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Introduction

Motivation and background

e Combustion is often unsteady and spatially inhomogeneous.
e Most realistic reactive flow systems have multi-scale character.

e Severe stiffness, temporal and spatial, arises in detailed gas-

phase kinetics modeling.

e As the scales’ range widens, more stringent demands arise to

assure the accuracy of the results.

e Proper numerical resolution of all scales is critical to draw correct

conclusions and achieve a mathematically verified solution.




e Segregation of chemical dynamics from transport dynamics is a

prevalent notion in combustion modeling, e.g. operator splitting.

e However, reaction, advection, and diffusion scales are coupled in

reactive flows.

e The Iinterplay between chemistry and transport needs to be

captured for accurate modeling.

e Spectral analysis is a tool to understand the coupling between

transport and chemistry.

e All relevant scales have to be brought into simultaneous focus a
priori for DNS.




General objective

To identify the scales associated with each Fourier mode of a variety

of wavelengths for unsteady spatially inhomogenous reactive flow

problems.

Particular objective

To calculate the time scale spectrum of a one-dimensional atmo-

spheric pressure hydrogen-air system.




Model problem |

A linear one species model for reaction, advection, and diffusion:
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Time scale spectrum

For the spatially homogenous version: ¥ (t) = ¢, exp (—at),
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Length scale spectrum

® The steady structure:
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e For fast reaction (a >> u*/D):
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Spatio-temporal spectrum

1) continuous spectrum:
iku
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e long wavelength: lim 7 = lim 7=
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e® Balance between reaction and diffusion at k£ = 27” —

e Using Taylor expansion:
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Similarto Hy — air : 7 ~ 1/a = 10"% s, D = 10 cm?/s,

=/ =32x10"cm.




2) Spatially discretized spectrum: ¥ (x,t) — 1;(t),
e Original boundary conditions:

A-%zB-@b = (LA —B)-v=0.

e Dirichlet boundary condition modification:
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Effects of advection and diffusion: 7, ~ 1 (1 D
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Model problem Il

An uncoupled reaction-diffusion system with chemical stiffness:
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Time scale spectrum

For the spatially homogenous version:  ;(t) = ¥, exp (—a;t)
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Length scale spectrum

® The steady structure: ;s(z) =

D
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Spatio-temporal spectrum

1) Continuous spectrum:
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2) Discrete spectrum:
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3) Spatially discretized spectrum:

o fora; = 10% s,a9 = 10%2 5, D = 10 em?/s, and L = 10 cm,
e modified wavelength: A = 4L/(2n — 1),
e associated length scale: ¢ = \/(27) = (= ﬁ

e prediction from length scale spectrum: ¢; = \/D/ay,
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0 Analytical

e Numerical | |

/1 = 3.16 x 102 cm
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Laminar Premixed Hydrogen—Air Flame

e NV = 9 species, L = 3 atomic elements, and J = 19 reversible

reactions,
e Y, = stoichiometric Hydrogen-Air: 2H5 + (Oy + 3.76 Ny),
o [, = 800 K,
e p, = 1 atm,
e neglect Soret effect, Dufour effect, and body forces,

e CHEMKIN and IMSL are employed.




TIme evolution of the spatially homogenous version




Time scale spectrum

® St ~ O (104) ,
o At < Trostest = 1.03 x 1075 s,
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Fully resolved steady structure
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2Al-Khateeb, Powers, and Paolucci, Communications in Computational Physics, to appear.




Length scale spectrum

S, ~ O (10%),
0 Ax < lpipest = 2.41 X 10~ em,




Spatio-temporal spectrum

e PDEs — 2/N + 2 PDAEs,
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A(z) B(z) = f(z).

o=

e Spatially homogeneous system at chemical equilibrium subjected
to a spatially inhomogeneous perturbation, z’ = z — z°,
0z 0z
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e Spatially discretized spectrum,

dZ
= o (J -8B Z
=T -8B Z,

A° and (J¢ — B°) are singular matrices.
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® L =1cmand D,,;, = 64 cm?/s,
e modified wavelength: A= AL/(2n — 1),
e associated length scale: ¢ = \/(27) = (=
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® (finest = 2.4 X 10~% em,
o/ = \/DmmTfastest = 8.0 x 10~% em,
® gs — \/Dmi:cTslowest = 1.1 X 10_1 cm,
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Summary

e Time and length scales are coupled.

e Short wavelength modes are dominated by diffusion, and coarse

wavelength modes have time scales dominated by reaction.

e For a resolved diffusive structure, Fourier modes of sufficiently
fine wavelength must be considered so that their associated time

scale is of similar magnitude to the fastest chemical time scale.

e Forap = 1 atm, Hy+aur laminar flame, the length scale where
fast reaction balances diffusion is ~ 2 pm; the associated fast
time scale is ~ 10 ns.




