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Introduction

• Standard result from non-linear dynamics: small scale

phenomena can influence large scale phenomena and vice

versa.

• What are the risks of using reactive Euler instead of reactive

Navier-Stokes?

• Might there be risks in using numerical viscosity, LES, and

turbulence modeling, all of which filter small scale physical

dynamics?



Introduction-Continued

• It is often argued that viscous forces and diffusion are small

effects which do not affect detonation dynamics and thus can be

neglected.

• Tsuboi et al., (Comb. & Flame, 2005) report, even when using

micron grid sizes, that some structures cannot be resolved.

• Powers, (JPP, 2006) showed that two-dimensional detonation

patterns are grid-dependent for the reactive Euler equations, but

relax to a grid-independent structure for comparable

Navier-Stokes calculations.

• This suggests grid-dependent numerical viscosity may be

problematic.



Introduction-Continued

• Powers & Paolucci (AIAA J, 2005) studied the reaction length

scales of inviscid H2-O2 detonations and found the finest

length scales on the order of sub-microns to microns and the

largest on the order of centimeters for atmospheric ambient

pressure.

• This range of scales must be resolved to capture the dynamics.

• In a one-step kinetic model only a single length scale is induced

compared to the multiple length scales of detailed kinetics.

• By choosing a one-step model, the effect of the interplay

between chemistry and transport phenomena can more easily

be studied.



Review

• In the one-dimensional inviscid limit, one step models have

been studied extensively.

• Erpenbeck (Phys. Fluids, 1962) began the investigation into the

linear stability almost fifty years ago.

• Lee & Stewart (JFM, 1990) developed a normal mode

approach, using a shooting method to find unstable modes.

• Bourlioux et al. (SIAM JAM, 1991) studied the nonlinear

development of instabilities.



Review-Continued

• Kasimov & Stewart (Phys. Fluids, 2004) used a first order

shock-fitting technique to perform a numerical analysis.

• Ng et al. (Comb. Theory and Mod., 2005) developed a coarse

bifurcation diagram showing how the oscillatory behavior

became progressively more complex as activation energy

increased.

• Henrick et. al. (J. Comp. Phys., 2006) developed a more

detailed bifurcation diagram using a fifth order shock-fitting

technique.



One-Dimensional Unsteady Compressible Reactive
Navier-Stokes Equations
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Equations were transformed to a steady moving reference frame.



Constitutive Relations
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,

Le = Sc = Pr = 1.



Case Examined
Let us examine this one-step kinetic model with:

• a fixed reaction length, L1/2 = 10−6 m, which is similar to

that of H2-O2.

• a fixed the diffusion length, Lµ = 10−7 m; mass, momentum,

and energy diffusing at the same rate.

• an ambient pressure, Po = 101325 Pa, ambient density,

ρo = 1 kg/m3, heat release q = 5066250m2/s2, and

γ = 6/5.



Numerical Method

• Finite difference, uniform grid
(

∆x = 2.50× 10−8m,N = 8001, L = 0.2mm
)

.

• Computation time = 192 hours for 10 µs on an AMD 2.4GHz

with 512 kB cache.

• A point-wise method of lines aproach was used.

• Advective terms were calculated using a combination of fifth

order WENO and Lax-Friedrichs.

• Sixth order central differences were used for the diffusive terms.

• Temporal integration was accomplished using a third order

Runge-Kutta scheme.



Method of Manufactured Solutions (MMS)

• A solution form is assumed,

and special sources terms

are added to the governing

equations.

• With these sources terms,

the assumed solution satis-

fies the modified equations.

• Fifth order and third order

convergence is acheived for

space and time, respectively.
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Method
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• Initialized with inviscid

ZND solution.

• Moving frame travels at

the CJ velocity.

• Integrated in time for

long time behavior.



Effect of Diffusion on Limit Cycle Behavior
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Viscous Detonations:

• Lee and Stewart revealed for

E < 25.26 the steady ZND

wave is linearly stable.

• For the inviscid case Henrick

et al. found the stability limit at

E0 = 25.265± 0.005.

• In the viscous case E =

26.647 is still stable; how-

ever, above E0 ≈ 27.1404 a

period-1 limit cycle can be re-

alized.



Period-Doubling Phenomena
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Viscous Detonations: • As in the inviscid limit the

viscous case goes through a

period-doubling phase.

• For the inviscid case the

period-doubling began at

E1 ≈ 27.2.

• In the viscous case the begin-

ning of this period doubling is

delayed to E1 ≈ 29.3116.



Effect of Diffusion on Transition to Chaos

• In the inviscid limit, the point where bifurcation points

accumulate is found to be E∞ ≈ 27.8324.

• For the viscous case, Lµ/L1/2 = 1/10, the accumulation

point is delayed until E∞ ≈ 30.0411.

• For E > 30.0411, a region exists with many relative maxima

in the detonation pressure; it is likely the system is in the chaotic

regime.



Table of Approximations to Feigenbaum’s Constant

δ∞ = lim
n→∞

δn = lim
n→∞

En −En−1

En+1 −En

Feigenbaum predicted δ∞ ≈ 4.669201.

Inviscid Inviscid Viscous Viscous

n En δn En δn

0 25.2650 - 27.1404 -

1 27.1875 3.86 29.3116 3.793

2 27.6850 4.26 29.8840 4.639

3 27.8017 4.66 30.0074 4.657

4 27.82675 - 30.0339 -



Effect of Diffusion in the Chaotic Regime

• The period-doubling behavior and transition to chaos predicted

in both the viscous and inviscid limit have striking similarilities to

that of the logistic map.

• Within this chaotic region, there exist pockets of order.

• Periods of 5, 6, and 3 are found within this chaotic region.



Chaos and Order
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Viscous Detonations:



Bifurcation Diagram
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Effect of Diminshing Viscosity (E = 27.6339)
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• The system undergoes

transition from a stable

detonation to a period-1

limit cycle, to a period-2

limit cycle.

• The amplitude of pulsa-

tions increases.

• The frequency de-

creases.



Conclusions

• Dynamics of one-dimensional detonations are influenced

significantly by mass, momentum, energy diffusion in the region

of instability.

• In general, the effect of diffusion is stabilizing.

• Bifurcation and transition to chaos show similarities to the

logistic map.

• For physically motivated reaction and diffusion length scales not

unlike those for H2-air detonations, the addition of diffusion

delays the onset of instability.



Conclusions-Continued

• As physical diffusion is reduced, the behavior of the system

trends towards the inviscid limit.

• If the dynamics of marginally stable or unstable detonations are

to be captured, physical diffusion needs to be included and

dominate numerical diffusion or an LES filter.

• Results will likely extend to detailed kinetic systems.

• Detonation cell pattern formation will also likely be influenced by

the magnitude of the physical diffusion.


