
...

...

0 0 . . . J − µmI . . . 0

...
...

...
. . .

...

0 0 . . . 0 . . . J − µMI



















, (3.53)

as seen from the derivation in Appendix C, where J is the reaction-only Jacobian

matrix evaluated at the spatially homogeneous concentrations, and I and 0 are

identity and zero R× R square matrices, respectively.
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The eigenvalues of this block diagonal Jacobian matrix are correlated to the

R reaction-only eigenvalues of J and are given by

λi,m = λi,0 − µm, for i = 1, . . . , R and m = 0, . . . ,M. (3.54)

We label these the diffusion-modified eigenvalues for m ≥ 1. Using the same

definition of local time scales as in the spatially homogeneous case, we find

τi,m = |λi,0 − µm|−1 , for i = 1, . . . , R and m = 0, . . . ,M, (3.55)

where we see that these diffusion-modified time scales have a contribution from

reaction, λi,0, and a contribution from diffusion, µm; therefore, we define a diffusion

time scale for each spatially inhomogeneous Fourier mode:

τD,m =
1

µm
, for m = 1, . . . ,M. (3.56)

Since the diffusion contribution to the modified eigenvalues is always negative,

the addition of diffusion provides a stabilizing effect (the eigenvalues become more

negative). For equilibria with positive chemical eigenvalues, λi,0 > 0, Eq. (3.54)

identifies critical length scales where the diffusion-modified eigenvalue will be zero.

This can be seen by substituting in the definition of µm into Eq. (3.55) and solving

for the length scale that makes τi,m = 0. For homogeneous Neumann boundary

conditions, this critical length will be ℓc = mπ
√

Dτi,0, where τi,0 is substituted

for 1/λi,0 using Eq. (3.52) to show consistency with Al-Khateeb et al. [14], and

others [15–17].
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3.3 Phase shifts and symmetry

We note that our boundary conditions admit a phase shift for inhomogeneous

solutions; periodic boundary conditions allow a continuous phase shift, while Neu-

mann boundary conditions only allow solutions π radians out of phase. With our

choice of basis functions, this phase shift appears as a symmetry in the ampli-

tudes of the Galerkin projection. For example, the initial conditions of z∗i (x) that

satisfy the homogeneous Neumann boundary conditions will have the solution evo-

lution of zi(x, t) for all i = 1, . . . , R. A symmetric initial condition, z∗i (ℓ− x), will

also satisfy the same boundary conditions and will have a symmetric evolution of

zi(ℓ−x, t) that satisfies the governing PDE. When projected into cosine basis func-

tions, the amplitudes of zi(x, t) are ζi,m(t), while the amplitudes of zi(ℓ− x, t) are

(−1)mζi,m(t). This symmetry means that phase space will have a reflective sym-

metry about the spatially homogeneous subspace, ζi,m(t) = 0 for all i = 1, . . . , R

and m = 1, . . . ,M . We restrict our analysis to the half of phase space where

ζ1,1(t) ≥ 0, since the dynamics of the other half will be symmetric.
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CHAPTER 4

CLOSED REACTION-DIFFUSION SYSTEMS

In this chapter we examine closed reaction-diffusion systems to identify and

evaluate changes that occur in the SIM for these systems. We will examine two

cases: i) a highly resolved 26-term truncation that takes into account one spa-

tially homogeneous mode and 25 modes with various spatial wavelengths. This

allows us to examine the accuracy of lower truncations and to identify underlying

consistencies between our method and the continuum model; and ii) a two-term

truncation that only includes the spatially homogeneous mode and the fundamen-

tal spatial mode. The advantage of this approach is that it is a low-dimensional,

simple model that demonstrates the interesting dynamics of the interaction be-

tween reaction and diffusion; however, for large domain lengths, this truncation

lacks spatial resolution.

This chapter examines three model problems with different chemical kinetic

mechanisms, each coupled with a simple diffusion model. The first is a simple one-

step kinetic mechanism, the second is a one-step oxygen dissociation reaction, and

the third is the two-step Zel’dovich reaction mechanism of NO production. The

third system’s spatially homogeneous SIM was studied by Al-Khateeb et al. [49].

This chapter provides an extension of Ref. [49] to include the effects of diffusion.
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4.1 Model problems

4.1.1 Simple chemical mechanism

We examine a simple problem with R = 1 in the form of Eq. (3.1), specifically

∂z

∂t
= −K(z − C1)(z − C2) + D ∂2z

∂x2
, (4.1)

with homogeneous Neumann boundary conditions consistent with Eq. (3.2),

∂z

∂x

∣
∣
∣
∣
x=0

=
∂z

∂x

∣
∣
∣
∣
x=ℓ

= 0. (4.2)

In Eq. (4.1) we assume the parameters to be K > 0 and C1 < C2. We take

ze(x) to be a steady solution to Eqs. (4.1–4.2) and evaluate its linear stability.

We assume the initial conditions are perturbed from the steady state solution,

z(x, 0) = ze(x) + ǫA(x, 0), where A(x, 0) is O(1) and 0 < ǫ≪ 1, and evaluate the

subsequent evolution of

z(x, t) = ze(x) + ǫA(x, t). (4.3)

When we substitute the solution from Eq. (4.3) into Eq. (4.1), collect the terms

that are O(ǫ), and assume a separation of variables, A(x, t) = G(x)H(t), we obtain

two linear ODEs,

dH

dt
= γH(t), (4.4)

d2G

dx2
=

(
γ +K(2ze(x) − C1 − C2)

D

)

G(x), (4.5)
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where γ is a constant. The solution to Eq. (4.4) is an exponential, H(t) =

H(0) exp(γt), where the sign of γ indicates the stability of the solution. The so-

lution to Eq. (4.5) for a general steady state equilibrium, ze(x), typically requires

numerical evaluation; however, if we evaluate spatially homogeneous equilibria,

ze(x) = ze:SH , the solutions to Eq. (4.5) that match the boundary conditions are

of the form,

G(x) = cos

(√

−γ −K(2ze:SH − C1 − C2)

D x

)

, (4.6)

where the coefficient of x in the argument of the cosine function must be an

integer multiple of π/ℓ. Therefore, we can solve for the stability parameter, γ,

which yields the spectrum of values,

γ = −K(2ze:SH − C1 − C2) −
m2π2D
ℓ2

, (4.7)

for any integer value of m ≥ 0. Note that γ is composed of two terms: λ0 =

−K(2ze:SH − C1 − C2), which is the eigenvalue of the reaction-only system, and

−µ2
mD = −m2π2D/ℓ2, which is the diffusion-modification term. Therefore, the

linear stability analysis for a spatially homogeneous equilibrium is consistent with

the Jacobian eigenvalue analysis in Section 3.2. We also find that for a spatially

inhomogeneous solution, the eigenvalues of the Jacobian of the Galerkin projection

are a good approximation of the stability parameter, γ.

By inspection, we find two finite spatially homogeneous steady state solutions

to Eqs. (4.1–4.2), ze:SH = C1 and ze:SH = C2. There are other finite steady

solutions which are spatially inhomogeneous; their composition and stability are

dependent on the reaction parameters and the domain length, which will be il-

lustrated in an upcoming example. The reaction-only eigenvalue of the spatially
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homogeneous equilibrium, ze:SH = C2, is negative, λ0 = −K(C2 − C1) < 0, and

the diffusion-modification contribution is non-positive; therefore, all values of γ

are negative, and ze:SH = C2 is stable. The equilibrium ze:SH = C1 has a positive

reaction-only eigenvalue, λ0 = −K(C1 − C2) > 0. Since the m = 0 mode has no

diffusion contribution, γ for this mode will also be positive, and ze:SH = C1 will

be unstable for at least one mode; however, there is an infinite spectrum of values

for γ, so for any finite domain length, there will be modes where the negative

diffusion contribution has stabilized the positive reaction contribution, resulting

in a stable mode. The number of unstable modes depends on the domain length

ℓ.

We now examine a simple reaction mechanism,

B +B ⇌ A+ A, (4.8)

with N = 2 species, J = 1 reaction, and L̂ = 1 constraint, which can be modeled

by a system in the form of Eq. (4.1). By choosing i = {1, 2} to correspond to the

species {A,B}, respectively, the rate equation for this reaction is

r = k

((
ρY2

M̄

)2

− 1

Kc

(
ρY1

M̄

)2
)

. (4.9)

The mole fractions must sum to unity, Y1+Y2 = 1, facilitating the reduction shown

in Section 3.1.3. Since R = N−L̂ = 1, we choose to model the evolution of species

A as the reduced variable z = Y1/M̄, and algebraically solve for the evolution of B

with the mole fraction constraint. This yields the evolution equation in the form

of Eq. (3.42),

∂z

∂t
= 2ρk

((
1

M̄
− z

)2

− z2

Kc

)

+ D ∂2z

∂x2
. (4.10)
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We choose parameters to induce scales that are loosely correlated to those found in

reactive gases at atmospheric pressure, k = 2.5 × 108 cm3/mol/s, M̄ = 1 g/mol,

Kc = 0.25, ρ = 1 × 10−3 g/cm3, and D = 1 cm2/s. The resulting evolution

equation is in the form of Eq. (4.1) with parameters K = 2kρ(1 − 1/Kc) = 1.5 ×

106 g/mol/s, C1 =
√
Kc/((

√
Kc − 1)M̄) = −1 mol/g, and C2 =

√
Kc/((

√
Kc +

1)M̄) = 1/3 mol/g:

∂z

∂t
= −1.5 × 106 (z + 1)

(

z − 1

3

)

+
∂2z

∂x2
. (4.11)

This system has two finite spatially homogeneous equilibria,

ze:SH =

{

−1,
1

3

}

mol/g, (4.12)

which we label R1 and R2, respectively. The reaction-only eigenvalues of the

linearized system about these equilibria are λ0 = 2 × 106 s−1 at R1 and λ0 =

−2 × 106 s−1 at R2. We know that R2 is linearly stable since all of the values

of γ from its linear stability analysis are negative, independent of domain length.

This result for the stability, along with the fact that both species concentrations

are positive, indicates that R2 is the physical equilibrium. Evaluating R1, we find

that the m = 0 mode is unstable, but the sign of γ for larger values of m depends

on the domain length.

In addition to evaluating the stability of the spatially inhomogeneous modes

at R1, we now find any additional spatially inhomogeneous steady solutions and

evaluate their stability. The Galerkin projection admits an infinite number of

steady solutions in the M → ∞ limit. Most of these equilibria are complex and/or

singular; we are only interested in the real non-singular steady state solutions. By
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identifying all the roots with an algebraic analysis for a low order system (M = 3

Galerkin projection) and resolving these roots to a higher order system (M = 25)

using Newton’s method, we find that the number of real non-singular solutions

increases as ℓ increases. We present the results for three different domain lengths:

ℓ = 5 µm, 22.5 µm, and 100 µm.

For ℓ = 5 µm, the only steady state solutions we identify are the spatially

homogeneous equilibria, R1 and R2; we find R1 to have only one positive value

of γ for m = 0, and it is therefore only unstable in the spatially homogeneous

mode. For ℓ = 22.5 µm, we find that R1 is unstable in two modes (m = 0 and

m = 1); also, we identify two real non-singular spatially inhomogeneous steady

solutions, which each have only one positive value of γ. For ℓ = 100 µm, R1

has five unstable modes for m = 0 through m = 4. At this length we identify

eight real non-singular spatially inhomogeneous steady solutions, all of which are

unstable in some modes; two of these solutions have one positive value of γ, two

have two, two have three, and two have four. The spatial reconstructions of the

steady solutions in the M = 25 Galerkin approximation are shown in Figure 4.1

for ℓ = 22.5 µm and for ℓ = 100 µm, where the value m in R̂1,m indicates the

number of unstable modes in the spatially inhomogeneous solutions. Some of the

solutions for ℓ = 100 µm with low values of m are quite similar and are therefore

hard to discern in Figure 4.1; the spatially homogeneous R2 at z = 1/3 mol/g

(black) and one R̂1,2 (blue dash-dashed) are both nearly obscured by half of each

R̂1,1 solution (red dashed), which cross at x = 50 µm.

We see from these examples that for longer values of ℓ, more of the modes

in the neighborhood of R1 become unstable. These transitions from stable to
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Figure 4.1. Steady state solutions for the B +B ⇌ A+ A mechanism.

unstable occur at integer multiples of a critical domain length,

ℓc = π

√

D
λ0

=
π√

2 × 106
= 22.214 µm, (4.13)

where the m = 1 diffusion-modification time scale is equal to the unstable reaction

time scale. The critical length scale is coupled to a chemical time scale by diffusion:

ℓc = π
√
Dτ0.

Therefore, when ℓ < ℓc, R1 will have one positive eigenvalue and will in fact

be a SIM-BIC for the system; however, for domain lengths longer than ℓc, R1 will

have more than one positive eigenvalue, and will no longer qualify as a candidate

equilibrium for the SIM-BIC. We therefore seek other candidate equilibria of the

steady state Galerkin projection, Eq. (3.49), to fill the role of SIM-BIC for ℓ > ℓc.

When the domain length is an integer multiple of the critical length scale,

ℓ = mℓc, Eq. (4.13) predicts one of the spectrum of eigenvalues at R1 to be equal

to zero. At these length scales, there are supercritical pitchfork bifurcations at R1;

two additional equilibria undergo a transition from complex to real through the
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spatially homogeneous equilibrium R1. These equilibria have spatial symmetry,

so we label them R̂+
1,m and R̂−

1,m. This bifurcation can be seen in Figure 4.2 for

m = 1, where the bold branches have one positive eigenvalue and the dashed

branch has two. Since the dynamics of R̂+
1,1 and R̂−

1,1 are identical, as shown in

Section 3.2, we can focus our analysis on one root, R̂+
1,1 (with ζ1 > 0), and for

simplicity drop the plus sign superscript. For ℓ > ℓc, the R̂1,1 equilibria each have

one positive eigenvalue and are candidates for the SIM-BIC.

21 22 23 24 25
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R1R1

R̂+
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Figure 4.2. Locus of real equilibria in the neighborhood of R1 for
B +B ⇌ A+ A.

We examine the solution whose initial conditions are in the neighborhood of

R̂1,1, perturbed along the eigenfunction whose eigenvalue is positive, and find that

it approaches the physical equilibrium along its slowest spatially homogeneous

eigenfunction. (Note that an eigenvector of the Jacobian of Eq. (3.49) approxi-
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mates an eigenfunction of Eq. (3.48) and is referred to as such.) Therefore, the

R̂1,1 equilibria meet the requirements to formally become SIM-BICs for all ℓ > ℓc.

Subsequent bifurcations at longer domain lengths exhibit similar properties;

additional equilibria pairs, R̂1,m, correspond to bifurcations at integer multiples

of the critical length scale. The bifurcation at ℓ = mℓc corresponds to the m-th

Fourier mode’s wavelength being identical to the critical length scale. Additional

information about these equilibria is found in Appendix D. Linear stability anal-

ysis of these equilibria shows that for ℓ > mℓc, R̂1,m will only have m positive

eigenvalues, and the remaining spectrum of eigenvalues will be negative.

Each R̂1,m equilibrium is a fixed point on the finite-dimensional AIM that

converges to an equilibrium manifold in the limit as M → ∞. The equilibrium

manifolds are spatial functions that satisfy the steady state differential equation,

ω̇(ze)

ρ
+ D d2z

dx2
= 0. (4.14)

To show the convergence for R̂1,1, we quantify the error by comparing the steady

solution in a lower order truncation to its corresponding solution in an M = 25

Galerkin projection and find the relative root mean square error,

Em =

(∫ ℓ

0
(z̃e

m − z̃e
25)

2 dx
∫ ℓ

0
(z̃e

25)
2 dx

) 1
2

, for m = 1, . . . , 24. (4.15)

This convergence is shown in Figure 4.3 for ℓ = 22.5 µm and ℓ = 100 µm. The

error of the spatially inhomogeneous steady state solution provides a good metric

for the convergence of the Galerkin projection at a particular length scale without

imposing an arbitrary initial condition or requiring time integration. We see that

the error for ℓ = 100 µm converges slowly, remaining relatively large, while the
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Figure 4.3. Relative error of R̂1,1 approximations for B +B ⇌ A+ A.

error for ℓ = 22.5 µm converges rapidly. This shows that for short domain lengths,

where ℓ . O(ℓc), lower order truncations not only provide accurate representation

of the equilibrium manifold, but also accurately describe the reaction-diffusion

dynamics.

We now evaluate approximations of Eq. (4.11) with lower order Galerkin pro-

jections. In the limit of an infinitesimal domain length, lim ℓ → 0, the diffusion

terms in the projection become infinitely fast for all m > 0, any spatial inho-

mogeneities equilibrate immediately, and the system can be modeled as spatially

homogeneous,

dz

dt
= −1.5 × 106 (z + 1)

(

z − 1

3

)

. (4.16)

In addition to R1 and R2, this system also has two infinite equilibria, ze:SH →

+∞ mol/g, labeled I1, and ze:SH → −∞ mol/g, labeled I2. These infinite equilib-

ria are identified using a Poincaré sphere mapping [51]; more details can be found

in Appendix E. Evaluating the infinite equilibria, we find that I1 is unstable and

I2 is stable. The rate of change, Ω̇, is plotted in Figure 4.4; the physical domain,

54



where both species have positive concentrations, is shown as a gray shaded region.

For this R = 1-dimensional spatially homogeneous system, a one-dimensional SIM

is degenerate; however, we construct it to provide an example of how diffusion

modifies the dynamics of a spatially homogeneous system. In one-dimensional

systems, there are only sinks and sources, so the SIM-BIC in this case will be a

source, since it must have at least one positive eigenvalue. To construct a branch

of the SIM, we integrate a system trajectory from the SIM-BIC to the physical

equilibrium sink. The two SIM-BICs for this system are at R1, z
e = −1, and

at I1, z
e → +∞; the SIM branches are shown as a bold red line in Figure 4.4

and constitute the entire phase space between these SIM-BIC equilibria and the

physical sink. We will focus our analysis of the reaction-diffusion system on the

finite branch of the SIM between R1 and R2.
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Figure 4.4. Spatially homogeneous rate of change, equilibria, and SIM
branches for B +B ⇌ A + A.
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We now examine the performance of the spatially inhomogeneous diffusion-

modified one-dimensional SIM. In order to evaluate the dynamics of the entire

phase space, we use a Poincaré sphere mapping [51], which is given by

ηi =
ζi

√

1 +
∑M

m=0 ζ
2
m

, for m ∈ [0,M ]. (4.17)

In this mapping the system’s finite dynamics are shown in addition to the influ-

ences that come from the equilibria at infinity. More detail on the Poincaré sphere

mapping is provided in Appendix E.

Figure 4.5 shows a projection of the Poincaré sphere mapping of the M = 1

truncation at three domain lengths. These results demonstrate the bifurcation of

the SIM-BIC and the resulting changes in dynamics; In Figure 4.5(a), where ℓ =

5 µm < ℓc, the diffusion time scale is much faster than the reaction time scale. At

this length scale the SIM-BIC still resides at the spatially homogeneous R1, whose

eigenvalues are λ = {2×106,−3.748×107} s−1. This causes the slow dynamics to

be driven by the reaction mechanism only; therefore, the spatially homogeneous

SIM remains the SIM for this reaction-diffusion system. Because the diffusion

time scale is faster than the reaction time scale at this length, the trajectories all

rapidly collapse onto the η0 axis, the spatially homogeneous subspace. This results

in the spatially homogeneous SIM accurately describing the long time dynamics

of the system.

When the length scale is increased to ℓ = 22.5 µm > ℓc, as seen in Figure

4.5(b), the diffusion time scale is marginally slower than the unstable reaction

time scale at R1. At this domain length, the first pitchfork bifurcation has three

real branches, R1 and both R̂1,1 roots. The slower diffusion means it does not

provide a sufficient stabilizing effect on λ1,1, soR1 has two positive eigenvalues, λ =
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Figure 4.5: Poincaré sphere projection showing the M = 1 Galerkin dynamics of B +B ⇌ A+ A.
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{2×106, 5.045×104} s−1, and is therefore not a candidate for SIM-BIC; however,

R̂1,1 each have only one positive eigenvalue, λ = {2.047× 106,−9.734× 104} s−1,

and they formally assume the role as SIM-BIC; however, when we consider the

eigenvalues of the physical equilibrium, R2, λ = {−2× 106,−3.950× 106} s−1, we

find that they have become much closer to the same order of magnitude. This

lack of spectral gap indicates that the trajectories in the ℓ = 22.5 µm case will not

collapse onto either one-dimensional SIM as quickly as they do for shorter lengths.

In fact, for lengths on the order of and longer than ℓc, trajectories define two- or

higher-dimensional manifolds that describe the long time dynamics. Therefore,

both the spatially homogeneous and diffusion-modified one-dimensional SIMs in

Figure 4.5(b) appear less attractive than the SIM in Figure 4.5(a), where the

trajectories in the latter figure approach the one-dimensional SIM with higher

curvature than the former.

We consider a still longer length scale, ℓ = 100 µm, as seen in Figure 4.5(c1).

At this length, the m = 1 diffusion time scale is too slow to provide an apprecia-

ble stabilizing effect on λ1,1, and R1 has two nearly identical positive eigenvalues,

λ = {2× 106, 1.9013× 106} s−1. R̂1,1 remains the formal SIM-BIC for this length

scale with eigenvalues λ = {2.048 × 106,−1.949 × 106} s−1. The ratio of the two

eigenvalues associated with the slowest modes in the neighborhood of the physical

equilibrium, R2, approaches unity at this length scale and, therefore, trajectories

in this region do not collapse onto the one-dimensional SIM; however, the trajec-

tories in the neighborhood of the SIM-BIC, R̂1, collapse onto the SIM with higher

curvature than they did for the ℓ = 22.5 µm case. This is because the magnitude of

the stable eigenvalue is on the same order of magnitude as the unstable eigenvalue,

making for a saddle whose trajectories collapse onto the unstable eigenvector. The
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SIM in Figure 4.5(c1) does not appear to approach R2 along the slowest (spatially

homogeneous) eigenvector, but upon a linear evaluation of the SIM in the neigh-

borhood of R2. A point on the SIM at ζ0 = 1/3− ǫ will have ζ1 ∼ O(ǫ1−π2/200) as

ǫ decays to zero, where the exponent, 1−π2/200, is just less than 1. Therefore, as

shown in Figure 4.5(c2), the SIM does osculate the ζ0 axis in its approach to R2,

confirming that this manifold meets all of our SIM criteria. The M = 1 truncation

at this length scale is under-resolved; however, the dynamics presented in Figure

4.5(c) are qualitatively the same as a well resolved truncation.

We quantify the attractiveness of the SIM branch for these three length scales

using a ratio of normal and tangent stretching rates along the manifold, r(ηM ),

adopted from Adrover et al. [10]. More details on this metric are provided in Ap-

pendix F. The stretching ratios along the SIM, which quantify the visual metric

used in the analysis of Figure 4.5, are shown in Figure 4.6 plotted against the

normalized manifold distance s(ηM ). We see that for ℓ = 5 µm, the stretching

ratio is O(−20), indicating the SIM is a highly attractive manifold for this domain

length. For ℓ = 22.5 µm, the stretching ratio is near zero in the neighborhood

of the SIM-BIC, R̂1,1, indicating the SIM is only barely attractive in this region;

however, near the physical equilibrium, R2, the stretching ratio is O(−2), indi-

cating that it is moderately attractive in the physical domain. For the longest

domain length, ℓ = 100 µm, the stretching ratio is O(−1) along the entire length

of the SIM. While the SIM is still attractive, because the normal stretching rate

is negative, a manifold such as this SIM, whose normal stretching rates are nearly

equal to the tangent stretching rates, is only marginally attractive.

This analysis shows that the use of the spatially homogeneous SIM is only valid

for ℓ < ℓc; when ℓ > ℓc, the bifurcation indicates that both reaction and diffusion
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Figure 4.6. Stretching ratios along the SIM in the M = 1 Galerkin
projection of B +B ⇌ A+ A.
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must be accounted for in order for a reduced manifold to potentially capture the

slow dynamics of the system. Furthermore, a spectral gap needs to be present for

a manifold to attract local trajectories and accurately capture the slow dynamics;

for ℓ > ℓc, a one-dimensional SIM proves to be inadequate.

4.1.2 Diatomic oxygen dissociation

We now examine a physical reaction mechanism under isothermal and iso-

choric constraints whose spatially homogeneous dynamics are R = 1-dimensional:

a diatomic-monatomic oxygen dissociation mechanism adapted from Miller et

al. [102], which is shown in Table 4.1.

TABLE 4.1

OXYGEN DISSOCIATION MECHANISM

aj βj Ēj

Reaction [cm3/(mol s
√

K)] [erg/mol]

O2 + M ⇋ O + O + M 1.85 × 1011 0.5 4.0009× 1012

There are N = 2 species, J = 1 reaction, and L = 1 element where we choose

i = {1, 2} to correspond to the species {O,O2}, respectively. This system has the

species-element matrix,

ϕln =

[

1 2

]

, (4.18)
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and the species-reaction matrix,

νnj =






2

−1




 . (4.19)

The reaction rate is given by

r1 = k1

(

ρY2

M̄O2

(
ρY1

M̄O

+
ρY2

M̄O2

)

− 1

Kc
1

(
ρY1

M̄O

)2(
ρY1

M̄O

+
ρY2

M̄O2

))

, (4.20)

where the terms with the summation of both species represent the third body

molecule, M . This system has L̂ = L = 1 algebraic constraint, representing the

elemental constraint on oxygen atoms,

CO =
Y1

M̄O

+ 2
Y2

M̄O2

, (4.21)

where CO is a constant which can be defined from the initial conditions

CO =
Y ∗

1

M̄O

+ 2
Y ∗

2

M̄O2

. (4.22)

In this case, the constant can be determined, independent of initial conditions,

because Y1 + Y2 = 1 and M̄O = 2M̄O2, yielding

CO =
1

M̄O

. (4.23)

Following the reduction technique described in Section 3.1.3, we now transform

the equations to describe the evolution in one reduced variable. We choose spe-

cific moles of O, which we represent as z without any subscript, for our reduced
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variable,

z =
Y1

MO

. (4.24)

The modified coefficient matrix, ν̂, used in our reduction is

ν̂ =






1

−1
2




 . (4.25)

The specific moles of O2 are algebraically coupled to z by the relation

ẑ2 =
1

2M̄O

− z

2
, (4.26)

which can then be substituted into Eq. (4.20) to yield the evolution in terms of

the reduced variables,

∂z

∂t
=

k1ρ

2M̄2
O

−
(
k1ρ

2
+

k1ρ
2

Kc
1M̄O

)

z2 − k1ρ
2

Kc
1

z3 + D ∂2z

∂x2
. (4.27)

We evaluate this system at constant temperature, T = 5000 K, and density,

ρ = 1.6 × 10−4 g/cm3. These parameters yield pressures between P = 2.05 atm

and P = 4.10 atm when both species have physical concentrations. We use a

diffusion coefficient, D = 8.09 cm2/s, which is approximated from a weighted

average of the ordinary multi-component coefficients in the CHEMKIN TRANSPORT

database [103]. These parameters yield the evolution equation,

∂z

∂t
=

(

270.32
mol

g s

)

−
(

80861
g

mol s

)

z2 −
(

1.8654 × 106 g2

mol2 s

)

z3 +

(

8.09
cm2

s

)
∂2z

∂x2
. (4.28)
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Expanding Eq. (4.28) through a Galerkin projection yields a system of ODEs.

In the limit of an infinitesimal domain length, lim ℓ → 0, the diffusion terms

in the projection become infinitely fast, any spatial inhomogeneities equilibrate

immediately, and the system can be modeled as spatially homogeneous,

dz

dt
=

(

270.32
mol

g s

)

−
(

80861
g

mol s

)

z2 −
(

1.8654 × 106 g2

mol2 s

)

z3. (4.29)

Figure 4.7 shows the spatially homogeneous reaction source term, which has the

following three finite equilibria,

ze:SH = {−0.4255,−0.0625, 0.05449} mol/g, (4.30)

that are labeled R1, R2, and R3, respectively; the eigenvalues of the linearized
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Figure 4.7. Spatially homogeneous oxygen dissociation SIM branches.
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system about these equilibria are

λ0 =
{
−3.250 × 104, 7.922 × 103,−1.047 × 104

}
s−1, (4.31)

respectively. Therefore, the first and third equilibria are stable, while the second

is unstable. This system also has two infinite equilibria (identified by using a

Poincaré sphere mapping [51]) at ze =→ ±∞, each of which are unstable. Note

that only the equilibrium at ze = 0.05449 mol/g is physical, as the other equilibria

have negative species concentrations. The physical domain is shown in Figure 4.7

as a gray shaded region. For this R = 1-dimensional spatially homogeneous

system, a one-dimensional SIM is degenerate; however, we still construct it to

assist in the following spatially inhomogeneous analysis. Again, the SIM-BIC

will be a source, since it only has one eigenvalue, which must be positive. To

construct a branch of the SIM, we integrate a system trajectory from the SIM-

BIC to the physical equilibrium sink. The two SIM-BICs for this system are at

R2, z
e = −0.0625 mol/g and ze =→ +∞; the SIM branches are shown as a bold

line in Figure 4.7 and constitute the entire phase space between these SIM-BIC

equilibria and the physical sink. We will focus our analysis of the reaction-diffusion

system on the finite branch of the SIM between R2 and R3.

For slightly longer lengths, we retain one additional term in the Galerkin pro-

jection by truncating the series at M = 1. This yields a two-dimensional system of

ODEs in ζ0 and ζ1. Here ζ0 represents the spatially homogeneous specific moles of

O, and ζ1 represents the amplitude of the spatial variations in the specific moles

of O corresponding to the first Fourier mode. In this projection, the spatially

homogeneous subspace remains, including all five spatially homogeneous equilib-

ria. The additional Fourier mode introduces one of the diffusion time scales; this
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time scale depends on domain length ℓ and combines with the reaction time scale

to make a modified time scale. This additional time scale is shown in Figure

4.8, where the bold solid lines are the spatially homogeneous, reaction-only time
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10
-6

10
-5

10

2

-4

10
-3

1

ℓ (cm)

τ
(s

)

ℓc

τ0 R2
τ0 R3
τ1 R2
τ1 R3
τD

Figure 4.8. Local time scales of R2 and R3.

scales, the bold dashed lines are the diffusion-modified time scales, and the thin

dashed line is the diffusion time scale of the first Fourier mode for length ℓ. The

reaction-only time scales are independent of ℓ, while the diffusion-modified time

scales are dominated by diffusion for small ℓ and dominated by reaction for large

ℓ. In the neighborhood of the SIM-BIC, R2, we see a singularity in the diffusion

modified time scale, indicating a zero eigenvalue where the stable diffusion equals

the unstable reaction; this occurs at the critical length scale,

ℓc = π

√

D
λe:R2

0,1

= 1.004 mm. (4.32)
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At this critical length scale, there is a supercritical pitchfork bifurcation at R2,

which can be seen in Figure 4.9. The two additional equilibria, R̂+
2,1 and R̂−

2,1,
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Figure 4.9. Locus of real equilibria in the neighborhood of R2.

are spatially symmetric, so we again analyze R̂+
2,1 (root with ζ1 > 0), and drop

the plus sign superscript; their locations vary with the domain length. If the

diffusion time scale is slower than the unstable reaction time scale, ℓ > ℓc, then

R̂2,1 is complex; however, if the reaction is as slow as or slower than diffusion,

ℓ ≤ ℓc, then it is real. At the critical domain length, ℓc, R̂2,1 forms a spatially

homogeneous triple-root at R2 with a diffusion-modified eigenvalue of zero.

In order to evaluate this bifurcation in the entire phase space, we use a modified

Poincaré sphere mapping, which scales the finite region in ζ-space to provide a

more clear illustration of the dynamics in the physical domain. This mapping is
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given by

ηi =
ζi

√

α2 +
∑M

m=0 ζ
2
m

, for m ∈ [0,M ], (4.33)

where α is a scaling parameter, which we choose as α = 1/MO = 0.0625 mol/g.

The results, shown in Figure 4.10, are qualitatively the same as those described in

Section 4.1.1. In Figure 4.10(a), diffusion across the domain length, ℓ = 321 µm,

occurs at a faster time scale than the reaction time scale. The SIM-BIC is the

spatially homogeneous R2, whose eigenvalues are λ = {7922,−6.957 × 104} s−1.

Reaction (the spatially homogeneous SIM) governs the slow dynamics, and all

trajectories rapidly collapse onto the η0 axis.

Figure 4.10(b) depicts the dynamics of a slightly longer domain length, ℓ =

1.01 mm. The SIM-BIC is now the R̂2,1 equilibrium, whose eigenvalues are λ =

{7918,−188.0} s−1, since R2 has two positive eigenvalues, λ = {7922, 94.46} s−1.

The lack of spectral gap between the two eigenvalues indicates that neighboring

trajectories do not rapidly collapse onto the SIM.

The longest domain length we examine, ℓ = 3.21 mm, is shown in Figure

4.10(c). The SIM-BIC remains R2, whose eigenvalues are λ = {7776,−9932} s−1,

while R̂2,1 remains a source in this projection with eigenvalues λ = {7922, 7147} s−1.

We again predict a low stiffness ratio in the neighborhood of the physical equilib-

rium, indicating trajectories in this region do not collapse onto the SIM; however,

near R̂2,1, the ratio of eigenvalues provides for a SIM that is more attractive than

for ℓ = 1.01 mm. The M = 1 truncation of ℓ = 3.21 mm is under-resolved, but

qualitatively depicts the same dynamics as a well resolved simulation.

We again find that the spatially homogeneous SIM is only the canonical slow

manifold for ℓ < ℓc. When we evaluate domains longer than the critical length

scale, ℓ > ℓc, we predict spatial inhomogeneities to persist until the approach to
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Figure 4.10: M = 1 Galerkin projection dynamics in Poincaré sphere.
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the physical equilibrium. The diffusion-modified one-dimensional SIM that we

identify does not accurately capture the slow dynamics of the system. The parity

in the eigenvalues of these longer length scales identifies that a higher dimensional

SIM is necessary to accurately describe the long time dynamics of the system.

To examine the accuracy of truncations at small M , we retain additional terms

in the Galerkin projection and evaluate the convergence of R̂2,1. The approxima-

tions of R̂2,1 in each subsequent truncation are fixed points on higher, yet still

finite, dimensional AIMs that converge to an equilibrium manifold of the PDE in

the limit of M → ∞. We demonstrate this convergence by finding the amplitudes

of R̂2 in the first six truncations for ℓ = 1.01 mm and ℓ = 3.21 mm, shown in

Table 4.2. The spatial reconstruction of these approximate equilibria manifolds is

shown in Figure 4.11. To quantify the error, we compared the solutions at each
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Figure 4.11. Convergence to an equilibrium manifold.

length scale to a Galerkin projection truncated at M = 25. Figure 4.12 shows
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TABLE 4.2:

CONVERGENCE OF THE AMPLITUDES OF R̂2,1 IN THE O2 DISSOCIATION MECHANISM

ζ0 ζ1 ζ2 ζ3 ζ4 ζ5 ζ6

M [mol/g] [mol/g] [mol/g] [mol/g] [mol/g] [mol/g] [mol/g]

for ℓ = 1.01 mm
1 −0.06182 0.01518
2 −0.06174 0.01609 −2.549 × 10−4

3 −0.06174 0.01609 −2.549 × 10−4 −7.300× 10−8

4 −0.06174 0.01609 −2.549 × 10−4 −7.379× 10−8 6.628 × 10−8

5 −0.06174 0.01609 −2.549 × 10−4 −7.379× 10−8 6.628 × 10−8 −1.031× 10−9

6 −0.06174 0.01609 −2.549 × 10−4 −7.379× 10−8 6.628 × 10−8 −1.031× 10−9 −6.019× 10−13

for ℓ = 3.21 mm
1 −0.01127 0.08357
2 0.007801 0.07391 −0.03801
3 0.01487 0.06689 −0.04147 0.01926
4 0.01761 0.06367 −0.04210 0.02230 −0.00963
5 0.01856 0.06249 −0.04223 0.02341 −0.01105 0.00446
6 0.01882 0.06217 −0.04227 0.02374 −0.01152 0.00493 −0.00183
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the convergence of the relative error, Ei, defined in Eq. (4.15). We see that
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Figure 4.12. Relative error of R̂2 approximations.

the ℓ = 3.21 mm equilibrium has large errors for the truncations with small M ,

where the ℓ = 1.01 mm equilibrium’s errors are much smaller and converge to the

resolution of Figure 4.11 by M = 2.

Another manifestation of the truncation error is apparent in the evolution

of Galerkin amplitudes for the M = 6 truncation. The absolute value of the

amplitudes are shown in Figure 4.13 evolving in time for the three length scales.

This demonstrates why there is large error for the longer length scales in the

truncations at smaller M values. Each of these evolutions has identical initial

conditions in their respective Galerkin projections, ζ0 = 0.02083 mol/g, ζ1 =

0.02083 mol/g, and ζm = 0 mol/g for m > 1; these initial conditions correspond

to similar functions with varying wavelengths, which are all physically realizable
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Figure 4.13. Evolution of M = 6 Galerkin projection amplitudes.
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(spatial functions all have positive species concentrations). Despite initially having

zero amplitudes for m > 1, the nonlinear reaction term induces a coupling of

modes that causes growth in these higher amplitudes. For short domain lengths,

where diffusion is faster than reaction, the stabilizing effects of diffusion cause the

decay of these amplitudes both before they grow too large and before the reaction

occurs; however, for domain lengths longer than ℓc, diffusion does not induce a

decay in the larger m amplitudes before reaction, which allows the higher modes

to grow and affect the dynamics of reaction. The larger the wavelength in the

initial conditions, the slower the decay, including the shorter wavelength-induced

amplitudes; therefore, including more modes in the simulation is necessary in

order to resolve the system’s dynamics. The cusps in Figure 4.13 (b) and (c) are

a result of sign changes in the amplitude of the spatially inhomogeneous modes

whose absolute values are plotted on a logarithmic scale.

We now examine another pertinent aspect of this Galerkin representation of

our system; in the higher order Galerkin projections, we find additional equilibria

pairs that each correspond to a bifurcation at the length scale where the diffusion

time scale in the higher modes, m = 2 through m = M , is equal to the unstable

reaction time scale at R2,

ℓc,m = mπ

√

D
λe:R2

0,1

= mℓc; (4.34)

we label these equilibria R̂2,m. Furthermore, we find that the R̂2,m equilibria on

domain length ℓ converge to identical spatial functions as R̂2 on domain length

ℓ/m. This phenomena indicates that the bifurcation and subsequent R̂2,m equi-

libria are correlated to a physical wavelength; the bifurcation will always occur

where the physical wavelength’s diffusion time scale is equal to the unstable reac-
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tion time scale, and for a given physical wavelength, the R̂2,m equilibrium manifold

will have a specific shape in function space. This phenomena is examined in more

detail in Appendix D. Using the unstable reaction time scale at R2, we find the

critical length scale is ℓc = 1.004 mm; therefore, the R̂2,2 bifurcation occurs at

ℓ = ℓc,2 = 2ℓc = 2.008 mm, R̂2,3 at ℓ = ℓc,3 = 3ℓc = 3.012 mm, and so on. This

means that when we consider ℓ = 1.01 mm, only the first pair of equilibria will

have undergone the bifurcation, while for ℓ = 3.21 mm, the first three pairs of

equilibria will have bifurcated.

Examining these equilibria at ℓ = 3.21 mm, which are shown in Figure 4.14,

we find the amplitudes of R̂2,2 to be
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Figure 4.14. Higher truncation R̂2,m approximations and corresponding
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75



R̂2,2(ℓ = 3.21 mm) =






















−0.01689

0

0.08428

0

−0.02308

0

0.003813
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
















, (4.35)

which correspond to

R̂2(ℓ = 1.605 mm) =












−0.01689

0.08428

−0.02308

0.003813












. (4.36)

We find that R̂2,2 has two positive eigenvalues and the rest negative, and find

that it is simply a composite function of the two spatially symmetric functions:

R̂+
2 (ℓ = 1.605 mm) from x ∈ [0 mm, 1.605 mm] and R̂−

2 (ℓ = 1.605 mm) from

x ∈ [1.605 mm, 3.21 mm]. The third bifurcation, R̂2,3, predicted at ℓ = 3.21 mm,
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has three positive eigenvalues and the rest negative, and amplitudes

R̂2,3(ℓ = 3.21 mm) =














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

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0

−0.002798
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


, (4.37)

which correspond to

R̂2(ℓ = 1.07 mm) =









−0.05467

0.04880

−0.002798









. (4.38)

Again, we find that R̂2,3 is simply a composite function of spatially symmetric

functions, R̂+
2 (ℓ = 1.07 mm) and R̂−

2 (ℓ = 1.07 mm). This consistency in equilibria

solutions for physical wavelengths indicates that only the R̂2 equilibrium need be

solved for since it can be used subsequently to identify all R̂2,m equilibria for longer

length scales, which could prove useful in building higher-dimensional SIMs.

We see for this simple one-dimensional realistic chemical system, when the

spatial resolution is not fine enough to have the fundamental diffusion time scale

faster than the pertinent reaction time scale, the assumption of spatially homoge-

neous dynamics breaks down.
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4.1.3 Zel’dovich mechanism

We now examine the Zel’dovich mechanism of NO production, which is shown

in Table 4.3. Al-Khateeb et al. [49] studied the spatially homogeneous Zel’dovich

mechanism under isothermal and isochoric constraints; we extend their analysis to

reaction-diffusion and adiabatic systems. This system displays realistic chemical

dynamics and has a slightly higher dimension (R = 2) than the previous example.

TABLE 4.3

THE ZEL’DOVICH MECHANISM FOR NO PRODUCTION

aj βj Ēj

Reaction [cm3/(mol s) K−βj ] [erg/mol]

N + O2 ⇌ NO + O 5.841 × 109 1.01 6195.6

N + NO ⇌ N2 + O 21.077 × 1012 0.00 0.0

There are N = 5 species, J = 2 reactions, and L = 2 elements, where the

species {NO,N,O,O2, N2} correspond to i = 1, . . . , 5. The species-reaction ma-
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trix for this mechanism is

νij =















1 −1

−1 −1

1 1

−1 0

0 1















, (4.39)

and the species-element matrix is

ϕli =






1 1 0 0 2

1 0 1 2 0




 . (4.40)

The reaction rates are given by

r2 = k2

(
ρY2

M̄N

ρY4

M̄O2

− 1

Kc
2

ρY1

M̄NO

ρY3

M̄O

)

, (4.41a)

r1 = k1

(
ρY2

M̄N

ρY1

M̄NO

− 1

Kc
1

ρY5

M̄N2

ρY3

M̄O

)

. (4.41b)

This mechanism has one additional constraint; since both reactions are bimolec-

ular, the total number of molecules remains constant; therefore, the system has

L̂ = 3 algebraic constraints,

CM =
Y1

M̄NO

+
Y2

M̄N

+
Y3

M̄O

+
Y4

M̄O2

+
Y5

M̄N2

, (4.42a)

CN =
Y1

M̄NO

+
Y2

M̄N

+ 2
Y5

M̄N2

, (4.42b)

CO =
Y1

M̄NO

+
Y3

M̄O

+ 2
Y4

M̄O2

. (4.42c)

The variables CM , CN , and CO are constants that are defined by the initial condi-
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tions and correspond to the conservation of total molecules, nitrogen atoms, and

oxygen atoms, respectively. We use these algebraic constraints to transform our

system into two reduced variables, choosing specific moles of NO and N , which

we represent as z1 and z2, respectively,

z1 =
Y1

MNO
, (4.43a)

z2 =
Y2

MN
. (4.43b)

Using the reduction technique from Section 3.1.3, we find the modified coefficient

matrix to be

Din =















1 0

0 1

0 −1

−1
2

1
2

−1
2

−1
2















. (4.44)

The remaining L̂ = 3 species’ specific mole values are coupled to z1 and z2 by the

algebraic relations

ẑ3 = ẑ∗3 + z∗2 − z2, (4.45a)

ẑ4 = ẑ∗4 +
1

2
z∗1 −

1

2
z∗2 −

1

2
z1 +

1

2
z2, (4.45b)

ẑ5 = ẑ∗5 +
1

2
z∗1 +

1

2
z∗2 −

1

2
z1 −

1

2
z2. (4.45c)

4.1.3.1 Isothermal

This system is evaluated at the constant temperature, T = 4000 K, and

density, ρ = 1.20024 × 10−4 g/cm3, which yields a constant pressure, P =
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1.64 atm. The species’ thermodynamic data comes from the CHEMKIN thermo-

dynamic database [104]. The diffusion coefficient, D = 14.0 cm2/s, is approx-

imated from a weighted average of the ordinary multi-component coefficients

in the CHEMKIN TRANSPORT database [103]. We choose initial conditions such

that the values of the constants are CO = CN = 3.3327 × 10−2 mol/g and

CM = 4.1658 × 10−2 mol/g. The governing equations, when transformed into

specific moles, are

∂z1
∂t

=

(

250.46
mol

g s

)

−
(

99728
1

s

)

z1 +

(

1.1611 × 107 1

s

)

z2 −
(

3.2210 × 109 g

mol s

)

z1z2 +
(

6.9858 × 108 g

mol s

)

z2
2 +

(14.0 cm2/s)
∂2z1
∂x2

, (4.46a)

∂z2
∂t

=

(

250.46
mol

g s

)

+

(

84697
1

s

)

z1 −
(

1.1656 × 107 1

s

)

z2 −
(

1.8359 × 109 g

mol s

)

z1z2 −
(

6.9768 × 108 g

mol s

)

z2
2 +

(14.0 cm2/s)
∂2z1
∂x2

. (4.46b)

When we evaluate the system in the limit of an infinitesimal domain length, a

truncation atM = 0 is appropriate, and we are left with the spatially homogeneous

system,

dz1
dt

=

(

250.46
mol

g s

)

−
(

99728
1

s

)

z1 +

(

1.1611 × 107 1

s

)

z2 −
(

3.2210 × 109 g

mol s

)

z1z2 +
(

6.9858 × 108 g

mol s

)

z2
2 , (4.47a)

dz2
dt

=

(

250.46
mol

g s

)

+

(

84697
1

s

)

z1 −
(

1.1656 × 107 1

s

)

z2 −
(

1.8359 × 109 g

mol s

)

z1z2 −
(

6.9768 × 108 g

mol s

)

z2
2 , (4.47b)
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which is the same system described by Al-Khateeb et al. [49]. The phase space

for this system is shown in Figure 4.15. This system has three finite spatially-

homogeneous equilibria,

ze =












−1.7833 × 10−5

−1.6681 × 10−2




 ,






−4.1950 × 10−3

−2.6642 × 10−5




 ,






3.0474 × 10−3

2.9446 × 10−5












mol/g,

(4.48)

labeled R1, R2, and R3, respectively. The eigenvalues of the linearized system in

the neighborhood of each equilibrium are: near R1, λ = {4.1760 × 107, 2.3523 ×

107} s−1; near R2, λ = {7.1039 × 105,−4.6413 × 106} s−1; and near R3, λ =

{−1.9129 × 105,−1.7295 × 107} s−1. R3 is the physical equilibrium sink, while

the non-physical R1 and R2 are of source and saddle type, respectively; we find

that R2 is a SIM-BIC. The second branch of the SIM originates at a SIM-BIC

at z → +∞, I1. We focus our analysis on the SIM that connects R2 to R3.

Figure 4.15(a) shows the physically realizable region shaded grey, individual rate

of change vectors as arrows, system trajectories as thin green lines, and the SIM’s

two branches as bold red lines. In this system we see a disparity in the two reaction

time scales, resulting in high curvature of trajectories as they approach the SIM,

which is shown in the close-up plot of the SIM in Figure 4.15(b).

We now evaluate the Galerkin projection to predict the effects of diffusion

across finite length scales. Similar to the results from the example in Section

4.1.1, this system retains the spatially homogeneous equilibria and gains (among

others) pairs of equilibria, R̂2,m, which bifurcate from the R2 equilibria at integer

multiples of a critical length scale,

ℓc = π

√

D
λe:R2

0,1

= 139.5 µm. (4.49)
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Figure 4.15. The spatially homogeneous SIM for the Zel’dovich
mechanism.
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This critical length scale is the domain length at which the m = 1 diffusion time

scale equals the unstable reaction time scales at R2; this once again demonstrates

that diffusion processes can couple chemical time scales to length scales: ℓc =

π
√
Dτ0. The bifurcations at ℓc are of supercritical pitchfork type, where R̂2,m are

only real for domain lengths longer than mℓc. Linear analysis in the neighborhood

of R̂2,m reveals each equilibrium hasm positive eigenvalues; in the neighborhood of

R2 there arem positive eigenvalues when the domain length is between (m−1)ℓc <

ℓ < mℓc. We note that R2 will have a zero eigenvalue for domains that are an

integer multiple of ℓc as an eigenvalue changes from negative to positive; these zero

eigenvalues correspond to the bifurcations. This can be seen for m = 1 in Figure

4.16, which shows the time scales in the neighborhoods of R2 and R3 as a function

of domain length, for the m = 0 and m = 1 modes. For the m = 1 time scales,

10
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-6

10
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10
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10
-3

10
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10
-2

10
-1

2
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τ0 R3
τ1 R2
τ1 R3
τD

Figure 4.16. Local time scales of R2 and R3 for the Zel’dovich
mechanism.

84



we see that short domain lengths are dominated by the diffusion contribution,

while long domain lengths are dominated by the reaction contribution. Where

the transition occurs, there is a singularity associated with the zero eigenvalue

and the bifurcation at R2; this occurs at ℓ = ℓc. Similar results for larger values

of m occur at subsequent bifurcations. To evaluate the quality of the Galerkin

projection, a convergence study was performed. The convergence rates for the

R̂2,1 equilibria are similar to those shown in Figure 4.3: for short domain lengths,

ℓ ∼ O(ℓc), the approximation converges rapidly, while for longer domain lengths,

ℓ > ℓc, it converges more slowly.

We now examine the dynamics of the reaction-diffusion system at five length

scales, ℓ = 8.96 µm, 22.4 µm, 56 µm, 140 µm, and 350 µm, in the M = 1

truncation of the Galerkin projection. For ℓ = 8.96 µm, which is significantly less

than ℓc, the diffusion time scales are much faster than all of the reaction time

scales. This is seen when we examine the eigenvalues in the neighborhood of R2,

λ = {7.1039× 105, −4.6413× 106, −1.7140× 108, −1.7675× 108} s−1. This leads

to a system that essentially behaves like a spatially homogeneous system, which

is demonstrated in Figure 4.17(a), where the initial spatial inhomogeneities decay

rapidly, resulting in the spatially homogeneous reaction which dictates the long

time dynamics.

For ℓ = 22.4 µm, which is still much less than ℓc, the diffusion time scales are

still faster than all of the reaction time scales, which is evident when examining

the eigenvalues in the neighborhood of R2, λ = {7.1039 × 105, −4.6413 × 106,

−2.6828×107, −3.2179×107} s−1. Diffusion causes the spatial inhomogeneities to

decay before substantial reaction occurs; however, as seen in Figure 4.17(b), some

reaction processes occur before diffusion has removed the majority of the spatial
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Figure 4.17. M = 1 Galerkin projection phase space for the Zel’dovich
mechanism at various ℓ.
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inhomogeneities. While the reaction mechanism and spatially homogeneous SIM

dictate the long time dynamics, diffusion plays a bigger role in the approach to

the SIM.

The next length scale, ℓ = 56 µm, is still less than ℓc; however, the fundamental

diffusion time scale is now marginally slower than the fast reaction time scales in

the neighborhoods of the R2 and R3 equilibria; the eigenvalues at R2 are λ =

{7.1039 × 105, −4.6413 × 106, −3.6957 × 106, −9.0474 × 106} s−1. This system

no longer behaves like a spatially homogeneous system since both reaction and

diffusion are acting on the same time scales; however, the slowest dynamics are

still captured by the spatially homogeneous SIM since reaction remains the slowest

time scale. This is seen in Figure 4.17(c), where the initial spatial inhomogeneities

do not decay onto the spatially homogeneous subspace, yet the long time dynamics

do collapse onto the spatially homogeneous SIM.

Consider ℓ = 140 µm, which is just slightly longer than ℓc; therefore, at R2

there are now two positive eigenvalues, λ = {7.1039× 105, −4.6413× 106, 5418.9,

−5.3463×106} s−1. The bifurcated equilibrium, R̂2,1, is now real and has only one

positive eigenvalue, λ = {7.2371×105, −4.6078×106, −10540, −5.4259×106} s−1.

We predict changes in the slow dynamics of the system, as is evident in Figure

4.17(d). For each of the shorter domain lengths, the fast diffusion causes the

spatial inhomogeneities to decay rapidly enough that the spatially homogeneous

SIM dictates the long time dynamics of the system; however, at ℓ = ℓ3, the spatial

inhomogeneities persist through the duration of both reaction time scales. The

diffusion-modified one-dimensional SIM for this length scale is shown in Figure

4.17(c); however, due to the similarities of the slow reaction and slow diffusion

time scales, the long time dynamics of the system are likely better captured by
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a two-dimensional manifold. As the amplitudes of modes with fast time scales

decay, the trajectories relax onto a vertical sheet, where slow reaction and slow

diffusion both dictate the dynamics as the trajectory proceeds toward equilibrium.

For the longest length scale considered, ℓ = 350 µm, the diffusion time scale

of the fundamental Fourier mode is significantly slower than both reaction time

scales. We see in Figure 4.17(e) that the bifurcated equilibrium, R̂2,1, has become

more spatially inhomogeneous, and the system’s dynamics reflect this change in

trajectories with spatial variations that persist longer in the approach to equi-

librium. There are still two unstable eigenvalues at R2, λ = {7.1039 × 105,

−4.6413 × 106, 5.9760 × 105, −4.7541 × 106} s−1, and one unstable eigenvalue

at R̂2,1, λ = {9.3244 × 105, −4.2979 × 106, −2.1765 × 105, −1.3993 × 107} s−1.

Similar to the simple reaction mechanism, the diffusion-modified SIM appears to

have the trajectories collapse onto it more than in the ℓ = 140 µm case, but again

requires more Galerkin modes to provide enough spatial resolution.

In Figure 4.18 we see the evolution of the amplitudes at two extreme domain

lengths, ℓ = 8.96 µm (a,b) and ℓ = 350 µm (c,d), calculated in the M = 25

Galerkin projection.

The initial conditions for each are polynomials scaled to each domain length:

z∗1(x) = (1.6×10−2mol/g)(2(x/ℓ)3− (x/ℓ)6) and z∗2(x) = (1.6×10−2mol/g)(2(1−

x/ℓ)3 − (1 − x/ℓ)6). On the left, Figure 4.18(a,c) shows the evolution of the

amplitudes of NO (red lines) and N (blue lines), both spatially homogeneous

(bold lines) and inhomogeneous (dashed lines). The spatial approximations of NO

evolution, reconstructed from Eq. (3.4), are shown on the right, Figure 4.18(b,d).

Changes in the spatially homogeneous amplitudes in Figure 4.18(a,c) show the fast

and slow reaction time scales, which occur at approximately τ1,0 = 5.8 × 10−8 s
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Figure 4.18: Amplitudes and spatial reconstruction of Zel’dovich mechanism species evolution
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and τ2,0 = 5.2×10−6 s. The diffusion time scales have drastic changes on the decay

rate of the spatial inhomogeneity that is dependent on length: in the ℓ = 8.96 µm

case, the diffusion time scale of the m = 1 mode, τD,1 = 5.8 × 10−9 s, is the

fastest, which causes all spatial inhomogeneities to decay before either reaction

time scale; in the ℓ = 350 µm case, the m = 1 diffusion time scale, τD,1 =

8.9 × 10−6 s, is the slowest, and large spatial inhomogeneities persist until the

slow reaction commences. The effects of the various diffusion time scales are

also apparent in the spatial reconstruction: for ℓ = 8.96 µm, diffusion causes the

spatial inhomogeneities to decay rapidly, and the long time dynamics are governed

by reaction only; for ℓ = 350 µm, the long time dynamics display both reaction

and diffusion processes.

We see that for domains that are shorter than the critical length scale, spatial

inhomogeneities decay more rapidly than the amplitude of the spatially homoge-

neous mode with slow reaction time scale, and the spatially homogeneous SIM

describes the long time dynamics. For domains that are longer than the critical

length scale, diffusion time scales are slower than the slow reaction time scale;

therefore, in these longer domains, the long time dynamics display spatial inho-

mogeneities, and the spatially homogeneous SIM is no longer appropriate to use

as a reduction method.

4.1.3.2 Adiabatic

In this section we examine the closed Zel’dovich reaction mechanism of Section

4.1.3 in the adiabatic isobaric limit. The species evolution equation for this system

is

ρ
∂Yi

∂t
= M̄iω̇i(Yn, T ) − ∂ji

∂x
, for i, n ∈ [1, N ], (4.50)
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where we allow temperature, T , to vary such that there is no heat flux into or out

of the system (the enthalpy of the system remains constant). The energy equation

is

ρ
∂h

∂t
+
∂jq

∂x
= 0, (4.51)

where h is the enthalpy and jq is the diffusive energy flux. We model homogeneous

Neumann boundary conditions for the species,

∂Yi

∂x

∣
∣
∣
∣
x=0

=
∂Yi

∂x

∣
∣
∣
∣
x=ℓ

= 0, for i = 1, . . . , N, (4.52)

and the temperature,

∂T

∂x

∣
∣
∣
∣
x=0

=
∂T

∂x

∣
∣
∣
∣
x=ℓ

= 0. (4.53)

The constitutive equation for the heat flux is

jq = −k∂T
∂x

+
N∑

i=1

hf
i j

m
i , (4.54)

where k is the constant thermal conductivity and hf
i is the enthalpy of formation

of species i. Thus, our homogeneous boundary conditions result in no energy flux

at either boundary. The enthalpy is given by the caloric equation of state,

h =

N∑

i=1

Yi

(

cPi(T − T o) + hf
i

)

, (4.55)

where cPi is the constant specific heat at constant pressure of species i, and T o =

300 K is the reference temperature.

Following Lam and Bellan [101], we extend the Shvab-Zel’dovich reduction

from Section 3.1.3.1 for adiabatic systems. For this reduction, we assume our
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system has a constant mixture specific heat,

cP =

N∑

i=1

YicPi. (4.56)

A constant mixture specific heat is typically the result of the assumption of a

single temperature-independent constant specific heat for all species; however, in

systems with only bimolecular reactions, a constant mixture specific heat can also

be realized. We evaluate the limit where the Lewis number is unity,

Le ≡ k

ρcPD
= 1. (4.57)

This demands that mass and energy diffuse at the same rate, which is a reasonable

assumption since both are driven by molecular collisions in gas flames.

Evaluating the time derivative of enthalpy from Eq. (4.55) yields

ρ
∂h

∂t
= ρcP

∂T

∂t
+ ρ

N∑

i=1

hf
i

∂Yi

∂t
, (4.58)

and taking the spatial derivative of the diffusive energy flux term from Eq. (4.54)

gives

∂jq

∂x
= −k∂

2T

∂x2
− ρD

N∑

i=1

hf
i

∂2Yi

∂x2
. (4.59)

We can insert Eqs. (4.58) and (4.59) into Eq. (4.51), cancel like terms, substitute

D = k/(ρcP ), and collect the spatial and temporal derivatives to reduce the energy

equation to a heat equation in enthalpy:

∂

∂t

(

cP (T − T o) +

N∑

i=1

hf
i Yi

)

︸ ︷︷ ︸

h

= D ∂2

∂x2

(

cP (T − T o) +

N∑

i=1

hf
i Ti

)

︸ ︷︷ ︸

h

. (4.60)
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If the enthalpy is initially spatially homogeneous, and there are no perturbations

at the boundary, then Eq. (4.60) can be integrated to form an adiabatic algebraic

relation: enthalpy remains constant in both space and time. This constraint can

be simplified to yield temperature as a function of the mass fractions of the species,

T =
h−

∑N
i=1 Yih

f
i

cP
+ T o. (4.61)

For this adiabatic system, we shift to a model for Gibbs free energy with a

constant specific heat assumption,

µ̄o
i = h̄f

i + c̄Pi(T − T o)
︸ ︷︷ ︸

h̄i

−
(

s̄f
i + c̄Pi ln

(
T

T o

))

︸ ︷︷ ︸

s̄o
i

T, for i = 1, . . . , N, (4.62)

where h̄i, s̄
f
i , and s̄o

i are the enthalpy, entropy at reference temperature and pres-

sure, and the entropy at reference pressure for species i, respectively. This change

is made in order to maintain linear thermodynamic properties outside of the tem-

perature range of the CHEMKIN polynomial fit from the thermodynamic database

[104]. The values of c̄Pi, h̄
f
i and s̄f

i are calculated using a least squares fit of

the CHEMKIN polynomial fits and are listed in Table 4.4. Following Section 4.1.3,

i = 1, . . . , 5 correspond to the species {NO,N,O,O2, N2}.

The enthalpy is chosen to be h = 9.0376 × 1010 erg/g, such that the physical

equilibrium remains at T = 4000 K and ρ = 1.2024 × 10−4 g/cm3; however, this

system is not isochoric, and the density changes as the system evolves.

From the adiabatic constraint we find the temperature to be a rational function
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TABLE 4.4

THERMODYNAMIC DATA FOR THE ADIABATIC ZEL’DOVICH

MECHANISM

c̄Pi h̄f
i s̄f

i

i [erg/(mol K)] [erg/mol] [erg/(mol K)]

1 3.6774 × 108 8.6712 × 1011 2.0399 × 109

2 2.1120 × 108 4.7223 × 1012 1.5274 × 109

3 2.1002 × 108 2.4922 × 1012 1.6130 × 109

4 3.8825 × 108 −5.1316 × 1010 1.9599 × 109

5 3.6167 × 108 −4.0402 × 1010 1.8421 × 109

of the reduced specific moles,

T =
4214.26 + 71715.0 z1 + 173993 z2

1 − 0.565793 z1 + 1.13394 z2
. (4.63)

The numerator defines a line in phase space where the temperature is zero, while

the denominator defines a line where temperature is infinite. The temperature

profile is shown in Figure 4.19.

With this temperature variation, the exponential terms in ω̇i are no longer

constant. The reaction source term can be shown to be a polynomial of infinite

degree, which admits an infinite number of equilibria and renders simple alge-

braic techniques and homotopy continuation techniques of BERTINI [109] unable

to find all roots of the system. This presents a problem, since in order to con-

struct the SIM, we must find the saddle equilibria that connect by heteroclinic
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Figure 4.19. Constant enthalpy isotherms in phase space.
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orbit to the physical equilibrium sink. The physical equilibrium can be located by

a minimization of thermodynamic potentials, among other methods; the system’s

other equilibria are more difficult to find. The method we employ is to vary the

temperature incrementally and solve for the equilibrium of the isothermal system

at each temperature. We then check the enthalpy of the isothermal equilibria

at each temperature to see if it matches the adiabatic constraint. This is shown

graphically in Figure 4.20. Figure 4.20(a) shows the locus of the isothermal equi-

libria at various temperatures, while Figure 4.20(b) shows the enthalpy of each

isothermal equilibrium as a function of temperature. We see in Figure 4.20(a) the

equilibria R′
1 and R′

2 have shifted from their locations in the isothermal system

to new locations in the adiabatic system, where we distinguish between the equi-

libria of the two systems by labeling the adiabatic equilibria with an apostrophe.

Notice in Figure 4.20(b) that the enthalpy of the isothermal equilibria does not

monotonically increase with temperature. This highlights the fact that additional

equilibria are admitted, because the path of each isothermal equilibria could cross

the specified enthalpy many more times, yielding additional adiabatic equilibria.

Therefore, this technique fails to yield all equilibria of the system; however, for

the systems we have examined, the isothermal SIM-BIC at R′
2 migrates only a

small distance in phase space and remains a SIM-BIC.

For our system the physical equilibrium is located at

zi,R′

3
=
{
3.0054 × 10−3, 2.9862× 10−5

}
mol/g. (4.64)

There is a shift of approximately 1.4% in the location of the physical equilibrium

from the isothermal case. This is due to the change in the equilibrium constants

from a different modeling of the Gibbs free energy. The dynamics in the neigh-
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Figure 4.20. Isothermal equilibria for varying temperatures.
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borhood of the equilibrium also change slightly. This can be seen by evaluating

the eigenvalues of the Jacobian matrix, which are now

λi,R′

3
=
{
−1.7628 × 107,−2.2181 × 105

}
1/s. (4.65)

When we evaluate the eigenvalues of the Jacobian of the other adiabatic equilibria,

we find that R′
1 and R′

2 retain their characters as source and saddle, respectively.

Also, the heteroclinic orbit from R′
2 along the unstable eigenvector still connects

to R′
3 along its slow eigenvector, making it one branch of the SIM. The other

SIM-BIC is no longer infinite, but has shifted to the pole P ′
1, which is a first order

pole. This pole is located where the z2 = 0 axis crosses the line at T = 0. We also

identify a third SIM-BIC at another first order pole, P ′
2, which is located where

the z1 = 0 axis crosses the T = 0 line. A sketch of these poles is provided in

Figure 4.21.

z2 = 0
P ′

1

T
=

0

z1 = 0
P ′

2

T = 0

Figure 4.21. Sketches of the dynamics of the system in the positive T
neighborhood of poles P1 and P2.
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In Figure 4.22 we see the phase space that includes the entire physical domain.

Here we see the shifted equilibria and the SIM branches, which are the heteroclinic
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Figure 4.22. The spatially homogeneous SIM branches for the adiabatic
Zel’dovich mechanism.

orbits that connect R′
2, P

′
1, and P ′

2 to R′
3. The dash-dot line identified as T = 0

in the upper right corner of the phase space is the location where the enthalpy

constraint yields a zero temperature. To the upper right past this line, the tem-

peratures are negative, and the time rate of change of the species mole fraction

becomes imaginary; because of this we restrict our evaluation to regions of phase

space where T ≥ 0. In Figure 4.23 we see an expanded view of the branch of the

SIM that connects R′
2 to R3.

All three of these SIM branches have negative normal stretching rates and are
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therefore attractive. They are also all in the basin of attraction for the physical

equilibrium, R′
3. However, projection onto one of these branches may or may

not yield accurate prediction of the system’s dynamics, depending on the initial

condition and the method used to select which branch to project onto. This

example has not only shown the novelty of constructing the SIM for an adiabatic

system, but it has also highlighted some of the problems of that arise when systems

have multiple SIM branches.

4.2 Summary and conclusions

We have extended the robust method of SIM construction presented by Davis

and Skodje [5] to reaction-diffusion systems. Through the use of a Galerkin projec-

tion, we analytically isolated the reaction and diffusion contributions to a modified

time scale associated with each mode of a particular wavelength. We found a crit-

ical length scale at which the slowest diffusion time scale is equal to an unstable

reaction time scale of the spatially homogeneous problem. At this critical length

scale, a pitchfork bifurcation was predicted. When modeling any system with

length longer than the critical value, the canonical slow manifold is no longer

the spatially homogeneous SIM. While a one-dimensional diffusion-modified SIM

was constructed, it was not endowed with a wide spectral gap in its slowest time

scales, thus rendering its utility to be of limited value in a reduction strategy

for large scale realistic systems of engineering relevance. We have only examined

small reaction mechanisms with a limited number of spatial modes. However, we

believe our conclusions will extend to arbitrarily sized systems. When so done, be

it via addition of more detailed reactions or more spatial modes, the complexity

of the manifold topologies in high-dimensional phase space will rapidly overwhelm
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most present analysis strategies. This presents a daunting challenge for rational

reduction of realistic combustion systems.
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CHAPTER 5

OPEN REACTION-DIFFUSION SYSTEMS

We consider open chemical systems to evaluate the SIM for more diverse sys-

tems. Open chemical systems allow for interesting dynamics which most closed

systems do not; in open systems there is the possibility of multiple physical equi-

libria, limit cycles, or chaotic behavior [85], all of which are important for im-

plementing a reduction technique such as the SIM. To consider systems open, we

model them as continuously stirred tank reactors (CSTR), where, in addition to

reaction and diffusion, there is a feed flow which provides additional reactants and

removes products from the system. In this chapter we will evaluate two reaction

mechanisms in CSTRs: i) the Gray-Scott reaction mechanism and ii) a hydrogen-

air reaction mechanism. Both of these systems display limit cycle behavior when

modeled as spatially homogeneous. The Gray-Scott mechanism also displays inter-

esting pattern formation in one- and two-dimensional reaction-diffusion systems.

5.1 Gray-Scott reaction mechanism

We examine the limit cycle behavior of a Gray-Scott reaction-diffusion mech-

anism [90–92] in a CSTR that has been studied in the literature [12, 81, 93–95].
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The Gray-Scott reaction mechanism consists of J = 2 irreversible reactions,

U + 2V → 3V, (5.1a)

V → P, (5.1b)

where U , V , and P are the N = 3 species. The Arrhenius kinetic reaction rates

are:

r1 = k1

(
ρYU

M̄U

)(
ρYV

M̄V

)2

, (5.2a)

r2 = k2

(
ρYV

M̄V

)

. (5.2b)

We employ Fick’s law of diffusion in two spatial dimensions with non-equal dif-

fusion coefficients for each species. Since the system is modeled as a spatially

inhomogeneous CSTR, the evolution of species depends on reaction, feed flow,

and diffusion,

ρ
∂YU

∂t
= −M̄Ur1 +

ṁ

V

(

Y f
U − YU

)

−∇ · jU , (5.3a)

ρ
∂YV

∂t
= M̄V (r1 − r2) +

ṁ

V

(

Y f
V − YV

)

−∇ · jV , (5.3b)

ρ
∂YP

∂t
= M̄P r2 +

ṁ

V

(

Y f
P − YP

)

−∇ · jP , (5.3c)

where ṁ is the mass feed flow rate and V is the volume of the CSTR. The diffusive

flux for each species is given by

ji = −ρDi∇Yi, for i = U, V, (5.4a)

jP = −jU − jV (5.4b)
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where Di are the constant mass diffusivities of species i. We evaluate periodic

boundary conditions for each species on a domain length ℓ in both spatial dimen-

sions,

Yi(0, y) = Yi(ℓ, y), and Yi(x, 0) = Yi(x, ℓ), for i = U, V, P, (5.5a)

∂Yi

∂x

∣
∣
∣
∣
x=0

=
∂Yi

∂x

∣
∣
∣
∣
x=ℓ

and
∂Yi

∂y

∣
∣
∣
∣
y=0

=
∂Yi

∂y

∣
∣
∣
∣
y=ℓ

, for i = U, V, P. (5.5b)

The mass fractions must sum to unity, YU + YV + YP = 1, and each species’

molecular mass is identical, M̄ ≡ M̄U = M̄V = M̄P . With the assumption that

the diffusive flux of the three species sums to zero, jU + jV + jP = 0, this system

has L̂ = 1 algebraic constraint that can replace the evolution of YP , resulting in

R = N − L̂ = 2 reduced variables: YU and YV .

We now scale the evolution equations to be dimensionless. Three useful time

scales of this problem are the residence time, τR = V ρ/ṁ, the time scale of the

first reaction, τk1 = M̄2/k1ρ
2, and the time scale of the second reaction, τk2 =

1/k2. There is also a characteristic length which is yet to be determined; we

therefore use ℓ/L as a length scale to transform our equations to a domain with

dimensionless length L. The diffusion time scales across the domain length are

τDU = ℓ2/DUL2 and τDV = ℓ2/DV L2. Using these time scales, we can transform

Eqs. (5.3) into dimensionless equations in terms of the parameters: dimensionless

feed rate, F = τk1/τR; ratio of reaction time scales, k = τk1/τk2; and dimensionless

diffusion coefficients, DU = τk1/τDU and DV = τk1/τDV . We can also use the time

and length scales to transform the coordinates to be dimensionless: t = t/τk1,

x = Lx/ℓ, and y = Ly/ℓ. Assuming the inflow conditions of Y f
U = 1, Y f

V = 0, and
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Y f
P = 0, Eqs. (5.3) become

∂YU

∂t
= −YUY

2
V + F (1 − YU) + DU

(
∂2YU

∂x2
+
∂2YU

∂y2

)

, (5.6a)

∂YV

∂t
= YUY

2
V − (F + k)YV + DV

(
∂2YV

∂x2
+
∂2YV

∂y2

)

, (5.6b)

with boundary conditions

Yi(x, y) = Yi(x + L, y) and Yi(x, y) = Yi(x, y + L), for i = U, V, (5.7)

where x ∈ [0, L) and y ∈ [0, L), which is the same form that has been studied by

others [12, 81, 93, 95].

5.1.1 Spatially homogeneous

We first study the dimensionless Gray-Scott CSTR system from Eqs. (5.6) in

the spatially homogeneous limit,

dYU

dt
= −YUY

2
V + F (1 − YU) , (5.8a)

dYV

dt
= YUY

2
V − (F + k) YV . (5.8b)

Varying the dimensionless parameters F and k results in different dynamics in the

CSTR. We limit our study to F > 0 and k > 0 for positive feed flow and reaction

rates.

By inspection, we find an equilibrium to Eqs. (5.8) at YU = 1 and YV = 0,
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which we label R1. By evaluating the Jacobian of the system,

J =






−Y 2
V − F −2YUYV

Y 2
V 2YUYV − F − k




 , (5.9)

we find eigenvalues in the neighborhood of R1 to be λ = {−F,−F − k}, which

are negative since F > 0 and k > 0. Therefore, R1 is a real sink for the range of

parameters in which we are interested.

We find two additional finite equilibria for Eqs. (5.8): R2 at

YU =
F +

√

F(F − 4(F + k)2)

2F
, (5.10a)

YV =
F −

√

F(F − 4(F + k)2)

2(F + k)
, (5.10b)

and R3 at

YU =
F −

√

F(F − 4(F + k)2)

2F
, (5.11a)

YV =
F +

√

F(F − 4(F + k)2)

2(F + k)
. (5.11b)

If the value of the argument of the square root in Eqs. (5.10-5.11) is positive,

F(F − 4(F + k)2) > 0, then R2 and R3 are real; otherwise, they are complex. This

indicates a saddle-node bifurcation, which occurs where F − 4(F + k)2 = 0 (since

we have demanded F > 0). The range of parameters for which R2 and R3 are real

is shown in gray in Figure 5.1.

The character of the equilibria R2 and R3 can change depending on the values

of the parameters F and k. Therefore, we evaluate the eigenvalues of the Jacobian
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Figure 5.1. Bifurcation locations in the parameter space of the spatially
homogeneous Gray-Scott CSTR.

in Eq. (5.9) in terms of the dependent variables and parameters:

λ =
1

2

(

−2F − k + 2YUYV − Y 2
V ±

√

k2 + Y 2
V (−2YU + YV )2 − 2kYV (2YU + YV )

)

.

(5.12)

In the neighborhood of the equilibrium R2, we find that both eigenvalues are real

(one is negative and one is positive) for the entire range of parameter space where

R2 is real. This means that R2 has the character of a saddle with one positive

eigenvalue. In the neighborhood of the equilibrium R3, we find that the real parts

of both eigenvalues have the same sign throughout the parameter space where R3

is real. We find a Hopf bifurcation where the real parts of R3’s complex conjugate

pair of eigenvalues change sign; this occurs at F = 1
2

(√
k − 2k −

√
k − 4k3/2

)

,

which is shown as a dashed line in Figure 5.1. In the parameter space where

F < 1
2

(√
k − 2k −

√
k − 4k3/2

)

(shown as a hatched area in Figure 5.1), R3 is a
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source; in the remainder of the parameter space where R3 is real, it is a sink. While

R3 is a real spiral source there is no guarantee of a stable limit cycle. Pearson [93]

finds this to occur only for k < 0.035 for values of F that are marginally less than

1
2

(√
k − 2k −

√
k − 4k3/2

)

, while for k > 0.035, there are unstable limit cycles for

values of F that are marginally greater than 1
2

(√
k − 2k −

√
k − 4k3/2

)

. Therefore,

this Hopf bifurcation can be either supercritical for k < 0.035 or subcritical for

k > 0.035.

We examine the dynamics of the spatially homogeneous Gray-Scott mechanism

for three sets of parameters: a) F = 2.5×10−2 and k = 5.5×10−2, b) F = 9.16×10−3

and k = 3.1× 10−2, and c) F = 4.1× 10−3 and k = 2.0× 10−2. Pattern formation

in case (a) is described by Pearson [93]. We use the Poincaré sphere projection,

η1 =
YU

√

1 + Y 2
U + Y 2

V

, (5.13a)

η2 =
YV

√

1 + Y 2
U + Y 2

V

, (5.13b)

to display the dynamics at infinity; further details on this mapping are found in

Appendix E. We identify six equilibria at infinity, which are independent of the

parameters F and k. These equilibria’s coordinates in the Poincaré sphere mapping

and corresponding mass fractions are shown in Table 5.1. The equilibria I3 and

I6 are both found along the line YV = −YU in mass fraction space as YU → +∞

and YU → −∞, respectively. Evaluating the character of the infinite equilibria,

we find that I1 and I4 are saddle-node non-hyperbolic equilibria, I2 and I5 are

saddles with one positive eigenvalue, and I3 and I6 are sources; I1, I2, I4, and I5

are SIM-BIC candidates.

We show the dynamics for these three sets of parameters in Figure 5.2. The
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TABLE 5.1

GRAY-SCOTT INFINITE EQUILIBRIA IN THE POINCARÉ

SPHERE MAPPING

η1 η2 YU YV

I1 1 0 +∞ 0

I2 0 1 0 +∞

I3 −
√

2/2
√

2/2 −∞ +∞

I4 −1 0 −∞ 0

I5 0 −1 0 −∞

I6
√

2/2 −
√

2/2 +∞ −∞

left column shows the Poincaré sphere mapping of the phase space, and the right

column shows the mass fraction phase space. Similar to previous phase space fig-

ures, the physical domain is shaded in gray, SIM branches are bold red, additional

heteroclinic orbits are bold blue, and other trajectories are thin green; addition-

ally, stable limit cycles are shown in magenta and unstable limit cycles are shown

in cyan.

For case (a), the only physical equilibrium is R1. For this case there are four

branches of the SIM, one starting at each I1, I2, I4, and I5, which are shown

in Figure 5.2(a). The SIMs which originate at I1 and I5 are never physical, so

they can be disregarded when implementing a reduction technique. The SIMs

originating from I2 and I4 both have regions which are physical and must be

considered to obtain an accurate reduction technique. Neighboring trajectories

collapse onto both of these branches of the SIM.
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Figure 5.2. Poincaré sphere projection and mass fraction phase spaces of
the spatially homogeneous Gray-Scott system.
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Figure 5.2(b) shows there are now three physical equilibria, R1, R2, and R3.

Again, the SIMs which originate at I1 and I5 are never physical and can be disre-

garded. We identify another SIM-BIC at R2, and we find two additional branches

of the SIM; these branches originate along the unstable eigenvector of R2 in either

direction. Along one SIM branch from R2, whose initial rate of change has YU

increasing and YV decreasing, the species follow a direct path through phase space

to R1. Along the other branch from R2, the species evolve further away from R1,

and approach the SIM branch between I2 and R1 before decaying to the physical

equilibrium, R1. For the set of parameters in case (b), we find four heteroclinic

orbits that meet our criteria to be SIM branches and have portions in the physical

domain; they all must be considered.

For the parameters of case (b), there are also two limit cycles: an inner stable

limit cycle encompassing the spiral source at R3, and an outer unstable limit cycle

encompassing the stable limit cycle. The unstable limit cycle can be identified by

integrating backward in time, since it stable in reverse time. The outer unstable

limit cycle defines the boundary of the basin of attraction of the inner limit cycle.

A sketch of these limit cycles is provided in Figure 5.3, where the growth and

decay away from and toward the limit cycles is exaggerated for clarity.

When we evaluate the system with the parameters from case (b) and initial

conditions YU = 0.325 and YV = 0.290, we predict the long time limit of the mass

fractions will display oscillations, since the initial conditions are within the basin

of attraction of the stable limit cycle; however, if we use a projector onto any of

the branches of the SIM, P(Yi), the long time dynamics will not be accurately

predicted. This is shown in Figure 5.4, with a phase space plot on the left and

a time evolution plot on the right. In the phase space, the initial conditions are
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Figure 5.3. Sketch of the stable and unstable limit cycles in the spatially
homogeneous Gray-Scott system with F = 9.16 × 10−3 and

k = 3.1 × 10−2.
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indicated with a cross, the time integrated solution is shown as a green line, the

projection onto the SIM branch that connects I2 to R1 is shown as a black dashed

line, the SIM is shown as a red line, and the basin of attraction of the stable

limit cycle is shown as an area hatched with gray lines. Figure 5.4 shows the

error incurred from projecting the dynamics across the boundary of the basin of

attraction. In the time evolution plot, we see the governing equations predict

a solution that decays to a stable limit cycle; however, the solution projected

onto the SIM, while initially relatively accurate, does not capture the limit cycle

behavior, erroneously predicting a decay to the stable equilibrium, R1. Any initial

conditions within the basin of attraction of the limit cycle projected to a SIM

that is found using the heteroclinic orbit construction technique will result in an

inaccurate prediction; however, a projection onto the attractive limit cycle will

accurately predict the long time dynamics of the system. For this reason we

consider stable limit cycles to be branches of the SIM, meaning that case (b) has

five physical SIM branches for consideration in a reduction technique.

In case (c), shown in Figure 5.2(c), there are still the three physical equilibria,

R1, R2, and R3, and R2 is again a SIM-BIC. For these parameters, however, I2 is

no longer a SIM-BIC, since the trajectory whose initial conditions are along I2’s

unstable eigenvector converges to a stable limit cycle, not R1. This is also the

case for one of the trajectories that originates along the unstable eigenvector at

R2; however, the other trajectory from R2 is still a SIM branch since it connects

to R1 along its slow eigenvector. This SIM branch and the branch that originates

from I4 are the only two physical SIM branches that are constructed using the

method of connecting heteroclinic orbits.

Case (c) has one limit cycle, which is stable and encompasses R3. The bound-
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Figure 5.4. Näıve projection onto the SIM in the Gray-Scott system
with F = 9.16 × 10−3 and k = 3.1 × 10−2.

ary of the basin of attraction for this limit cycle is defined by the two heteroclinic

orbits that connect R2’s stable eigenvectors to the infinite equilibria I1 and I3 and

heteroclinic orbits at infinity from I1 to I2 and I2 to I3. The long time dynamics

of all initial conditions within this boundary will result in oscillatory behavior

described by the stable limit cycle encompassing R3.

This result of having multiple physical SIM branches is not unique to the Gray-

Scott CSTR; another simple reaction mechanism in which multiple SIM branches

were found is the adiabatic Zel’dovich mechanism, shown in Section 4.1.3.2.

The conclusion from Al-Khateeb et al. [49] that in the A+A ⇌ B ⇌ C system

(originally presented by Lebiedz [57]), one approach to the physical equilibrium has

no unique branch of the SIM, presents a similar issue. This is yet another system

that does not have the previously expected two one-dimensional SIM branches,

one for each approach to the physical equilibrium along its slow eigenvector.

Having identified multiple branches of the SIM indicates that implementation

of a reduction technique using these manifolds will require additional analysis.
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In addition to constructing the manifolds, an accurate technique to project onto

the various SIMs is necessary. Further analysis would need to identify basins of

attraction and could perhaps incorporate a manifold attractiveness metric such

as the stretching based metric described by Adrover et al. [10], which is shown in

further detail in Appendix F. However, the ability to identify basins of attraction

is a daunting task when considering realistic chemical systems whose phase spaces

are typically much greater than two-dimensional.

5.1.2 Spatial variations and pattern formation

We return to the full reaction-diffusion system from Eqs. (5.6-5.7), and fol-

lowing Pearson [93], we solve the system on a domain x ∈ [0, L) and y ∈ [0, L)

with periodic boundary conditions, where the dimensionless length and diffusion

coefficients are L = 2.5, DU = 2 × 10−5, and DV = 10−5. The governing equa-

tions are evaluated on a discrete spatial grid of 256×256 uniformly spaced points;

the diffusion operator is modeled using a second order central finite difference

operator, and the time evolution is evaluated using the algorithm embodied in

LSODE [105]. We choose to examine the parameters from case (a) in Section 5.1.1,

F = 2.5 × 10−2 and k = 5.5 × 10−2. For this set of parameters, our results show

pattern formation which is similar to the pattern label as ‘γ’ in Ref. [93]. We did

not find any pattern formation behavior for the other two sets of parameters in

Section 5.1.1, which exhibited limit cycles in the spatially homogeneous system.

The mass fraction evolution for this system is shown in Figure 5.5 at six di-

mensionless times. The initial conditions are YU = 1 and YV = 0 for the entire

domain, except a small region, 0.3125 ≤ x ≤ 0.9375 and 0.3125 ≤ y ≤ 0.9375,

which has the concentration YU = 0.5 and YV = 0.25. To break the symmetry of
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Figure 5.5. Patterns of Gray-Scott system.
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the system, the initial conditions at each grid point are perturbed by a random

amount, ǫ, which is uniformly distributed between the values of −0.01 and 0.01.

As the system evolves, we see predominately striped pattern formation which

propagates outward throughout the domain. These patterns encompass the entire

domain by t = 5000. The solution at t = 5000 still shows symmetries from the

initial condition; as the solution evolves further (by t = 2×105), the perturbations

in the initial conditions have broken most of those symmetries, and the solution

appears more isotropic.

For this analysis we define isotropy in the same sense as isotropic turbulence

[106, pp. 89], that is, we call a pattern isotropic if it has global properties (such

as amplitudes of directional basis functions), which are essentially invariant under

a rotation of coordinate system. So, despite having local structures that display

preferred directions, we can still discuss whether the global structure of the pattern

has any preferred directions or not.

We analyze the Fourier spectrum of these spatial solutions, which are shown

in Figure 5.6. In the right column are contour plots of the amplitudes associated

with the corresponding spatial basis functions, labeled by wave number. The

amplitudes are the result of a discrete Fourier transform that calculates

ζi,m,n =
〈φm(x)φn(y), Yi(x, y)〉

〈φm(x)φn(y), φm(x)φn(y)〉
, for i = U, V and m,n = 0, . . . ,M − 1, (5.14)

where φm(x) are sine and cosine functions, as we have defined in Appendix A, and

M is equal to the number of finite difference points in each direction, which corre-

sponds to the largest basis function that can be resolved in each spatial dimension.

Note that the resolved modes do not necessarily correspond to our basis function

numbering convention: finite difference schemes with an odd number of points,
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M , will resolve modes 0, . . . ,M − 1; however, finite difference schemes with an

even number of points, M , will resolve modes 0, . . . ,M − 2,M . This is because of

how the sine and cosine basis functions are evaluated on a discrete evenly spaced

grid. Also note that resolving M basis functions only resolves M/2 wave numbers

since the discrete Fourier transform also contains phase information. The result

of the discrete Fourier transform is a set of complex numbers which correspond to

the amplitudes of basis functions: the real component corresponds to the cosine

functions, and the imaginary component corresponds to the sine functions. The

discrete Fourier transform is subject to the aliasing phenomena: higher frequen-

cies’ spatial oscillations are represented on the discrete grid as amplitudes of their

corresponding lower frequency basis functions, and vice versa. To obtain the final

value of amplitudes, the aliased amplitudes of modes above the resolution thresh-

old must be filtered to their corresponding lower frequency. This filtering process

can be used to identify directional phase information about the amplitudes of

multiple-dimensional discrete Fourier transforms.

The amplitudes displayed in Figure 5.6 ignore phase variations and are shown

as the magnitude of the amplitudes for both the sine and cosine basis functions

with identical wave numbers, where the wave numbers are defined as

κx =







m+1
2L

m ∈ odds

m
2L

m ∈ evens;
(5.15)

there is an identical relation for the wave numbers of the basis functions in the y-

dimension. The contour plots in the right column of Figure 5.6 make the isotropy

of the solution at different times noticeable. This is because variations in the

amplitudes of each spatial dimension are displayed separately. These spatial wave
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number contour plots, however, do not facilitate the identification of a fundamen-

tal wave number and higher harmonic modes. We therefore seek to combine the

spatial wave numbers into one combined wave number.

Each amplitude of the discrete Fourier transform is associated with the product

of a basis function from each spatial direction. The directional basis functions each

have a corresponding spectrum of wave numbers given in Eq. (5.15); however,

the product of the spatial basis functions (excluding the spatially homogeneous

basis functions) have a higher wave number than the wave number from the basis

functions in either direction. An example of this is shown graphically in Figure

5.7. The product of two spatial basis functions with wave numbers κx = 1/L and
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κy = 2/L, cos(2πx/L) cos(4πy/L), is identical to the sum of cosine functions, each

with a wave number of κ =
√

5/L, (cos(2π(x+2y)/L)+cos(2π(x−2y)/L))/2. The

original basis functions are oriented to the orthogonal coordinate system, which

makes them an ideal basis; however, the summed cosine functions, despite not

being oriented to the coordinate system, show the underlying wave number that

is not immediately apparent in the original basis functions. Using this analysis, we

find many identical wave numbers that correspond to various directions; therefore,

we define an isotropic wave number as κ2 = κ2
x +κ2

y. This allows us to analyze the

contour plots of spatial Fourier amplitudes in Figure 5.6 as polar plots, where the

angular coordinate corresponds to isotropic patterns, and any radial variations

indicates anisotropy.

The initial condition has a highly concentrated spatial structure which gives

it high wave numbers throughout κ-space, and high anisotropy. This is partic-

ularly noticeable with large amplitudes along the κx and κy axes. Most of the

concentrated spatial structure in the initial condition has decayed by t = 2000,

and preferred wave numbers are beginning to coalesce into peaks; however, there

is still a large amount of anisotropy which can be seen as peaks in the radial lines

in the contour plot and as a broad range of amplitudes for each isotropic κ value.

Similar to the mass fraction plot, by t = 2 × 105 the wave number plot shows

a nearly isotropic solution since the contour plot of amplitudes in wave number

space for this time has only moderate radial variation. At this large time, the

pattern is well formed enough to identify a fundamental wave number of κ = 7.5,

with peaks in the amplitudes at higher mode harmonics of the fundamental wave

number also apparent at κ = 15, 22.5, 30, 37.5, and 45. These wave numbers

correspond to periodicity over a dimensionless length of 0.133. This length scale
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corresponds to diffusion time scales of τD = {45, 22.5} for species U and V , re-

spectively. The reaction time scales are dependent on the species concentrations

and vary throughout the domain; the reaction time scales at the spatially homo-

geneous equilibrium, YU = 1 and YV , are τR1 = {12.5, 40}, which are on the same

order of magnitude as the diffusion time scales of the fundamental length scale.

5.1.3 One-dimensional analysis

With the fundamental length of this two-dimensional system identified, we

now turn our attention to solutions with diffusion across one dimension. Focusing

on one dimension allows us to more easily examine the reaction-diffusion system

using the Galerkin projection. Similar to our discussion in Chapter 4, we evaluate a

simple Galerkin projection to identify phenomena in the system, and then evaluate

a more complex Galerkin projection to evaluate the fidelity of the analysis in the

lower-dimensional system. In the simple M = 1 projection, we find results that

are similar to Marchant [81].

By using this two-term projection, we demand that the solutions have no

phase variations. We implement a modified M = 1 truncation where our two

basis functions are

YU(x, t) = ζU,0(t) + ζU,2(t) cos

(
2πx

L

)

, (5.16a)

YV (x, t) = ζV,0(t) + ζV,2(t) cos

(
2πx

L

)

. (5.16b)

We keep the basis function numbering convention from the periodic boundary

conditions, but omit the m = 1 sine terms in favor of the m = 2 cosine terms. In
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this projection the evolution of the amplitudes is governed by

dζU,0

dt
= −〈φ0, YUY

2
V 〉

〈φ0, φ0〉
+ F(1 − ζU,0), (5.17a)

dζU,2

dt
= −〈φ2, YUY

2
V 〉

〈φ2, φ2〉
− FζU,2 + DU

(
2π

L

)2

ζU,2, (5.17b)

dζV,0

dt
=

〈φ0, YUY
2
V 〉

〈φ0, φ0〉
− (F + k)ζV,0, (5.17c)

dζV,2

dt
=

〈φ2, YUY
2
V 〉

〈φ2, φ2〉
− (F + k)ζV,2 + DV

(
2π

L

)2

ζV,2, (5.17d)

where the inner products of the cubic terms are derived using the technique de-

scribed in Appendix B and are given by

〈φ0, YUY
2
V 〉

〈φ0, φ0〉
= ζU,0ζ

2
V,0 + ζU,2ζV,0ζV,2 +

ζU,0ζ
2
V,2

2
, (5.18a)

〈φ2, YUY
2
V 〉

〈φ2, φ2〉
= ζU,2ζ

2
V,0 + 2ζU,0ζV,0ζV,2 +

3ζU,2ζ
2
V,2

4
. (5.18b)

For parameters F = 2.5× 10−2 and k = 5.5× 10−2, Eqs. (5.17) have three spa-

tially homogeneous equilibria that are independent of the domain length: R1 =

{1, 0, 0, 0}, and the complex conjugate pairR2 andR3 = {0.5±0.07746ıi, 0, 0.15625∓

0.02420ıi, 0}. We also find six additional spatially inhomogeneous finite equilibria

that vary with the domain length; four of these are real for a range of domain

lengths. These four equilibria consist of two symmetric pairs; we name them R̂+
4 ,

R̂−
4 , R̂+

5 , and R̂−
5 since they do not correlate to any spatially homogeneous equilib-

ria. Again, we focus our analysis on R̂+
4 and R̂+

5 and drop the superscript for con-

venience. There are two saddle node bifurcations, one that occurs at L = 0.08674

and another at L = 0.3424, between which R̂4 and R̂5 are real and non-singular.

Their amplitudes are shown in Figure 5.8 as a function of domain length.
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Figure 5.8. Amplitudes of equilibria at the fundamental saddle node
bifurcation in M = 1 Galerkin projection of the Gray-Scott system.

We analyze the stability of each equilibrium by calculating the eigenvalues

of the Jacobian matrix from Eq. (3.51). We find that R̂4 has either one or two

unstable eigenvalues, and R̂5 has either zero, one, or two unstable eigenvalues,

depending on the domain length.

In the neighborhood of R̂5 for the domain lengths where it is real, all eigenval-

ues have negative real parts except for one complex conjugate pair. The real part

of this complex conjugate pair of eigenvalues changes from positive to negative

for a set of domain lengths as shown in Figure 5.9. This indicates the system has

two Hopf bifurcations, one at L = 0.138 and the other at L = 0.188.

The fundamental wave formation of the pattern formed in Figure 5.5 can be

approximated by the amplitudes of R̂5; however, R̂5 at L = 0.133 is not stable

in the M = 1 Galerkin projection, indicating that this simple analysis would not

accurately predict the structure of a fundamental wave in the pattern shown in

Figure 5.5.
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Figure 5.9. Hopf bifurcations of R̂5 in the Gray-Scott M = 1 Galerkin
projection.

We now examine a larger truncation of the Galerkin projection at M = 30

and seek the higher resolution solutions for R̂4 and R̂5 to see if they converge to

non-singular equilibria in a system that is spatially resolved.

This truncation includes both sine and cosine terms and therefore allows phase

difference in the solutions; this means that any spatially inhomogeneous equilib-

rium will reside on a one-dimensional manifold of equilibria which have identical

amplitudes, but are out of phase with each other. We focus our analysis on the

equilibrium solution with ζU,1 = 0 and ζU,2 > 0.

To find R̂4 and R̂5 in this well-resolved truncation, we use their analytical

solutions found in the M = 1 Galerkin projection as an initial guess at each

domain length and use a Newton-Raphson root finder to identify the analogous

equilibria. This method yields the equilibria amplitudes for R̂4 and R̂5 which are

shown in Figure 5.10.
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Figure 5.10. Amplitudes of equilibria at the fundamental saddle node
bifurcation in M = 30 Galerkin projection of the Gray-Scott system.

We see that the saddle node bifurcation near L = 0.08674 remains in this well

resolved projection, and is qualitatively identical to the bifurcation in the M = 1

projection; however, the L = 0.3424 saddle node bifurcation is no longer present

since R̂4 has an analogous equilibrium at longer domain lengths. Instead, there

is another bifurcation near L = 0.2075, past which R̂5 does not converge to an

analogous equilibrium using a Newton-Raphson root finder with our initial guess.

In this higher truncation, we also model shorter wavelengths, and, following

the analysis in Appendix D, we predict higher modes of the R̂4 and R̂5 equilibria,

which also display a saddle node bifurcation at integer multiples of L = 0.08674. A

Newton-Raphson root finder identifies these subsequent R̂4,m and R̂5,m equilibria,

whose amplitudes are shown in Figure 5.11.

Since the R̂4,m and R̂5,m equilibria are analogous to the fundamental R̂4,1 and

R̂5,1 equilibria, we only analyze the stability of R̂4 and R̂5, dropping the second
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Figure 5.11. Amplitudes of equilibria at additional saddle node
bifurcations in M = 30 Galerkin projection of the Gray-Scott system.

subscript for simplicity. In the M = 30 Galerkin projection, each equilibrium has

one zero eigenvalue, which is a result of the one-dimensional manifold of phase

shifted equilibria. Similar to the M = 1 truncation, we find that R̂4 has a positive

eigenvalue for all domain lengths, so it is not a stable equilibrium. Again, we

find that R̂5 has all negative eigenvalues for a region of domain lengths from

0.133 < L < 0.205, which is shown in Figure 5.12.

The lower stability limit at L = 0.133 corresponds to a Hopf bifurcation, as the

real part of a complex conjugate pair of eigenvalues has a sign change. This value

also corresponds to the wave number, κ = 7.5, that was found from the Fourier

analysis of the finite difference solution in Section 5.1.2. The upper stability limit

occurs at approximately the length where we are unable to converge R̂5 to a

fundamental equilibrium solution using the Newton-Raphson technique. These

eigenvalues are no longer a complex conjugate pair, and one eigenvalue becomes
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Figure 5.12. Hopf bifurcation of R̂5 in the Gray-Scott M = 30 Galerkin
projection.

positive at a slightly shorter length scale than the other. We predict that the

higher frequency mode equilibria, R̂5,m, will become stable at integer multiples of

the Hopf bifurcation, L = m× 0.133. The two-dimensional solution from Section

5.1.2 on an L = 2.5 square domain displays one of these higher frequency mode

equilibria, approximately R̂5,18.8, where them = 18.8 mode is not required to be an

integer due to the combination of integer valued spatial modes in each dimension.

Now that we have found a stable equilibrium that represents the fundamental

wave structure of the patterns, we examine the eigenvalues of the Jacobian from

the spatially homogeneous system to evaluate the importance of the reaction and

diffusion time scales coupling for this stable solution. Since the equilibrium at R̂5

has a spatial structure, the reaction eigenvalues are functions of position, whose

real parts are shown in blue on the left of Figure 5.13. The red lines are the

diffusion eigenvalues across the domain length of the fundamental wave structure,
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L = 0.133, and the dotted black line indicates Re(λ) = 0. On the right of Figure

5.13, the reaction and diffusion time scales are shown in blue and red, respectively.

From this figure we see that reaction and diffusion have similar time scales across

the fundamental wavelength of the pattern. We analyze these time scales to test for

consistency with the order of magnitude of the length scales in the problem. The

diffusion coefficient, D = O(1×10−5), and the reaction time scales, τR̂5 = O(100),

give us the right order of magnitude for our length scale, L ∼ 2π
√
Dτ = O(0.2).

While this simple time scale analysis yields the right order of magnitude, it is not

sufficient to identify the fundamental wavelength of the pattern or the shape of

each fundamental wave.
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Figure 5.13. Eigenvalues and time scales of R̂5 in the Gray-Scott
M = 30 Galerkin projection.

Using the fundamental stable solution from the M = 30 Galerkin projection,

we can construct stable two-dimensional solutions to Eqs. (5.6) on an L = 2.5

periodic domain. We identify the product of basis functions φ10(x)φ36(y) as having
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the isotropic wave number of κ =
√

52 + 182/2.5 = 7.4726, which is close to the

predicted stable solution of κ = 7.5 from the finite difference results in Section

5.1.2. We use this as our fundamental basis function to construct a stable solution.

We find the amplitudes of R̂5 in the one-dimensional solution for the corresponding

fundamental length of L = 0.133822. We then construct the initial conditions,

Y ∗
i =

M=30∑

i=0

ζiφi

(
5x + 18y

2.5

)

, for i = U, V, (5.19)

which we perturb by a uniformly distributed random amount between −0.01 and

0.01 at each grid point to evaluate the stability of our initial conditions. We

solve for the time evolution using the same finite difference integration as was

described in Section 5.1.2. The results are shown in Figure 5.14, with the initial

conditions shown in the top row and a long time solution at t = 1× 104 shown in

the bottom row. A spatial contour plot of mass fraction, YV , is in the left column,

a contour plot of amplitudes as a function of spatial wave number is shown in

the center column, and the amplitudes of the isotropic wave numbers are shown

in the right column. The initial and final mass fraction contour plots are nearly

identical as we see that the initial conditions found from the one dimensional

Galerkin projection are an accurate predication of a stable equilibrium in the two

dimensional finite difference method. The wave number plots in Figure 5.14 are

more descriptive of the differences between the initial conditions and long time

solution. In the initial conditions the random perturbations induce amplitudes of

O(10−5) across the spectrum of wave numbers, where peaks in the amplitude are

noticeable for the fundamental mode and its next four higher harmonics in both

wave number plots. In the long time limit, the perturbations have decayed, and

the spatial structure is represented as a series of peaks in the amplitudes isolated
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Figure 5.14: Anisotropic mass fraction pattern and amplitudes of the finite difference Gray-Scott system.
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at specific wave numbers. In the spatial wave number contour plot, the peaks

have a clear radial direction, which indicate the anisotropy in this long time limit.

What appears as reflections in the wave number contour plot is a result of the

aliasing of higher harmonic frequencies on a discrete grid.

We also construct a solution that is more isotropic, using a concentric circular

pattern with waves spaced at L = 0.133822, whose initial conditions are given as,

Y ∗
i =

M=30∑

i=0

ζiφi

(√
182 + 52

2.5

√

(x − 1.25)2 + (y − 1.25)2

)

, for i = U, V. (5.20)

We note that while this solution is periodic, there are steep gradients where the

concentric circles intersect at the boundaries of the periodic domain, which do not

have spatial structures similar to R̂5,m. These initial conditions are also perturbed

by a uniformly distributed random amount between −0.01 and 0.01 at each grid

point to identify their stability. The results are shown in Figure 5.15; again, the

initial conditions are shown on the top row, and the long time solution is shown

in the bottom row, at t = 1 × 104. In the mass fraction plot on the left, there

is a larger difference between the initial condition and the long time limit than

was seen in Figure 5.14. The mass fractions with initial steep gradients at the

boundaries have reorganized into a spatial structure with patterns that are similar

to the R̂5 solution. Also, the innermost circular pattern in the initial conditions has

evolved into three spots, bringing into question the stability of stripes with higher

curvature. The remaining circular patterns have become more faceted, appearing

more octagonal than circular in the long time solution; this could be the result of

the interactions at the boundaries on a periodic square grid, or might be a result

of preference to the x and y dimensions of the imposed grid and finite difference

operators. The wave number plots in Figure 5.15 again give a good description
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Figure 5.15: Circular mass fraction pattern and amplitudes of the finite difference Gray-Scott system.
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of the differences between the initial conditions and long time limit. In the initial

conditions the random perturbations again induce amplitudes of O(10−5) across

the spectrum of wave numbers. The isotropic fundamental wave number and

next two higher harmonics are shown as peaks in the amplitudes in both the

spatial wave number contour plot and isotropic wave number plot. The imposed

spatial structure of concentric circles has generated peaks in the amplitudes of

low spatial wave numbers for each dimension, which are shown as red horizontal

and vertical stripes in the spatial wave number contour plot. In wave number

space, the long time limit for this initial condition appears similar to the long

time limit for the initial condition of the problem in Section 5.1.2, which is shown

at the bottom of Figure 5.6. In both of these figures, the peaks in the amplitudes

appear at integer multiples of the fundamental wave number, κ = 7.5, with very

few radial variations in the spatial contour plot, indicating an isotropic solution.

For this solution, the amplitudes of spatial basis functions appear invariant under

a rotation to other Cartesian coordinate systems, thus meeting our qualification

for isotropy; however, anisotropy would likely be revealed in a transformation to

a polar coordinate system.

As a third example, we construct a solution that is more isotropic than the

first example, but that still shows a preference to one spatial direction. This is

accomplished by solving for the long time limit of the initial conditions

Y ∗
i =

M=30∑

i=0

ζiφi

(
18x − 5y

2.5
+ sin

(
2πy

2.5

))

, for i = U, V, (5.21)

which are periodic lines that have a small amplitude sinusoidal wave added. The

results for this system are shown in Figure 5.16. These initial conditions again have

random perturbations which induce O(10−5) amplitudes across the spectrum of
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Figure 5.16: Sinusoidal mass fraction pattern and amplitudes of the finite difference Gray-Scott system.
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wave numbers. There are also peaks along a specific axial direction in the spatial

wave number contour plot. These peaks are broader than the peaks in Figure

5.14 since there are additional preferred directions in the initial conditions due to

the sinusoidal wave in the stripes. The long time solution of mass fraction did

not retain the periodic wave structure of the initial conditions. Where the wave

had the greatest slope, x ∈ [1, 1.5], the curvature and reduced length between

fundamental waves caused an instability; the structure from the initial conditions

decayed, and a new spatial structure, which is primarily oriented in the x-direction,

replaced it. For the long time limit, the amplitudes in the spatial wave number

plot still show the broad peaks from the initial anisotropy, but they also show

some additional peaks with low κx and high κy that come from the new horizontal

structure.

From this analysis, we see that reaction time scales provide an accurate pre-

diction for the order of magnitude of a fundamental length scale by using the dif-

fusion coupling found from the Galerkin analysis, ℓ = 2π
√
Dτ . We also see that

the M = 1 Galerkin projection provides a good estimate for the system’s spatial

structure near the fundamental length scale. However, the M = 1 truncation does

not accurately predict the stability region of the solutions and is qualitatively in-

correct for longer domain lengths. These shortcomings indicate the need for a

spatially resolved approximation. We demonstrated that the spatially resolved

M = 30 truncation accurately predicted the stable fundamental pattern of the

Gray-Scott system.
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5.2 Hydrogen-air mechanism

We evaluate the N = 9 species, J = 20 reaction, L = 3 element hydrogen-air

mechanism of Miller and Bowman [108], which is shown in Table 5.2. In this table

we use the forward stoichiometric constant of a third body molecule, ν ′M,j (which is

one for reactions with a third body, and zero otherwise), to obtain the correct units

for aj . We choose to order the species {O2, H2, H2O, N2, OH, H, O, HO2, H2O2}
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as i = 1, . . . , 9, yielding the species-reaction matrix as

νij =


















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
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
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
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









−1 −1 0 0 2 0 0 0 0

0 −1 1 0 −1 1 0 0 0

1 0 0 0 −1 1 −1 0 0

0 −1 0 0 1 1 −1 0 0

−1 0 0 0 0 −1 0 1 0

1 0 1 0 −1 0 0 −1 0

0 0 0 0 2 −1 0 −1 0

1 0 0 0 1 0 −1 −1 0

0 0 1 0 −2 0 1 0 0

0 1 0 0 0 −2 0 0 0

0 1 0 0 0 −2 0 0 0

0 1 0 0 0 −2 0 0 0

0 0 1 0 −1 −1 0 0 0

0 0 0 0 1 −1 −1 0 0

1 0 0 0 0 0 −2 0 0

1 1 0 0 0 −1 0 −1 0

1 0 0 0 0 0 0 −2 1

0 0 0 0 2 0 0 0 −1

0 1 0 0 0 −1 0 1 −1

0 0 1 0 −1 0 0 1 −1
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, (5.22)
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and the species-element matrix as

ϕli =









0 2 2 0 1 1 0 1 2

2 0 1 0 1 0 1 2 2

0 0 0 2 0 0 0 0 0









. (5.23)

We examine conditions a similar to a lean isothermal isobaric system that

Kalamatianos and Vlachos [107] show to have a limit cycle. While we also evaluate

this mechanism as isothermal, T = 993 K, we consider it isochoric, ρ = 9.25 ×

10−4 g/cm3, to simplify our method of isolating equilibria using BERTINI [109].

To exhibit a similar limit cycle in the modified system, we consider a feed flow

rate with a corresponding to a residence time of τR = V ρ/ṁ = 1.1 × 10−3 s; this

feed flow rate is decreased slightly from the one considered in Kalamatianos and

Vlachos [107] with a residence time of τR = 1×10−3 s. The inflow is a hydrogen-air

mixture with an equivalence ratio of Φ = 0.5: for every 1 mol of O2, there will be

2Φ = 1 mol of H2 and 3.67 mol of N2. For these parameters the inflow in specific

moles is z1 = 7.3087 × 10−3 mol/g, z2 = 7.3087 × 10−3 mol/g, and z4 = 2.6823 ×

10−2 mol/g, which has a pressure of P = 3.1648 × 106 dyne/cm2; the complete

combustion has a pressure of P = 2.6066 × 106 dyne/cm2. Again, we use the

CHEMKIN thermodynamic database [104] to find the species’ thermodynamic data

and the CHEMKIN TRANSPORT database [103] to approximate a diffusion coefficient

of D = 21.2 cm2/s.

By demanding that the initial conditions’ concentrations have the same ele-

mental composition as the inflow, this system has L̂ = 3 algebraic constraints: con-

servation of each element, H , O, and N ; therefore, the system has R = N − L̂ = 6

dimensions. We model species i = {1, 2, 3, 5, 6, 7} and use the algebraic constraints
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TABLE 5.2

HYDROGEN-AIR REACTION MECHANISM

aj βj Ēj

j Reaction [
( mol

cm3 )
(1−ν′

M,j
−

PN
i=1 ν′

i,j
)

s K
βj

] [ erg

mol
]

1 H2 + O2 ⇌ 2OH 0.170×1014 0.000 47780

2 H2 + OH ⇌ H2O + H 0.117×1010 1.300 3626

3 OH + O ⇌ O2 + H 0.400×1015 −0.500 0

4 H2 + O ⇌ OH + H 0.506×105 2.670 6290

5 O2 + H + M ⇌ HO2 + Ma 0.361×1018 −0.720 0

6 OH + HO2 ⇌ O2 + H2O 0.750×1013 0.000 0

7 H + HO2 ⇌ 2OH 0.140×1015 0.000 1073

8 O + HO2 ⇌ O2 + OH 0.140×1014 0.000 1073

9 2OH ⇌ H2O + O 0.600×109 1.300 0

10 2H + M ⇌ H2 + M b 0.100×1019 −1.000 0

11 2H + H2 ⇌ 2H2 0.920×1017 −0.600 0

12 2H + H2O ⇌ H2 + H2O 0.600×1020 −1.250 0

13 OH + H + M ⇌ H2O + M c 0.160×1023 −2.000 0

14 H + O + M ⇌ OH + M c 0.620×1017 −0.600 0

15 2O + M ⇌ O2 + M 0.189×1014 0.000 −1788

16 H + HO2 ⇌ H2 + O2 0.125×1014 0.000 0

17 2HO2 ⇌ O2 + H2O2 0.200×1013 0.000 0

18 H2O2 + M ⇌ 2OH + M 0.130×1018 0.000 45500

19 H + H2O2 ⇌ H2 + HO2 0.160×1013 0.000 3800

20 OH + H2O2 ⇌ H2O + HO2 0.100×1014 0.000 1800

All third body molecule collision coefficients are one except where noted.

aReaction 5: MH2 = 2.86, MH2O = 18.6, MN2 = 1.26

bReaction 10: MH2 = 0.0, MH2O = 0.0

cReaction 13 and 14: MH2O = 5.0
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to solve for the concentrations of species i = {4, 8, 9}. Following the reduction

technique showed in Section 3.1.3, we identify the algebraic constraints as

ẑ4 = ẑ∗4 (5.24a)

ẑ8 = ẑ∗8 − 2(z1 − z∗1) + 2(z2 − z∗2) + (z3 − z∗3)

+(z6 − z∗6) − (z7 − z∗7), (5.24b)

ẑ9 = ẑ∗9 + (z1 − z∗1) − 2(z2 − z∗2) −
3

2
(z3 − z∗3)

−1

2
(z5 − z∗5) − (z6 − z∗6) +

1

2
(z7 − z∗7). (5.24c)

These algebraic constraints require that the concentration of z4 = 2.6823 ×

10−2 mol/g remain constant and

z8 = −2z1 + 2z2 + z3 + z6 − z7, (5.25a)

z9 = z1 − 2z2 −
3

2
z3 −

1

2
z5 − z6 +

1

2
z7 + 7.3086 × 10−3 mol/g. (5.25b)

We model the hydrogen-air reaction-diffusion system in the M = 0 spatially

homogeneous limit and seek to construct the branches of the spatially homo-

geneous SIM. Using BERTINI, with the input file described in Appendix G, we

identify 97 real finite equilibria of this system. Of these equilibria, three have

positive concentrations for all nine species, making them physical, and 13 have

one positive eigenvalue, making them candidates for the SIM-BIC; the physical

equilibria and SIM-BIC candidates are listed in Table 5.3.

We evaluate the character of the physical equilibria: R4 has all negative real

eigenvalues and is a physical sink; R69 has one positive real eigenvalue, making it

both a physical equilibrium and a SIM-BIC candidate; and R1 has four negative

real eigenvalues and one complex conjugate pair of eigenvalues with positive real
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TABLE 5.3:

HYDROGEN-AIR CSTR EQUILIBRIA

z1 z2 z3 z5 z6 z7

Rn [mol/g] [mol/g] [mol/g] [mol/g] [mol/g] [mol/g]

Physical equilibria
1 0.0067874 0.0063370 0.00090796 9.4755× 10−8 4.4741× 10−7 1.0672× 10−7

4 0.0073082 0.0073081 4.2541× 10−7 3.9643× 10−11 4.0545× 10−10 9.5066× 10−11

69 0.0072984 0.0072930 0.000012184 1.1357× 10−9 1.0111× 10−8 2.3570× 10−9

SIM-BIC candidates
3 −206.82 9.5363× 10−7 −414.26 0.00068782 −7.6532× 10−10 −0.32575
9 −0.0017378 0.0021354 0.0052458 0.00025751 −0.0010971 0.012353
15 27.605 −375.19 97.278 −13.033 20.643 −137.20
17 0.81348 −0.63533 0.078878 0.0028641 1.1263 −1.6909
30 0.00040481 −0.057763 −0.013044 −0.000073990 0.15631 0.026929
43 0.025791 0.040608 −0.0078804 0.0013074 −0.022876 −0.0011160
53 0.0073054 0.0073024 4.56975× 10−6 4.2629× 10−10 4.7038× 10−9 1.1126× 10−9

56 −0.021759 −0.037950 0.033021 0.000031592 −1.1130× 10−6 −0.00022778
69 0.0072984 0.0072930 0.000012184 1.1357× 10−9 1.0111× 10−8 2.3570× 10−9

78 0.0036823 0.000017510 0.0077738 −0.00012919 −2.148× 10−6 0.000048179
86 −0.0013668 7.0010× 10−6 −0.00031425 −2.2173× 10−7 −2.1200× 10−6 0.0024318
91 0.0033886 −0.34619 0.54825 −0.0027026 0.046812 −0.10504
97 105.31 67.005 −8.0934 0.0028924 −7.5207 −85.546
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part, making it a saddle. The long time dynamics of systems with initial conditions

in the neighborhood of R1 exhibit limit cycle behavior. The eigenvalues of the

physical equilibria are given in Table 5.4

We integrate the system with initial conditions perturbed along R69’s unstable

eigenvector in either direction. In one direction, the trajectory approaches R4

along its slowest eigenvector; this heteroclinic orbit is a branch of the SIM. In

the other direction, the trajectory collapses onto the stable limit cycle. These

trajectories are shown in a projection of phase space in Figure 5.17, where the

branch of the SIM is in red and the trajectory that collapses onto the stable limit

cycle is in blue.

The time evolution of these trajectories is shown in Figure 5.18, where on the

left is the evolution along the branch of the SIM, and on the right is the stable

limit cycle. In these plots, the evolution of O2 is shown in a blue solid line, H2,

red solid, H2O, green solid, N2, black solid, OH , green dashed, H , red dashed, O,

blue dashed, HO2, magenta dashed, and H2O2, cyan dashed. The concentrations

of O2 and H2 nearly overlap in both plots, as the concentration of O2 for both of

these solutions remains only marginally higher than the concentration of H2.

From this analysis we deduce that R69 lies on the boundary of the basin of

attraction between the stable limit cycle and the steady state equilibrium, R4.

Integrating trajectories in reverse time with initial conditions that span the five

stable eigenvectors of the equilibrium R69, will construct a five-dimensional man-

ifold which will define this boundary between the basins of attraction; however,

the computational costs associated with this method and the logistics of sorting,

storage, and retrieval of the data render it impractical.

We now seek other branches of the SIM, examining the heteroclinic orbits from
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TABLE 5.4:

EIGENVALUES OF SELECTED HYDROGEN-AIR CSTR EQUILIBRIA

λ1 λ2 λ3 λ4 λ5 λ6

Rn [s−1] [s−1] [s−1] [s−1] [s−1] [s−1]

Physical equilibria
1 (2056.51 ± 5313.49ıi) −1874.69 −166528 −1.81496× 106 −1.01916× 107

4 −250.238 −908.984 −3427.75 −196629 −2.16140× 106 −1.00969× 107

69 153.805 −906.041 −11365.6 −157177 −2.12071× 106 −1.02875× 107

SIM-BIC equilibria
9 2.77204× 107 −263460 (−683877 ± 154582ıi) −4.15025× 107 −9.51795× 107

17 1.97984× 1010 −8.80067× 107 (−9.39869× 107 ± 2.29324× 109ıi) −2.50445× 108 −8.54337× 1010

30 8.95079× 106 (−2.39043× 107 ± 1.24066× 107ıi) −3.32513× 107 −3.90786× 108 −1.37204× 1010

53 8196.73 −201.422 −908.072 −254141 −2.21784× 106 −9.82894× 106
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the other SIM-BIC candidate equilibria. We find four additional branches of the

SIM, one from each equilibria: R9, R17, R30, and R53; their eigenvalues are given

in Table 5.4. A phase space projection of these SIM branches’ approach to the

physical equilibrium sink, R4, is shown in Figure 5.19. In this figure, the red and

blue lines are the same trajectories shown in Figure 5.17 and the green lines are

the additional branches of the SIM. Note that all of the SIM branches approach R4

from the same direction. We have not necessarily found all of the SIM branches

since we have not considered equilibria at infinity. The dashed lines that connect

the SIM branches to their SIM-BICs outside of the region plotted in Figure 5.19

are only sketches and do not accurately represent the paths of the trajectories

though phase space.

To evaluate the attractiveness of these branches of the SIM, we calculate the

normal stretching ratio, r(zM ), along each manifold, as is described in Appendix

F. The stretching ratios along the SIM branches from R69, R53, and R9 are shown

in Figure 5.20 as a function of normalized manifold distance, s(zM ). In these

figures, green lines indicate negative normal stretching rates, which are attractive

in the corresponding normal direction, while red lines indicate positive normal

stretching ratios, which are repulsive in the corresponding normal direction. There

are five normal stretching ratios which each correspond to one of the orthogonal

unit vectors that span the normal space.

In Figures 5.20(a) and 5.20(b) we see that all five of the stretching ratios

remain negative along the entire length of both the R69 and R53 SIM branches;

however, in Figure 5.20(c) we see there are positive stretching ratios in multiple

normal directions for a large portion of the SIM branch near the R9 SIM-BIC.

This indicates nearby trajectories in these normal directions will diverge from the
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manifold, a trait that is not desirable in a manifold used in a reduction technique.

Analysis along the R17 and R30 SIM branches yields similar results to the R9 SIM

branch, where both of those branches have positive normal stretching rates, which

all become negative for the region of the manifold near R4.

These results raise some concerns about heteroclinic orbit SIM construction

technique. In addition to identifying multiple SIM branches that require subse-

quent analysis to implement an accurate reduction technique, the branches that

this method identifies are not necessarily attractive, despite meeting the other

qualifications to be a SIM. This brings into question the robustness of connecting

heteroclinic orbits to construct SIMs.

5.3 Summary and conclusions

In this chapter, we have examined two different open systems: the Gray-Scott

and hydrogen-air reaction mechanisms. For each system we constructed the spa-

tially homogeneous SIM and found there to be multiple branches. This result is

not unique to open reaction systems; a similar result was found for the closed adi-

abatic Zel’dovich mechanism shown in Section 4.1.3.2. Having multiple branches

raises concerns about the implementation of the SIM as a reduction technique.

While all the SIM branches we found were within the same basin of attraction,

projecting onto various branches potentially leads to erroneous predictions if the

projector is not carefully selected. Additionally, not all SIM branches identified

by selecting heteroclinic orbits that meet our criteria were found to be attractive

when evaluating their stretching ratios. Another issue which must be addressed

is identifying basins of attraction for various long time dynamics. As was seen in

the Gray-Scott example, if a projection crosses a boundary of a basin of attrac-
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tion, there will be large errors in the resulting prediction. These concerns identify

many issues that must be addressed before the SIM can be used as a robust and

accurate reduction technique.

We also examined pattern formation in reaction-diffusion equations. From

this analysis we found that a low dimensional approximation using the Galerkin

projection qualitatively identified the structure of patterns predicted with better

resolved simulations. We also found that the coupling of reaction and diffusion

scales accurately predicted the order of magnitude of the pattern’s length scales,

while a higher resolution approximation was required to predict the actual length

scale.
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CHAPTER 6

DISCUSSION AND FUTURE WORK

This chapter contains additional discussion about the methods and results

shown in the previous chapters, and also outlines future work required.

6.1 Discussion

The methods discussed in this dissertation have extended the SIM construc-

tion technique of connecting heteroclinic orbits to reaction-diffusion systems. This

analysis identified a length scale at which the spatially homogeneous SIM accu-

rately describes the slowest dynamics of the system. This length scale is typically

on the order of micrometers for reactions at atmospheric pressure. When domains

are considered that are longer than this length scale, diffusion will become the

slowest process for long wavelengths, and the spatially homogeneous SIM will no

longer capture the slowest dynamics of the system. Furthermore, the spectral gap

between the first two eigenvalues shrinks in systems with domains longer than the

critical length scale, indicating a need for a SIM of greater-than-one dimension.

When considering open reaction-diffusion systems, we found systems that dis-

played limit cycle behavior and pattern formation. In a Gray-Scott system that

displayed limit cycle behavior, we demonstrated one of the pitfalls in using a

manifold method: if a reduction technique projects the solution across the bound-

ary of a basin of attraction, the predicted solution will incur large errors. We
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have also identified systems which have multiple SIM branches that vary in their

attractiveness. These multiple branches identify a concern about implementing

the SIM as a reduction technique: the projection onto a specific SIM branch re-

quires additional analysis. We also find that some of the SIM branches identified

by connecting heteroclinic orbits have positive normal stretching rates, bringing

into question the foundation of our manifold construction technique. Lastly, we

use the Galerkin projection to analyze the pattern formation found in Gray-Scott

systems.

6.2 Future work

We have identified some open questions for the applications of SIMs to both

spatially homogeneous and reaction-diffusion systems. For example, how does

one select which branch of the SIM will accurately describe the dynamics of a

trajectory with specific initial conditions? A metric such as the normal stretching

ratio could prove useful in this analysis. Are there additional criteria to be used in

selecting heteroclinic orbits as branches of the SIM such that the selected orbits

are attracting manifolds? Is there a different technique that is more robust to

calculate the SIM branches?

An additional topic that is worthy of future pursuit is identifying a construction

technique for higher-dimensional manifolds in Galerkin projections of reaction-

diffusion equations. With an adequate technique of higher-dimensional manifold

construction, a multiple dimensional SIM would be able to span the additional

slow time scales on longer domain lengths up to the spectral gap. This construc-

tion technique may prove to be generalizable because of the physical coupling of

reaction and diffusion scales. Further examinations of length scales where reac-
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tion and diffusion have similar time scales might prove insightful to identifying

an adequate correction to add to spatially homogeneous manifold methods when

implemented in reaction-diffusion systems.

More generally, the field of combustion is still in need of adequate rational

reduction techniques. The examples provided in this dissertation were extremely

simple, yet identified a plethora of challenges in identifying a method that can

substantially reduce computational costs while providing accurate predictions.

Realistic DNS simulations are still intractable for engineering scale geometries,

and other reduction methods are still prone to error; however, our society is not

going to stop turning to chemical reactions to meet our energy needs. Therefore,

we must continue to seek improvements to methods we use to simulate combustion.
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APPENDIX A

PERIODIC BOUNDARY CONDITIONS BASIS FUNCTION ANALYSIS

This appendix details the the Galerkin projection for domains with periodic

boundary conditions. The eigenfunctions of the diffusion operator that match the

periodic boundary conditions,

Dd
2φm

dx2
= −µmφm(x), for m = 0, . . . ,∞ (A.1)

φm(0) = φm(ℓ), and
∂φm

∂x

∣
∣
∣
∣
x=0

=
∂φm

∂x

∣
∣
∣
∣
x=ℓ

, for m = 0, . . . ,∞, (A.2)

are both the sine and cosine functions whose arguments are integer multiples of

2πx/ℓ. We choose to order this basis as

φm(x) =







1 for m = 0,

sin
(
(m+ 1)π x

ℓ

)
for odd m,

cos
(
mπ x

ℓ

)
for even m.

(A.3)

This is a complete orthogonal basis on the domain x ∈ [0, ℓ), and the m = 0 mode

is spatially homogeneous. The eigenvalues of these basis functions are real and

non-negative:

µm =
Dπ2 (m+ mod [m, 2])2

ℓ2
. (A.4)
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We see that two eigenfunctions each have the same eigenvalue for all m > 0. This

allows for functions with the same period to have an arbitrary phase shift, which

was prohibited by homogeneous Neumann boundary conditions, but is admitted

for periodic boundary conditions.

When truncated at a finite M , the Galerkin method projects the infinite-

dimensional dynamics of the governing PDE onto a finite-dimensional AIM with

dynamics governed by an ODE in the form of Eq. (3.15),

dζi,m
dt

= Ω̇i,m(ζj,n) −
Dπ2 (m+ mod [m, 2])2

ℓ2
ζi,m, (A.5)

for i, j = 1, . . . , R and m,n = 0, . . . ,M .

Trigonometric identities and the orthogonality of these basis functions can

again be used to analytically solve for the inner product of low-order polynomials

to yield Ω̇i,m(ζj,n) without numerical integration; more detail is provided in Section

B.2.
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APPENDIX B

GALERKIN PROJECTION OF LOW-ORDER POLYNOMIALS

We seek an analytic reduction of the inner products in the Galerkin projec-

tion to allow for root finding techniques such as algebraic methods and homotopy

continuation used by BERTINI [109]. The technique described in this appendix de-

tails the analytical reduction of low order polynomials (such as those in isothermal

Arrhenius kinetics) into their Galerkin projection components.

B.1 Cosine basis functions: homogeneous Neumann boundary conditions

To reduce computational costs as well as simplify the analysis, the inner prod-

uct of arbitrary low-order monomials are analytically simplified into their respec-

tive Galerkin projection amplitudes for cosine basis functions. This is relevant

since our reaction source terms in isothermal Arrhenius kinetics are low-order

polynomial systems, and the inner product distributes to each monomial as a lin-

ear operator. Here we examine up to third-order monomial expansions of arbitrary

species labeled with subscripts a, b, and c.

In the following derivations, we take advantage of the fact that cosine is an

even function,

cos
(mπx

ℓ

)

= cos
(

−mπx
ℓ

)

. (B.1)

We apply the normalized inner product for our orthogonal basis functions with
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arbitrarily signed arguments by using the Kronecker delta function for both the

positive and negative of our function’s argument.

Since the inner product is a linear operator and can be distributed to each term

of a polynomial, we examine each order of monomial individually. For constants,

we see that the normalized inner product results in the constant appearing only in

the m = 0 term of the Galerkin projection, and in no other term. When φ0 = 1,

as it does in our Galerkin projection, the constant remains unchanged,

〈φm, c〉
〈φm, φm〉

= cδm,0. (B.2)

Single variables are expanded into a summation of their amplitudes and basis

functions,

za =

M∑

i=0

ζa,i cos

(
iπx

ℓ

)

; (B.3)

we clarify that i is an integer counter, not the imaginary number. The normalized

inner product can be distributed into this summation, and the orthogonality of

basis functions yields each amplitude of that variable appearing in its respective

term in the Galerkin expansion with unchanged coefficients,

〈φm, za〉
〈φm, φm〉

=
M∑

i=0

ζa,i

1 + δm,0

(δm,i + δm,−i) = ζa,m. (B.4)

Higher order terms require a reduction using the trigonometric identity to reduce

products of cosines into sums of cosines,

cos

(
iπx

ℓ

)

cos

(
jπx

ℓ

)

=
1

2

(

cos

(
(i+ j)πx

ℓ

)

+ cos

(
(i− j)πx

ℓ

))

. (B.5)
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An arbitrary second order monomial expands into,

zazb =

(
M∑

i=0

ζa,i cos

(
iπx

ℓ

))( M∑

j=0

ζb,j cos

(
jπx

ℓ

))

, (B.6a)

=

M∑

i=0

M∑

j=0

ζa,iζb,j cos

(
iπx

ℓ

)

cos

(
jπx

ℓ

)

, (B.6b)

=
M∑

i=0

M∑

j=0

ζa,iζb,j
2

(

cos

(
(i+ j)πx

ℓ

)

+ cos

(
(i− j)πx

ℓ

))

. (B.6c)

Here the normalized inner product again distributes to each term in the series,

yielding

〈φm, zazb〉
〈φm, φm〉

=
M∑

i=0

M∑

j=0

ζa,i ζb,j
2 (1 + δm,0)

(δm,i+j + δm,i−j + δm,−i+j + δm,−i−j) . (B.7)

Third order monomials are expanded in a similar fashion to second order mono-

mials,

zazbzc =

(
M∑

i=0

ζa,i cos

(
iπx

ℓ

))( M∑

j=0

ζb,j cos

(
jπx

ℓ

))

(
M∑

k=0

ζc,k cos

(
kπx

ℓ

))

, (B.8a)

=

M∑

i=0

M∑

j=0

M∑

k=0

ζa,iζb,jζc,k cos

(
iπx

ℓ

)

cos

(
jπx

ℓ

)

cos

(
kπx

ℓ

)

, (B.8b)

=

M∑

i=0

M∑

j=0

M∑

k=0

ζa,iζb,jζc,k
4

(

cos

(
(i+ j + k)πx

ℓ

)

+ cos

(
(i+ j − k)πx

ℓ

)

+ cos

(
(i− j + k)πx

ℓ

)

+ cos

(
(−i+ j + k)πx

ℓ

))

. (B.8c)

Once more, the normalized inner product distributes to each term in the series,
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yielding

〈φm, zazbzc〉
〈φm, φm〉

=

M∑

i=0

M∑

j=0

M∑

k=0

ζa,i ζb,j ζc,k
4 (1 + δm,0)

( δm,i+j+k + δm,i+j−k + δm,i−j+k + δm,−i+j+k

+δm,i−j−k + δm,−i+j−k + δm,−i−j+k + δm,−i−j−k) . (B.9)

This pattern continues for higher order polynomials and provides a computation-

ally efficient method of solving for and analyzing the Galerkin projection ODEs for

the low order polynomial systems that we find in isothermal Arrhenius kinetics.

B.2 Sine and cosine basis functions: periodic boundary conditions

We extend the analysis from Section B.1 to consider a basis consisting of both

sine and cosine functions, used for domains with periodic boundary conditions.

Since our basis functions are orthogonal and φ0 = 1, constants and first order

monomials expand in the same manor as shown in Eqs. (B.2-B.4), while higher

order terms require additional analysis.

Sine and cosine terms must be considered independently. The main reason

for this is the differences in the trigonometric identities, which, in addition to

Eq. (B.5), are,

cos

(
iπx

ℓ

)

sin

(
jπx

ℓ

)

=
1

2

(

sin

(
(i+ j)πx

ℓ

)

− sin

(
(i− j)πx

ℓ

))

, (B.10)

sin

(
iπx

ℓ

)

sin

(
jπx

ℓ

)

=
1

2

(

cos

(
(i− j)πx

ℓ

)

− cos

(
(i− j)πx

ℓ

))

.(B.11)

We therefore segregate our series solution for za into the sum of a cosine series

and the sum of a sine series:

za = zc
a + zs

a, (B.12)
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where

zc
a =

M∑

i=0
i∈evens

ζa,i cos

(
iπx

ℓ

)

, (B.13)

zs
a =

M∑

i=1
i∈odds

ζa,i sin

(
(i+ 1)πx

ℓ

)

. (B.14)

Using this segregation, second order monomials have three cases that need

to be considered: i) zc
az

c
b , ii) zc

az
s
b , and iii) zs

az
s
b . Case i) yields a result similar to

Eq. (B.7), where explicitly stating the index numbering for periodic basis functions

yields,

〈φm, z
c
az

c
b〉

〈φm, φm〉
=

M∑

i=0
i∈evens

M∑

j=0
j∈evens

ζa,i ζb,j
2 (1 + δm,0)

(δm,i+j + δm,i−j + δm,−i+j + δm,−i−j) ,

(B.15a)

for m ∈ evens. Cases ii) and iii) have similar results,

〈φm, z
c
az

s
b 〉

〈φm, φm〉
=

M∑

i=0
i∈evens

M∑

j=1
j∈odds

ζa,i ζb,j
2 (1 + δm,0)

(δm,i+j − δm,i−j−2 + δm,−i+j − δm,−i−j−2) ,

(B.15b)

for m ∈ odds, and

〈φm, z
s
az

s
b 〉

〈φm, φm〉
=

M∑

i=1
i∈odds

M∑

j=1
j∈odds

ζa,i ζb,j
2 (1 + δm,0)

(−δm,2+i+j + δm,i−j + δm,−i+j − δm,−i−j−2) ,

(B.15c)

for m ∈ evens.

Combining Eqs. (B.15) yields the full summation which is used in the evolution
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of amplitudes:

〈φm, zazb〉
〈φm, φm〉

=
〈φm, z

c
az

c
b〉

〈φm, φm〉
+

〈φm, z
s
az

s
b〉

〈φm, φm〉
, (B.16)

for m ∈ evens and

〈φm, zazb〉
〈φm, φm〉

=
〈φm, z

c
az

s
b〉

〈φm, φm〉
+

〈φm, z
c
bz

s
a〉

〈φm, φm〉
, (B.17)

for m ∈ odds, where the zc
bz

s
a term comes from Eq. (B.15b), with the indices

switched.

We consider sine and cosine terms separately in third order monomials again,

yielding four different cases: i) zc
az

c
bz

c
c , ii) zc

az
c
bz

s
c , iii) zc

az
s
bz

s
c , and iv) zs

az
s
bz

s
c . Case

i) is similar to Eq. (B.9), where explicitly stating the index numbering for periodic

basis functions yields:

〈φm, z
c
a z

c
b z

c
c〉

〈φm, φm〉
=

M∑

i=0
i∈evens

M∑

j=0
j∈evens

M∑

k=0
k∈evens

ζa,i ζb,j ζc,k
4 (1 + δm,0)

(δm,i+j+k + δm,i+j−k

+δm,i−j+k + δm,−i+j+k + δm,i−j−k+

δm,−i+j−k + δm,−i−j+k + δm,−i−j−k) , (B.18a)

for m ∈ evens.

Cases ii), iii), and iv) have similar results,

〈φm, z
c
a z

c
b z

s
c〉

〈φm, φm〉
=

M∑

i=0
i∈evens

M∑

j=0
j∈evens

M∑

k=1
k∈odds

ζa,i ζb,j ζc,k
4 (1 + δm,0)

(δm,i+j+k + δm,−i−j+k

+δm,i−j+k + δm,−i+j+k − δm,−i−j−k−2

−δm,i+j−k−2 − δm,−i+j−k−2 − δm,i−j−k−2) , (B.18b)
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for m ∈ odds,

〈φm, z
c
a z

s
b z

s
c〉

〈φm, φm〉
=

M∑

i=0
i∈evens

M∑

j=1
j∈odds

M∑

k=1
k∈odds

ζa,i ζb,j ζc,k
4 (1 + δm,0)

(δm,i+j−k + δm,i−j+k

+δm,−i−j+k + δm,−i+j−k − δm,i+j+k+2

−δm,−i+j+k+2 − δm,−i−j−k−2 − δm,i−j−k−2) , (B.18c)

for m ∈ evens, and

〈φm, z
s
a z

s
b z

s
c〉

〈φm, φm〉
=

M∑

i=1
i∈odds

M∑

j=1
j∈odds

M∑

k=1
k∈odds

ζa,i ζb,j ζc,k
4 (1 + δm,0)

(δm,i+j−k + δm,i−j+k

+δm,−i+j+k + δm,−i−j−k − δm,−i−j+k−2

−δm,−i+j−k−2 − δm,i−j−k−2 − δm,i+j+k+2) , (B.18d)

for m ∈ odds.

Combining Eqs. (B.18) yields the full product of the summations, which is

used in the evolution of amplitudes:

〈φm, za zb zc〉
〈φm, φm〉

=
〈φm, z

c
a z

c
b z

c
c〉

〈φm, φm〉
+

〈φm, z
c
a z

s
b z

s
c〉

〈φm, φm〉
+

〈φm, z
c
b z

s
a z

s
c〉

〈φm, φm〉
+

〈φm, z
c
c z

s
a z

s
b 〉

〈φm, φm〉
,

(B.19)

for m ∈ evens, and

〈φm, za zb zc〉
〈φm, φm〉

=
〈φm, z

c
a z

c
b z

s
c〉

〈φm, φm〉
+

〈φm, z
c
b z

c
a z

s
c〉

〈φm, φm〉
+

〈φm, z
c
c z

c
a z

s
b〉

〈φm, φm〉
+

〈φm, z
s
a z

s
b z

s
c〉

〈φm, φm〉
,

(B.20)

for m ∈ odds, where the terms that were not explicitly defined above come from

Eq. (B.18b) and Eq. (B.18c), with the indices switched.

These relations provide a computationally efficient method to solve for the
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rate of change equations of the amplitudes in a Galerkin projection on a periodic

domain, provided the governing PDEs are low-order polynomials.
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APPENDIX C

BLOCK JACOBIAN MATRIX

We evaluate the Jacobian matrix of a system of ODEs for amplitude evolution

defined by the Galerkin projection in the neighborhood of a spatially homogeneous

set of amplitudes (ζi,m = 0 for all i and m ≥ 1). This analysis is applicable for

any set of orthogonal basis functions, φm for m = 0, . . . ,M , (as long as φ0 is a

spatially homogeneous basis function) and for an arbitrary function, ω̇i(zj) for

i, j = 1, . . . , R. We choose to order the Galerkin projection species amplitude

vector first by basis function and then by species by defining {i,m} = mR + i.

Therefore, the vector, ζ{i,m} = ζi,m for i = 1, . . . , R and m = 0, . . . ,M , contains

all R(M + 1) elements of the species amplitudes sorted in our prescribed fashion.

The reaction source terms become ordered as

Ω̇{i,m} =
〈φm, Ω̇i(

∑M
n=0 ζj,nφn)〉

〈φm, φm〉
, for i, j = 1, . . . , R and m = 0, . . . ,M. (C.1)

To find the Jacobian of a point in the spatially homogeneous subspace, ζSH
i,m (where

ζSH
i,m = 0 for m > 0), we then take the partial derivative of the Galerkin projection

with respect to an arbitrary species amplitude,

J{i,m},{j,n} =
∂

∂ζj,n

(

〈φm, Ω̇i(
∑M

n=0 ζj,nφn)〉
〈φm, φm〉

− m2π2D
ℓ2

ζi,m

)∣
∣
∣
∣
∣
ζ=ζSH

. (C.2)
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We can distribute the partial derivative into the linear operators and apply them

at the point in the spatially homogeneous subspace to get

J{i,m},{j,n} =

〈φm,
∂

∂ζj,n
Ω̇i(
∑M

n̂=0 ζĵ,n̂φn̂)

∣
∣
∣
∣
ζ=ζSH

〉

〈φm, φm〉
− m2π2D

ℓ2
∂ζi,m
∂ζj,n

∣
∣
∣
∣
ζ=ζSH

. (C.3)

The partial derivative in the diffusion term can be reduced to a Kronecker delta

function,

J{i,m},{j,n} =

〈φm,
∂

∂ζj,n
Ω̇i(
∑M

n̂=0 ζĵ,n̂φn̂)

∣
∣
∣
∣
ζ=ζSH

〉

〈φm, φm〉
− m2π2D

ℓ2
δ{i,m},{j,n}. (C.4)

Then we take the derivative of the arbitrary nonlinear reaction function. The

derivative can be reduced to be with respect to zj , since it is evaluated at the

spatially homogeneous zSH . Because of the chain rule, the basis function, φn,

becomes a coefficient of the derivative, yielding

J{i,m},{j,n} =

〈φm, φn
∂Ω̇i

∂zj
〉

〈φm, φm〉
− m2π2D

ℓ2
δ{i,m},{j,n}. (C.5)

Finally, the orthogonality of the basis functions will yield another Kronecker delta

function, resulting in

J{i,m},{j,n} =
∂Ω̇i

∂zj
δm,n − m2π2D

ℓ2
δ{i,m},{j,n}. (C.6)

This Jacobian is in the form of a block diagonal matrix. The first term, (∂Ω̇i/∂zj)δm,n,

populates the R×R diagonal blocks with the spatially homogeneous Jacobian ma-

trix. The second term, (m2π2D/ℓ2)δ{i,m},{j,n}, yields a diffusion component along
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the diagonal of each block.
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APPENDIX D

BIFURCATION CONNECTION TO PHYSICAL WAVELENGTH

To simplify the process of finding equilibria in reaction-diffusion systems for

a variety of domain lengths, ℓ, we seek to generalize the equilibria we find at one

particular domain length. In this exercise we obtain a connection between the

spatial structure of spatially inhomogeneous equilibria (such as the R̂ equilibria

identified in the pitchfork bifurcation analysis) and the physical wavelength of the

basis functions.

We examine an arbitrary equilibrium solution, ζe
i,m, in a Galerkin projection.

This equilibrium satisfies the steady state equation,

Ω̇i,m(ζe
j,n) −

m2π2D
ℓ2

ζe
i,m = 0, for i, j ∈ [1, R] and m,n ∈ [0,M ]. (D.1)

Now, we examine an analogous Galerkin projection on an m̂ times longer spatial

domain, x ∈ [0, m̂ℓ], where m̂ is an integer greater than one. An analogous

equilibrium, ζ̂e
i,m, will exist on this longer domain length whose amplitudes that

are a multiple of m̂ are equal to the amplitudes of the original equilibrium, ζe
i,m

on length ℓ,

ζ̂e
i,(m̂×m) = ζe

i,m, for i ∈ [1, R] and m ∈ [0,M ], (D.2)

and the remaining amplitudes are zero, ζ̂e
i,m = 0, for i ∈ [1, R], and for m not an

integer multiple of m.
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Each multiple of m̂ amplitude in the ζ̂e
i,m equilibrium satisfies a steady state

equation identical to a ζe
i,m equilibrium,

Ω̇i,(m̂×m)(ζ̂
e
j,(m̂×n)) −

(m̂m)2π2D
(m̂ℓ)2

ζ̂e
i,(m̂×m) = 0, for i, j ∈ [1, R], and m,n ∈ [0,M ].

(D.3)

A simple algebraic reduction reveals that the diffusion term is identical, while the

reaction term is not as apparent. The reaction term can be shown to be identical

when using the definition of Ω̇i,m in the Galerkin projection. For cosine basis

functions this is

∫ ℓ

0
cos
(

mπx
ℓ

)
Ω̇i(z

e
î
(x))dx

∫ ℓ

0
cos2

(
mπx

ℓ

)
dx

=

∫ 2ℓ

0
cos
(

m̂mπx
m̂ℓ

)
Ω̇i(z

e
î
(x))

∫ 2ℓ

0
cos2

(
m̂mπx

m̂ℓ

)
dx

, (D.4)

which is true because the basis functions force the Galerkin projection of the

equilibrium solution to be spatially symmetric about ℓ, ze
i (x) = ze

i (2ℓ− x). This

result is the same for sine and cosine basis functions. The steady state equations

for the ζ̂e
i,m amplitudes that are not multiples of m̂ are also satisfied

Ω̇i,m(ζ̂e
j,n) −

m2π2D
(m̂ℓ)2

ζ̂e
i,m = 0, (D.5)

for i, j ∈ [1, R], n ∈ [0, m̂×M ], and m not an integer multiple of m̂; the diffusion

term is zero because each ζ̂e
i,m amplitude where m is not a multiple of m̂ is also

zero. The reaction term can be shown to be zero by expanding the inner product

definition of Ω̇i,m and using trigonometric identities,

∫ ℓ

0

cos
(mπx

ℓ

)

Ω̇i(z
e
î
(x))dx = 0, for m not a multiple of m̂. (D.6)

Since each monomial of Ω̇, when expanded using trigonometric identities, results in
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a cosine of the sums or differences of the basis mode number, all terms that are not

multiples of m̂ are zero; therefore, the resulting polynomial will only have nonzero

terms in multiples of m̂. The orthogonality of the basis functions guarantees the

resulting Ω̇i,m will also only have nonzero terms in multiples of m̂, which have

already been shown to be in equilibrium. Therefore, any equilibrium solution

of the Galerkin projection on domain length ℓ will have analogous solutions on

domains of integer multiples of that length, m̂ℓ; this corresponds to equilibria

manifolds with identical physical wavelengths in function space.
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APPENDIX E

POINCARÉ SPHERE

To evaluate the dynamics at infinity, our domain is projected onto the Poincaré

sphere [51], mapping ζ ∈ R
M+1 7→ η ∈ R

M+2 via the coordinate transformation,

ηi =
ζi

√

1 +
∑M

m=0 ζ
2
m

, for i = 0, . . . ,M, (E.1a)

ηM+1 =
1

√

1 +
∑M

m=0 ζ
2
m

. (E.1b)

Under this transformation, the η-coordinates are constrained by

M+1∑

i=0

η2
i = 1, (E.2)

which means that the ζ-coordinate system is mapped onto an (M+1)-dimensional

unit hypersphere in η-space. The inverse transformation exists,

ζi =
ηi

ηM+1
, for i = 0, . . . ,M. (E.3)

When we only examine ηi for i = 0, . . . ,M , we project the unit hypersphere into an

(M+1)-dimensional space, and the constraint in Eq. (E.2) becomes an inequality,

M∑

i=0

η2
i ≤ 1. (E.4)
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For this transformation, in the limit as ζi → ∞, for any i = 0, . . . ,M , ηi becomes

1. More generally, in the limit as any set of ζi → ∞, the resulting transformed

variables, ηi, are finite and constrained by

M∑

i=0

η2
i = 1. (E.5)

Therefore, the points at infinity in ζ-coordinates are mapped onto anM-dimensional

unit hypersphere in the η-coordinates. For finite values of ζi,

M∑

i=0

η2
i < 1; (E.6)

therefore, all of the finite dynamics in the ζ-coordinates are contained within the

M-dimensional unit sphere in the η-coordinates. In the Poincaré sphere coordinate

transformation, the entire ζ-coordinate system, both finite and infinite, is mapped

onto a unit sphere. This allows the entire system’s dynamics to be examined,

including the dynamics at infinity.
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APPENDIX F

MANIFOLD ATTRACTIVENESS METRIC FROM STRETCHING RATES

We adopt a stretching based metric similar to Adrover et al. [10] to quantify

the attractiveness at a point on an invariant one-dimensional manifold, zM , in an

R-dimensional vector space governed by the ODEs

dz

dt
= f(z). (F.1)

At zM there is a tangent vector,

vt = f(zM ), (F.2)

which can be normalized into a unit tangent vector,

αt =
vt

‖vt‖
. (F.3)

Using αt as one basis vector, we can generate an orthonormal basis that spans

the R-dimensional vector space by finding R − 1 orthonormal vectors, αni for

i = 1, . . . , R− 1, that span the space normal to the tangent vector.

A vector, v, in the neighborhood of zM changes with the rate of

dv

dt
= J · v, (F.4)
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where J is the Jacobian matrix evaluated at zM ,

J =
∂f

∂z

∣
∣
∣
∣
zM

. (F.5)

To find the tangent stretching rate, we project the rate of change of αt onto the

tangent direction by taking its inner product with αt,

σt(zM (t)) = αT
t · J · αt. (F.6)

Similarly, there are R − 1 normal stretching rates:

σni(zM (t)) = αT
ni · J · αni, for i = 1, . . . , R− 1. (F.7)

We note that these stretching ratios have no contribution from the antisymmetric

part of the Jacobian matrix; therefore, identical results are found when considering

the symmetric part of the Jacobian matrix. The stretching ratios,

r̂i(zM (t)) =
σni(zM (t))

|σt(zM (t))| , for i = 1, . . . , R− 1, (F.8)

provide a metric of the rate of normal stretching to tangential stretching, which

quantifies how attractive the one-dimensional manifold is in each of the R − 1

normal directions. To be attractive, we require the normal stretching rates to be

negative; the more negative the stretching ratio, r̂i(zM (t)), the more attractive

the manifold.

When this stretching ratio is evaluated along the SIM, we find a singularity

where the tangent stretching rate is zero. Since the SIM is initially tangent to

the unstable eigenvector of the SIM-BIC, the tangent stretching rate is equal
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to the corresponding eigenvalue and therefore is positive: σt(zM (0)) > 0. The

SIM is also tangent to the stable eigenvector with the slowest time scale in the

neighborhood of the physical equilibrium; therefore, at this point on the manifold,

the tangent stretching rate is equal to the corresponding eigenvalue, which is

negative: σt(zM (∞)) < 0. The tangent stretching rates are a continuous function

along the manifold; therefore, somewhere on the SIM there is a point that has

a zero tangent stretching rate, σt(zM (t)) = 0. To describe this, we use a simple

thought experiment comparing the tangent stretching rate to accelerating in the

vector field, since the Jacobian describes the local change in the rate of change

vector. Near the SIM-BIC the positive stretching rate indicates the dependent

variables are acceleration along the manifold in phase space. Near the physical

equilibrium the negative stretching rate indicates a deceleration of the dependent

variables in phase space towards their steady state values. Somewhere along the

SIM, the dependent variables need to change from accelerating to decelerating,

which indicates a zero tangent stretching rate.

This becomes a problem when using the stretching ratios to quantify attrac-

tiveness, since every SIM will be infinitely attractive at a point along the manifold

when using the local stretching ratio. One could eliminate this issue by evaluating

the normal stretching rate; however, without comparison to a tangent stretching

rate, the stretching rate alone does not accurately quantify attractiveness. To rem-

edy this problem, we suggest a modified stretching ratio using the slow eigenvalue

at the physical equilibrium, zM (∞), as the tangent stretching rate:

ri(zM (t)) =
σni(zM (t))

|σt(zM (∞))| , for i = 1, . . . , R− 1, (F.9)

thus removing the singularity in the stretching ratio metric; however, ri(zM (t))
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may not provide an accurate metric when tangent stretching rates have large

variations along the manifold.

Since the manifold is constructed by integrating a trajectory that has an expo-

nential growth away from the SIM-BIC and an exponential decay to the physical

equilibrium, the length of the manifold does not directly correspond to the number

of points which are calculated to approximate the manifold. Therefore, to plot

metrics, such as the stretching ratios, along the manifold, we use the following

manifold length function:

ŝ(zM (t)) =

∫ t

0

√
√
√
√

R∑

i=1

(

dzi

dt̂

∣
∣
∣
∣
zM (t̂)

)2

dt̂,

=

∫ t

0

√
√
√
√

R∑

i=1

fi

(
zM (t̂)

)2
dt̂. (F.10)

It is useful to normalize the distance function by the total length of the manifold,

s(zM (t)) =
ŝ(zM (t))

ŝ(zM (∞))
. (F.11)

For systems with R > 2, we illustrate a shortcoming of our metric by evaluating

two simple systems. The system first is governed by the ODEs,

dz1
dt

=
1

20
(1 − z2

1), (F.12a)

dz2
dt

= −2z2 −
35

16
z3, (F.12b)

dz3
dt

= z2 + z3. (F.12c)

We identify the two finite roots, R1 at z = {−1, 0, 0} and R2 at z = {1, 0, 0}, by
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inspection. The Jacobian of the system is

J =









−z1/10 0 0

0 −2 −35/16

0 1 1









, (F.13)

which has eigenvalues of λ = {.1,−.25,−.75} at R1 and λ = {−.1,−.25,−.75} at

R2. Assuming R2 is the physical equilibrium, the heteroclinic orbit that connects

R1 to R2 along the z2 = z3 = 0 axis is a branch of the SIM. The unit tangent

vector along the SIM is αt = {1, 0, 0}. A sketch of the phase space for this

system is provided in Figure F.1. Let us evaluate sets of unit normal vectors:

i) αn,1 = {0, 1, 0} and αn,2 = {0, 0, 1}, and ii) αn,1 = {0, 0.8271, 0.5621} and

αn,2 = {0, 0.8271,−0.5621}.

The normal stretching rates are constant along the manifold. For case i),

the normal stretching rates are σn(zM ) = {−2, 1} and the stretching ratios are

ri(zM ) = {−20, 10}, while for case ii), they are σn(zM ) = {−0.5,−0.5} and

ri(zM ) = {−5,−5}. This simple example demonstrates how the results of our

stretching ratio metric can vary based on the choice of normal vectors. This

effect becomes more pronounced when the angles between the eigenvectors of the

Jacobian are small.

The second system is similar to the previous, and governed by the ODEs,

dz1
dt

=
1

20
(1 − z2

1), (F.14a)

dz2
dt

= −2z2 −
35

16
z3 + 2(1 − z2

1)z3, (F.14b)

dz3
dt

= z2 + z3. (F.14c)
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SIM

z1

z2

z3

R1 R2

Figure F.1. Phase space sketch of the system governed by Eqs. (F.12).
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This system has the same two finite roots, R1 at z = {−1, 0, 0} and R2 at z =

{1, 0, 0}. The Jacobian of the system is

J =









−z1/10 0 0

−4z1z3 −2 −35/16 + 2(1 − z2
1)

0 1 1









, (F.15)

which again has eigenvalues of λ = {.1,−.25,−.75} atR1 and λ = {−.1,−.25,−.75}

at R2. There is a SIM branch defined by the heteroclinic orbit that connects R1

to R2 along the z2 = z3 = 0 axis, which has identical dynamics as the SIM branch

for Eqs. (F.12); however, we find that this branch does not attract neighboring

trajectories along the entire manifold.

A sketch of the phase space for this second system is provided in Figure F.2,

where we see an unstable eigenvector is oriented in a normal direction. Figure

F.3 is a projection of phase space that shows the neighboring blue trajectories

diverging away from the red SIM.

For the system governed by Eqs. (F.14), the normal stretching rates vary

along the manifold. At z1 = 0 on the SIM, for the two choices of normal vec-

tors, αn,1 = {0, 1, 0} and αn,2 = {0, 0, 1}, and αn,1 = {0, 0.7942, 0.6077} and

αn,2 = {0,−0.6077, 0.7942}, the normal stretching rates are σn(zM ) = {−2, 1}

and σn(zM ) = {−0.5,−0.5}, respectively. This shows that also for this unstable

manifold, results will again vary with the choice of normal vector.

While this technique is able to provide some insights into local stretching rates

and ratios, it does depend on the choice of normal vectors and fails to accurately

quantify attractiveness. Identifying the maximum and minimum local normal

stretching rates is a simple exercise that can be useful. Having all negative normal
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SIM

z1

z2

z3

R1 R2

Figure F.2. Phase space sketch of the system governed by Eqs. (F.14).
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-1.0 -0.5 0.0 0.5 1.0
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

z1

z3 R1 R2

Figure F.3. Phase space projection of the SIM with diverging nearby
trajectories for system governed by Eqs. (F.14).
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stretching rates is a sufficient (but not necessary) condition for a manifold to be

locally attractive. Conversely, having at least one negative normal stretching rate

is a necessary (but not sufficient) condition. Adrover et al. [10] describe a more

careful selection of normal vectors for higher dimensional systems.

We introduce a new metric to evaluate attractiveness. This metric is based on

two assumptions: i) the dynamics along the manifold are slower than the dynamics

normal to the manifold, and ii) we admit a phase error when projecting onto the

manifold. The first assumption can be verified a posteriori. The justification

for these two assumptions are as follows. If the tangential dynamics occur at

faster time scales than the normal dynamics, the linear assumption to build a

Jacobian will break down as the trajectory will progress to a different location on

the manifold before appreciable normal dynamics occur. The second assumption

is what allows us to only consider changes in the normal plane. In general, a

perturbation in the normal direction will change the dynamics tangent to the

manifold as well; however, by admitting phase error we can ignore the changes

in the tangent direction and only consider variations normal to the manifold by

projecting the changes into the normal space.

After making these two assumptions we now consider all dynamics normal to

manifold to quantify normal stretching rates. The tangent stretching rate along

a one-dimensional manifold is shown in Eq. (F.6); the normal dynamics are now

governed by a local normal Jacobian matrix. To build the normal Jacobian matrix,

any orthonormal basis that spans the normal space of the manifold can be used:

Qn =









| |

αn1 · · · αnR−1,

| |









, (F.16)
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where Qn is an R × R − 1 rectangular matrix with orthonormal columns. The

normal Jacobian is

Ĵ = QT
n · J · Qn, (F.17)

which is an R − 1 × R − 1 matrix. This matrix describes the local dynamics of

perturbations in all normal directions constrained to the normal directions. As

long as assumption i) is satisfied, the eigenvalues of the normal Jacobian matrix,

λn, describe the attractiveness of the manifold. If all eigenvalues have negative

real parts, then we say that point on the manifold is attractive; however, if any

eigenvalues has a positive real part, we say that point on the manifold is repulsive.

The reciprocal of the real part of negative normal eigenvalues will give the time

scales of decay to the manifold, τn = 1/λn, and can be used to check assumption

i). The time scale in the tangential direction is the reciprocal of the tangent

stretching rate, τt = 1/σt(zM ); if the normal time scales are all faster than the

tangent time scale, then this analysis will provide accurate results.

Notice that the diagonal of the normal Jacobian matrix is composed of the

individual normal stretching rates from the previous analysis. This means that

for one-dimensional manifolds in two-dimensional systems (where there is only one

choice for orthonormal basis) this analysis is consistent with the normal stretching

metric of Adrover et al. [10].

This metric is independent of the choice of orthonormal basis and accurately

describes the predicted behaviors of the two simple examples given earlier in this

appendix. For the example in Eqs. (F.12), both normal eigenvalues are real and

negative, λn = {−3/4,−1/4} 1/s, and constant along the entire length of the

SIM. We verify assumption i) by finding the normal time scales, τn = {4/3, 4} s,

and comparing them to the tangential time scales τt ≥ 10 s; for this example the
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normal dynamics are faster than the tangential dynamics. For the example in

Eqs. (F.14), the normal eigenvalues are real, but vary along the SIM as shown in

Figure F.4; the black dotted line indicates where the normal eigenvalues are zero,

the cyan lines are negative normal eigenvalues, and the magenta line are positive

normal eigenvalues. This result shows that while the manifold is attractive in

the neighborhood of the SIM-BIC, R1, and the physical equilibrium, R2, it is not

attractive along the majority of the manifold between the two equilibria. This

result is consistent with the trajectories shown in Figure F.3.

0.2 0.4 0.6 0.8 1.0

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

λn

ŝ(zM )

λn > 0
λn < 0

Figure F.4. Normal eigenvalues for system governed by Eqs. (F.14).

In Figure F.5, we demonstrate the normal eigenvalues for the two example

problems: (a) shows the example governed by Eqs. (F.12), (b) shows the example

governed by Eqs. (F.14). What Figure F.5 shows is the evolution of a manifold
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of initial conditions that are all perturbed by ǫ away from the manifold at zM =

{0, 0, 0} for each system. The initial conditions for each case are shown on the

left-most subfigures; each subsequent subfigure to the right depicts a later time.

We admit phase error and only consider the dynamics in the directions normal to

the SIM. Since for each of these systems the normal dynamics occur at faster time

scales than the tangential dynamics, we can assume that these dynamics all occur

in a linear neighborhood of the SIM at zM = {0, 0, 0}, which is shown as a red

line from the lower left to the upper right. In this linear neighborhood, the real

part of each eigenvalue indicates the rate of decay or grown and their associated

eigenvector (shown as cyan and green arrows for stable and as magenta arrows for

unstable) indicate the direction of those dynamics.

In case (a), there are two negative real normal eigenvalues, so the manifold is

locally attractive. Note that there are positive normal stretching rates, so there

is initial growth away from the SIM; however, the negative eigenvalues indicate

that the local dynamics will result in a decay onto the manifold for all near-by

trajectories. This can be seen in the later times as the dynamics of all initial

conditions approach the manifold along the slow normal eigenvector.

In case (b), there is one positive and one negative real normal eigenvalue,

indicating a locally repulsive manifold. The initial growth away from the SIM

continues in the direction of the unstable normal eigenvector, and nearly all tra-

jectories diverge away from the manifold at this point.

To explain the growth away from the SIM in Figure F.5(a) for short times, we

can decompose the normal Jacobian into symmetric, Ĵs and anti-symmetric Ĵa
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Figure F.5: Normal eigenvalues, local dynamics, and manifold attractiveness.
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parts,

Ĵs =
1

2
(Ĵ + ĴT ), (F.18a)

Ĵa =
1

2
(Ĵ− ĴT ). (F.18b)

The normal Jacobian is the summation of the symmetric and anti-symmetric parts:

Ĵ = Ĵs + Ĵa. For the system given in Eqs. (F.12) this decomposition results in the

following matrices:

Ĵ =






−2 −35/16

1 1




 , (F.19a)

Ĵs =






−2 −19/32

−19/32 1




 , (F.19b)

Ĵa =






0 −51/32

51/32 0




 . (F.19c)

The symmetric part has real eigenvalues, λns = {−2.1132, 1.1132} 1/s, whose

eigenvectors are orthogonal and correspond to the major and minor axes of an el-

lipse in short time stretching. The anti-symmetric part has imaginary eigenvalues,

λna = {±1.5938ıi} 1/s, and corresponds to a rotation of the ellipse. The stretching

and rotation processes are depicted in Figure F.6 and occur simultaneously. The

dashed blue circle is the manifold of initial conditions, and the solid blue ellipse

is the result after a short time, ∆t = 0.1 s. The eigenvectors of Ĵs are the pri-

mary axes of the stretching corresponding to the symmetric part: the major axis,

{0.1873,−0.9823}, shown is magenta, and grows as exp(1.1132t); the minor axis,

{0.9823, 0.1873}, shown in cyan, decays as exp(−2.1132t). The counterclockwise
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solid body rotation, which occurs at 51/32 rad/s, is indicated as yellow arrows.

The stretching from the symmetric part is only valid for short time; for longer

durations, the combination of stretching and rotation results in the eigenvalues of

the normal Jacobian, Ĵ, dictating the evolution as shown in Figure F.5.

m 0 e

m

0

e

t = 0

t = ∆t

Figure F.6. Stretching and rotation in short time.
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APPENDIX G

BERTINI HYDROGEN-AIR EQUILIBRIA FILES

The following is a BERTINI [109] input file used to identify the equilibria of the

spatially homogeneous hydrogen-air CSTR from Section 5.2.

1 CONFIG

3 PRINTPATHMODULUS: 250;
TRACKTOLBEFOREEG: 1e−7;

5 TRACKTOLDURINGEG: 1e−7;
FINALTOL : 1e−11;

7 MAXNORM: 1e7 ;
SECURITYMAXNORM: 1e7 ;

9 SAMPLEFACTOR: 0 . 1 ;
TARGETTOLMULTIPLIER: 100;

11 AMPSAFETYDIGITS1 : 2 ;
AMPSAFETYDIGITS2 : 2 ;

13 CONDNUMTHRESHOLD: 1e100 ;

15 END;

17 INPUT

19 var i ab l e group Z1 , Z2 , Z3 , Z5 , Z6 , Z7 ;
funct i on f1 , f2 , f3 , f5 , f6 , f 7 ;

21 constant q , rho , Z1In , Z2In , Z3In , Z5In , Z6In , Z7In , Z4 , kj1 , kj2 , kj3 , kj4 , kj5 , kj6 , kj7 , kj8 , kj9 , kj10 , kj11 ,
kj12 , kj13 , kj14 , kj15 , kj16 , kj17 , kj18 , kj19 , kj20 , Kc1 , Kc2 , Kc3 , Kc4 , Kc5 , Kc6 , Kc7 , Kc8 , Kc9 , Kc10 , Kc11
, Kc12 , Kc13 , Kc14 , Kc15 , Kc16 , Kc17 , Kc18 , Kc19 , Kc20 ;

23 q = 10000/11;
rho = 37/40000;

25 Z1In = 10487131/1434890352;
Z2In = 10487131/1434890352;

27 Z3In = 0 ;
Z5In = 0 ;

29 Z6In = 0 ;
Z7In = 0 ;

31
kj1 = 1143860129615719642970361746847629547/2500000000000000000000000000000000;

33 kj2 = 5909852972141319/4096;
kj3 = 1628888993217991/128;

35 kj4 = 3334888518636303/16384;
kj5 = 2519313429910801;

37 kj6 = 7500000000000;
kj7 = 5187237774867427/64;

39 kj8 = 8299580439787883/1024;
kj9 = 4804356598414959/1024;

41 kj10 = 4048582995951417/4;
kj11 = 2937403826326235/2;

43 kj12 = 10831910667233980;
kj13 = 16391024275106952;

45 kj14 = 989777376262101;
kj15 = 6014752887851375/128;

47 kj16 = 12500000000000;
kj17 = 2000000000000;

49 kj18 = 1500115727280437/134217728;
kj19 = 3783502520921157/16384;

51 kj20 = 2046771090666097/512;
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53 Kc1 = 201707549990423075890466630966102457/62500000000000000000000000000000000000;
Kc2 = 191103309595855284896970260888338089/400000000000000000000000000000000;

55 Kc3 = 53231110381254904950765194371342659/200000000000000000000000000000000;
Kc4 = 1073711685827270084780948877778428141/1250000000000000000000000000000000000;

57 Kc5 = 4275008033649445/65536;
Kc6 = 7129584254238697/32;

59 Kc7 = 1578149203837201/1048576;
Kc8 = 6563018317777155/16384;

61 Kc9 = 5561994438264127893489785492420196533/10000000000000000000000000000000000;
Kc10 = 30420266531846797393920;

63 Kc11 = 30420266531846797393920;
Kc12 = 30420266531846797393920;

65 Kc13 = 14533534032559932394438656;
Kc14 = 26130076528979287736320;

67 Kc15 = 6954664939923671544233984;
Kc16 = 7640573354569225/16384;

69 Kc17 = 5850935575193973/268435456;
Kc18 = 132317022106640914501815639857688553/125000000000000000000000000000000000000000000;

71 Kc19 = 1069770400241602328605949878692626953/50000000000000000000000000000000;
Kc20 = 5487804912230929/536870912;

73
Z4 = 8835743/329411710;

75 Z8 = −2∗Z1 + 2∗Z2 + Z3 + Z6 − Z7 ;
Z9 = 10487131/1434890352 + Z1 − 2∗Z2 − 3∗Z3/2 − Z5/2 − Z6 + Z7/2 ;

77
ZM = (Z1 + Z2 + Z3 + Z4 + Z5 + Z6 + Z7 + Z8 + Z9) ;

79 ZM5 = (Z1 + 286∗Z2/100 + 186∗Z3/10 + 126∗Z4/100 + Z5 + Z6 + Z7 + Z8 + Z9) ;
ZM10 = (Z1 + Z4 + Z5 + Z6 + Z7 + Z8 + Z9) ;

81 ZM1314 = (Z1 + Z2 + 5∗Z3 + Z4 + Z5 + Z6 + Z7 + Z8 + Z9) ;

83 r1 = kj1∗ rho ∗(Z1∗Z2 − Z5ˆ2/Kc1 ) ;
r2 = kj2∗ rho ∗(Z2∗Z5 − Z3∗Z6/Kc2 ) ;

85 r3 = kj3∗ rho ∗(Z5∗Z7 − Z1∗Z6/Kc3 ) ;
r4 = kj4∗ rho ∗(Z2∗Z7 − Z5∗Z6/Kc4 ) ;

87 r5 = kj5∗ rho∗ZM5∗( rho∗Z1∗Z6 − Z8/Kc5 ) ;
r6 = kj6∗ rho ∗(Z5∗Z8 − Z3∗Z1/Kc6 ) ;

89 r7 = kj7∗ rho ∗(Z6∗Z8 − Z5ˆ2/Kc7 ) ;
r8 = kj8∗ rho ∗(Z7∗Z8 − Z1∗Z5/Kc8 ) ;

91 r9 = kj9∗ rho ∗(Z5ˆ2 − Z3∗Z7/Kc9 ) ;
r10 = kj10 ∗rho∗ZM10∗( rho∗Z6ˆ2 − Z2/Kc10 ) ;

93 r11 = kj11 ∗rho ∗( rho∗Z6ˆ2∗Z2 − Z2ˆ2/Kc11 ) ;
r12 = kj12 ∗rho ∗( rho∗Z6ˆ2∗Z3 − Z2∗Z3/Kc12 ) ;

95 r13 = kj13 ∗rho∗ZM1314∗( rho∗Z5∗Z6 − Z3/Kc13 ) ;
r14 = kj14 ∗rho∗ZM1314∗( rho∗Z6∗Z7 − Z5/Kc14 ) ;

97 r15 = kj15 ∗rho∗ZM∗( rho∗Z7ˆ2 − Z1/Kc15 ) ;
r16 = kj16 ∗rho ∗(Z6∗Z8 − Z1∗Z2/Kc16 ) ;

99 r17 = kj17 ∗rho ∗(Z8ˆ2 − Z1∗Z9/Kc17 ) ;
r18 = kj18 ∗rho∗ZM∗(Z9 − rho∗Z5ˆ2/Kc18 ) ;

101 r19 = kj19 ∗rho ∗(Z6∗Z9 − Z2∗Z8/Kc19 ) ;
r20 = kj20 ∗rho ∗(Z5∗Z9 − Z3∗Z8/Kc20 ) ;

103
f1 = −r1 + r3 − r5 + r6 + r8 + r15 + r16 + r17 − q∗(Z1 − Z1In ) ;

105 f2 = −r1 − r2 − r4 + r10 + r11 + r12 + r16 + r19 − q∗(Z2 − Z2In ) ;
f 3 = r2 + r6 + r9 + r13 + r20 − q∗(Z3 − Z3In ) ;

107 f5 = 2∗ r1 − r2 − r3 + r4 − r6 + 2∗ r7 + r8 − 2∗ r9 − r13 + r14 + 2∗ r18 − r20 − q∗(Z5 − Z5In ) ;
f 6 = r2 + r3 + r4 − r5 − r7 − 2∗ r10 − 2∗ r11 − 2∗ r12 − r13 − r14 − r16 − r19 − q∗(Z6 − Z6In ) ;

109 f7 = −r3 − r4 − r8 + r9 − r14 − 2∗ r15 − q∗(Z7 − Z7In ) ;

111 END;

When BERTINI is executed with this input file, 97 real finite equilibria are

identified and found in the file ‘real finite solutions.’
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