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Abstract

A mathematical model for the production of protein species within the extrinsic blood coagulation cascade

originally developed by Hockin et al. is re-derived. The model consists of 34 differential equations that de-

scribe the rate of production of each protein species, and is obtained by treating each of the 27 independent

chemical equilibrium expressions in the cascade as elementary reactions. This model allows for the explo-

ration of the dynamics of blood coagulation in a time efficient manner and for the observation of protein

concentrations that are below detection limits by physical analysis. From this model, the concentrations

of protein species as a function of time are obtained. The effects of changing the initial concentrations of

certain protein species on blood coagulation are simulated and the results are discussed in light of empirical

knowledge about the coagulation cascade. An attempt is made to simplify the computations needed to

solve the system by finding the attracting invariant low-dimensional manifold of the system, which is a low-

dimensional path that all trajectories leading to the same equilibrium point follow once the fast time-scales

in the system have equilibrated. It is found that increasing factor VII concentration in the blood stream has

an inhibiting effect on the production of thrombin (factor IIa), and hence inhibits coagulation. Coagulation

is promoted by the addition of factor VIIa in the blood. The essential role of antithrombin III (ATIII)

and TFPI in the termination of coagulation is also demonstrated. Cases of hemophilia A and B are also

simulated with our model. The invariant one-dimensional manifold is found to be of use in simplifying the

system between reaction times of 4000 and 40000 seconds.

powers
Note
The first sentence is the most important.  It needs to summarize your new work.  This one just says you re-derived somthing.  Try for more oomph. 

powers
Inserted Text
ordinary

powers
Cross-Out

powers
Inserted Text
-

powers
Inserted Text
,  [add comma]



1 Introduction

This paper discusses the biochemistry of blood coagulation and presents the chemical reactions involved in

the coagulation cascade that was originally developed by Hockin et al [1]. The mathematics of systems of

ordinary differential equations and invariant low-dimensional manifolds are discussed. The mathematical

work done to perform the analysis on the blood coagulation model is presented and the the ordinary dif-

ferential equations that model coagulation and that were originally derived by Hockin et al. are re-derived.

Relevant concentration versus time graphs are included and the effects of changing certain parameters on

blood coagulation are discussed. The system dynamics is explored by including projections of the invariant

low dimensional manifold and graphing the time-scales of the system for all reaction times.

Blood coagulation takes place via a cascade of chemical reactions involving pro- and anticoagulant

systems in order to maintain proper blood fluidity [1]. Deficiencies or excesses in the proteins involved in

coagulation can lead to hemorrhagic or thrombotic diseases [1]. Looking at the chemical properties of isolated

proteins ignores the dynamic interplay between several species and often results in faulty predictions about

the effects of changing protein concentrations [1]. For example, if the concentration of VII, a procoagulant

factor, is increased, one would expect clotting time to decrease, yet experiments show the opposite to be true

[1, 2]. Mathematical models are a powerful tool to explore the dynamics of the interplay between several

protein species involved in coagulation. Mathematical models provide a quicker way to demonstrate this

interplay than experiment and can examine species concentrations below detection limits [1].

Previous work on the mathematical modeling of blood coagulation looked at the time-dependent con-

centrations of each species obtained from a limited set of initial conditions [1, 3]. This work involved treating

each reaction in the coagulation cascade as an elementary chemical reaction and using the law of mass ac-

tion to derive nonlinear differential equations that describe the rate of production of each protein species [1,

3]. We repeat this work by re-deriving this set of differential equations. This set of differential equations

is simplified to get a set of differential algebraic equations and numerical solutions for the time-dependent

concentrations are obtained. The initial conditions for several protein species are varied in an attempt to

simulate various clotting disorders and the results are compared to empirical knowledge. Hemophilia A and

B and antithrombin III (ATIII) and tissue factor pathway inhibitor (TFPI) deficiency are simulated and the

possible treatment of hemorrhagic diseases with factor VII and VIIa are explored. A study of the dynamics

of the system is performed by obtaining the equilibrium points, linearizing the system of differential equa-

tions near the physical equilibrium point, and solving for the time-scales that govern the system dynamics

at physical equilibrium. The time-scales over the whole reaction time are obtained and their effects on the

system dynamics is discussed. An attempt is made to simplify the system by finding the attracting invariant

low-dimensional manifold.

2 Blood Coagulation

Blood coagulation takes place via extrinsic and intrinsic pathways [4]. Both pathways lead to the production

of thrombin (factor IIa), which is involved in the conversion of soluble fibrinogen found in blood into a fibrin

meshwork [4]. This fibrin meshwork, in conjunction with platelets, plugs the site of the injury until tissue

repair is complete. The biological significance of the intrinsic pathway remains suspect because individuals

missing key proteins in the sequence show no bleeding disorders [5]. Therefore, our work focuses on the
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Table 1: Chemical expressions for the coagulation cascade

Line Chemical expressions

1 TF+VII< 1 − 2 >TF=VII

2 TF+VIIa< 3 − 4 >TF=VIIa

3 TF=VIIa+VII−5 >TF=VIIa+VIIa

4 Xa+VII−6 >Xa+VIIa

5 IIa+VII−7 >IIa+VIIa

6 TF=VIIa +X< 8 − 9 >TF=VIIa=X−10 >TF=VIIa=Xa

7 TF=VIIa+Xa< 11 − 12 >TF=VIIa=Xa

8 TF=VIIa+IX< 13 − 14 >TF=VIIa=IX−15 >TF=VIIa+IXa

9 Xa+II−16 >Xa+IIa

10 IIa+VIII−17 >IIa+VIIIa

11 VIIIa+IXa< 18 − 19 >IXa=VIIIa

12 IXa=VIIIa+X< 20 − 21 >IXa=VIIIa=X−22 >IXa=VIIIa+Xa

13 VIIIa< 23 − 24 >VIIIa1·L+VIIIa2

14 IXa=VIIIa=X−25 >VIIIa1·L+VIIIa2+X+IXa

15 IXa=VIIIa−25 >VIIIa1·L+VIIIa2+IXa

16 IIa+V−26 >IIa+Va

17 Xa+Va< 27 − 28 >Xa=Va

18 Xa=Va+II< 29 − 30 >Xa=Va=II−31 >Xa=Va+mIIa

19 mIIa+Xa=Va−32 >IIa+Xa=Va

20 Xa+TFPI< 33 − 34 >Xa=TFPI

21 TF=VIIa=Xa+TFPI< 35 − 36 >TF=VIIa=Xa=TFPI

22 TF=VIIa+Xa=TFPI−37 >TF=VIIa=Xa=TFPI

23 Xa+ATIII−38 >Xa=ATIII

24 mIIa+ATIII−39 >mIIa=ATIII

25 IXa+ATIII−40 >IXa=ATIII

26 IIa+ATIII−41 >IIa=ATIII

27 TF=VIIa+ATIII−42 >TF=VIIa+ATIII

extrinsic pathway. The reaction mechanism for the extrinsic pathway of blood coagulation can be found in

Table 1 [1].1

Blood coagulation starts by the contact of tissue factor (TF), a transmembrane protein, with enzymes

circulating in the blood stream [2,4]. When a blood vessel is damaged, TF, found in the membranes of cells

not normally in contact with blood, comes into contact with the activated coagulant factor VIIa, forming

the VIIa-TF complex (Table 1, line 2) [2,5]. VIIa-TF in turn activates factors X and IX to form Xa and

IXa by limited proteolysis (Table 1, lines 6, 7, and 8) [2]. Factor IXa combines with factor VIIIa to form a

1The notation −2 > signifies the forward reaction with specific reaction rate k2. The notation < 1 − 2 > indicates an

equilibrium expression with specific reaction rate k1 for the reverse and specific reaction rate k2 for the forward reaction. The

notation = indicates binding between two components.
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secondary pathway to activate factor X (Table 1, lines 11 and 12) [2]. Factor Xa formed by these processes

activates factor II to form thrombin (factor IIa) (Table 1, line 9) [1]. Thrombin is further produced via the

thrombin-led activation of factor V to form Va (Table 1, line 16) [1]. Va binds with Xa to form the Va-Xa

complex, which activates II to form meizothrombin (mIIa) (Table 1, lines 17, and 18) [1]. mIIa is converted

into IIa by the Va-Xa complex (Table 1, line 19) [1]. In the mean time, more VIIa is formed by the activation

of VII in a self-propagating loop (Table 1, line 3) [1]. VII is further activated by thrombin and factor Xa

(Table 1, lines 4 and 5) [1].

Antithrombin III and TFPI are the main inhibitors of thrombin and other enzymes involved in thrombin

production [1]. Because the inability of the body to control the amount of active thrombin in the blood

stream could lead to thrombosis, the presence of these inhibitors is crucial. ATIII functions by forming

complexes with Xa, mIIa, IXa, IIa, and TF=VIIa (Table 1, lines 23-27) [1]. TFPI functions by inhibiting

the Xa-VIIa-TF complex (Table 1, line 21) and by binding to Xa to form the TFPI-Xa complex, which in

turn binds to TF=VIIa (Table 1, lines 20 and 22).

3 Mathematics

3.1 Systems of Ordinary Differential Equations

A system of n first order ordinary differential equations can be written as

dx

dt
= f(x1, x2, ..., xn), (1)

where vector f contains the functions that describe the rates of change of the dependent variables, t is the

independent variable, x is a vector of dependent variables of length n, and xi are the individual dependent

variables. A linear system of differential equations can be written as

dx

dt
= A · x, (2)

where A is a constant matrix. The solution to equation (2) takes the form

x(t) =
n

∑

i=1

gie
λit, (3)

where λi are the eigenvalues of A with gi being the corresponding eigenvectors.

A technique used to analyze a problem involving a system of nonlinear first order ordinary differential

equations is to linearize the system about some point x0 [6]. This is done by calculating the Jacobian of the

system about x0 [6]. The Jacobian about x0 is

J =















∂f1

∂x1

∂f1

∂x2
. . . ∂f1

∂xn

∂f2

∂x1

∂f2

∂x2
. . . ∂f2

∂xn

...
...

. . .
...

∂fn

∂x1

∂fn

∂x2
. . . ∂fn

∂xn















0

, (4)

where fi are elements of vector f . The linearized system takes the form

dx

dt
= J · x, (5)
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where J takes the place of A in equation (2). The solution of equation (5) is in the form of equation (3) and

λi are the eigenvalues of the Jacobian about x0 and gi are the corresponding eigenvectors. The time-scales

of the system are given by [7]

τi =
1

|Re(λi)|
, (6)

where Re(λi) is the real part of the eigenvalue λi. The fast time-scales only influence the behavior of the

system at the initial times and at longer times the slow time-scales alone govern the behavior of the system.

The long time-scale can be observed in the system response.

The equilibrium points, where the rates of change of the dependent variables are equal to zero, can

also be found for a set of independent first order ordinary differential equations. This is done by solving the

following equation:

f(x1, x2, ..., xn) = 0. (7)

A non-linear system may have mutiple equilibria and some might be unstable nodes or saddle points. If the

Jacobian around the equilibrium point yields all negative and zero eigenvalues, we have a stable node. If all

the eigenvalues are positive with possibly some zeros, we have an unstable node. A saddle point is present

if some of the eigenvalues are positive and some are negative.

3.2 Invariant Low-Dimensional Manifolds

To analyze the dynamics of complex reaction systems, it can be useful to look at the trajectories of the

reaction system through phase space. For a high dimensional system with an attracting low-dimensional

manifold, which is a lower dimensional surface (< Rn) that attracts all trajectories, the trajectories approach

one another before the equilibrium is reached [8]. A one-dimensional manifold is a curve.

Attracting low-dimensional manifolds arise from the different time-scales present in the system. A set of

n independent first order linear ordinary differential equations, as in equation (2), has n different time scales

associated with it. Initially, when all time-scales play a role in the dynamics of the system, the trajectories

take a path through an n-dimensional space. As time increases, the effects of the fast time-scales on the

system decrease and the trajectories of the system take a path through lower-dimensional space. When the

slowest time-scale dominates the system, the trajectories follow a one-dimensional manifold, or a curve.

Whether a path through the phase space qualifies as an attracting manifold depends upon the eigenval-

ues computed from the Jacobian along that path. Perturbing the system away from the manifold can yield

the following results [8]:

1. Perturbing in the direction of an eigenvector with a corresponding positive eigenvalue makes the per-

turbation grow and the trajectory move away from the given path.

2. Perturbing in the direction of an eigenvector with a corresponding 0 eigenvalue causes no change in

the perturbation.

3. Perturbing in the direction of an eigenvector with a corresponding negative eigenvalue makes the

perturbation go to 0 and the trajectory moves back to the given path.

An attracting manifold is one that has all negative eigenvalues, with possibly some 0 eigenvalues, associated

with it. This guarantees that all trajectories are drawn to it as time increases. Attracting low-dimensional
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manifolds in effect provide a simplification for a complex system because once the fast time-scales have

equilibrated the trajectories of the system are consigned to a low-dimensional path with fewer degrees of

freedom.

3.3 Law of Mass Action

An elementary chemical reaction, a reaction that occurs in a single step with no reaction intermediates,

where species X combines with species Y to form species P is written as

aX + bY → cP, (8)

where a, b, and c are stoichiometric coefficients.

For a species that is consumed, such as species X, the rate at which the species is consumed, d[X]/dt,

can be modeled via the law of mass action as

d[X]

dt
= −k[X]a[Y ]b, (9)

where the brackets indicate the concentration of the species within the brackets and k is the specific reaction

rate. The negative sign preceding the rate constant indicates that the species is consumed.

For a species that is produced, such as species P , the rate at which the species is consumed, d[P ]/dt,

can be modeled via the law of mass action as

d[P ]

dt
= k[X]a[Y ]b. (10)

For species involved in multiple reactions, the right hand sides of the rate equations for each reaction

are added. For example, for X in

aX + bY → cP, (11)

Z → X, (12)

the rate equation is written as

d[X]

dt
= −k1[X]a[Y ]b + k2[Z], (13)

where k1 refers to the rate constant for the first reaction, equation (11), and k2 refers to the rate constant for

the second reaction, equation (12). The law of mass action can be applied to both the forward and reverse

reaction of an equilibrium reaction.

3.4 Application to Blood Coagulation

Each reaction in the blood coagulation cascade is assumed to be an elementary chemical reaction and the

differential equations for the rate of production of each species as proposed by Hockin et al. is re-derived

using the law of mass action. The following equations represent the rate of production of each species:

d[TF ]

dt
= k1[TF = V II] − k2[TF ][V II] + k3[TF = V IIa]

−k4[TF ][V IIa], (14)
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d[V II]

dt
= k1[TF = V II] − k2[TF ][V II] − k5[TF = V IIa][V II]

−k6[Xa][V II] − k7[IIa][V II], (15)

d[TF = V II]

dt
= −k1[TF = V II] + k2[TF ][V II], (16)

d[V IIa]

dt
= k3[TF = V IIa] − k4[TF ][V IIa] + k5[TF = V IIa][V II]

+k6[Xa][V II] + k7[IIa][V II] (17)

d[TF = V IIa]

dt
= −k3[TF = V IIa] + k4[TF ][V IIa] + k8[TF = V IIa = X]

−k9[TF = V IIa][X] + k11[TF = V IIa = Xa]

−k12[TF = V IIa][Xa] + k13[TF = V IIa = IX]

−k14[TF = V IIa][IX] + k15[TF = V IIa = IX]

−k37[TF = V IIa][Xa = TFPI]

−k42[TF = V IIa][ATIII], (18)

d[Xa]

dt
= k11[TF = V IIa = Xa] − k12[TF = V IIa][Xa]

+k22[IXa = V IIa = X] + k27[Xa = V a] − k28[Xa][V a]

+k33[Xa = TFPI] − k34[Xa][TFPI] − k38[Xa][ATIII], (19)

d[IIa]

dt
= k16[Xa][II] + k32[mIIa][Xa = V a] − k41[IIa][ATIII], (20)

d[X]

dt
= k8[TF = V IIa = X] − k9[TF = V IIa][X]

+k20[IXa = V IIa = X] − k21[IXa = V IIa][X]

+k25[IXa = V IIa = X], (21)

d[TF = V IIa = X]

dt
= −k8[TF = V IIa = X] + k9[TF = V IIa][X]

−k10[TF = V IIa = X], (22)

d[TF = V IIa = Xa]

dt
= k10[TF = V IIa = X] − k11[TF = V IIa = Xa]

+k12[TF = V IIa][Xa] + k35[TF = V IIa = Xa = TFPI]

−k36[TF = V IIa = Xa][TFPI], (23)

d[IX]

dt
= k13[TF = V IIa = IX] − k14[IX][TF = V IIa], (24)

d[TF = V IIa = IX]

dt
= −k13[TF = V IIa = IX] + k14[IX][TF = V IIa]

−k15[TF = V IIa = IX], (25)

d[V III]

dt
= −k17[IIa][V III], (26)

d[V IIIa]

dt
= k17[IIa][V III] + k18[IXa = V IIIa]

−k19[V IIIa][IXa] + k23[V IIIa1 · L][V IIIa2]

−k24[V IIIa], (27)

d[IXa]

dt
= k15[TF = V IIa = IX] + k18[IXa = V IIIa]

−k19[V IIIa][IXa] + k25[IXa = V IIIa = X]
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+k25[IXa = V IIIa] − k40[IXa][ATIII], (28)

d[IXa = V IIIa]

dt
= −k18[IXa = V IIIa] + k19[IXa][V IIIa]

+k20[IXa = V IIIa = X] − k21[IXa = V IIIa][X]

+k22[IXa = V IIIa = X] − k25[IXa = V IIIa], (29)

d[IXa = V IIIa = X]

dt
= −k20[IXa = V IIIa = X] + k21[IXa = V IIIa][X]

−k22[IXa = V IIIa = X] − k25[IXa = V IIIa = X], (30)

d[V IIIa1 · L]

dt
= −k23[V IIIa1 · L][V IIIa2]

+k24[V IIIa] + k25[IXa = V IIIa = X]

+k25[IXa = V IIIa], (31)

d[V IIIa2]

dt
= −k23[V IIIa1 · L][V IIIa2] + k24[V IIIa]

+k25[IXa = V IIIa = X] + k25[IXa = V IIIa], (32)

d[V ]

dt
= −k26[IIa][V a], (33)

d[V a]

dt
= k26[IIa][V a] + k27[Xa = V a]

−k28[Xa][V a], (34)

d[Xa = V a]

dt
= −k27[Xa = V a] + k28[Xa][V a]

+k29[Xa = V a = II] − k30[Xa = V a][II]

+k31[Xa = V a = II], (35)

d[II]

dt
= −k16[Xa][II] + k29[Xa = V a = II]

−k30[Xa = V a][II], (36)

d[Xa = V a = II]

dt
= −k29[Xa = V a = II] + k30[Xa = V a][II]

−k31[Xa = V a = II], (37)

d[mIIa]

dt
= k31[Xa = V a = II] − k32[mIIa][Xa = V a]

−k39[mIIa][ATIII], (38)

d[TFPI]

dt
= k33[Xa = TFPI] − k34[Xa][TFPI]

+k35[TF = V IIa = Xa = TFPI]

−k36[TF = V IIa = Xa][TFPI], (39)

d[Xa = TFPI]

dt
= −k33[Xa = TFPI] + k34[Xa][TFPI]

−k37[TF = V IIa][Xa = TFPI], (40)

d[TF = V IIa = Xa = TFPI]

dt
= −k35[TF = V IIa = Xa = TFPI]

+k36[TF = V IIa = Xa][TFPI]

+k37[TF = V IIa][Xa = TFPI], (41)

d[ATIII]

dt
= −k38[Xa][ATIII] − k39[mIIa][ATIII] − k40[IXa][ATIII]

−k41[IIa][ATIII] − k42[TF = V IIa][ATIII], (42)
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d[Xa = ATIII]

dt
= k38[Xa][ATIII], (43)

d[mIIa = ATIII]

dt
= k39[mIIa][ATIII], (44)

d[IXa = ATIII]

dt
= k40[IXa][ATIII], (45)

d[IIa = ATIII]

dt
= k41[IIa][ATIII], (46)

d[TF = V IIa = ATIII]

dt
= k42[TF = V IIa][ATIII], (47)

where the variables within the brackets indicate concentrations of protein species. The rate constants have

values found in the literature [1]. The above system, equations (14-47), can be written in the following form:

dy

dt
= C · g(y), (48)

where C is a constant matrix, y is a vector with

y =















[TF]

[VII]
...

[TF=VIIa=ATIII]















, (49)

and g(y) is a vector with

g(y) =















k1[TF = V II]

k2[TF ][V II]
...

k42[TF = V IIa][ATIII]















. (50)

The system of differential equations represented by equation (48) is not an independent system. The

system can be reduced by finding algebraic constraints that eliminate some of the differential equations. The

system represented by equation (48) is reduced by rearranging matrix C into row-echelon form through a

matrix decomposition. C is decomposed to get

C = L · P · Q · U, (51)

where L is a lower triangular matrix. A MATLAB program, written by the author, is used to perform

the decomposition. First C is decomposed via an LU decomposition into a lower and upper triangular

matrix, then the upper triangular matrix is decomposed into a pseudo-row-echelon matrix, U, and two other

matrices, P and Q. U is referred to as a pseudo-row-echelon matrix because it has all the characteristics

of a row-echelon matrix except the rows are not in the standard order. Equation (51) is substituted into

equation (48) and U · g(y) is solved for in the following way:

U · g(y) = Q−1 · P−1 · L−1 ·
dy

dt
. (52)

The equations with 0 for the left hand side are selected from equation (52). These are the algebraic constraints

of our system. An example of such an algebraic constraint is

0 = −
d[TF ]

dt
+

d[V II]

dt
+

d[V IIa]

dt
. (53)
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Equation (53) is integrated from the initial concentrations to the final concentrations of each species to get

0 = −[TF ] + [TF ]0 + [V II] − [V II]0 + [V IIa] − [V IIa]0, (54)

where the variables with the subscript 0 are the initial concentations of the proteins. The other 9 algebraic

constraints are similarly derived and the system of 10 algebraic equations are simplified with the MATHE-

MATICA software. These are the 10 simplified algebraic equations:

[V IIa] = −[TF ]0 + [V II]0 + [V IIa]0 + [TF ] − [V II], (55)

[V IIIa1 · L] = [V III]0 + [V IIIa]0 + [IXa = V IIIa]0

+[IXa = V IIIa = X]0 + [V IIIa1 · L]0 − [V III] − [V IIIa]

−[IXa = V IIIa] − [IXa = V IIIa = X], (56)

[V IIIa2] = [V III]0 + [V IIIa]0 + [IXa = V IIIa]0 + [IXa = V IIIa = X]0

+[V IIIa2]0 − [V III] − [V IIIa] − [IXa = V IIIa]

−[IXa = V IIIa = X], (57)

[Xa = V a = II] = [V ]0 + [V a]0 + [Xa = V a]0 + [Xa = V a = II]0 − [V ] − [V a]

−[Xa = V a], (58)

[TF = V IIa = Xa = TFPI] = [TFPI]0 + [Xa = TFPI]0 + [TF = V IIa = Xa = TFPI]0

−[TFPI] − [Xa = TFPI], (59)

[ATIII] = −2[TF = V IIa = V a]0 − [IX]0 − 2[TF = V IIa = IX]0

−[IXa = V IIIa]0 − 2[IXa = V IIIa = X]0 − [TF ]0 − [IXa]0

+2[V ]0 + 2[V a]0 + [Xa = V a]0 − [II]0 − [mIIa]0 + 2[TFPI]0

+[ATIII]0 − [TF = V II]0 − [TF = V IIa]0 − [Xa]0

−[IIa]0 − [X]0 − 2[TF = V IIa = X]0 + [Xa = TFPI]0 + [TF ]

+2[TF = V IIa = Xa] + [IX] + 2[TF = V IIa = IX] + [IXa]

−[Xa = V a] + [II] + [mIIa] − 2[TFPI] − [Xa = TFPI]

+[IXa = V IIIa] + 2[IXa = V IIIa = X] + [TF = V II]

+[TF = V IIa] + [Xa] + [IIa] + [X]

+2[TF = V IIa = X] − 2[V ] − 2[V a], (60)

[Xa = ATIII] = [TF = V IIa = Xa]0 + [IXa = V IIIa = X]0 − [V ]0 − [V a]0

−[TFPI]0 + [Xa = ATIII]0 + [Xa]0 + [X]0 + [TF = V IIa = X]0

−[TF = V IIa = Xa] − [IXa = V IIIa = X] + [V ] + [V a]

+[TFPI] − [Xa] − [X] − [TF = V IIa = X], (61)

[IXa = ATIII] = [IX]0 + [TF = V IIa = IX]0 + [IXa]0

+[IXa = V IIIa]0 + [IXa = V IIIa = X]0 + [IXa = ATIII]0

−[IX] − [TF = V IIa = IX] − [IXa] − [IXa = V IIIa]

−[IXa = V IIIa = X], (62)

[IIa = ATIII] = −[V ]0 − [V a]0 − [Xa = V a]0 + [II]0
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+[mIIa]0 + [mIIa = ATIII]0 + [IIa = ATIII]0 + [IIa]0 + [V ]

+[V a] + [Xa = V a] − [II] − [mIIa]

−[mIIa = ATIII] − [IIa], (63)

[TF = V IIa = ATIII] = [TF = V IIa = Xa]0 + [TF = V IIa = IX]0 + [TF ]0

−[TFPI]0 − 2[Xa = TFPI]0 + [TF = V IIa = ATIII]0

+[TF = V II]0 + [TF = V IIa]0 + [TF = V IIa = X]0

−[TF = V IIa = IX] + [TFPI] + 2[Xa = TFPI] − [TF = V II]

−[TF ] − [TF = V IIa = Xa]

−[TF = V IIa] − [TF = V IIa = X]. (64)

Out of the differential equations obtained, 10 were replaced with the algebraic constraints that have

matching species concentrations on the left hand side. These 34 differential algebraic equations are solved

numerically using MATHEMATICA and concentration versus time graphs for each species are generated. A

precision of 100 digits after the decimal point is required with the constants employed and a precision of 50

digits is required in the numerical solutions of the differential equations. These are chosen so that increasing

the precision does not affect the solution.

The equilibrium points of the system are obtained by setting the right hand side of the 24 differential

equations in the differential algebraic equation system equal to 0 and solving the system with the algebraic

constraints. A numerical root finder in MATHEMATICA is used to obtain the roots of the system. Because

we have a large, highly nonlinear system, we are unable to obtain all the roots using MATHEMATICA and

we are unable to find any unstable nodes. The only root we are able to find is the stable one corresponding

to the physical equilibrium since we use the species concentrations at large times as the initial guess for our

root solver.

4 Results

4.1 In Vivo Coagulation under Normal Conditions

Log-log plots of concentration versus time of some key species are included in this report for conditions

normally found in the body. Other plots are relegated to the Appendix. Unless otherwise noted, the initial

conditions used are ones found in the literature [1].

The thrombin concentration versus time graph is examined because thrombin is necessary to convert

fibrinogen into fibrin (Fig. 1a). The Xa concentration versus time graph is examined because Xa is responsible

for activating prothrombin to become thrombin (Fig. 1b). It can be seen that from an initial concentration

of 0, the amount of thrombin in the blood stream grows until it reaches its maximum around 300 seconds

and then practically returns to 0 by 10,000 seconds as antithrombin III and TFPI inhibit its production and

bind it. The Xa concentration increases as factor X is activated, but decreases and eventually reaches 0 as

it is bound by antithrombin III.

The concentration versus time graphs are also examined for antithrombin III and TFPI (Fig. 2a and

Fig. 2b). It can be observed that the antithrombin III concentration stays fairly constant near the initial

value until there is a drop around 300 seconds. This coincides with the decrease in thrombin concentration
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Fig. 1: Concentration as a function of time of (a) thrombin and (b) Xa.
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Fig. 2: Concentration as a function of time of (a) antithrombin III and (b) TFPI.

near 300 seconds, suggesting that thrombin production has started to be inhibited and thrombin has started

to be bound by antithrombin III. TFPI shows the same dip in concentration around 300 seconds, but over

large time-scales the concentration rises probably due to the reversible nature of the reactions involved.

Factor VIIa concentration versus time is examined since VIIa binding with TF is what starts the blood

coagulation cascade (Fig. 3a). As VIIa complexes with TF to form VIIa-TF, VIIa concentration decreases

initially. This decrease is by such a small amount that it cannot be demonstrated on the graph. However,

the VIIa concentration later increases and reaches a nonzero equilibrium value probably due to the reversible

nature of the chemical reactions.

The time-dependent concentration of complex VIIa-TF is graphed because this complex converts factor

X into Xa (Fig. 3b). The concentration of complex VIIa-TF increases as it is generated by the binding of

factors TF and VIIa. VIIa-TF is bound by ATIII leading to the decrease in VIIa-TF concentration at larger

times that eventually leads to a concentration that is near 0. The dynamics of VIIa-TF consumption and

production is complicated by several equilibrium expressions involving the binding of VIIa-TF with X, IX,

and Xa. The decrease and increase in concentration at intermediate times may be a result of the complex

interplay between the reactions that VIIa-TF is involved in.

The physically significant equilibrium values of all the species concentrations are obtained using the

method decribed in Section 3. These values correspond to the values obtained for concentrations at large
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Fig. 3: Concentration as a function of time of (a) VIIa and (b) VIIa-TF.

times. The equilibrium concentrations can be found in Table 2.

Table 2: Equilibrium concentrations of all the protein species

Species Concentration(M) Species Concentration(M)

[TF ] 0 [V II] 0

[TF = V II] 0 [V IIa] 1.0075·10−8

[TF = V IIa] 0 [Xa] 0

[IIa] 0 [X] 6.8197·10−11

[TF = V IIa = X] 0 [TF = V IIa = Xa] 0

[IX] 6.9963·10−8 [TF = V IIa = IX] 0

[V III] 0 [V IIIa] 1.7875·10−12

[IXa] 0 [IXa = V IIIa] 0

[IXa = V IIIa = IX] 0 [V IIIa1 · L] 6.9821·10−10

[V IIIa2] 6.9821·10−10 [V ] 1.0000·10−13

[V a] 1.9999·10−8 [Xa = V a] 0

[II] 0 [Xa = V a = II] 0

[mIIa] 0 [Xa = V a = II] 2.5000·10−9

[Xa = TFPI] 0 [TF = V IIa = Xa = TFPI] 0

[ATIII] 1.8200·10−6 [Xa = ATIII] 1.5993·10−7

[mIIa = ATIII] 8.2640·10−7 [IXa = ATIII] 2.0037·10−8

[IIa = ATIII] 5.7360·10−7 [TF = V IIa = ATIII] 2.5000·10−11

4.2 Varying Initial Conditions

Conditions that upset the balance in the proteins involved in coagulation may lead to various hemorrhagic

or thrombotic diseases [1]. These conditions can be simulated with our model by changing the initial

concentrations of certain protein species and looking at the change in thrombin production. This can give

valuable information for the treatment hemostatic disorders.

Hemophilia A is a coagulation disorder that results from factor VIII deficiency and leads to longer
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Fig. 4: Thrombin concentration as a function of time for (a) various VIII initial concentrations and (b) various IX

initial concentrations. For graph (a), the normal VIII initial concentration is 0.7 ·10−9 M (solid) and the hemophiliac

VIII initial concentrations are 0.07 · 10−9 M (– –), 0.03 · 10−9 M (– -), and 0.006 · 10−9 M (- -). For graph (b), the

normal IX initial concentration is 9 · 10−8 M (solid) and the hemophiliac IX initial concentrations are 4.5 · 10−8 M (–

–), and 1 · 10−8 M (– -).

clotting time. Having less than 1 % of the normal amount of VIII in the blood stream can lead to spontaneous

bleeding into joints and muscles, having 1-5 % of the normal amount of VIII in the blood stream can lead

to occasional bleeding into joints and muscles and severe bleeding after minor injury, and having 5-25 % of

the normal amount of VIII in the blood stream can lead to severe bleeding after major injury [9]. These 3

cases of hemophilia A are simulated with our mathematical model (Fig. 4a). It can be seen that decreasing

the amount of VIII initially in the blood stream results in a lower maximum amount of thrombin produced

and this maximum is reached at later times. Equilibrium is also reached at later times with lower initial

VIII concentration.

Hemophilia B is a coagulation disorder that results from factor IX deficiency and leads to longer

clotting time. Hemophilia B is simulated by decreasing the initial amount of IX in our mathematical model

and looking at the thrombin concentration in the blood stream (Fig. 4b). It can be seen that decreasing

the amount of IX initially in the blood stream results in a lower maximum amount of thrombin produced

and this maximum is reached at later times. Equilibrium is also reached at later times with lower initial IX

concentration.

It could be expected that factor VII would promote thrombin production because it is activated in the

coagulation cascade to become VIIa. However, VII also takes part in the competition for TF with VIIa. It

has been experimentally observed that factor VII inhibits thrombin production, proving that the competition

for TF dominates VII activation [2]. The effect of the initial concentration of VII in the blood stream on

thrombin production is examined with our model (Fig. 5a). It can be seen that as the initial concentration of

VII increases the maximum amount of thrombin in the blood stream decreases and this maximum occurs at

later times. Equilibrium is also reached later with increased VII concentration. This suggests that addition

of factor VII in the blood stream would not be an effective treatment for hemophilia.

The effect of VIIa initial concentration on the thrombin concentration in the blood stream is examined

(Fig. 5b). It is found that increasing VIIa initial concentration increases the maximum amount of thrombin

in the blood stream and this maximum is found at earlier times. Equilibrium is also found at earlier times
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Fig. 5: Thrombin concentration as a function of time for (a) various VII initial concentrations and (b) various VIIa

initial concentrations. For graph (a), the VII initial concentration are 1 · 10−8 M (solid), 2.5 · 10−8 M (– –), and

3.5 · 10−8 M (– -). For graph (b), the VIIa initial concentrations are 1 · 10−10 M (solid), 1.5 · 10−10 M (– –), and

2 · 10−8 M (– -).
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Fig. 6: Treatment with VIIa of (a) hemophilia A and (b) hemophilia B. For graph (a), we graph thrombin concen-

tration versus time for a healthy person (solid), for a hemophiliac with 0.07 · 10−9 M VIII concentration (- -), and

for a hemophiliac with 0.07 · 10−9 M VIII concentration with VIIa levels raised to 2.5 · 10−10 M (– -). For graph (b),

we graph thrombin concentration versus time for a healthy person (solid), for a hemophiliac with 4.5 · 10−8 M IX

concentration (- -), and for a hemophiliac with 4.5 · 10−8 M VIII concentration with VIIa levels raised to 1.4 · 10−10

M (– -).

with increased VIIa initial concentration. Patients suffering from hemophilia with factor VIII or IX inhibitors

are given factor VIIa (Novoseven) as treatment [10]. Our mathematical model validates the treatment of

hemophilia with VIIa.

The treatment of hemophilia A and B with factor VIIa is simulated (Fig. 6a and Fig. 6b). While it is

possible to achieve the same lag phase of thrombin generation in hemophiliacs as for healthy people by the

addition of VIIa, it is not possible to achieve both the same lag phase and the same maximum thrombin

concentration. When the same lag phase is achieved, the maximum thrombin concentration remains lower

in hemophiliacs treated with VIIa then in healthy people. This shows that VIIa therapy is less effective than

the replacement of VIII or IX and should only be used in patients with VIII or IX inhibitors.

Antithrombin III deficiency is a condition that can lead to thrombosis [1]. This condition is simulated
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Fig. 7: Thrombin concentration as a function of time for (a) various antithrombin III initial concentrations and (b)

various TFPI initial concentrations. For graph (a), the normal antithrombin III initial concentration is 3.4 · 10−6 M

(solid) and the deficient antithrombin III initial concentrations are 1 · 10−6 M (– –), and 0 M (– -). For graph (b),

the normal TFPI initial concentration is 2.5 ·10−9 M (solid) and the deficient TFPI initial concentrations are 1 ·10−9

M (– -), and 0 M (- -).

with our model by decreasing the initial concentration of antithrombin III and graphing the time depen-

dent thrombin concentration (Fig. 7a). TFPI deficiency is also simulated by decreasing the initial TFPI

concentration (Fig. 7b). Decreasing the initial antithrombin III concentration leads to a higher maximum

thrombin concentration and a higher equilibrium thrombin concentration. Decreasing the initial TFPI con-

centration leads to a higher maximum thrombin concentration and this maximum is achieved at earlier times.

Equilibrium is also achieved earlier with lower TFPI initial concentration.

4.3 Invariant Low-Dimensional Manifolds and Time-Scales

The existence of an attracting invariant one-dimensional manifold is suggested by several projections of the

phase space for the coagulation cascade (Fig. 8a and Fig. 8b). Several trajectories follow the same curve as

they approach equilibrium.
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Fig. 8: (a) VII versus tissue factor concentration. (b) TFPI versus antithrombin III concentration.

The usefulness of using a one-dimensional manifold to simplify the system can be assessed by looking
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at the separation of time-scales that characterize the system. One-dimensional manifolds are a useful sim-

plification of the system if the longest time-scale is significantly larger than the other time-scales. This leads

to all the time-scales, besides the longest one, having equilibrated for most of the reaction time. In order

to assess the usefulness of using a one-dimensional manifold to simplify the blood coagulation model, the

time-scales at equilibrium and also over the extent of the reaction time are determined. Near equilibrium,

the time-scales are

τ = {17736.8073, 11244.5905, 2375.5664, 2353.4060, 1125.2483,

322.5807, 166.2005, 165.8176, 77.3871, 77.3871, 4.2669,

0.2041, 0.1418, 0.1219, 0.1218, 0.050507, 0.006006} sec. (65)

Only 17 time scales are given since the other 7 time scales are infinite. The infinite time-scales indicate that

the linearized equations in the form of equation (5) are not an independent set and can be simplified to

obtain 7 algebraic constraints. These 7 algebraic constraints indicate species conservation near equilibrium.

The time-scales from the start of the reaction to 40000 seconds are examined (Fig. 9). It can be seen

that between 4000 and 40000 seconds, there is at least a factor of 4 difference between the longest and second

longest time-scale, suggesting that there is a large domain where only the largest time-scale dominates. The

second longest time-scale does not influence the system dynamics between 4000 and 40000 seconds because

it does not rise above 4000 seconds in this domain. Therefore, it is possible that the trajectories of the

system leading to the same equilibrium follow an invariant one-dimensional manifold in this domain. It

can also be seen from equation (65) that near equilibrium the two longest time-scales are close to each

other in size (less than a factor of 2 difference). This would indicate that the one-dimensional manifold

is not a useful simplification of the system near equilibrium since two time-scales exert about an equal

influence in this domain. However, while the time-scales still change at 40000 seconds, the concentrations

are near equilbrium at this point and the one-dimensional manifold contains all the information needed to

approximate the system after 4000 seconds.

0.1 10 1000
time!s"0.001

0.1

10

1000

time!scale!s"

Fig. 9: Time-scales of the coagulation cascade as a function of time.

In order to verify that an attracting invariant one-dimensional manifold exists, the eigenvalues, λi, have

to be examined in the time domain where the manifold is thought to influence the system dynamics. It

is confirmed that all the eigenvalues are either negative or 0 after 1000 seconds, and hence an attracting

invariant one-dimensional manifold exists. Negative eigenvalues indicate that moving away from the manifold
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in any direction yields a fast relaxation back to the manifold.

The physical significance of the divergence is the rate at which density exits a given region of space. A

negative divergence would indicate that density is accumulated in our system, which is consistent with the

conclusion that as time increases, the trajectories collapse onto a one-dimensional path. The divergence of

the system,

div f = ∇ · f , (66)

is calculated for the extent of the reaction time (Fig. 10). It can be seen from equation (4) that the trace of

the Jacobian is the divergence of the system. The divergence can be found by adding the eigenvalues of the

Jacobian since the trace of a square matrix is equal to the sum of its eigenvalues. It can be seen that the

divergence is negative for the whole reaction time. This implies that the reaction space is contracting as the

reaction proceeds, which is consistent with the trajectories collapsing onto a one-dimensional path.
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Fig. 10: The sum of the eigenvalues of the coagulation cascade as a function of time.

5 Conclusions and Future Work

The mathematical model proposed by Hockin et al. for coagulation is re-derived using the law of mass action.

This mathematical model is used to obtain the time-dependent concentrations of the protein species involved

in coagulation. Various hemostatic disorders are modeled and treatments simulated by changing the initial

conditions of the system. Hemophilia A and B and AT-III and TFPI deficiency are at minimum succesfully

modeled qualitatively. The inhibitory effects on thrombin production of increasing VII initial concentration

is shown and the treatment of hemorrhagic disorders with factor VIIa is validated. The existence of an

attracting one-dimensional manifold that provides a useful approximation of the system after 4000 seconds

is suggested by projections of the phase space and time-scale and eigenvalue analysis.

A useful extension of this work would be to integrate between the stable and unstable equilibria of

the system to find one-dimensional manifolds. This would require the use of tools that could find all the

roots of our system. Alternatively, the ILDM method could also be used to find the attracting invariant

one-dimensional manifold of the system [8]. Other possible future study could involve the study of the effect

of changing the initial conditions on the equilibrium of the system and the study of the sensitivity of the

equilibrium to such changes.
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