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Motivation

+ Hypersonic propulsion problems with detailed kinetics admit a
startling breadth of length and time scales.

+ e.g. for reaction alone, length scales can span five orders of
magnitude.

+ Smallest scale for DNS often at or below micron scales.

+ Some adaptive method needed for DNS.

+ We use an adaptive wavelet method building on our earlier NSF-
and AFOSR-supported work (late 1990s).
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Project Status

+ Post-Doc Dr. Damrongsek Wirasaet began September 2007.

+ Two Ph.D. students, Mr. Christopher Romick, and Mr. Zack
Zilkowski will be supported starting Summer 2008.

+ Three-dimensional unsteady adaptive wavelet framework built and
verified on model problems.

+ Compressible Navier-Stokes model built and tested on one-
dimensional viscous Sod shock tube problem.

+ Three-dimensional reactive flow solver should be ready in May 2008.

+ Code to be exercised carefully on wedges, cones, shear layers, shock
tubes, etc. (i.e. problems with a good NASA experimental data
base), 2008-2009.

+ Parallel version 2009.
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“Simple” Example: Ozone Detonation

Model Equations: Reactive Euler (Aslam (DOE/LANL) and
Powers, AIAA Reno 2008)
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Ozone Reaction Kinetics

Reaction afj , arj βfj , βrj Efj , Erj
O3 +M � O2 +O +M 6.76× 106 2.50 1.01× 1012

1.18× 102 3.50 0.00
O +O3 � 2O2 4.58× 106 2.50 2.51× 1011

1.18× 106 2.50 4.15× 1012

O2 +M � 2O +M 5.71× 106 2.50 4.91× 1012

2.47× 102 3.50 0.00

Hirschfelder, et al., J. Chem. Phys., 1953.
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Computational Method for “Simple” Problem

+ Steady wave structure (Powers and Paolucci, 2005, AIAA J.):

• LSODE solver,

• Ten second run time on single processor machine,

+ Unsteady wave structure (Henrick, Aslam, Powers, 2006,
J. Comp. Phys.):

• Uniform grid here.

• Shock fitting coupled with a high order method for continuous
regions,

• Two hour run time on desktop Macintosh.
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Stable Strong Overdriven Case

+ Length scales from spatial eigenvalue analysis: D = 2.5× 105 cm/s.
Smallest scale ≈ 10−7cm.

+ Mean-Free-Path Estimate: a simple estimate for this scale is given
by Vincenti and Kruger, ’65: `mfp = M√

2Nπd2ρ
∼ 10−7 cm.
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Stable Strongly Overdriven Case: Mass

Fractions

D = 2.5× 105 cm/s.
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Stable Strongly Overdriven Case: Temperature

D = 2.5× 105 cm/s.
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Stable Strongly Overdriven Case: Transient

Behavior for various resolutions

Initialize with steady structure of D = 2.5× 105 cm/s.
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Unstable Moderately Overdriven Case:

Transient Behavior

Initialize with steady structure of D = 2× 105 cm/s.
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Effect of Resolution on Unstable Moderately

Overdriven Case

∆x Numerical Result
1× 10−7 cm Unstable Pulsation
2× 10−7 cm Unstable Pulsation
4× 10−7 cm Unstable Pulsation
8× 10−7 cm O2 mass fraction > 1

1.6× 10−6 cm O2 mass fraction > 1

• Algorithm failure for insufficient resolution.

• At low resolution, one misses critical dynamics.
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Implications for Operator Splitting for Implicit

Time Integration of Chemistry

+ This popular method, while numerically stable, misses fine scale
dynamics entirely.

+ This method would capture the dynamics if ∆x = 10−7cm, in which
case there would be no need for implicit time integration.
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Remarks

+ Unsteady detonation dynamics can be accurately simulated when
sub-micron scale structures admitted by detailed kinetics are
captured with uniform ultra-fine grids.

+ Shock fitting coupled with high order spatial discretization assures
numerical corruption is minimal.

+ At these length scales, diffusion will play a role and should be
included.

+ Since an ultra-fine grid is required to capture fine scale structures,
accurate simulations with uniform grids may not be practical (since
DOFs of the uniform grid increases exponentially w.r.t. the spatial
dimension d, i.e. DOFs ∼ Nd)

14



Alternative: An Adaptive Wavelet Method

+ An adaptive method is designed based on interpolating multiscale
wavelet bases.

+ An adaptive grid is constructed from an ε-truncated wavelet
approximation of the solution and connected to a dyadic grid.

+ The grid refinement strategy is simple and has no requirement on
mesh connectivity. It amounts to retaining and adding grid points
associated with important wavelet bases and removing grid points
associated with negligible wavelet bases.

+ The method utilizes consistent finite differences on the adaptive
grid for derivative approximation to avoid costly derivative
approximation with direct differentiation of multiscale bases.

+ See detail in Y. Rastigejev and S. Paolucci, Int. J. Num. Fluids, 52,
2005, and D. Wirasaet, PhD Thesis, U. of Notre Dame, 2007.
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Algorithm for Adaptively Solving PDEs

¬ Perform time-discretization of the PDEs:

∂u

∂t
= F (t, u, ux, uxx, . . .)

⇓ time discretization

Amum = Fm(tm−q, um−q, um−qx , um−qxx , . . .), q = 0, . . . , r (1)

­ Determine an adaptive grid V0 by thresholding the wavelet
representation of initial condition u0.

® For m = 1, nstep

¶ Solve (1) on the grid Vm−1 to obtain approximate solution um.

· Determine the new adaptive grid, Vm by thresholding the
wavelet representation of the obtained solution um.

¸ Perform wavelet interpolation to obtain the function value of
um−q, q = 0, . . . , r on the new adaptive grid Vm.
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Some Remarks

+ In each integration step m, the operations required in the algorithm
are of O(N), N = dim(Vm).

+ Assuming temporal resolution, an accurate approximate solution is
expected to behave in overall like

‖unum − uexact‖LV ,∞ = O(Nmin(p−2,n)/d) = O(εmin(p−2,n)/p)

where
ε - the value of threshold parameter
p - the order of interpolating wavelet
n - the order of FD used in derivative approximation
d - the spatial dimension

+ The behavior of errors in the solution from numerical experiments
conforms reasonably well with the estimate given above. Often, the
achieved order is better than the estimate!
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Flameball-Vortex interaction

x0

u

Ω

velocity profile

intial flamebally

x

Governing equations [O. Roussel and K. Schneider,

2005]:

∂T

∂t
+ (u · ∇)T = ∇2T + ω − s,

∂Y

∂t
+ (u · ∇)Y =

1
Le
∇2Y − ω,

ω(T, Y ) =
Ze2

2Le
Y exp

[
− Ze(1− T )

1− α(1− T )

]
,

s(T ) = γ
[
(T + α−1 − 1)− (α−1 − 1)

]4
.

Note: where T denotes temperature, Y partial mass of the fresh premixed
gas, ω the reaction rate, s heat loss due to radiation, α burnt-unburnt
temperature ratio, γ radiation coefficients, Le the Lewis number, Ze the
Zeldovich number. 18



Numerical Simulations

Velocity:

u =
Γ

2πr

(
1− exp

[
− r2

4Pr(t+ τ)

])
, r =

√
x2 + y2

Initial conditions:

T (r̂, 0) =
{

1 if r̂ ≤ r̂0,
exp(1− r̂/r̂0) if r̂ > r̂0,

Y (r̂, 0) =
{

0 if r̂ ≤ r̂0,
1− exp(Le(1− r̂/r̂0)) if r̂ > r̂0,

Boundary conditions:

∂T

∂n

∣∣∣∣
∂Ω

=
∂Y

∂n

∣∣∣∣
∂Ω

= 0.

α = 0.64
γ = 0
Le = 0.3
Ze = 10
Pr = 0.01
τ = 0.01
Γ = 0 to 1350
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Numerical Simulation

Computational domain : Ω = [−10, 10]2

Time-Discretization : 2
nd

trapezoidal scheme for linear term
2

nd
Adam-Bashforth for nonlinear term

tfinal = 1.5
Interpolating wavelet : p = 6
Derivative approximation : n = 4 (9 point-stencil)
Coarsest level : j0 = 4
Max. levels of refinement : J − j0 = 6
Threshold parameters : ε = (5× 10−3, 5× 10−3),

(1× 10−3, 1× 10−3),
and (5× 10−4, 5× 10−4)
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Result of simulation for Γ = 100

Threshold : ε = {10−3, 10−3}
Adaptive scheme : p = 6 and n = 4
Resolution : j0 = 4 and J − j0 = 6
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Results for Γ = 100

Evolution of DOFs required

0 0.5 1 1.5
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t

N

 

 

ε = 5 × 10−3

ε = 1 × 10−3

ε = 5 × 10−4

+ As a threshold value ε is decreased, the number of DOFs, N ,
generated by the algorithm increases automatically.
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Result of simulation for Γ = 1300

Threshold : ε = {10−3, 10−3}
Adaptive scheme : p = 6 and n = 4
Resolution : j0 = 4 and J − j0 = 6
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Compressible Flows

A code is being developed for numerical solution of 1, 2, and 3D reactive
compressible Navier-Stokes equations written as

∂ρ

∂t
+∇ · (ρu) = 0

∂ρu
∂t

+∇ · (ρuTu) = −∇ · (pI + τ ),

∂ρE

∂t
+∇ · (ρEu) = −∇ · (u · (pI + τ ))−∇ · (qc + jr),

∂ρYi
∂t

+∇ · (ρYiu) = −∇ · (ρYiUDi) +Miω̇i, i = 1, . . . , N

• ρ-density, u-velocity vector, E-specific total energy, Yi-mass fraction
of species i, I-unit tensor, τ -viscous stress tensor, qc and jr-heat flux,
UDi-diffusion velocity of species i, and ω̇i-reaction rate of species i.

24



Compressible flows (cond’t)

+ Where

τ = 2µ
(
∇u + (∇u)T

2
− 1

3
(∇ · u)I

)
,

qc = −κ∇T,

E = e+
1
2
|u|2,

P =
ρRT

M
.

+ Additional equations for a chemical system of N species and M
reactions,

N∑
k=1

ν′kjMk 

N∑
k=1

ν′′kjMk, j = 1, . . . ,M
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Compressible flow (cond’t)X
i

Yi = 1,

jr = ρ

NX
k=1

hkYkUDk

e =

NX
i=1

Yihi −
RT0

M
, hi = hi0 +

TZ
T0

cpidT,

ω̇i = Mk

MX
j=1

(ν
′′
kj − ν

′
kj)

"
Kfj

NY
k=1

„
ρYk

Mk

«ν′kj
−Krj

NY
k=1

„
ρYk

Mk

«ν′′kj#
,

NX
k=1

(ν
′′
kj − ν

′
kj)Mk = 0, j = 1, . . . ,M,

∇
„
YjM

Mk

«
=

NX
k=1

YjYkM
2

MjMkDjk

(UDk −UDj) +

„
Yj −

YjM

Mj

«∇P
P
, j = 1, . . . , N.
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1-D viscous Shock Tube

Schematic diagram of Sod’s problem:

PL LT LU = 0 PR TR RU = 0

PL PR>

Membrane

Driven section
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Numerical Simulation

Test case:

Fluid : Air

At t = 0 :
PR = 2× 105 [N/m2], TR = 300 [K]
PL = 1× 105 [N/m2], TL = 300 [K]
UL = 0 [m/s], UR = 0 [m/s]

Reynolds number : Re =
ρLL

µ0

p
PL/ρL

= 2× 103, 1× 104, 1× 105

Numerical aspect:

Wavelet : p = 6
Derivative Approx : n = 4 (5 point-stencil)
Coarsest level : j0 = 4
Threshold parameters : ε = 1× 10−4, 5× 10−5, 1× 10−5

Time discretization : 4
th

order Runge-Kutta

∆t = 0.8 ·
 
|u|
∆x

+

s
γP

ρ

1

∆x
+ max

»
4

3
µ, κ

γ

(γ − 1)Pr

–
1

ρRe∆x2

!−1
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Result of simulation for Re = 1× 105
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15
Adaptive grid,

j −
 j 0

x

N = 165

Threshold : ε = 1× 10−5

Adaptive scheme : p = 6 n = 4

Resolution : j0 = 4,
: J − j0 = 15
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Comparison with the Inviscid Solution:

Re = 2× 103

t = 8.86× 10−8 [s], N = 249

density velocity
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Comparison with the Inviscid Solution:

Re = 1× 104

t = 4.43× 10−7 [s], N = 291

density velocity
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Comparison with the Inviscid Solution:

Re = 1× 105

t = 4.43× 10−6 [s], N = 435

density velocity
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Viscous H2/O2/Ar Detonation with Wavelets
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Conclusions

+ Hypersonic reacting flows with detailed kinetics admit a challenging
variety of length scales, spanning over five orders of magnitude.

+ An adaptive wavelet algorithm for solving PDEs in d-dimension
has been described. The algorithm is based on d-dimensional
interpolating wavelets.

+ The method has been applied to solve a low Mach number flameball-
vortex interaction (a diffusion-advection-reaction problem) which
constitutes a challenging problem due to the evolving thin layers.

+ The method has been applied to a one-dimensional viscous Sod shock
tube and viscous H2/O2/Ar detonation.

+ Numerical results clearly indicate that the adaptive method is able
to follow the structures of the solutions dynamically.
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Wavelet Approximation in Domain [0, 1]d

Approximation of u(x) by the interpolating wavelet, a multiscale basis,
on [0, 1]d is given by

u(x) ≈ uJ(x) =
∑

k

uj0,kΦJ0,k(x) +
J−1∑
j=J0

∑
λ

dj,λΨj,λ(x),

where x ∈ Rd, λ = (e,k) and Ψj,λ(x) ≡ Ψe
j,k(x).

• Scaling function:
Φj,k(x) =

d∏
i=1

φj,k(xi), ki ∈ κ0
j

• Wavelet function:
Ψe
j,k(x) =

d∏
i=1

ψeij,k(xi), ki ∈ κeij

where e ∈ {0, 1}d \ 0, ψ0
j,k(x) ≡ φj,k(x) and ψ1

j,k(x) ≡ ψj,k(x), and κ0
j =

{0, · · · , 2j} and κ1
j = {0, · · · , 2j − 1}.
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Example: 1-D interpolating scaling functions φ3,k, k = 0, 1, 2, and 4 for p = 4

φ(x) with p = 4
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1-D Interpolating Scaling Function and Wavelet

Some properties of φj,k and ψj,k of order p (p ∈ N, even):

+ φj,k is defined through φ(2jx−k) where φ(x) =
∫
ϕp(y)ϕp(y−x)dy,

the auto-correlation of the Daubechies wavelet ϕp(x).

+ The support of φj,k is compact, i.e. supp{φj,k} ∼ |O(2−j)|.

+ φj,k(xj,n = n2−j) = δk,n, i.e. satisfies the interpolation property.

+ ψj,k = φj+1,2k+1.

+ span{φj,k} = span{{φj−1,k}, {ψj−1,k}}.

+ {1, x, · · · , xp−1}, for x ∈ [0, 1], can be written as a linear combination
of {φj,k, k = 0, · · · , 2j}.

+ {{φJ0,k}, {ψj,k}∞j=J0
} forms a basis of a continuous 1-D function on

the unit interval [0, 1].
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Wavelet Amplitudes

• Wavelet amplitude, |dj,λ|, measures an error of the approximation of
u(x) by a local polynomial approximation at the point xj,λ.

• In other words, wavelet amplitudes, dj,λ, indicate the local regularity
of a function.

Example: Consider u(x, y) =

0.2/(|0.4− x2 − y2|+ 0.2)

u(x, y)

Associated sparse grid
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Grid points correspond to wavelet amplitudes that
are larger than ε = 5× 10−3.
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Sparse Wavelet Representation (SWR) and

Irregular Sparse grid

+ For a given threshold parameter ε, the multiscale approximation of
a function u(x) can be written as

u
J
(x) =

X
k

uJ0,kΦj0,k(x) +

J−1X
j=j0

X
{λ : |dj,λ|≥ε}

dj,λΨj,λ(x)

+

J−1X
j=j0

X
{λ : |dj,λ|<ε}

dj,λΨj,λ(x)

| {z }
RJε

+ The Sparse Wavelet Representation (SWR) is obtained by discarding
the term RJε :

uJε (x) =
∑

k

uj0,kΦj0,k(x) +
J−1∑
j=j0

∑
{λ : |dj,λ|≥ε}

dj,λΨj,λ(x).
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SWR and Irregular Sparse Grid (continued)

+ For interpolating wavelets, each basis function is associated with one
dyadic grid point, i.e.

Φj,k(x) with xj,k = (k12−j, . . . , kd2−j)

Ψj,λ(x) with xj,λ = xj+1,2k+e

+ Thus, for a given SWR, one has an associated grid composing of
irregular points

V = {xj0,k,
⋃
j≥j0

xj,λ : λ ∈ Λj}, Λj = {λ : |dj,λ| ≥ ε}.

+ There exists an adaptive fast wavelet transform (AFWT), with O(N),
N = dim{V} operations, mapping the function values on the irregular
grid V to the associated wavelet coefficients and vice-versa:

AFWT({u(x) : x ∈ V})→ D = {{uj0,k}, {dj,λ, λ ∈ Λj}j>j0}.
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SWR and Irregular Sparse grid (continued)

+ Provided that the function u(x) is continuous, the error in the SWR
uJε (x) is bounded by

‖u− uJε ‖∞ ≤ C1 ε.

+ Furthermore, for the function that is smooth enough, the number of
basis functions N = dim{uJε } required for a given ε satisfies

N ≤ C2 ε
−d/p,

‖u− uJε ‖∞ ≤ C2 N
−p/d
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SWR and Irregular Sparse grid (continued)

Example: Consider the SWR of

u(x) =
0.05(x+ 0.05)

(x+ 0.05)2 + (y − 0.4)2

‖u− uε‖∞ vs. N ε vs. ‖u− uε‖∞
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Derivative Approximation of SWR

+ Direct differentiation of wavelets is costly (with O(p(J − j0)N)
operations) because of different support sizes of wavelet basis on
different levels.

+ Alternatively, we use finite differences to approximate the derivative
on a grid of irregular points. The procedure can be summarized as
follows:

¶ For a given SWR of a function, perform the inverse interpolating
wavelet transform to obtain the function values at the associated
irregular points.

· Apply locally a finite difference scheme of order n to approximate
the derivative at each grid point.

+ Estimate shows that the pointwise error of the derivative
approximation has the following bound:

‖∂iu/∂xi −D(i)
x uJε ‖V,∞ ≤ CN−min((p−i),n)/2, ‖f‖G,∞ = max

x∈V
|f(x)|.
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Derivative Approximation of SWR

Example: Consider a derivative approximation of the SWR of

u(x) =
0.05(x+ 0.05)

(x+ 0.05)2 + (y − 0.4)2
.

‖u−D(2)
x uε‖∞ vs. N
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Snap shots for Γ = 100 with p = 6, n = 4 and ε = 10−3

T ω(T, Y, t) Adaptive grid

t = 0

t = 0.33
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Snap shots for Γ = 100 with p = 6, n = 5 and ε = 10−3

T ω(T, Y, t) Adaptive grid

t = 0.79

t = 1.0
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Model problem

Consider an advection-diffusion problem:

∂u

∂t
+ (V · ∇)u = ν∇2u+ f(x, t), (x, t) ∈ Ω× [0,+∞),Ω = (0, 1)2

u = g, x ∈ ∂Ω and u(x, 0) = q(x)

• V = (1, 0)T , ν = 1/100 and f , g, and q are chosen so that the exact
solution is defined by

u(x, t) =
0.05(x+ 0.05)

(x+ 0.05)2 + (y − t)2
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Numerical experiments

Time discretization : Trapezoidal scheme (Crank-Nicolson)
: with small ∆t, tf = 1

Adaptive method : p = 4 and n = 4, p = 6 and n = 4,
: and p = 8 and n = 7

Coarsest levels : j0 = 3
Maximum levels of refinement : J − j0 = 11
Threshold : ε = 5× 10−3 to 1× 10−7

+ The numerical solution as ε varied is expected to conform reasonably
with

N(tm) = dim{Vtm} = O(ε−d/p)

‖uext(tm)− uε(tm)‖Vtm,∞ = O(N−min(p−2,n)/d) = O(εmin(p−2,n)/p)
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Results of simulation

Threshold : ε = 5× 10−4

Adaptive method : p = 4 and n = 4

Coarsest level : j0 = 3
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Results for p = 4 and n = 4
N vs. t ‖uext − uε‖V,∞ vs. t
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+ As threshold value ε decrease, the number of grid points demanded
by the algorithm increase automatically.

+ The discrete maximum error in the numerical solution stay almost
constant in time.
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Error in solutions at t = 0.5
N vs. ε N vs. ‖uext − uε‖V,∞
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+ N is proportional O(ε−p/d)

+ ‖uext − uε‖V,∞ = O(N−c1), c1 ≥ min(p− 2, n)/2.

+ Furthermore, ‖uext − uε‖V,∞ = O(εc2), c2 = c1d/p
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Wavelet Amplitudes
• Let xj,λ = xe

j,k = (xe1
j,k1

, xe2
j,k2

, · · · , xedj,kd), where x0
j,k = k2−j and

x1
j,k = (2k + 1)2−j, the interpolating wavelet coefficients is defined by

dj,λ = de
j,k = f(xj,λ)− (Pxe

j,λ
f)(xj,λ) (2)

• (PX e
j,λ
f)(xj,λ) is a prediction of f(xj,λ) with a polynomial defined

from a certain set of points X e
j,k ∈ {xj,k}\xj,λ, where xj,k =

(k1, k2, · · · , kd)2−j.

Examples of sets of points defining prediction polynomials (PXe
j,λ
f) for

2-D wavelet with p = 4

X (1,0) X (0,1) X (1,1)

x(1,0) x(0,1) (1,1)x
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Wavelet Amplitudes

u = 1/(|0.5− x2 − y2 − z2|+ 0.1) FWT (u)

Sections of test function
Grid points corresponding to

|dj,λ| ≥ 5× 10−3.
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Note on Algebra of Function Operation

• Addition/subtraction of two functions uJε and vJε can be obtained
easily by simply either adding/subtracting their coefficients. The
error estimate for this operation is bounded by

‖(u± v)− (uJε ± (vJε )‖ ≤ ‖u− uJε ‖+ ‖v − vJε ‖ ≤ Cε

• Multiplication of two functions uJε and vJε is computed by following

– use IWT on Du and Dv to get the corresponding functional values
on Gu ∪ Gv.

– Evaluate the multiplication pointwise in the set of points Gu∪Gv.

The error ‖uv − uJε vJε ‖ of this procedure is bounded by

C1(‖u‖+ ‖vJε ‖)ε and C2(‖v‖+ ‖uJε ‖)ε.
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SWR and Irregular Sparse Grid (continued)

+ If {u(x),x ∈ V} is the set of exact function values at irregular
grid points, AFWT yields the exact values of the associated wavelet
coefficients.

+ To find interpolated values on an irregular grid Ṽ that is different
from V , simply set up an extended grid V̂ = Ṽ∪V and an augmented
set of coefficients

D̂ = {{uj0}, {d̂j,λ}} where dj,λ =
{
dj,λ for xj,λ ∈ V
0 for xj,λ ∈ V̂ \ V

and run fast inverse wavelet transform (AIWT)

AIWT(D̂)→ {û(x) : x ∈ V̂}
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Grid Adaption Strategy

+ In each refinement step, determine the essential grid points, which
are points whose associated wavelet amplitudes are larger than the
threshold parameter ε:

V̂e = {xj,λ : j ≥ j0, λ ∈ Λj, |dj,λ| ≥ ε},

+ To accommodate the possible advection and sharpening of solution
features, we determine the neighboring grid points:

bVb =
[

{j,λ∈Λ}

Nj,λ,

where Nj,λ is a set of neighboring points to xj,λ.

+ The new sparse grid, V, is then given by

V = {xj0,k} ∪ V̂e ∪ V̂b.
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