Diffusion correction to slow invariant manifolds in a short length scale limit

Joshua D. Mengers
Joseph M. Powers

Department of Aerospace and Mechanical Engineering University of Notre Dame, USA

Third International Workshop on
Model Reduction in Reacting Flows

Corfu, Greece
27 April 2011

Outline

(1) Motivation and background
(2) Model
(3) Results

- Oxygen Dissociation
- Zel'dovich Mechanism

(4) Conclusions

Motivation and Background

- Reactive systems induce a wide range of spatial and temporal scales, and subsequently severe stiffness
- DNS resolves all ranges of continuum physical scales present
- Under-resolved simulations account for missed physical phenomena with modeling
- Fully resolved simulations are expensive to compute

"Research needs for future internal combustion engines," Physics Today, Nov. 2008, pp 47-52.

Motivation and Background

- Manifold methods provide potential savings
- Most methods are for spatially homogeneous systems
- We employ the SIM model of Al-Khateeb, et al.
(2009, Journal of Chemical Physics)

- We adjust for the dynamics of diffusion in the presence of weak spatial heterogeneity
- This is valid when diffusion is fast relative to reaction, i.e. thin regions of flames

Evolution Equations

Reduce the reactive Navier-Stokes equations

- Negligible advection
- Isothermal, isochoric
- Arrhenius reaction kinetics
- Fick's law of mass diffusion with single constant diffusivity
- Ideal mixture of ideal gases
- Homogeneous Neumann boundary conditions
- Evolution of species

$$
\frac{\partial z_{i}}{\partial t}=\frac{\dot{\omega}\left(z_{n}\right)}{\rho}+\mathcal{D} \frac{\partial^{2} z_{i}}{\partial x^{2}}
$$

- Boundary conditions

$$
\left.\frac{\partial z_{i}}{\partial x}\right|_{x=0}=\left.\frac{\partial z_{i}}{\partial x}\right|_{x=\ell}=0
$$

- Element conservation

Galerkin Reduction to ODEs

- Assume a spectral decomposition of the reduced variables

$$
z_{i}(x, t)=\sum_{m=0}^{\infty} z_{i, m}(t) \phi_{m}(x)
$$

- Basis functions, $\phi_{m}(x)$, chosen as orthogonal eigenfunctions of diffusive operator that match boundary conditions

$$
\phi_{m}(x)=\cos \left(\frac{m \pi x}{\ell}\right)
$$

- Finite system of ODEs for amplitude evolution are recovered by taking the inner product with ϕ_{n}, and truncated at M

$$
\frac{d z_{i, m}}{d t}=\frac{\left\langle\phi_{m}, \dot{\omega}_{i}\left(\sum_{m=0}^{\infty} z_{i, n} \phi_{n}\right)\right\rangle}{\left\langle\phi_{m}, \phi_{m}\right\rangle}-\frac{\pi^{2} m^{2} \mathcal{D}}{\ell^{2}} z_{i, m}
$$

Oxygen Dissociation

$$
O+O+M \leftrightharpoons O_{2}+M
$$

- $N=2$ species
- $J=1$ reactions
- $L=1$ constraints
- $N-L=1$ reduced variables

$$
z=z_{O}
$$

Spatially homogeneous evolution equation

$$
\frac{d z}{d t}=249.84130-74734.78 z^{2}-172406.48 z^{3}
$$

Galerkin Projection

- One spatial mode $(M=1)$ evolution equation

$$
\begin{aligned}
\frac{d z_{0}}{d t} & =249.84130-74734.78\left(z_{0}^{2}+\frac{z_{1}^{2}}{2}\right)-172406.48\left(z_{0}^{3}+\frac{3 z_{0} z_{1}^{2}}{2}\right) \\
\frac{d z_{1}}{d t} & =-74734.78\left(2 z_{0} z_{1}\right)-172406.48\left(3 z_{0}^{2} z_{1}+\frac{3 z_{1}^{3}}{4}\right)-\frac{\pi^{2} \mathcal{D}}{\ell^{2}} z_{1}
\end{aligned}
$$

- Spatially homogeneous evolution when $z_{1}=0$
- Equilibria from spatially homogeneous retained
- Eigenvalues about these equilibria are modified

$$
\lambda_{1}=\lambda_{0}-\frac{\pi^{2} \mathcal{D}}{\ell^{2}}
$$

Bifurcation

- Change in sign of modified eigenvalue, $\lambda_{1}=\lambda_{0}-\frac{\pi^{2} \mathcal{D}}{\ell^{2}}$, identifies a critical length where SIM start point changes character
- Bifurcation occurs at R_{2} equilibrium

$$
\begin{aligned}
\frac{\pi^{2} \mathcal{D}}{\ell^{2}}=\lambda_{0} & =7321.5 \mathrm{~s}^{-1} \\
\ell & =1.04 \mathrm{~mm}
\end{aligned}
$$

- Diffusion corrected SIM start point shifts to bifurcated branches

- Bold branches are saddles, dashed branch is source

Poincaré Sphere

- Map variables into a space where infinity is on the unit circle

$$
\begin{aligned}
\eta_{0} & =\frac{\alpha z_{0}}{\sqrt{1+\alpha^{2} z_{0}^{2}+\alpha^{2} z_{1}^{2}}} \\
\eta_{1} & =\frac{\alpha z_{1}}{\sqrt{1+\alpha^{2} z_{0}^{2}+\alpha^{2} z_{1}^{2}}}
\end{aligned}
$$

- Graphically displays dynamics of entire system

Poincaré Sphere

- Map variables into a space where infinity is on the unit circle

$$
\begin{aligned}
\eta_{0} & =\frac{\alpha z_{0}}{\sqrt{1+\alpha^{2} z_{0}^{2}+\alpha^{2} z_{1}^{2}}} \\
\eta_{1} & =\frac{\alpha z_{1}}{\sqrt{1+\alpha^{2} z_{0}^{2}+\alpha^{2} z_{1}^{2}}}
\end{aligned}
$$

- Graphically displays dynamics of entire system

$$
\ell=0.334 \mathrm{~mm}
$$

Poincaré Sphere

- Map variables into a space where infinity is on the unit circle

$$
\begin{aligned}
\eta_{0} & =\frac{\alpha z_{0}}{\sqrt{1+\alpha^{2} z_{0}^{2}+\alpha^{2} z_{1}^{2}}} \\
\eta_{1} & =\frac{\alpha z_{1}}{\sqrt{1+\alpha^{2} z_{0}^{2}+\alpha^{2} z_{1}^{2}}}
\end{aligned}
$$

- Graphically displays dynamics of entire system

$$
\ell=1.05 \mathrm{~mm}
$$

Poincaré Sphere

- Map variables into a space where infinity is on the unit circle

$$
\begin{aligned}
\eta_{0} & =\frac{\alpha z_{0}}{\sqrt{1+\alpha^{2} z_{0}^{2}+\alpha^{2} z_{1}^{2}}} \\
\eta_{1} & =\frac{\alpha z_{1}}{\sqrt{1+\alpha^{2} z_{0}^{2}+\alpha^{2} z_{1}^{2}}}
\end{aligned}
$$

- Graphically displays dynamics of entire system

$$
\ell=3.34 \mathrm{~mm}
$$

Zel'dovich Mechanism

$$
\begin{aligned}
N+N O & \leftrightharpoons N_{2}+O \\
N+O_{2} & \leftrightharpoons N O+O
\end{aligned}
$$

- $N=5$ species
- $J=2$ reactions
- $L=3$ constraints
- $N-L=2$ reduced variables

$$
z_{1}=z_{N O}, z_{2}=z_{N}
$$

- Isochoric, $\rho=1.2002 \mathrm{~g} / \mathrm{cm}^{3}$
- Isothermal, $T=4000 \mathrm{~K}$
- Bimolecular, isobaric, $P=1.6629 \times 10^{6}$ dyne $/ \mathrm{cm}^{2}=$ 1.64 atm

Spatially homogeneous evolution equations - second order polynomials.

$$
\begin{aligned}
\frac{d z_{1}}{d t} & =250-9.97 \times 10^{4} z_{1}+1.16 \times 10^{7} z_{2}-3.22 \times 10^{9} z_{1} z_{2}+6.99 \times 10^{8} z_{2}^{2} \\
\frac{d z_{2}}{d t} & =250+8.47 \times 10^{4} z_{1}-1.17 \times 10^{7} z_{2}-1.84 \times 10^{9} z_{1} z_{2}-6.98 \times 10^{8} z_{2}^{2}
\end{aligned}
$$

Spatially Homogeneous Isothermal Phase Space

- Identify equilibria
- Characterize equilibria by eigenvalues of their Jacobian matrix
- Classify time scales as fast and slow
- Identify SIM as a heteroclinic orbit from saddle to sink

Spatially Homogeneous Isothermal Phase Space

- Identify equilibria
- Characterize equilibria by eigenvalues of their Jacobian matrix
- Classify time scales as fast and slow
- Identify SIM as a heteroclinic orbit from saddle to sink

Spatially Homogeneous Isothermal Phase Space

- Identify equilibria
- Characterize equilibria by eigenvalues of their Jacobian matrix
- Classify time scales as fast and slow
- Identify SIM as a heteroclinic orbit from saddle to sink

Spatially Homogeneous Isothermal Phase Space

- Identify equilibria
- Characterize equilibria by eigenvalues of their Jacobian matrix
- Classify time scales as fast and slow
- Identify SIM as a heteroclinic orbit from saddle to sink

Galerkin Projection

- First diffusion mode adds modified time scale
- Positive eigenvalue identifies critical length scale

- Bifurcation occurs at this length scale
- Let us examine a length below this critical length scale, $\ell=17 \mu \mathrm{~m}$

Diffusion Correction Isothermal Phase Space

Diffusion Correction Isothermal Evolution

- Two additional fast time scales from diffusion
- Spatially inhomogeneous amplitudes decay earlier than either reaction time scale

Conclusions

- The SIM isolates the slowest dynamics, making it ideal for a reduction technique
- A critical length scale has been identified where a bifurcation occurs that affects the slow dynamics of the system
- For sufficiently short length scales, diffusion time scales are faster than reaction time scales, and the system dynamics are dominated by reaction
- When lengths are near or above the critical length, diffusion will play a more important role

Acknowledgments

Partial support provided by NSF Grant No. CBET-0650843 and Notre Dame ACMS Department Fellowship

