Analysis of Reaction-Advection-Diffusion Spectrum of Laminar Premixed Flames

Ashraf N. Al-Khateeb Joseph M. Powers
Department of Aerospace and Mechanical Engineering University of Notre Dame, Notre Dame, Indiana
$48^{\text {th }}$ AIAA Aerospace Science Meeting Orlando, Florida
6 January 2010

SEE AISO: Diffusion Coefficient, Diffusion Equation, Eddy Diffusion, Effusion, Graham's Law of

Diffusion length vs. reaction time: $\ell=\sqrt{D \tau}$

Outline

- Introduction
- Simple one species reaction-advection-diffusion problem.
- Simple two species reaction-diffusion problem.
- Laminar premixed hydrogen-air flame.
- Summary

Introduction

Motivation and background

- Combustion is often unsteady and spatially inhomogeneous.
- Most realistic reactive flow systems have multi-scale character.
- Severe stiffness, temporal and spatial, arises in detailed gasphase kinetics modeling.
- As the scales' range widens, more stringent demands arise to assure the accuracy of the results.
- Proper numerical resolution of all scales is critical to draw correct conclusions and achieve a mathematically verified solution.
- Segregation of chemical dynamics from transport dynamics is a prevalent notion in combustion modeling, e.g. operator splitting.
- However, reaction, advection, and diffusion scales are coupled in reactive flows.
- The interplay between chemistry and transport needs to be captured for accurate modeling.
- Spectral analysis is a tool to understand the coupling between transport and chemistry.
- All relevant scales have to be brought into simultaneous focus a priori for DNS.

General objective

To identify the scales associated with each Fourier mode of a variety of wavelengths for unsteady spatially inhomogenous reactive flow problems.

Particular objective

To calculate the time scale spectrum of a one-dimensional atmospheric pressure hydrogen-air system.

Model problem I

A linear one species model for reaction, advection, and diffusion:

$$
\begin{aligned}
& \frac{\partial \psi(x, t)}{\partial t}+u \frac{\partial \psi(x, t)}{\partial x}=D \frac{\partial^{2} \psi(x, t)}{\partial x^{2}}-a \psi(x, t) \\
& \psi(0, t)=\psi_{u},\left.\quad \frac{\partial \psi}{\partial x}\right|_{x=L}=0, \quad \psi(x, 0)=\psi_{u}
\end{aligned}
$$

Time scale spectrum

For the spatially homogenous version: $\quad \psi(t)=\psi_{u} \exp (-a t)$,

$$
\tau=\frac{1}{a} \Rightarrow \Delta t<\frac{1}{a} .
$$

Length scale spectrum

- The steady structure:

$$
\begin{gathered}
\psi_{s}(x)=\psi_{u}\left(\frac{\exp \left(\mu_{1} x\right)-\exp \left(\mu_{2} x\right)}{1-\frac{\mu_{1}}{\mu_{2}} \exp \left(L\left(\mu_{1}-\mu_{2}\right)\right)}+\exp \left(\mu_{2} x\right)\right), \\
\mu_{1}=\frac{u}{2 D}\left(1+\sqrt{1+\frac{4 a D}{u^{2}}}\right), \quad \mu_{2}=\frac{u}{2 D}\left(1-\sqrt{1+\frac{4 a D}{u^{2}}}\right), \\
\ell_{i}=\left|\frac{1}{\mu_{i}}\right| .
\end{gathered}
$$

- For fast reaction $\left(a \gg u^{2} / D\right)$:

$$
\ell_{1}=\ell_{2}=\sqrt{\frac{D}{a}} \Rightarrow \Delta x<\sqrt{\frac{D}{a}} .
$$

Spatio-temporal spectrum

1) continuous spectrum:

$$
\psi(x, t)=\Psi(t) e^{\mathbf{i} k x} \Rightarrow \Psi(t)=C \exp \left(-a\left(1+\frac{\mathbf{i} k u}{a}+\frac{D k^{2}}{a}\right) t\right)
$$

- long wavelength: $\lim _{k \rightarrow 0} \tau=\lim _{\lambda \rightarrow \infty} \tau=\frac{1}{a}$,
- short wavelength: $\left.\lim _{k \rightarrow \infty} \tau=\lim _{\lambda \rightarrow 0} \tau=\frac{\lambda^{2}}{4 \pi^{2}} \frac{1}{D},\right\} \quad \mathcal{S}_{t}=\left(\frac{2 \pi}{\lambda} \sqrt{\frac{D}{a}}\right)^{2}$.
- Balance between reaction and diffusion at $k \equiv \frac{2 \pi}{\lambda}=\sqrt{\frac{a}{D}}=1 / \ell$,
- Using Taylor expansion:

$$
|\tau|=\frac{1}{a}\left(1-\frac{D}{a\left(\frac{\lambda}{2 \pi}\right)^{2}}-\frac{u^{2}}{2 a^{2}\left(\frac{\lambda}{2 \pi}\right)^{2}}\right)+\mathcal{O}\left(\frac{1}{\lambda^{4}}\right) .
$$

- Similar to H_{2} - air : $\tau \sim 1 / a=10^{-8} s, D=10 \mathrm{~cm}^{2} / \mathrm{s}$,
- $\ell=\sqrt{\frac{D}{a}}=3.2 \times 10^{-4} \mathrm{~cm}$.

2) Spatially discretized spectrum: $\psi(x, t) \rightarrow \psi_{i}(t), \quad i=1, \ldots, \mathcal{N}$.

- Original boundary conditions:

$$
\mathbf{A} \cdot \frac{d \boldsymbol{\psi}}{d t}=\mathbf{B} \cdot \boldsymbol{\psi} \Rightarrow(\mu \mathbf{A}-\mathbf{B}) \cdot \boldsymbol{v}=\mathbf{0}
$$

- Dirichlet boundary condition modification:

$$
\left.\tau_{j}=\frac{1}{a+\frac{2 D(\mathcal{N}+1)^{2}}{L^{2}}\left(1-\sqrt{1-\frac{u^{2} L^{2}}{4 D^{2}(\mathcal{N}+1)^{2}}}\right.} \cos \left(\frac{j \pi}{\mathcal{N}-1}\right)\right), j=1, \ldots, \mathcal{N}-2,
$$

Effects of advection and diffusion: $\tau_{1} \sim \frac{1}{a}\left(1-\frac{D}{a(L / \pi)^{2}}-\frac{1}{4} \frac{u^{2}}{a D}\right)$,
For small $\mathcal{N}: \lim _{\Delta x \rightarrow \infty} \tau_{j} \rightarrow 1 / a$,
For large $\left.\mathcal{N}: \lim _{\Delta x \rightarrow 0} \tau_{j} \rightarrow \frac{L^{2}}{\left(4 D(\mathcal{N}+1)^{2}\right)},\right\} \mathcal{S}_{t}=\left(\frac{2(\mathcal{N}+1)}{L} \sqrt{\frac{D}{a}}\right)^{2}$.

Model problem II

An uncoupled reaction-diffusion system with chemical stiffness:

$$
\begin{gathered}
\frac{\partial \psi_{i}(x, t)}{\partial t}=D \frac{\partial^{2} \psi_{i}(x, t)}{\partial x^{2}}-a_{i} \psi_{i}(x, t), \\
\psi_{i}(0, t)=\psi_{i u}, \quad \frac{\partial \psi_{i}}{\partial x}(L, t)=0, \quad \psi_{i}(x, 0)=\psi_{i u} .
\end{gathered}
$$

Time scale spectrum
For the spatially homogenous version: $\quad \psi_{i}(t)=\psi_{i u} \exp \left(-a_{i} t\right)$,

$$
\tau_{i}=\frac{1}{a_{i}} \Rightarrow \mathcal{S}_{t}=\frac{a_{\text {largest }}}{a_{\text {smallest }}} \Rightarrow \Delta t<\frac{1}{a_{\text {largest }}} .
$$

Length scale spectrum

- The steady structure: $\psi_{i s}(x)=\frac{\psi_{i u}}{\cosh \left(L / \sqrt{\frac{D}{a_{i}}}\right)} \cosh \left(\frac{L-x}{\sqrt{\frac{D}{a_{i}}}}\right)$,

$$
\ell_{i}=\sqrt{\frac{D}{a_{i}}} \Rightarrow \mathcal{S}_{t}=\sqrt{\frac{a_{\text {largest }}}{a_{\text {smallest }}}}, \Delta x<\sqrt{\frac{D}{a_{\text {largest }}}}
$$

Spatio-temporal spectrum

1) Continuous spectrum:

$$
\psi_{i}(x, t)=\Psi_{i}(t) e^{\mathbf{i} k x} \Rightarrow \Psi_{i}(t)=C \exp \left(-a_{i}\left(1+\frac{D k^{2}}{a_{i}}\right) t\right)
$$

2) Discrete spectrum:

$$
\psi_{i}=\psi_{i s}+\sum_{\kappa=1}^{\infty} A_{\kappa} \exp \left(-a_{i}\left[1+\left(\frac{(2 \kappa-1) \pi}{2 L} \sqrt{\frac{D}{a_{i}}}\right)^{2}\right] t\right) \sin \left(\frac{(2 \kappa-1) \pi}{2 L} x\right) .
$$

3) Spatially discretized spectrum:

- for $a_{1}=10^{4} \mathrm{~s}, a_{2}=10^{2} \mathrm{~s}, D=10 \mathrm{~cm}^{2} / \mathrm{s}$, and $L=10 \mathrm{~cm}$,
- modified wavelength: $\widehat{\lambda}=4 L /(2 \mathfrak{n}-1)$,
- associated length scale: $\ell=\widehat{\lambda} /(2 \pi) \Rightarrow \ell=\frac{2 L}{(2 n-1) \pi}$,
- prediction from length scale spectrum: $\ell_{i}=\sqrt{D / a_{i}}$,

- Prediction from length scale spectrum: $\ell_{i}=\sqrt{D / a_{i}}$,

Laminar Premixed Hydrogen-Air Flame

- $N=9$ species, $\mathrm{L}=3$ atomic elements, and $J=19$ reversible reactions,
- $Y_{u}=$ stoichiometric Hydrogen-Air: $2 \mathrm{H}_{2}+\left(\mathrm{O}_{2}+3.76 \mathrm{~N}_{2}\right)$,
- $T_{u}=800 K$,
- $p_{o}=1 \mathrm{~atm}$,
- neglect Soret effect, Dufour effect, and body forces,
- CHEMKIN and IMSL are employed.

Tlme evolution of the spatially homogenous version

Time scale spectrum

- $\mathcal{S}_{t} \sim \mathcal{O}\left(10^{4}\right)$,
- $\Delta t<\tau_{\text {fastest }}=1.03 \times 10^{-8} \mathrm{~s}$,

Fully resolved steady structure ${ }^{\text {a }}$

[^0]
Length scale spectrum

- $\mathcal{S}_{x} \sim \mathcal{O}\left(10^{4}\right)$,
- $\Delta x<\ell_{\text {finest }}=2.41 \times 10^{-4} \mathrm{~cm}$,

Spatio-temporal spectrum

- PDEs $\longrightarrow 2 N+2$ PDAEs,

$$
\mathbf{A}(\mathbf{z}) \cdot \frac{\partial \mathbf{z}}{\partial t}+\mathbf{B}(\mathbf{z}) \cdot \frac{\partial \mathbf{z}}{\partial x}=\mathbf{f}(\mathbf{z}) .
$$

- Spatially homogeneous system at chemical equilibrium subjected to a spatially inhomogeneous perturbation, $\mathbf{z}^{\prime}=\mathbf{z}-\mathbf{z}^{e}$,

$$
\mathbf{A}^{e} \cdot \frac{\partial \mathbf{z}^{\prime}}{\partial t}+\mathbf{B}^{e} \cdot \frac{\partial \mathbf{z}^{\prime}}{\partial x}=\mathbf{J}^{e} \cdot \mathbf{z}^{\prime}
$$

- Spatially discretized spectrum,

$$
\mathcal{A}^{e} \cdot \frac{d \mathcal{Z}}{d t}=\left(\mathcal{J}^{e}-\mathcal{B}^{e}\right) \cdot \mathcal{Z}
$$

\mathcal{A}^{e} and $\left(\mathcal{J}^{e}-\mathcal{B}^{e}\right)$ are singular matrices.

- $L=1 \mathrm{~cm}$ and $D_{\text {mix }}=64 \mathrm{~cm}^{2} / \mathrm{s}$,
- modified wavelength: $\widehat{\lambda}=4 L /(2 \mathfrak{n}-1)$,
- associated length scale: $\ell=\widehat{\lambda} /(2 \pi) \Rightarrow \ell=\frac{2 L}{(2 \mathrm{n}-1) \pi}$,

- $\ell_{\text {finest }}=2.4 \times 10^{-4} \mathrm{~cm}$,
- $\ell_{f}=\sqrt{D_{m i x} \tau_{\text {fastest }}}=8.0 \times 10^{-4} \mathrm{~cm}$,
- $\ell_{s}=\sqrt{D_{\text {mix }} \tau_{\text {slowest }}}=1.1 \times 10^{-1} \mathrm{~cm}$,

Summary

- Time and length scales are coupled.
- Short wavelength modes are dominated by diffusion, and coarse wavelength modes have time scales dominated by reaction.
- For a resolved diffusive structure, Fourier modes of sufficiently fine wavelength must be considered so that their associated time scale is of similar magnitude to the fastest chemical time scale.
- For a $p=1 \mathrm{~atm}, H_{2}+$ air laminar flame, the length scale where fast reaction balances diffusion is $\sim 2 \mu \mathrm{~m}$; the associated fast time scale is $\sim 10 \mathrm{~ns}$.

[^0]: ${ }^{\text {a }}$ Al-Khateeb, Powers, and Paolucci, Communications in Computational Physics, to appear.

