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A novel, highly accurate numerical scheme based on shock-fitting coupled with high or-

der spatial and temporal discretization is applied to a classical unsteady detonation problem

to generate solutions with unprecedented accuracy. The one-dimensional reactive Euler

equations for a calorically perfect mixture of ideal gases whose reaction is described by

single-step irreversible Arrhenius kinetics are solved in a series of calculations in which the

activation energy is varied. In contrast with nearly all known simulations of this problem,

which converge at a rate no greater than first order as the spatial and temporal grid is

refined, the present method is shown to converge at a rate consistent with the fifth order

accuracy of the spatial discretization scheme. This high accuracy enables more precise

verification of known results and prediction of heretofore unknown phenomena. To five

significant figures, the scheme faithfully recovers the stability boundary, growth rates, and

wave-numbers predicted by an independent linear stability theory in the stable and weakly

unstable regime. As the activation energy is increased, a series of period-doubling events

are predicted, and the system undergoes a transition to chaos. Consistent with general

theories of non-linear dynamics, the bifurcation points are seen to converge at a rate for

which the Feigenbaum constant is 4.66 ± 0.09, in close agreement with the true value of

4.669201 . . .. As activation energy is increased further, domains are identified in which the

system undergoes a transition from a chaotic state back to one whose limit cycles are char-

acterized by a small number of non-linear oscillatory modes. This result is consistent with

behavior of other non-linear dynamical systems, but not typically considered in detonation

dynamics.

I. Introduction

I
mprovements in the accuracy of prediction of physical phenomena are enabled by advances in both
computational hardware and software. Computational science and engineering has made rapid progress

over the past decades to the point where simulation of physically motivated problems which once required
the significant resources of a super-computer can now be solved on an inexpensive personal computer.
Certainly, some of this expanded capability is attributable to improvements in computational hardware.
The celebrated Moore’s Law,1 an empirical observation which originally held that the number of transistors
per integrated circuit doubles roughly every year, is a popular embodiment of this notion. Variants apply to
other aspects of hardware such as hard disk and random-access-memory (RAM) storage capacity, and parallel
architecture design. Less celebrated, but perhaps even more important as physical limitations dampen the
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rate of advancements in hardware,2 are simultaneous advances in computational algorithms. In contrast
to hardware, which the computational mechanician generally treats as a commodity, advances in algorithm
development are in need of the skills of the artisan; for specialized problems, there are often precise tools
which can be employed with a realization of remarkable gains. Improved algorithms enable the more rapid
solution of problems relative to existing methods when the same computational resources are employed;
moreover, the solution of heretofore unsolvable problems is often admitted.

In this paper, we describe and implement a new algorithm tailored to simulate a well-established model
problem: one-dimensional unsteady detonation. The new predictions are many orders of magnitude more

precise than those previously published; this enhanced precision enables the prediction of remarkable new
bifurcation phenomena. The model on which we focus simulates the key mechanisms of convection and single
step exothermic reaction. For tractability, simpler constitutive relations than those which are appropriate
for real materials are employed, and all diffusive transport neglected. Consequently, direct comparison with
experimental results will be impossible. However, the techniques described here can, in principle, be adapted
to models which better represent actual physical systems with detailed kinetics and complex state equations.3

Nevertheless, the widely disparate length scales present in such systems pose such a formidable modeling
challenge that it is unlikely that a fully resolved unsteady detonation for a system with detailed kinetics
exists as of yet.4

In particular, this study presents numerical predictions of classical pulsating one-dimensional detonations
propagating in an inviscid reacting calorically perfect ideal gas whose chemistry is modeled by one-step
irreversible kinetics. The numerical solutions formally converge at a fifth order rate so that high accuracy is
achieved at a moderate computational cost. The high rate of convergence is obtained using a shock-fitting
scheme in which the reactive Euler equations are transformed to a shock-attached frame. A method of lines
approach is used to discretize the resulting partial differential equations (PDEs) on a uniform spatial grid.5

In continuous regions of the flow, spatial gradients are modeled by a fifth order mapped weighted essentially
non-oscillatory scheme (WENO5M).6 The resulting ordinary differential equations in time are then solved by
a fifth order Runge-Kutta technique.7 While the method chosen is specific and requires a discretization of the
conservative form of the governing equations, we speculate that comparable accuracy could be achieved with
any numerically stable fifth order discretization of conservative or non-conservative forms of the equations,
provided that discretization is consistently coupled with a shock-fitting scheme of the same order.

Unsteady detonations predicted by the model employed here have been widely studied for over forty years.
A partial list8−20 summarizes some of the many approaches: linear stability via normal modes analysis,
asymptotic techniques, method of characteristics, and direct numerical simulation using shock-capturing,
shock-tracking and/or adaptive mesh refinement techniques. Linear stability analysis gives the most rigorous
results, but cannot capture the non-linear dynamics or long-time limit cycle behavior. The method of
characteristics, when coupled with a high order method for solution of ordinary differential equations, can
give accurate results, at the expense of algorithmic complexity and difficulty in accommodating flows with
multiple discontinuities. Shock capturing techniques are easy to implement, but results are corrupted by
order one errors at the shock which propagate into the entire flow field, rendering it difficult to precisely
identify fine scale dynamics.21−24 Methods which do have high order accuracy for continuous solutions, when
coupled with a shock-capturing scheme, always reduce that accuracy to at most first order. Although shock-
tracking9,11,12,18 and shock-fitting schemes19 can in principle eliminate the order one errors at the shock,
high rates of global convergence have not been demonstrated to date.

The true high order accuracy of the new numerical algorithm is the principal novelty of this work; less
accurate versions of most results have appeared previously in the literature. We compare our results to two
of the best of recent studies: Kasimov and Stewart19 and Ng, et al.20 Several test problems are exploited to
verify the accuracy of the scheme. In particular, for unstable detonations it becomes possible to predict, with
high precision and moderate resolution, both the growth rates and frequencies of the same unstable modes
which have been independently predicted by linear stability analysis. The results are then extended into the
non-linear regime to predict the ultimate limit cycle behavior. Relative to recent related calculations,19,20

those presented here are resolved in roughly two orders of magnitude more detail, which allows a clearer
elucidation of the structurally rich bifurcation phenomena. In particular, new windows of parameter space
are identified in which low frequency behavior is predicted in an otherwise chaotic region.

The plan of the paper is as follows. First, the governing equations and associated jump conditions are
specified. An evolution equation for the shock state is derived, which is commonly referred to as the shock-
change equation.25 A description of the fifth order scheme is then presented. The solution to various test
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problems is given. These include comparisons with the stable Zel’dovich-von Neumann-Döring (ZND) solu-
tion, growth rate and frequency of linearly unstable ZND waves, and fully time-dependent and non-linear
detonation pulsation flows. A detailed bifurcation diagram shows how the long-time limit of the detona-
tion wave speed behaves as activation energy is varied. Period-doubling bifurcations, identified earlier,15,20

are found to much greater precision, and several new modes of behavior are given. It is also confirmed
that the convergence of the period-doubling bifurcation points is in agreement with the general theory of
Feigenbaum.26,27

II. Governing Equations

The one-dimensional unsteady reactive Euler equations for a calorically perfect ideal gas which undergoes
a single irreversible reaction are expressed in conservative form as

∂ρ

∂t
+

∂

∂ξ
(ρu) = 0, (1)

∂

∂t
(ρu) +

∂

∂ξ

(
ρu2 + p

)
= 0, (2)

∂

∂t

(

ρ

(

e +
1

2
u2

))

+
∂

∂ξ

(

ρu

(

e +
1

2
u2 +

p

ρ

))

= 0, (3)

∂

∂t
(ρλ) +

∂

∂ξ
(ρuλ) = kρ(1 − λ) exp

(

−ρE

p

)

, (4)

e =
1

γ − 1

p

ρ
− λq. (5)

Here, the ordinary laboratory frame Cartesian distance coordinate is ξ, while time is t. Dependent variables
in Eqs. (1-5) are density ρ, particle velocity u, pressure p, specific internal energy e and reaction progress λ.
Parameters are reaction kinetic rate constant k, activation energy E, ratio of specific heats γ, and heat release
per unit mass q. Equations (1-5) are expressions of, respectively, the conservation of mass, ξ-momentum,
and energy, evolution of species, and a caloric state relation. Equation (4) models the irreversible reaction
A → B in which species A and B have identical molecular masses and specific heats. The mass fractions of
each species, YA and YB , are given in terms of the reaction progress variable by the relations YA = 1 − λ
and YB = λ.

Equations (1-5) are supplemented by the following standard Rankine-Hugoniot conditions at the shock
jump:

ρs(D(t) − us) = ρo(D(t) − uo), (6)

ps − po = (ρo(D(t) − uo))
2

(
1

ρo
− 1

ρs

)

, (7)

es − eo =
1

2
(ps + po)

(
1

ρo
− 1

ρs

)

, (8)

λs = λo. (9)

Here, D is the shock velocity, which in general is time-dependent; the subscript s denotes the shock state,
and the subscript o denotes the ambient state. Note that the shock states in Eqs. (6-9) can be determined
in terms of the ambient state and the shock velocity. It is assumed that no reaction takes place upstream of
the shock; i.e. the source term in Eq. (4) is activated only for fluid particles which have passed through the
shock.

For the shock-fitting numerical scheme, Eqs. (1-4) are transformed to a frame that is fixed to the shock
front. To this end, a new spatial variable is taken to be

x = ξ −
∫ t

0

D(τ)dτ, (10)

where the shock is initially presumed to be at ξ = 0, and thus for all time the shock locus is x = 0. Here τ
is a dummy variable. Under this transformation, one recovers the following conservation laws:

∂ρ

∂t
+

∂

∂x
(ρ(u − D)) = 0, (11)
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∂

∂t
(ρu) +

∂

∂x
(ρu(u − D) + p) = 0, (12)

∂

∂t

(

ρ

(

e +
1

2
u2

))

+
∂

∂x

(

(u − D)ρ

(

e +
1

2
u2

)

+ up

)

= 0, (13)

∂

∂t
(ρλ) +

∂

∂x
(ρ(u − D)λ) = kρ(1 − λ) exp

(

−ρE

p

)

. (14)

The particle velocity, u, is still measured in the laboratory frame. To this point, there is nothing different
than earlier shock-fitting formulations.19 The only critical issue in solving Eqs. (11-14) is that the shock
velocity, D, and shock relations, Eqs. (6-9), need to be directly incorporated into the solution. At the shock,
in particular, one needs to apply the exact shock relations in a consistent manner with the evolution PDEs.
At the shock, all state variables are functions of the quiescent state and the shock velocity; they are not
independent of one another. A simple way to account for this is to derive an evolution equation at the
shock based on the PDEs and the shock relations. This procedure results in what is often referred to as the
shock-change equation.25

A. Shock-Change Equation

The shock-change equation describes the evolution of the shock velocity as a function of time. This relation-
ship can take on various forms which are mathematically equivalent. A new and particularly useful form is
derived here. First, assuming λo = 0, one determines the momentum at the shock state from Eqs. (5-9) to
be

ρsus =
ρo(D − uo)

(
γ(ρo(D − uo)uo − 2po) + ρo(2D2 − 3Duo + u2

o)
)

γ(2po + ρo(D − uo)2) − ρo(D − uo)2
. (15)

As Eq. (15) is a function of D alone, one has

dD

dt
=

(
d

dD
(ρsus)

)−1
d

dt
(ρsus), (16)

from the chain rule. Next, the total derivative following the shock in the shock-fitted coordinate is given by

d

dt

∣
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∣
∣
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∂
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∣
∣
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︸ ︷︷ ︸
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∂

∂t

∣
∣
∣
∣
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, (17)

since the velocity of the shock in the fitted coordinate system is zero. Thus, Eq. (12) becomes

d (ρsus)

dt

∣
∣
∣
∣
x=0

+
∂

∂x
(ρu(u − D) + p) |x=0 = 0, (18)

at the shock. Lastly, substituting Eq. (18) into Eq. (16) yields the shock-change equation

dD

dt
= −

(
d(ρsus)

dD

)−1 (
∂

∂x
(ρu(u − D) + p)

)∣
∣
∣
∣
x=0

. (19)

Equation (19) relates the shock acceleration to the momentum flux gradient at the shock. Other, mathemat-
ically equivalent forms of the shock-change equation could have been used, but there are two reasons this
particular form was chosen. Firstly, the momentum flux gradient is something that will already be computed
elsewhere in the flow. More importantly, it scales easily with shock velocity, so that the first term on the
right hand side of Eq. (19) is well behaved in both the weak and strong shock limits. That is not the case
for mass or energy equations. Other combinations of the equations may be well behaved as well, but this is
adequate for what follows in the next section.
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III. Numerical Method

Here, the details of the high order shock-fitting numerical algorithm are presented. A point-wise method
of lines approach5 is used. This method simplifies the required coding, allows separate temporal and spatial
discretizations, and also allows for the incorporation of source terms. In the following sections, the computa-
tional grid will be defined, the WENO5M spatial discretization scheme6 will be outlined, and the temporally
fifth order Runge-Kutta scheme for time discretization7 will be given.

A. Grid

Written in vector notation, Eqs. (11-14) take on the form

∂

∂t
u +

∂

∂x
f (u) = s (u) . (20)

Here the vector u is used to denote the set of conserved dependent variables,

u =

(

ρ, ρu, ρ

(

e +
1

2
u2

)

, ρλ

)T

. (21)

Strictly speaking, ρλ is not conserved, but evolves due to the reaction source term. It is traditional to label
it a conserved variable as well, as it is the proper divergence formulation of the reaction kinetics model. The
vector f is a set of fluxes of each conserved quantity, and s is a source. A uniform Cartesian grid is used to
discretize the domain x ∈ [xmin, xmax], with Nx + 1 equally spaced nodes, xmin < 0, and xmax = 0. Next,
one allows the semi-discretization u(x, t) → ui(t) and the full discretization ui(t) → un

i , where the semi-
discretized and fully discretized numerical solution vectors are denoted by ui and un

i , respectively. Here, i
is the spatial node number corresponding to the location xi = xmin + i∆x, where ∆x = −xmin/Nx, and n
is the time level corresponding to tn =

∑n
m=1

∆tm, where ∆tm is the time step for each integration step.

B. Spatial Discretization

Following spatial discretization, Eq. (20) can be approximated as a system of ordinary differential equations
in t:

dui

dt
= L (ui) , (22)

where the operator L is a discrete approximation to the continuous convection and source operators of
Eq. (20):

L (ui) ≈
(

− ∂

∂x
f (u) + s (u)

)∣
∣
∣
∣
x=xi

. (23)

Next, the definition of L for various spatial nodes are defined.

1. Nodes i < 0

For nodes for which i < 0, which are necessary for calculation of some fluxes, a zero gradient condition
is enforced. Formally, this introduces spurious waves at the boundary. However, as a check, the forward
characteristic emanating from this boundary was calculated, and it was guaranteed that the domain was
sufficiently large so as to prevent corruption of the shock and reaction zone structure from this downstream
acoustic noise.

2. Nodes 0 ≤ i ≤ Nx − 3

Next, general nodes at least four nodes removed from the shock are considered. For L(ui) the WENO5M
scheme6 with a local Lax-Friedrichs solver is used. This scheme is a conservative flux difference method,
which has been shown to be stable, and yields the proper viscosity-vanishing solution to Eqs. (1-4). The
operator L(ui) is given by:
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L(ui) = − f̂i+1/2 − f̂i−1/2

∆x
+ s (ui) , (24)

where f̂i+1/2 and f̂i−1/2 are numerical approximations to the flux function, f(u), and s (ui) is a simple
evaluation of the source terms at node xi.

In particular, for the local Lax-Friedrichs scheme, one takes

f̂i+1/2 = f̂+

i+1/2
+ f̂−i+1/2

(25)

where for each component, f̂±, of the vector f̂± one has

f̂+

i+1/2
= Ξ(f+

i−2, f
+

i−1, f
+

i , f+

i+1, f
+

i+2), (26)

f̂−

i+1/2
= Ξ(f−

i+3, f
−

i+2, f
−

i+1, f
−

i , f−

i−1), (27)

and

f+

i =
1

2
(f(ui) + αui), (28)

f−

i =
1

2
(f(ui) − αui), (29)

where

α = max(|f ′(ui)|, |f ′(ui+1)|). (30)

Following Ref. 6, the interpolating function Ξ(a, b, c, d, e) is defined next. First, define three interpolated
values:

q1 =
a

3
− 7b

6
+

11c

6
, (31)

q2 = − b

6
+

5c

6
+

d

3
, (32)

q3 =
c

3
+

5d

6
− e

6
, (33)

and three indicators of smoothness, β:

β1 = 13(a − 2b + c)2 + 3(a − 4b + 3c)2, (34)

β2 = 13(b − 2c + d)2 + 3(d − b)2, (35)

β3 = 13(c − 2d + e)2 + 3(3c − 4d + e)2, (36)

then take

α1 =
1

(ǫ + β1)2
, (37)

α2 =
6

(ǫ + β2)2
, (38)

α3 =
3

(ǫ + β3)2
, (39)

and define the weights29

wi =
αi

α1 + α2 + α3

. (40)
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It was noted6 that these weights could be significantly improved to yield a more robust method that truly
converged at fifth order with a new set of ᾱi defined by

ᾱ1 =
w1(11 − 30w1 + 100w2

1)

1 + 80w1

(41)

ᾱ2 =
w2(24 − 45w2 + 25w2

2)

9 − 5w2

(42)

ᾱ3 =
w3(39 − 90w3 + 100w2

3)

9 + 40w3

(43)

to yield

Ξ(a, b, c, d, e) =
ᾱ1q1 + ᾱ2q2 + ᾱ3q3

ᾱ1 + ᾱ2 + ᾱ3

. (44)

In all computations presented here, ǫ = 10−40, as suggested in Ref. 6.

3. Nodes Nx − 2 ≤ i ≤ Nx − 1

The discretization at node i needs information at the nodes i−3, ..., i+3. Since differencing across the shock
at x = 0 is ill-advised, something else will need to be done for the nodes i = Nx − 2, i = Nx − 1 and i = Nx.
At these nodes, an explicit formula is taken for the components of the flux derivatives, which is biased in
such a manner that no nodes i > Nx are used. These are derived from standard Taylor series expansions
(TSE). In particular, the numerical approximation to each component of the flux is given by

∂

∂x
(f (uNx−2)) ≈

−2f (uNx−5) + 15f (uNx−4) − 60f (uNx−3) + 20f (uNx−2) + 30f (uNx−1) − 3f (uNx)

60∆x
, (45)

and

∂

∂x
(f (uNx−1)) ≈

−f (uNx−4) + 6f (uNx−3) − 18f (uNx−2) + 10f (uNx−1) + 3f (uNx)

12∆x
. (46)

Equation (45), according to TSE, is fifth order accurate. Also, it can be shown that Eq. (46) is, by TSE,
only fourth order accurate. This lower order scheme, at this single point, seemed to be necessary for linear
numerical stability. It is seen later that this did not induce any noticeable degradation in the solution. This
point is not along a characteristic, and so fourth order errors do not have a chance to accumulate at this
point in the flow. The source term, s (ui), is still just an evaluation at these two nodes.

4. Node i = Nx

At the shock locus, i = Nx, the solution is only a function of the shock velocity, D. At this point, only
Eq. (19) is solved. Only the momentum flux gradient needs to be computed to update the shock velocity.
Here, a biased fifth order stencil,

∂

∂x
(f (uNx)) ≈

−12f (uNx−5) + 75f (uNx−4) − 200f (uNx−3) + 300f (uNx−2) − 300f (uNx−1) + 137f (uNx)

60∆x
, (47)

is used to calculate the momentum flux gradient.
The conservative state variables at the shock are given from the shock jump relations, Eqs. (6-9). No

source terms enter at this nodal point, since this is exactly a shock state. Also, the numerical method is
discretely conservative everywhere, except at i = Nx, since the state there is constrained to be at a shock
state, and so itself cannot be discretely conservative. Errors in conservation are of the order of the truncation
error of the scheme, and so are small.
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C. Temporal Discretization

With the discrete operator L now defined, Eqs. (22) could be solved by a wide variety of standard numerical
techniques, explicit or implicit, which have been developed over the years for large systems of ordinary
differential equations. Here, an explicit six-stage Runge-Kutta scheme7 with fifth order temporal accuracy
is chosen.

Most Runge-Kutta schemes of fourth or higher order are easier to code and seem to require less storage
when the Butcher formulation7,28 is chosen rather than the more commonplace α−β form.5 Given a solution
un

i at tn, the solution un+1

i at tn+1 is constructed in the following manner. The generic s-stage Butcher
formulation of Runge-Kutta schemes takes on the form

ū1
i = un

i , (48)

ū
j
i = un

i + ∆tn

j−1
∑

k=1

ajkL
(
ūk

i

)
, j = 2, ..., s, (49)

where ū
j
i are the intermediate solution states at each j-stage, and the solution at the next time step is given

by

un+1

i = un
i + ∆tn

s∑

j=1

bjL
(

ū
j
i

)

. (50)

The coefficients, ajk and bj in the above formulæ are given in Tables 1 and 2, respectively.

k = 1 k = 2 k = 3 k = 4 k = 5

j = 2 1

j = 3 1

4

1

4

j = 4 2046

15625
− 454

15625

1533

15625

j = 5 − 739

5625

511

5625
− 566

16875

20

27

j = 6 11822

21875
− 6928

21875
− 4269

21875
− 4

7

54

35

Table 1. Runge-Kutta coefficients ajk.

b1 = 1

24

b2 = 0

b3 = 0

b4 = 125

336

b5 = 27

56

b6 = 5

48

Table 2. Runge-Kutta coefficients bj .

In this problem, for which the effect of the source term has been resolved, it is convection which dictates
the time step restriction. All computations performed here have 0.8 < CFL < 1.5, where CFL represents
the traditional Courant-Friedrichs-Lewy number. The high order of the Runge-Kutta method enables CFL
to be slightly greater than unity while maintaining numerical stability. The results were verified to be
insensitive to small changes in CFL.

IV. Results

Results are given for a set of standard test cases. All calculations were performed on a four-processor
Compaq ES45 workstation with a clock speed of 1 GHz and 64-bit arithmetic. The typical computation
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time for any single case was ten minutes. A few calculations which required long integration times took
many hours to complete. The equations have been scaled in such a fashion that the ambient density and
pressure are ρo = 1 and po = 1, the half-reaction zone length, L1/2, is unity, and other parameters take the
values q = 50, and γ = 1.2. Here L1/2 is the distance from the shock to the point at which λ takes on the
value 1/2 for the steady ZND structure. This now standard approach requires one to vary k from case to
case in order to maintain L1/2 = 1; for E = 25, one has k = 35.955584760859722, where the high precision
is needed to guarantee the high precision of the results.

Here, interest is focused on self-sustained detonation waves, known commonly as Chapman-Jouguet
(CJ).25 This results in a steady detonation velocity of

DCJ =
√

11 +

√

61

5
≈ 6.80947463. (51)

Interest is further focused on how increase in the activation energy, E, affects the propagation of the detona-
tion wave. Linear stability analysis10 reveals that for E < 25.26, the steady ZND detonation wave structure25

will be linearly stable, and for E > 25.26, the steady detonation structure is linearly unstable. In all cases
considered, the exact, to machine precision, ZND solution is used as the initial condition. Note that using
64-bit machine precision translates to roughly 16 significant figures. A second comparison case is presented
in the following subsection for E = 26.

In all unstable cases considered, the predicted non-linear behavior has its origin in a single unstable
low frequency mode identified by linear theory. While evermore high frequency modes are predicted by the
linear theory as E increases through a series of threshold values, here, E is increased only moderately. As
a consequence, the high frequency instabilities are suppressed, while still admitting a rich spectrum of low
frequency non-linear behavior.

A. Linearly Stable ZND, E = 25

The new algorithm is first tested on a stable problem, E = 25, and results are compared with those of a
recent shock-fitting study.19 For this case, the steady solution is stable, and thus it is the exact solution for all
time. This can also serve as a test problem for verification of the numerical scheme. As done in Ref. 19, the
numerically calculated detonation velocity can be plotted as a function of time. In particular, it is important
to measure the error produced as a function of numerical resolution. Following Ref. 19, one defines the
number of numerical zones in the half reaction zone length to be N1/2, so that ∆x = 1/N1/2. Figure 1
shows the result of Kasimov and Stewart’s numerical method for N1/2 = 100 and N1/2 = 200. At relatively
long times, this numerical method attains DN1/2=100 ≈ 6.8285 and DN1/2=200 ≈ 6.8189. Considering the
numerical errors, ∆D, are then 0.0190 and 0.0094, respectively, it is concluded that the error of the scheme
of Ref. 19 scales directly with ∆x, and is thus first order accurate. These results are summarized in Table 3
below, where rc is the rate of convergence.

N1/2 ∆D rc

100 1.90 × 10−2 -

200 9.40 × 10−3 1.01

Table 3. Numerical accuracy of Ref. 19.

The prediction of the high order shock-fitting algorithm of the previous section, utilizing a coarser grid,
N1/2 = 20, is displayed in Fig. 2. A few important facts should be noted. First, the error in shock speed
has been greatly reduced by the high order shock-fitting scheme, even utilizing a much coarser grid. This is
evident because of greatly reduced scale on the detonation velocity in Fig. 2. Also, not only are the errors
greatly reduced, but the rate of convergence is predicted to be fifth order. This can be seen in Table 4.
Thus, for this stable problem, the new high order shock-fitting scheme produces very accurate solutions with
moderate mesh size.

B. Linearly Unstable ZND, Stable Limit Cycle, E = 26

Next, an unstable problem, E = 26, is analyzed, as also done in Ref. 19. For E = 26, linear stability theory15

predicts a single unstable mode, with growth rate, σr = 0.03710, and a frequency, σi = 0.52215. Figure 3
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N1/2 ∆D rc

20 2.13 × 10−6 -

40 6.00 × 10−8 5.01

Table 4. Numerical accuracy of high order shock-fitting scheme.

gives a plot of the numerical prediction of detonation velocity, D, as a function of time, with N1/2 = 20. The
growth of the unstable mode is triggered by the small numerical truncation error. Figure 3 shows a clearly
oscillatory exponential growth of D(t) at early times (t < 300). Postulating that the numerical predictions
could be fit by an equation of the form

D(t) ∼ a0 + a1e
a2t sin (a3t + a4) , (52)

a least squares curve fit of the data over the range 0 < t < 100 revealed that

a0 = 6.80947239809145± 7.506 × 10−10, (53)

a1 = 0.00000643598884± 4.549 × 10−10, (54)

a2 = 0.03709980167992± 7.983 × 10−7, (55)

a3 = 0.52214295442142± 8.615 × 10−7, (56)

a4 = 0.18145671900944± 7.455 × 10−5. (57)

Note that the growth rate a2 and wavenumber a3 both agree strikingly to five significant figures with the
predictions of linear stability theory.

Note from Fig. 3 that the long time behavior appears to be that of a stable periodic limit cycle. One
can thus infer that the non-linear effects are stabilizing the linear instability, and that the amplitude of the
long time limit cycle is dictated by a balance struck between linear growth and non-linear decay. It is useful
to plot the results in the phase plane, dD/dt versus D.13 This is easily and accurately accomplished, since
the shock acceleration, dD/dt, is already computed from the shock-change equation (19). Figure 4 is the
parametric plot of dD/dt versus D, where both the acceleration and velocity are known parametrically as
functions of t. The solution starts at dD/dt(t = 0) = 0, and D(t = 0) = DCJ . A spiral trajectory commences
at this point and has a radius of curvature which increases with arc length which is indicative of the linear
instability. At late times, t > 350, the solution has effectively relaxed to a steady cyclic behavior. It is
also noted that through several numerical simulations, the linear stability boundary was determined to be
located at E = 25.265± 0.005, in excellent agreement with the prediction of linear stability theory.

C. Period-Doubling and Feigenbaum’s Universal Constant

As noted in Ref. 17, and later in Ref. 20, if the activation energy is increased to E ≈ 27.2, one predicts a
period-doubling phenomena, reminiscent of that predicted by the simple logistic map.30,31 Figure 5 shows
the time history of the detonation velocity for the case E = 27.35. It is evident that in the long time limit
the solution possesses two distinct relative maxima, namely D ≈ 8.225 and D ≈ 7.676; whereas for E = 26,
only a single relative maximum, D ≈ 7.439 is predicted. The corresponding phase plane is shown in Fig. 6.
Performing several simulations, with N1/2 = 20, to long times (up to t = 30000), one can bisect the region
26 < E < 27.35, in an attempt to find the bifurcation point, i.e. the point where the single periodic cycle
gives way to the period-2 solution. The activation energy at this point will be denoted by E1. Likewise, as
noted in Ref. 20, there are other period-doubling bifurcation values of En, where the solution transits from
a period-2n−1 to a period-2n. The point at which one predicts the transition from a steady solution (linear
stability) to a periodic solution (period-1 solution) will be designated by E0. These bifurcation points, and
their numerical uncertainty are given in Table 5. Also calculated are the differences between these points,
En+1 − En, and the relative change in the differences, δn:

δn =
En − En−1

En+1 − En
. (58)
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It was predicted by Feigenbaum,26,27 using models of several different physical and mathematical phe-
nomena, that in the limit as n → ∞, that δn approaches a universal constant, δ∞ ≈ 4.669201, now commonly
known as Feigenbaum’s number. Table 5 shows three progressively better approximations, δ1, δ2, and δ3, to
δ∞. It is seen that δ3 is in agreement with δ∞, with an uncertainty of 2%.

n En En+1 − Ei δn

0 25.265± 0.005 - -

1 27.1875± 0.0025 1.9225± 0.0075 3.86 ± 0.05

2 27.6850± 0.001 0.4975± 0.0325 4.26 ± 0.08

3 27.8017± 0.0002 0.1167± 0.0012 4.66 ± 0.09

4 27.82675± 0.00005 0.02505± 0.00025 -

Table 5. Numerically determined bifurcation points and approximations to Feigenbaum’s number.

D. Bifurcation Diagram, Semi-Periodic Solutions, Odd Periods, Windows and Chaos

Given that the solutions obtained, even for N1/2 = 10, are so accurate and efficient to calculate, a detailed
bifurcation diagram can be constructed with much greater detail than any to date. It is noted that Ref. 20 did
show the first bifurcation diagram for this model, albeit with only twenty-five different activation energies.
Here, the bifurcation diagram is constructed by sampling over a thousand different activation energies, with
25 < E < 28.4 with ∆E = 0.0025. At each value of E, the exact ZND solution is used as the initial
condition. For each E, the solution is integrated to t = 5000, and all the relative maxima in D are recorded
for 3000 < t < 5000 (i.e. the late time behavior). This composite plot of predicted, late time, relative
maxima in D versus E is presented in Fig. 7. The qualitative similarities to the logistic map are striking.
One clearly notices the various period-doubling bifurcations up to roughly E∞ ≈ 27.8324. One then notes
various regions of semi-periodic behavior, and various odd-periodic regions. For example in the vicinity of
E = 28.2, a large period-3 window opens in the bifurcation diagram; as E is increased further, the period-3
solution bifurcates. In regions where the bifurcation points are very dense, it is likely that the system has
underwent a transition to chaos.

Figure 8 gives several plots of D versus t as activation energy is increased. Specific values of E are
listed in the caption. In Fig. 8a), a period-4 solution is shown. As E is increased, the system continues
a bifurcation process, and a chaotic state is realized in general. However, in b), c), and d) examples are
found which are within windows of order in an otherwise chaotic region. Periods of 6, 5, and 3 are found,
respectively. In e), a chaotic solution is shown. In f) another structured solution is found with period-3.

Note that as the system becomes more chaotic, the solution remains resolved. This is because the
periods are increasing, not decreasing. However, for much higher activation energies, roughly E > 30, higher
frequency instabilities are excited, and finer resolution would be necessary. Moreover, at such high activation
energies, secondary shocks may form, which would negate the advantage of the present shock-fitting method.

V. Discussion

The results for the simple model problem suggest that when properly employed, algorithm craftsmanship
in the form of shock-fitting coupled with a high order spatio-temporal discretization can yield remarkable
gains in accuracy of many orders of magnitude relative to existing algorithms for certain specialized prob-
lems. This then admits solution in more rapid fashion or enables existing computational resources to be
used to predict new phenomena. While advances in hardware have certainly increased computational pre-
dictive capabilities, it must be admitted that, even accounting for the unlikely unfettered continuation of
Moore’s Law, realization of the algorithm-driven accuracy gains achieved here by reliance instead on hard-

ware improvements alone would require several years, if not decades, to achieve. One can in fact consider the
method presented here to be the algorithmic analog to either the Hubble telescope or an electron microscope:
a tool which strikingly slashes the error amplitude so as to bring into tight focus fine scale features orders of

magnitude beyond previous capability.

Certainly, the specifications of the particular problem considered here facilitated these improvements.
Comparable gains for more general problems would require careful effort or may be impossible to achieve. For
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inviscid problems with multiple embedded discontinuities, the shock-fitting procedure becomes intractable,
for example. For problems with diffusion, high order methods are easier to employ, but at the expense of
having to address problems with a wide variety of length scales, which taxes computational hardware and
software in a different way. Certainly also, customized algorithm design is initially more time-consuming
relative to off-the-shelf production codes. But, if one seeks an accurate solution of equations which simulate
key paradigm physical problems, investment in algorithm development can often prove to be a dramatically
more effective use of resources than investment in hardware.
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Figure 1. Numerically generated detonation velocity, D versus t, using the shock-fitting scheme of Kasimov
and Stewart,19 E = 25, q = 50, γ = 1.2, with N1/2 = 100 and N1/2 = 200.
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Figure 2. Numerically generated detonation velocity, D versus t, using the high order shock-fitting scheme,
E = 25, q = 50, γ = 1.2, with N1/2 = 20.
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Figure 3. Numerically generated detonation velocity, D versus t, using the high order shock-fitting scheme,
E = 26, q = 50, γ = 1.2, with N1/2 = 20. Period-1 oscillations shown.
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Figure 4. Numerically generated phase portrait dD/dt versus D, using the high order shock-fitting scheme,
E = 26, q = 50, γ = 1.2, with N1/2 = 20. Period-1 oscillations shown.
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Figure 5. Numerically generated detonation velocity, D versus t, using the high order shock-fitting scheme,
E = 27.35, q = 50, γ = 1.2, with N1/2 = 20. Period-2 oscillations shown.
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Figure 6. Numerically generated phase portrait dD/dt versus D using the high order shock-fitting scheme,
E = 26, q = 50, γ = 1.2, with N1/2 = 20. Period-2 oscillations shown.
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Figure 7. Numerically generated bifurcation diagram, 25 < E < 28.4, q = 50, γ = 1.2.

17 of 18

American Institute of Aeronautics and Astronautics Paper 2005-1311



6

7

8

9

3700 3800 3900 4000
t

D

6

7

8

9

3700 3800 3900 4000
t

D

a b

d

e f

c

6

7

8

9

3700 3800 3900 4000
t

D

6

7

8

9

3700 3800 3900 4000
t

D

6

7

8

9

3700 3800 3900 4000
t

D

6

7

8

9

10

3700 3800 3900 4000

t

D

Figure 8. Numerically generated detonation velocity, D versus t, using the high order shock-fitting scheme,
q = 50, γ = 1.2, with N1/2 = 20, a) E = 27.75, period-4, b) E = 27.902, period-6, c) E = 28.035, period-5, d) E = 28.2,
period-3, e) E = 28.5, chaotic, f) E = 28.66, period-3.
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