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Motivation and Background

Reactive systems induce a
wide range of spatial and
temporal scales, and
subsequently severe stiffness

DNS resolves all ranges of
continuum physical scales
present

Under-resolved simulations
account for missed physical
phenomena with modeling

Fully resolved simulations are
expensive to compute

Direct numerical
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“Research needs for future internal combustion
engines,” Physics Today, Nov. 2008, pp 47-52.
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Motivation and Background

Manifold methods provide
potential savings

Most methods are for spatially
homogeneous systems

We employ the SIM model of
Al-Khateeb, et al.
(2009, Journal of Chemical Physics)
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We adjust for the dynamics of
diffusion in the presence of
weak spatial heterogeneity

This is valid when diffusion is
fast relative to reaction, i.e.
thin regions of flames
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Evolution Equations

Reduce the reactive Navier-Stokes equations

Negligible advection

Isothermal, isochoric

Arrhenius reaction kinetics

Fick’s law of mass diffusion with
single constant diffusivity

Ideal mixture of ideal gases

Homogeneous Neumann boundary
conditions

Element conservation

Evolution of species
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Galerkin Reduction to ODEs

Assume a spectral decomposition of the reduced variables

zi(x, t) =

∞
∑

m=0

zi,m(t)φm(x)

Basis functions, φm(x), chosen as orthogonal eigenfunctions of
diffusive operator that match boundary conditions

φm(x) = cos
(mπx

ℓ

)

Finite system of ODEs for amplitude evolution are recovered by
taking the inner product with φn, and truncated at M

dzi,m

dt
=

〈φm, ω̇i (
∑

∞

m=0 zi,nφn)〉

〈φm, φm〉
−

π2m2D

ℓ2
zi,m
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Oxygen Dissociation

O + O + M ⇌ O2 + M

N = 2 species

J = 1 reactions

L = 1 constraints

N − L = 1 reduced variables
z = zO

Isochoric,
ρ = 1.6 × 10−4 g/cm3

Isothermal, T = 5000 K

Spatially homogeneous evolution equation

dz

dt
= 249.84130 − 74734.78 z2 − 172406.48 z3
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Galerkin Projection

One spatial mode (M = 1) evolution equation

dz0

dt
= 249.84130 − 74734.78

(
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− 172406.48
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dz1

dt
= −74734.78 (2z0z1) − 172406.48

(
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)

−
π2D

ℓ2
z1

Spatially homogeneous
evolution when z1 = 0

Equilibria from spatially
homogeneous retained

Eigenvalues about these
equilibria are modified

λ1 = λ0 −
π2D

ℓ2
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Bifurcation

Change in sign of modified eigenvalue, λ1 = λ0 −
π2D

ℓ2
, identifies a

critical length where SIM start point changes character

Bifurcation occurs at R2

equilibrium

π2D

ℓ2
= λ0 = 7321.5 s−1

ℓ = 1.04 mm

Diffusion corrected SIM start
point shifts to bifurcated
branches
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Locus of roots near R2

Bold branches are saddles, dashed branch is source
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Poincaré Sphere

Map variables into a space where infinity is on the unit circle

η0 =
αz0

√

1 + α2z2
0 + α2z2

1

η1 =
αz1

√

1 + α2z2
0 + α2z2

1

Graphically displays dynamics of entire system
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Poincaré Sphere

Map variables into a space where infinity is on the unit circle

η0 =
αz0

√

1 + α2z2
0 + α2z2

1

η1 =
αz1

√

1 + α2z2
0 + α2z2

1

Graphically displays dynamics of entire system

ℓ = 0.334 mm

-1.0 -0.5 0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0

SIM

η0

η1

3rd IWMRRF – Corfu, Greece Diffusion Correction to SIM 27 April 2011 10 / 17



Poincaré Sphere

Map variables into a space where infinity is on the unit circle

η0 =
αz0

√

1 + α2z2
0 + α2z2

1

η1 =
αz1

√

1 + α2z2
0 + α2z2

1

Graphically displays dynamics of entire system

ℓ = 1.05 mm

-1.0 -0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

SIM

η0

η1

3rd IWMRRF – Corfu, Greece Diffusion Correction to SIM 27 April 2011 10 / 17



Poincaré Sphere
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Zel’dovich Mechanism

N + NO ⇌ N2 + O

N + O2 ⇌ NO + O

N = 5 species

J = 2 reactions

L = 3 constraints

N − L = 2 reduced variables
z1 = zNO, z2 = zN

Isochoric, ρ = 1.2002 g/cm3

Isothermal, T = 4000 K

Bimolecular, isobaric,
P = 1.6629 × 106 dyne/cm2 =
1.64 atm

Spatially homogeneous evolution equations – second order polynomials.

dz1

dt
= 250 − 9.97×104z1 + 1.16×107z2 − 3.22×109z1z2 + 6.99×108z2

2

dz2

dt
= 250 + 8.47×104z1 − 1.17×107z2 − 1.84×109z1z2 − 6.98×108z2

2
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Spatially Homogeneous Isothermal Phase Space

Identify equilibria

Characterize equilibria
by eigenvalues of their
Jacobian matrix

Classify time scales as
fast and slow

Identify SIM as a
heteroclinic orbit from
saddle to sink
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Spatially Homogeneous Isothermal Phase Space
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Galerkin Projection

First diffusion mode adds
modified time scale

Positive eigenvalue identifies
critical length scale
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Bifurcation occurs at this
length scale

Let us examine a length below
this critical length scale,
ℓ = 17 µm
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Diffusion Correction Isothermal Phase Space
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Diffusion Correction Isothermal Evolution
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Two additional fast time scales from diffusion

Spatially inhomogeneous amplitudes decay earlier than either
reaction time scale
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Conclusions

The SIM isolates the slowest dynamics, making it ideal for a
reduction technique

A critical length scale has been identified where a bifurcation
occurs that affects the slow dynamics of the system

For sufficiently short length scales, diffusion time scales are faster
than reaction time scales, and the system dynamics are dominated
by reaction

When lengths are near or above the critical length, diffusion will
play a more important role

3rd IWMRRF – Corfu, Greece Diffusion Correction to SIM 27 April 2011 16 / 17



Acknowledgments

Partial support provided by NSF Grant No. CBET-0650843 and

Notre Dame ACMS Department Fellowship

3rd IWMRRF – Corfu, Greece Diffusion Correction to SIM 27 April 2011 17 / 17


	Outline
	Motivation and background
	Model
	Results
	Oxygen Dissociation
	Zel'dovich Mechanism

	Conclusions

