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Accurate Spatial Resolution Estimates for Reactive Supersonic
Flow with Detailed Chemistry
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A robust method is developed and used to provide rational estimates of reaction zone thicknesses in one-
dimensional steady gas-phase detonations in mixtures of inviscid ideal reacting gases whose chemistry is described
by detailed kinetics of the interactions of N molecular species constituted from L atomic elements. The conser-
vation principles are cast as a set of algebraic relations giving pressure, temperature, density, velocity, and L
species mass fractions as functions of the remaining N–L species mass fractions. These are used to recast the N–L
species evolution equations as a self-contained system of nonlinear ordinary differential equations of the form
dYi/dx = fi (Y1, . . . , YN–L). These equations are numerically integrated from a shock to an equilibrium end state.
The eigenvalues of the Jacobian of fi are calculated at every point in space, and their reciprocals give local esti-
mates of all length scales. Application of the method to the standard problem of a stoichiometric Chapman–Jouguet
hydrogen–air detonation in a mixture with ambient pressure of 1 atm and temperature of 298 K reveals that the
finest length scale is on the order of 10−5 cm; this is orders of magnitude smaller than both the induction zone
length, 10−2 cm, and the overall reaction zone length, 100 cm. To achieve numerical stability and convergence of
the solution at a rate consistent with the order of accuracy of the numerical method as the spatial grid is refined,
it is shown that one must employ a grid with a finer spatial discretization than the smallest physical length scale.
It is shown that published results of detonation structures predicted by models with detailed kinetics are typically
underresolved by one to five orders of magnitude.

I. Introduction

I N recent years there has been great interest in computations of
complex multiscale physical phenomena. In this work, the sim-

ple issue of whether such computations have captured the breadth of
length scales they purport to model is examined, and conditions are
found under which such predictions are mathematically verifiable.
The specific purpose of this paper is to give an accurate estimate of
what spatial resolution is necessary for an important paradigm multi-
scale problem: gas-phase detonation described by detailed chemical
kinetics. The general approach presented here can be extended to
a wider range of problems, including those that are the subject of
present intense computational investigations such as laminar flame
propagation, supernova dynamics, combustion in reactive solids,
flows in jet engines, and flows in rocket nozzles.

The ever-increasing capabilities of computational hardware and
algorithms offer the scientific and engineering communities the op-
portunity to solve unsteady multidimensional problems that only
a few years ago would have been impossible. However, this has
necessitated a more complex interplay between mathematics, com-
putation, and experiment; to determine via computation whether
the underlying mathematical model is representative of the observ-
able physics, one must first guarantee that the computations have
fidelity with the underlying mathematics; this is sometimes defined
as verification.1−4 Only then is it appropriate to make comparisons
with experiment, sometimes defined as validation, which, while crit-
ically important, will not be considered here. Neglecting the pro-
cess of harmonizing computational predictions with the underlying
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mathematics, and, thus, simply tuning computational results with
experiments, gives rise to the strong possibility that the predictions
depend on both the size of the discrete grid and the particular algo-
rithm used to solve the underlying equations.

Concerns regarding verification are typically minimal in prob-
lems for which the spatial and temporal scales over which the system
evolves are nearly the same order of magnitude. In such cases, er-
rors are usually obvious and easily corrected. However, in so-called
multiscale problems, in which the range of spatiotemporal scales
may span many orders of magnitude, verification is more difficult.
In scenarios where the coupling across scales is weak, large-scale
results, readily seen in predictions, may be relatively insensitive to
errors at the small scales. In other problems, typically with stronger
nonlinearities, the coupling across scales can be significant, and er-
rors at the small scale can rapidly cascade to the large scale. Because
for many problems it is difficult to obtain clear a priori information
of the strength of this coupling, the only way one can gain confi-
dence in predictions is to guarantee that all scales have been properly
captured.

A prototypical multiscale example is found in gas-phase det-
onation with detailed chemistry. Over the past few decades, the
aerospace propulsion community has utilized multiscale aerother-
mochemistry models of increasing complexity for sophisticated
problems including flows in and around reentry vehicles, rocket
nozzles, supersonic combustion ramjets, and pulse detonation wave
engines. Because the geometries of these devices are on typical en-
gineering scales and the chemistry typically evolves on a variety of
significantly smaller length scales, it is clear that this is a multiscale
problem. It must be said that in some problems, such as determi-
nation of detonation wave speeds and peak pressures, a posteriori
calculations reveal only a weak dependence on properly capturing
fine scale structures. However, other calculations, for instance, those
of detonation instability or pollutant formation, can have a strong
dependence on the fine structures. Whatever the case, it is not clear
that the finest length scales have been resolved in most studies. Even
in the most careful, it is rare to see a rigorous grid convergence study
or an analysis that shows that the finest scales have been captured. To
the contrary, it is more common to find the curious situation in which
an argument is made for the necessity of a detailed kinetics model to
capture the true physics of a problem, only to be followed by either
1) a rationalization as to why it is not necessary to have a fine grid
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POWERS AND PAOLUCCI 1089

capture the detailed physics or, more commonly, 2) no recognition
that fine-scale physics has been overwhelmed by numerical errors.

To highlight this point, this study focuses on one key issue: deter-
mination of the finest length scale necessary to capture the smallest
features present in a routinely used aerothermochemistry model of
detonation. If calculations based on models of this class are to be
able to withstand scientific scrutiny with regards to repeatability,
grid- and algorithm-independence, consistent with AIAA standards
for computations, they must, at a minimum, capture this finest scale.
Even then, depending on the problem, there may be even finer length
scales present, due to other effects, for example, high wave number
instabilities5 or multidimensionality.6

This study considers the issue of length scales by addressing
a single paradigm problem: a one-dimensional steady Chapman–
Jouguet (CJ) detonation in an inviscid stoichiometric hydrogen–air
mixture whose chemistry is described by 9 species undergoing 19
reversible reactions. Whereas there is often controversy regarding
parameter values in detailed kinetics models, especially for high
molecular weight hydrocarbons, the detailed model for hydrogen
oxidation is widely regarded as well understood, and parametric
uncertainties are small.7,8

Initially, the mixture is taken to consist of diatomic hydrogen,
oxygen, and nitrogen in the molar ratio of 2H2 + O2 + 3.76N2 at a
pressure of 1 atm and temperature of 298 K. Nitrogen is modeled as
an inert diluent. This is precisely the hydrogen–air problem studied
by Shepherd,9 who reported global reaction zone structures. It is
closely related to the under-appreciated study of Mikolaitis,10 who,
following a general procedure used by Westbrook,8 used the same
kinetics model to give one of the most carefully resolved calculations
of the temporal variation of all variables within what is known as
the induction zone, that is, the early part of the reaction process in
which pressure, temperature, and velocity are essentially constant
and minor species mass fractions are rapidly growing. Shepherd’s
predictions of the variation of variables within the induction zone
are difficult to discern in his plots. It will also be possible to compare
to the recent results of Lu et al.,11 who use a similar kinetics model to
carefully predict induction zone lengths; however, they do not report
the fine-scale details. In a somewhat similar calculation, Fickett and
Davis7 give a fully resolved prediction of a steady CJ detonation in
2H2 + O2 + 9Ar initially at 300 K and 0.1 atm; because the ambient
pressure is lower, the reaction zone is larger.

Of those spatiotemporal studies that exercise care in resolving
spatial structures, it is typically the induction zone length that is
deemed to be the smallest length scale to be resolved. Such is the
case in the studies of Oran et al.,12 Hu et al.,13 Eckett et al.,14 Pintgen
et al.,15 Sheffer et al.,16,17 Tsuboi et al.,18 and da Silva et al.,19 Nev-
ertheless, because the thermal explosion at the end of the induction
zone is the result of the cumulative nonlinear effects of reactions at
finer scales, it is natural to suppose accurate prediction of the induc-
tion zone depends on accurate calculation of more primitive finer
scale phenomena. The study of Singh et al.20 has captured an even
finer viscous scale. Their calculations, which took advantage of an
adaptive spatial discretization method, came closest to resolving the
finest reaction scales. Other studies have been less rigorous and give
predictions in which it is unclear if even the induction zone has been
resolved. Examples include those of Fedkiw et al.,21 Ebrahimi and
Merkle,22 Dudebout et al.,23 and Choi et al.24 Recognizing the diffi-
culties in resolving the finest scales of detailed kinetics, others take
alternate approaches: 1) one-step kinetics, He and Karagozian,25 or
2) two-step kinetics, Sichel et al.26 or Kawai and Fujiwara,27 based
on the approach of Korobeinikov et al.28 Both one- and two-step
models require some compromises, described fully by the cited au-
thors, in which the sacrifice of many terms results in a restricted
ability to describe some physical phenomena relative to the detailed
models. Moreover, even in two-step studies, the relative lengths of
the individual reaction zone structures are not always clarified; if
the smallest is not resolved, the same concerns one has for detailed
kinetics models are realized. That is, a small number of reactions
in no way guarantees the computation is made easier to perform
accurately. In contrast, one could also have a system with hun-
dreds of reactions, and if by chance they all evolved over a similar

length scale, the computation could be done with both accuracy and
efficiency.

The paper is organized as follows. First, a full description of
the underlying unsteady reactive Euler equations is given. This is
followed by details of the steps necessary to reduce the system
to a set of ordinary differential equations (ODEs) describing the
spatial evolution of a subset of the species mass fractions. Next, a
standard linear analysis is performed to reveal that, at a given point
in the reaction zone structure, the local length scales over which
the system evolves are given by the reciprocal of the magnitude
of the real part of each of the eigenvalues of the local Jacobian
matrix of the nonlinear function on the right-hand side of the ODEs.
This is followed by a description of the numerical method used to
solve the system. Results are then shown for the spatial evolution of
species mole fractions (used so that proper comparisons can be made
with results in the literature), thermodynamic variables, and local
length scales for the paradigm CJ detonation. A comparison of the
finest scales to the induction zone length scales is given, followed
by a study of accuracy and numerical stability. Then a summary
of some recent predictions given in the literature of hydrogen–air,
hydrogen–oxygen, and hydrogen–oxygen–argon detonations with
detailed kinetics is given, and grid sizes used in those models are
compared with the minimum physical length scale predicted by the
present analysis. The implications of the results are reviewed in the
concluding section.

II. Mathematical Model
A. Governing Equations

The following equations, written in unsteady conservative form,
describe the behavior of a one-dimensional inviscid mixture of N
gaseous molecular species composed of L atomic elements which
undergo J reactions:

∂ρ

∂t
+ ∂

∂x
(ρu) = 0 (1)

∂

∂t
(ρu) + ∂

∂x
(ρu2 + p) = 0 (2)

∂

∂t

[
ρ

(
e + u2

2

)]
+ ∂

∂x

[
ρu

(
e + u2

2
+ p

ρ

)]
= 0 (3)

∂

∂t
(ρYi ) + ∂

∂x
(ρuYi ) = ω̇i Mi , i = 1, . . . , N − 1 (4)

The independent variables are the distance coordinate x and time
t . The dependent variables are density ρ, velocity u, pressure p,
specific internal energy e, species mass fractions Yi , i = 1, . . . ,
N − 1, and molar production rate per unit volume for specie i ,
ω̇i , i = 1, . . . , N − 1. The parameters are the molecular masses of
specie i , Mi , i = 1, . . . , N − 1. Equations (1–3) describe the con-
servation of mixture mass, linear momentum, and energy, respec-
tively. Equation (4) describes the evolution of N − 1 of the molecular
species mass fractions.

The system is completed by the following algebraic equations:

p = ρ�T
N∑

i = 1

Yi

Mi
(5)

e =
N∑

i = 1

Yi

(
h0

i − �T

Mi

)
(6)

1 =
N∑

i = 1

Yi (7)

ω̇i =
J∑

j = 1

νi j r j , i = 1, . . . , N − 1 (8)

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
N

O
T

R
E

 D
A

M
E

 o
n 

Ja
nu

ar
y 

8,
 2

02
2 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.1
16

41
 



1090 POWERS AND PAOLUCCI

r j = A j T
β j exp

(−E j

�T

)



N∏
k = 1

(
ρYk

Mk

)ν′
k j

︸ ︷︷ ︸
forward

− 1

K c
j

N∏
k = 1

(
ρYk

Mk

)ν′′
k j

︸ ︷︷ ︸
reverse




j = 1, . . . , J (9)

K c
j =

(
pref

�T

)∑N

m = 1
νmj

exp

(−∑N
m = 1 µ̄0

mνmj

�T

)
, j = 1, . . . , J

(10)

h0
i = href

i +
∫ T

T ref

cpi (T̂ ) dT̂ , i = 1, . . . , N (11)

s0
i = sref

i +
∫ T

T ref

cpi (T̂ )

T̂
dT̂ , i = 1, . . . , N (12)

µ̄0
i = Mi

(
h0

i − T s0
i

)
, i = 1, . . . , N (13)

Mi =
L∑

l = 1

mlφli , i = 1, . . . , N (14)

0 =
N∑

i = 1

φliνi j , j = 1, . . . , J, l = 1, . . . , L (15)

νi j = ν ′′
i j − ν ′

i j , i = 1, . . . , N , j = 1, . . . , J (16)

New dependent variables are the temperature T ; the specific heat
at constant pressure of the i th specie, cpi , taken to be a function of
temperature, where T̂ is a dummy variable of integration; the mass
fraction of the N th specie YN ; the reaction rate of the j th reaction
r j ; and the so-called equilibrium constant of the j th reaction, K c

j .
Also, a set of new variables for i th specie, denoted with a superscript
0 to indicate evaluation at the reference pressure, are defined as the
chemical potential per unit mole, enthalpy per unit mass, and entropy
per unit mass, µ̄0

i , h0
i , and s0

i , respectively. The bar notation indicates
a per mole basis.

Parameters in Eqs. (5–15) are as follows. The universal gas con-
stant is �. The pressure and temperature at the reference state are pref

and T ref, respectively. For each molecular specie from i = 1, . . . , N ,
one has reference state specific enthalpy and entropy, href

i and sref
i .

For each reaction j = 1, . . . , J , one has collision frequency factor
A j , exponent characterizing power-law temperature dependency,
β j , activation energy E j , and stoichiometric coefficients denoting
the number of moles of reactant and product, respectively, of specie
i in reaction j , ν ′

i j and ν ′′
i j , as well as the net stoichiometric coef-

ficients νi j . For l = 1, . . . , L , the atomic element mass is ml . For
specie i = 1, . . . , N , and atomic element l = 1, . . . , L , the species
atomic element index giving number of moles of atomic element l
in specie i is φli .

Equation (5) is a thermal equation of state for a mixture of ideal
gases, which obeys Dalton’s law. Equation (6) is a mixing rule for
the internal energy. Equation (7) constrains the species mass frac-
tions to sum to unity. Equation (8) is an expression for the molar
species evolution rate per unit volume for specie i . Equation (9) is an
expression of the law of mass action with Arrhenius kinetics for re-
action j constructed so as to ensure the forward and reverse reaction
rate components satisfy Le Châtlier’s principle as each individual
reaction approaches equilibrium. Equation (10) is an equation for
the equilibrium constant for each reaction; actually K c

j is a function
of T . Equations (11–13) define the enthalpy, entropy, and chemical
potential of specie i , evaluated at pref, as functions of temperature.
The variables h0

i (T ) and s0
i (T ) are often available in tabular form;

alternatively, functional forms for cpi (T ) may be available. Equa-
tion (14) defines the molecular mass in terms of its constitutive

atomic elements. Equation (15) is a stoichiometric constraint on
atomic element l in reaction j . After use of Eqs. (8–13) to elimi-
nate ω̇i in Eq. (4), Eqs. (1–7) form 5 + N equations in the 5 + N
unknowns, ρ, u, p, e, T , and Y1, . . . , YN .

A nonobvious identity is obtained by operating on the N -term
version of Eq. (4). One notes that by summing Eq. (4) from i =
1 to N and employing Eqs. (8), (14), and (15), one arrives at

∂

∂t

(
ρ

N∑
i = 1

Yi

)
+ ∂

∂x

(
ρu

N∑
i = 1

Yi

)
=

J∑
j = 1

r j

L∑
l = 1

ml

N∑
i = 1

φliνi j

︸ ︷︷ ︸
=0

= 0

(17)

Using next Eq. (7) to eliminate the sum of mass fractions in Eq. (17),
one finds consistency with Eq. (1).

Additional useful auxiliary equations are as follows:

yl = ml

N∑
i = 1

φli

Mi
Yi , l = 1, . . . , L (18)

Xi = Yi/Mi∑N
j = 1 Y j/M j

, i = 1, . . . , N (19)

cvi = cpi − �
Mi

, i = 1, . . . , N (20)

cp =
N∑

i = 1

Yi cpi (21)

cv =
N∑

i = 1

Yi cvi (22)

γ = cp

cv

(23)

c =
√

γ
p

ρ
(24)

M = u

c
(25)

pi = ρ�T
Yi

Mi
, i = 1, . . . , N (26)

hi = h0
i (27)

si = s0
i − �

Mi
ln

(
pi

pref

)
, i = 1, . . . , N (28)

µ̄i = µ̄0
i + �T ln

(
pi

pref

)
= ḡi = Mi (hi − T si ), i = 1, . . . , N

(29)

1 =
L∑

l = 1

yl (30)

New dependent variables in Eqs. (18–30) are as follows. For each
atomic element l = 1, . . . , L , one has the element mass fraction yl .
For each molecular specie, i = 1, . . . , N , one has the mole fraction
Xi , the specific heat at constant volume cvi , the partial pressure pi ,
and the Gibbs free-energy per mole ḡi . One has the mass-averaged
specific heats at constant pressure and volume, respectively, cp and
cv , the ratio of specific heats γ , the frozen acoustic speed c, and the
Mach number M . Equations (18–29) are definitions of yl , Xi , cvi ,
cp , cv , γ , c, M , pi , hi , si , µ̄i , and gi , respectively. For the ideal gas,
hi is a function of temperature alone; however, both si and µ̄i are
functions of temperature and pressure. Last, Eq. (30) constrains the
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POWERS AND PAOLUCCI 1091

atomic element mass fractions and can be derived from summing
Eq. (18) from l = 1 to L and employing Eq. (14).

It is easily shown, using techniques described by Whitham,29 that
Eqs. (1–7) form a hyperbolic system and, thus, admit propagating
discontinuous jumps. For a stationary jump at x = 0, which will be
considered here, the equations reduce to

[[ρu]] = 0 (31)

[[ρu2 + p]] = 0 (32)

[[ρu(e + u2/2 + p/ρ)]] = 0 (33)

[[ρuYi ]] = 0, i = 1, . . . , N (34)

Here, a common variant of Whitham’s notation for a shock jump
has been employed: [[�]] ≡ �|x = 0+ − �|x = 0− , where � is a generic
quantity. Substitution of Eq. (31) into Eq. (34) gives the standard
result that species mass fractions are frozen through a discontinuity:
[[Yi ]] = 0, i = 1, . . . , N . As a consequence, Eqs. (31–33) combined
with Eqs. (5) and (6) form a set of five algebraic equations in the
five unknowns ρ, u, p, e, and T , which can be shown to admit two
physical solutions: the ambient state and the shock state.

The driving inhomogeneity of the system is the term ω̇i in Eq. (4).
Examination of Eq. (9) reveals that r j is driven to zero when

K c
j (T ) =

N∏
k = 1

(
ρYk

Mk

)νk j

, j = 1, . . . , J (35)

Driving r j , j = 1, . . . , J , to zero is sufficient to drive ω̇i ,
i = 1, . . . , N , to zero. To show it is necessary requires significantly
more effort. A lengthy, but standard, analysis of Eq. (35) utilizing
Eqs. (10–13) and (26–29) reveals the sufficient equilibrium condi-
tion to be equivalent to

N∑
i = 1

µ̄iνi j = 0, j = 1, . . . , J (36)

which can be shown to correspond to minimization of the Gibbs
free energy.

B. Reduction of System
The assumptions and operations necessary to reduce the system

to N–L ODEs in N–L unknowns are given next. For each atomic
element l = 1, . . . , L , multiply each side of Eq. (4) by the constant
term mlφil/Mi , sum the result from i = 1 to N , and employ Eqs. (15)
and (18) to obtain

∂

∂t
(ρyl) + ∂

∂x
(ρuyl) = 0, l = 1, . . . , L (37)

This demonstrates that the mass of each atomic element is con-
served. Moreover, when Eq. (37) is combined with Eq. (1), one
finds that

∂yl

∂t
+ u

∂yl

∂x
= 0, l = 1, . . . , L (38)

That is, for a material fluid particle, there is no time rate of change of
atomic element mass fraction. Consequently, atomic element mass
fraction distributions in mixtures that are initially spatially homo-
geneous remain homogeneous. This study will be concerned only
with such mixtures; consequently,

yl(x, t) = yl0, l = 1, . . . , L (39)

where the initial value of atomic element mass fractions yl0 can be
fixed from initial conditions, which, from Eq. (30), are constrained
so that

L∑
l = 1

yl0 = 1

Here, the subscript 0 represents the ambient state. Thus, one can
apply this result to cast Eq. (18) as an underconstrained system of
L linear equations in N unknowns (L < N ):

yl0 = ml

N∑
i = 1

φli

Mi
Yi , l = 1, . . . , L (40)

Equation (40) can be rewritten into a variety of consistent row-
echelon forms. Assuming the variables are ordered such that the
last L entries for Yi have nonzero pivots, one can invert Eq. (40) to
obtain

YN − l + 1 = ψl [Y1, . . . , YN–L ; yl0, (φl1/M1), . . . , (φl N /MN )]

l = 1, . . . , L (41)

Here ψl is a linear function of the first N–L species mass frac-
tions, parameterized by the atomic element mass fractions, molecu-
lar masses, and species atomic element indices. As a result, it is pos-
sible to replace the N equations given by Eq. (4), i = 1, . . . , N − 1,
and Eq. (7) by the N equations given by Eq. (4), i = 1, . . . , N–L ,
and Eq. (41), l = 1, . . . , L .

It is now assumed that a stationary solution exists so that
Eqs. (1–3) and the first N–L of Eqs. (4) become the following ODEs
in the spatial independent variable x , which is now considered to be
a wave-attached coordinate:

d

dx

(
ρu

) = 0 (42)

d

dx
(ρu2 + p) = 0 (43)

d

dx

[
ρu

(
e + u2

2
+ p

ρ

)]
= 0 (44)

d

dx
(ρuYi ) = ω̇i Mi , i = 1, . . . , N–L (45)

Initial conditions are specified so that just before the shock jump at
x = 0− one has

ρ(0−) = ρ0, u(0−) = D, p(0−) = p0, Yi (0
−) = Yi0

i = 1, . . . , N–L (46)

Here, D represents the ambient fluid velocity. Then, using Eqs. (46)
with Eqs. (5) and (6), one can find consistent values for

e(0−) = e0, T (0−) = T0 (47)

The homogeneous Eqs. (42–44) can then be integrated to obtain
extended Rankine–Hugoniot equations, and Eq. (45) can be simpli-
fied to obtain

ρu = ρ0 D (48)

ρu2 + p = ρ0 D2 + p0 (49)

e + u2

2
+ p

ρ
= e0 + D2

2
+ p0

ρ0
(50)

dYi

dx
= ω̇i Mi

ρ0 D
, i = 1, . . . , N–L (51)

After defining the intermediate function σ(Yi ) as

σ(Yi ) ≡
N∑

i = 1

Yi

Mi
(52)
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1092 POWERS AND PAOLUCCI

a detailed algebraic analysis of Eqs. (5), (48), and (49) allows one
to formulate an explicit expression for ρ(T, Yi ):

ρ(T, Yi ) = ρ0
D2

2�T σ(Yi )

×
{

1 + �T0σ(Yi0)

D2
±

√[
1 + �T0σ(Yi0)

D2

]2

− 4
�T σ(Yi )

D2

}

(53)
The + and − branches are associated with perturbations from
the shock and inert states, respectively. Combining Eq. (53) with
Eq. (48) gives u(T, Yi ). Then, Eq. (49) can be used to obtain
p(T, Yi ), followed by use of Eq. (50) to get e(T, Yi ). Combin-
ing the expression for e(T, Yi ) with Eq. (6) as well as employing
Eq. (41) yields an implicit algebraic relation between T and Yi , i =
1, . . . , N–L:

N∑
i = 1

Yi

[
href

i +
∫ T

T ref

cpi (T̂ ) dT̂ − �T

Mi

]
− e0 + �T σ(Yi )

2

− �T0σ(Yi0)

2

[
1 − �T0σ(Yi0)

2D2

]
− D2

4

{
1 ±

[
1 + �T0σ(Yi0)

D2

]

×
√[

1 + �T0σ(Yi0)

D2

]2

− 4
�T σ(Yi )

D2

}
= 0 (54)

One can use Newton iteration on Eq. (54) to determine T (Yi ). Thus,
for given Yi , one gets T and then ρ, u, p, and e.

This study will deal exclusively with the shock (+) branch and
will consider the fixed shock to be located at x = 0. A fluid parti-
cle approaching from x < 0 encounters the shock, decelerates, and
proceeds at a slower speed in the direction of increasing x . If one
were to apply a Galilean transformation to this system with frame
velocity D, it is clear that this also describes a wave traveling at
speed D in the direction of decreasing x into a fluid at rest. Thus
one can interpret D as the classical detonation wave speed. Also, it
is easily determined that the critical value of D2 is given by

D2 = �T0σ(Yi0)

{[
2

T σ(Yi )

T0σ(Yi0)
− 1

]
±

√[
2

T σ(Yi )

T0σ(Yi0)
− 1

]2

− 1

}

(55)

Here the + and − branches are for detonations and deflagrations,
respectively. On the detonation branch, no real solution exists for
values of D2 below the critical value. Correspondingly, on the de-
flagration branch, no real solution exists for values of D2 above the
critical value. Note that Eq. (55) does not explicitly give the most
useful extended CJ condition because it remains a function of T . An
explicit determination of an extended CJ condition could be found
if Eq. (54) could be explicitly solved for T .

Endowed with effective representations of dependent variables in
terms of the N–L species mass fractions, one can then use Eq. (8)
to obtain ω̇i (Y1, . . . , YN–L). In the same way, one obtains all aux-
iliary variables in Eqs. (18–30) as functions of Y1, . . . , YN–L . Con-
sequently, it is possible to write Eq. (51) and the relevant part of
Eq. (46) as a set of nonlinear ODEs and initial conditions in the
standard form,

dYi

dx
= fi (Y1, . . . , YN–L), Yi (0

−) = Yi0, i = 1, . . . , N–L

(56)

where fi is a nonlinear function of the dependent variables given
by fi = ω̇i Mi/(ρ0 D). Except for certain special cases, for example,
reactions that each preserve the number of molecules so that more
conserved variables exist, in general, Eqs. (56) are the minimal set
necessary to describe the steady spatial structure of a gas-phase
detonation in a system which is described by detailed kinetics.

C. Length Scale Analysis
One can apply a standard eigenvalue analysis to Eqs. (56) to accu-

rately estimate the local length scales over which the system evolves.
Define, for convenience, the column vector y = Yi , i = 1, . . . , N–L ,
and consider a point x = x∗ at which y = y∗, which may or may
not be near an equilibrium state. Assuming that the local Jacobian
matrix of fi , taken to be J = ∂ fi/∂Y j |y = y∗ , is nonsingular, one can
linearize Eq. (56) to arrive at

dy
dx

= J · (y − y∗) + b, y(x∗) = y∗ (57)

Here, b is a constant column vector of dimension N–L , and J has di-
mension (N–L) × (N–L). When b = 0, the state y = y∗ corresponds
to an equilibrium state. As described by Fickett and Davis,7 one can
expect singular behavior near sonic points. Extreme care must be
exercised in such circumstances; it is often the case that detailed
kinetics can induce the true propagation speed of an unsupported
detonation to deviate from that given by a classical CJ analysis. To
avoid such concerns, this study only considers waves that are trav-
eling slightly faster than the CJ speed, which physically suggests
the presence of weak piston support.

Next, define a new dependent variable z such that

z = y − y∗ + J−1 · b (58)

Eliminating y from Eq. (57) in favor of z, one gets

dz
dx

= J · z, z(x∗) = J−1 · b (59)

Assuming that J has a complete set of N–L linearly independent
eigenvectors, one can decompose J as J = P ·Λ · P−1, where P is
the matrix whose columns are populated by the right eigenvectors
of J and Λ is the diagonal matrix whose diagonal is composed of
the eigenvalues λi , i = 1, . . . , N–L , of J. If an insufficient number
of linearly independent eigenvectors are available, a Jordan decom-
position can be used to obtain an equivalent result. Thus, Eq. (59)
can be written as

dz
dx

= P · Λ · P−1 · z, z(x∗) = J−1 · b (60)

When the locally constant matrix operator P−1 is applied to both
sides and w = P−1 · z is defined, Eq. (60) transforms to the uncoupled
set of equations

dw
dx

= Λ · w, w(x∗) = P−1 · J−1 · b (61)

Their solutions are

w(x) = e�(x − x∗) · P−1 · J−1 · b (62)

The convenient matrix exponential notation has been utilized, which
is described in many standard texts, for example, that of Strang.30

Obviously, the i th component of w evolves on a local length scale

i given by


i = 1/|Re(λi )|, i = 1, . . . , N–L (63)

This is the key result that will give the local length scales at all points
in the reaction zone up to and including the equilibrium point. In
the bulk of the detonation reaction zone structure, the eigenvalues
are purely real. For the limited regions in which they are complex,
the real part gives the length scale of amplitude growth, and the
imaginary part gives an additional length scale of oscillation.

It is generally impossible to associate the evolution of a partic-
ular specie with a particular eigenvalue because the species mass
fractions depend on local linear combinations of all components of
w and, thus, include evolution on all of the N–L length scales of the
system. This is seen by reconstructing y, from which one finds that
the local evolution of the species mass fractions is described by

y(x) = y∗ + (
P · e�(x − x∗) · P−1 − I

) · J−1 · b (64)
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POWERS AND PAOLUCCI 1093

Because this analysis is local, the eigenvalues, and, thus, the length
scales, will vary with x ; that is, one has λi (x) and 
i (x) throughout
the reaction zone.

The analysis of this section gives the framework for a local de-
scription of the evolution of a finite set of chemical length scales,
fixed by kinetic rates and satisfaction of conservation properties. As
an aside, one can ask how the presence of additional mechanisms
such as diffusion and unsteadiness would influence the local length
scales. In the one-dimensional steady limit, each additional diffu-
sion mechanism, for example, species, momentum, energy, adds a
single ODE to the set and, thus, a new length scale. This could easily
be analyzed in the manner already presented.

The addition of unsteadiness is more complicated because such a
system is described by a set of partial differential equations (PDEs).
In terms of the analysis of this section, one may consider the system
of PDEs to be, after spatial discretization, a very large set of ODEs in
time. A related eigenvalue analysis could be performed on the sys-
tem’s Jacobian, and a set of local timescales of evolution is available
at each point in time. These timescales would exhibit, in general, full
coupling between reaction, convection, and diffusion. In fact, one
can show in the limit as the spatial discretization approaches zero
that most timescales become increasingly dominated by diffusion
and that the minimum timescale is on the order of the square of the
spatial discretization size. For the error in an unsteady calculation,
which includes diffusion to be converging to zero, one must have
a discretization fine enough to render the diffusive timescales finer
than the chemical timescales. This poses a serious computational
challenge for most physically important problems.

III. Computational Method
All calculations were performed on a single processor Sun Blade

1000 with a speed of 900 MHz. Typical calculations were completed
within 2 min. A double precision FORTRAN 90 code that drew
on standard Integrated Mathematics and Statistics Library (IMSL)
routines DNEQNF for Newton iteration, DFDJAC for Jacobian
evaluation, and DEVLRG for eigenvalue computation was used.
For evaluation of thermochemical properties, subroutines available
in a double-precision version of the public domain edition of the
Chemkin31 package were utilized; no other general Chemkin tools
for solving specific physical problems were employed. This pack-
age draws on a standard thermodynamic database32 that contains
properties for a wide variety of constituents; these include coeffi-
cients for polynomial curve fits for the variation of specific heats
with temperature.

For integration, three methods were used: 1) a first-order explicit
Euler method, 2) a second-order explicit Runge–Kutta method, and
3) an implicit Adams method with functional iteration as embodied
in the standard code DLSODE33 in which step sizes were adapted to
achieve a user-defined absolute error tolerance, here taken as 10−14.
When all methods were run with a spatial discretization smaller
than the smallest physical length scale, the predictions were virtu-
ally indistinguishable. The explicit Euler and Runge–Kutta codes
utilized a constant spatial discretization step size, which was useful
in grid convergence and numerical stability studies. The implicit
Adams method was used in studies to obtain the complete reaction
zone structure; here it was straightforward to adjust the spatial dis-
cretization step to generate detailed results in the induction zone and
coarser results near equilibrium. However, even near equilibrium, it
was seen that the number of internal steps taken to achieve the error
tolerance was consistent with the discretization at the spatial scale
dictated by the finest physical scale.

IV. Results
Results are presented for hydrogen–air mixtures, which are ini-

tially in a stoichiometric molar ratio of 2H2 + O2 + 3.76N2. A ki-
netic model with N = 9 species, L = 3 atomic elements, and J = 19
reversible reactions, identical to that employed by Shepherd9 in his
hydrogen–air calculations, is used and is reported in detail in Table 1.
In Table 1, units of A j are in appropriate combinations of centime-

Table 1 Nine-species, 19-step reversible reaction mechanism for
hydrogen/oxygen/nitrogen mixturea

j Reaction A j β j E j

1 H2 + O2 ⇀↽ OH + OH 1.70 × 1013 0.00 47,780
2 OH + H2 ⇀↽ H2O + H 1.17 × 109 1.30 3,626
3 H + O2 ⇀↽ OH + O 5.13 × 1016 −0.82 16,507
4 O + H2 ⇀↽ OH + H 1.80 × 1010 1.00 8,826
5 H + O2 + M ⇀↽ HO2 + M 2.10 × 1018 −1.00 0
6 H + O2 + O2 ⇀↽ HO2 + O2 6.70 × 1019 −1.42 0
7 H + O2 + N2 ⇀↽ HO2 + N2 6.70 × 1019 −1.42 0
8 OH + HO2 ⇀↽ H2O + O2 5.00 × 1013 0.00 1,000
9 H + HO2 ⇀↽ OH + OH 2.50 × 1014 0.00 1,900
10 O + HO2 ⇀↽ O2 + OH 4.80 × 1013 0.00 1,000
11 OH + OH ⇀↽ O + H2O 6.00 × 108 1.30 0
12 H2 + M ⇀↽ H + H + M 2.23 × 1012 0.50 92,600
13 O2 + M ⇀↽ O + O + M 1.85 × 1011 0.50 95,560
14 H + OH + M ⇀↽ H2O + M 7.50 × 1023 −2.60 0
15 H + HO2 ⇀↽ H2 + O2 2.50 × 1013 0.00 700
16 HO2 + HO2 ⇀↽ H2O2 + O2 2.00 × 1012 0.00 0
17 H2O2 + M ⇀↽ OH + OH + M 1.30 × 1017 0.00 45,500
18 H2O2 + H ⇀↽ HO2 + H2 1.60 × 1012 0.00 3,800
19 H2O2 + OH ⇀↽ H2O + HO2 1.00 × 1013 0.00 1,800

aExtracted from Ref. 34 and used in Refs. 9 and 10.

ter, mole, second, and degrees Kelvin so that ω̇i has units of mole per
cubic centimeter per second; units of E j are calorie per mole. Third-
body collision efficiencies with M are k5(H2O) = 21, k5(H2) = 3.3,
k12(H2O) = 6, k12(H) = 2, k12(H2) = 3, and k14(H2O) = 20. Obvi-
ously, there are many slightly different kinetic models from which
to choose, and the differences in each may become apparent in
sensitive regions of the reaction zone structure. However, analyz-
ing the differences among the various kinetic models is beyond the
scope of this study. The nine species modeled are H, O, H2, O2,
OH, H2O, HO2, H2O2, and N2. Diatomic nitrogen is regarded as
an inert diluent. The three atomic elements are H, O, and N. Shep-
herd extracts this model from the more general model reported by
Miller et al.34 The kinetic model is nearly identical to that reported
by Mikolaitis,10 who has an obvious transcription error in his value
for A4. As use of this reported value has catastrophic consequences
for the calculation, and Mikolaitis’s results agree with Shepherd’s
and those of this study, it is likely that the correct value for A4 was
actually used in Ref. 10.

A. Stoichiometric CJ Hydrogen–Air Detonation
at Standard Conditions

The model was used on a mixture, which in its unshocked state
was at p0 = 1 atm and T0 = 298 K, under near-CJ conditions, taken
as the state in which the Mach number at the equilibrium state ap-
proaches unity. The CJ state was determined by iteration and was
found to be extremely sensitive to the initial velocity D; for this
case D ∼ DCJ ∼ 1.9797 × 105 cm/s, giving rise to a freestream Mach
number of 4.8594. As the resulting length scales were relatively in-
sensitive to D, a final state with a Mach number slightly less than
unity was tolerated, M = 0.93824. Also note, for detonations with
resolved reaction zone structures, that it has been shown by Fickett
and Davis7 that the CJ state is the unique propagation speed of an
unsupported detonation only for systems that employ simple kinetic
schemes that are strictly irreversible and exothermic. For variants,
such as reversible reactions or reactions with some endothermic-
ity, the propagation speed of an unsupported detonation deviates
from the CJ speed, and it is appropriate to consider so-called eigen-
value detonation speeds, which are often on the weak branch of the
Hugoniot curve. Though not fully explored, during the iteration pro-
cess employed here, calculations occasionally reached sonic points
at states of incomplete reaction, which suggests that consideration
should be given to the eigenvalue character of the detonation wave
speed. Because the effects of reversibility are only strongly felt in
the present system as it approaches equilibrium, and those of local
endothermicity are weak, it is reasonable to expect the deviation
from CJ state to be small.
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1094 POWERS AND PAOLUCCI

Table 2 Thermochemical and dynamic properties for a mixture
of 2H2 + O2 + 3.76N2

Property Initial Shock CJ

p, atm 1.0000 × 100 2.7953 × 101 1.6267 × 101

T , K 2.9800 × 102 1.5427 × 103 2.9821 × 103

u, cm/s 1.9797 × 105 3.6661 × 104 1.0660 × 105

ρ, g/cm3 8.5521 × 10−4 4.6180 × 10−3 1.5882 × 10−3

e, erg/g −1.1862 × 109 1.2789 × 1010 3.5345 × 109

cp , (erg/g)/K 1.3894 × 107 1.6485 × 107 1.7744 × 107

cv , (erg/g)/K 9.9182 × 106 1.2509 × 107 1.4264 × 107

γ 1.4009 × 100 1.3178 × 100 1.2440 × 100

c, cm/s 4.0740 × 104 8.9904 × 104 1.1362 × 105

M 4.8594 × 100 4.0779 × 10−1 9.3823 × 10−1

YO2 2.2636 × 10−1 2.2636 × 10−1 1.3755 × 10−2

YH 0.0000 × 10−0 0.0000 × 10−0 2.7105 × 10−4

YOH 0.0000 × 10−0 0.0000 × 10−0 1.4821 × 10−2

YO 0.0000 × 10−0 0.0000 × 10−0 1.7807 × 10−3

YH2 2.8522 × 10−2 2.8522 × 10−2 2.5670 × 10−3

YH2O 0.0000 × 10−0 0.0000 × 10−0 2.2166 × 10−1

YHO2 0.0000 × 10−0 0.0000 × 10−0 2.2350 × 10−5

YH2O2 0.0000 × 10−0 0.0000 × 10−0 3.0765 × 10−6

YN2 7.4512 × 10−1 7.4512 × 10−1 7.4512 × 10−1

XO2 1.4793 × 10−1 1.4793 × 10−1 1.0269 × 10−2

XH 0.0000 × 10−0 0.0000 × 10−0 6.4243 × 10−3

XOH 0.0000 × 10−0 0.0000 × 10−0 2.0818 × 10−2

XO 0.0000 × 10−0 0.0000 × 10−0 2.6589 × 10−3

XH2 2.9586 × 10−2 2.9586 × 10−2 3.0421 × 10−2

XH2O 0.0000 × 10−0 0.0000 × 10−0 2.9395 × 10−1

XHO2 0.0000 × 10−0 0.0000 × 10−0 1.6177 × 10−5

XH2O2 0.0000 × 10−0 0.0000 × 10−0 2.1607 × 10−6

XN2 5.5621 × 10−1 5.5621 × 10−1 6.3544 × 10−1

Fig. 1 Species mole fraction vs distance.

Values of various thermochemical and dynamic properties at the
initial state, shock state, and equilibrium state are given in Table 2.
Here, to allow comparison with Refs. 9 and 10, mole fractions, in
addition to mass fractions are reported. The simulations to be shown,
with the exception of one in which p0 is varied, are performed at
the conditions of Table 2.

Figure 1 shows the spatial distribution of species mole fractions
throughout the reaction zone. This calculation was performed with
the Adams implicit method embodied in DLSODE. Results can
be directly compared to those of Shepherd, who reports predictions
over the reaction zone length scale whose structures can be discerned
down to the induction zone length scale, but not at the finest scales.
The use of log–log scaling in Fig. 1 reveals a variety of scales
over which the mole fractions evolve. The shock front is located at
x = 0 cm. Just past the shock, collisions of the major species H2, O2,
and N2 commence with more vigor, and minor species are generated.

For very small distances from the shock front 0 < x < 10−4 cm,
the mole fractions of minor species H, O, OH, H2O, HO2, and
H2O2 grow at rates that are well modeled by power laws, whereas
major species mole fractions are essentially unchanged. Power law
variation, that is, Xi ∼ xα , where α is a real constant, is rigorously
demonstrated in Ref. 10 in the related time domain at early time.
Such a variation is represented as a straight line with slope α in
log–log plots such as Fig. 1; were the scale of the x axis extended to
even finer scales formally admitted by the continuum assumption,
the slope would remain constant.

At x ∼ 10−4 cm, one notices the slopes of some of the curves,
for example, that for OH, begin to change; this suggests that, at
this scale, significant molecular collisions at the mean free path
length scale are inducing chemical reactions of the minor species.
For 10−4 < x < 10−2 cm, major species collisions continue, minor
species mole fractions continue to grow rapidly, and the minor
species continue to interact. Just past x = 10−2 cm, a particularly
vigorous stage of the reaction ensues in which all species mole frac-
tions, except the inert N2, undergo significant change. This region is
considered to be near the end of the induction zone, whose boundary
is defined in the standard fashion by the point at which the tempera-
ture gradient dT/dx reaches a maximum value. With this definition,
the induction zone thickness is found to be 2.6 × 10−2 cm. It is also
the beginning of the thermal explosion zone, which extends from
roughly 2.6 × 10−2 < x < 3 × 10−2 cm. This is followed by a rel-
atively long recombination zone, 3 × 10−2 < x < 100 cm, in which
radicals recombine exothermically into the predominant product
specie, H2O. For x > 100 cm, it is clear from Fig. 1 that the system
has come to an equilibrium because all spatial gradients are near
zero. This is confirmed by calculating the equilibrium state with an
iterative Newton solver for fi (Y1, . . . , YN–L) = 0.

Temperature and pressure in the reaction zone are shown in Figs. 2
and 3, respectively. In Figs. 2 and 3, the induction zone is clearly
shown as a region of essentially constant temperature and pressure.
This seeming tranquility masks the real underlying evolution of
species mole fractions that is occurring within this zone. In contrast,
the variation of pressure and temperature in the recombination zone
is mild in comparison.

The multiscale nature of the problem is most clearly shown in
Fig. 4. Here the length scales 
i (x) predicted by the local eigenvalue
analysis described earlier are shown as functions of the distance from
the shock. Each curve corresponds to the reciprocal of the absolute
value of the real part of an eigenvalue. Most important, the finest
length scale is seen to vary from near 10−4 cm in the induction zone
to as low as 2.3 × 10−5 cm in the recombination zone. The variation
of mole fractions on these fine scales is present throughout the entire
reaction zone. Because the mole fractions in Fig. 1 are the result of
the local linear combination of all eigenmodes, one only discerns

Fig. 2 Temperature vs distance.
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POWERS AND PAOLUCCI 1095

Fig. 3 Pressure vs distance.

Fig. 4 Length scales vs distance.

the fine-scale effects in the minor species mole fractions in the near-
shock region, x ∼ 10−4 cm.

The finest scales are likely close to mean free path length scales,
and thus, this continuum calculation is probably approaching its
lower limit of validity. In fact, a simple independent Navier–Stokes
calculation of a comparable inert viscous shock structure reveals that
the viscous length scales are precisely the same order of magnitude
as the finest reaction length scales. This is likely a consequence of
both constitutive models for reaction and diffusion having molecular
collisions as their causal mechanism,35,36 thus inducing all transport
and reaction constitutive models to yield the same mean free path-
limited finest length scale. Note that the present analysis serves to
correct a speculation made in Ref. 20, where it was inferred, from
a timescale analysis that did not include a detailed consideration of
species convection, that length scales would be predicted that would
give rise to a violation of the continuum assumption.

The largest length scales range from around 3 × 101 cm in the
induction zone to around 3 × 10−1 cm at equilibrium state. The
smallest length scale is consistent with the smallest scale on which
mole fractions are seen to vary in Fig. 1. Moreover, the smallest
scale is roughly equal to the internal step size utilized by the adaptive
DLSODE integration subroutine, in which the size of the integration
step is automatically chosen to maintain stability as well as achieve
the specified accuracy. The largest length scale is not as critical, but
does provide a useful estimate of the overall length of the reaction
zone.

Fig. 5 Induction zone length and finest length scale vs initial pressure.

Additional features of Fig. 4 are noteworthy. For the bulk of
the domain, there are N–L = 6 real and distinct eigenvalues. For
x < 3 × 10−2 cm, five of these eigenvalues have negative real parts,
and one has a positive real part, indicating growth of a local eigen-
mode. For x > 3 × 10−2 cm, the real parts of all six eigenvalues are
negative, indicating a relaxation to equilibrium. The spike in one of
the curves near x = 3×10−2 cm indicates one of the eigenvalues has
a real part passing through zero; hence, its reciprocal approaches in-
finity. In a few isolated regions near the end of the induction zone and
in the thermal explosion zone, some of the eigenvalues are complex
conjugates. This is indicative of a local oscillatory behavior and is
seen in Fig. 4 when some of the curves merge in a thin zone. Whereas
a few curves appear to cross, a fine-scale calculation shows that they
in fact remain distinct, even when up to three orders of magnitude
increase in resolution is employed.

B. Effect of Initial Pressure
A series of calculations in the same mixture held at the same initial

temperature was performed in which the initial pressure varied from
0.5 to 3.0 atm. Again, detonations that were very near to the CJ state
were studied, and both the finest length scale given by the eigenvalue
analysis as well as the induction length scale were predicted. Results
are summarized in Fig. 5. Here it is clearly demonstrated that the
smallest length scale is roughly three orders of magnitude finer than
that of the induction zone. The predictions of the induction zone
length compare well with those given in Ref. 11, where the same
physical problem was modeled with a slightly different kinetics
model.

C. Verification
Two types of verification of the predictions are given here: 1) a

comparison to Mikolaitis’s10 detailed induction zone predictions and
2) a formal grid convergence study. For the first verification, some
small adjustments are necessary. In Ref. 10, only the induction zone
was considered, and p, T , and u were frozen at their postshock val-
ues. Then the governing equations were integrated numerically in
time and results compared favorably to those of a detailed asymp-
totic theory. To compare predictions properly, the time coordinate
of a Lagrangian particle must be obtained by numerical integration
of the equation for particle velocity, u = dx/dt . Because u(x) is
available after solution of Eq. (56), the local time can be found by
the quadrature

t =
∫ x

0

dx̂

u(x̂)
(65)

Here, x̂ is a dummy variable. When this result is used, it is then
possible to plot the variation of all thermochemical properties of
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1096 POWERS AND PAOLUCCI

Fig. 6 Minor species mole fractions vs time in the induction zone.

Fig. 7 Relative error in XOH at x = 1 ×× 10−4 cm as a function of dis-
cretization scale ∆x.

a fluid particle as a function of the relative time after which it has
passed the shock located at x = 0. Such a plot is given in Fig. 6 for the
mole fractions of all species in the induction zone. The features are
roughly the same as those seen in Fig. 6. A direct comparison to the
predictions of Ref. 10 shows excellent agreement for all variables.

For the second verification, a formal grid convergence study
is performed over a wide range of spatial discretization levels:
5 × 10−11 < �x < 10−4 cm. Whereas the finest discretization scales
are definitely below the continuum limit, for purposes of mathemat-
ical verification of the numerical method, this is inconsequential.
Conditions were identical to those used to predict Fig. 1. Because
it was desirable to use a fixed value of �x in an individual calcu-
lation, use of the adaptive DLSODE was discarded in favor of a
simpler first-order explicit Euler and second-order explicit Runge–
Kutta method. Although both of these methods work well over the
entire reaction zone, it was more efficient to determine the con-
vergence properties by integrating only to a small final value of
distance, here taken to be x = 10−4 cm. Because this final value of
x is as small as the finest length scale, it is guaranteed there will be
no problems with numerical stability.

Figure 7 shows the results of the grid convergence study. First,
results were obtained on a highly refined grid with �x = 10−11 cm
for the second-order method. These were taken as a benchmark
solution to which comparisons could be made. Next, it was chosen
to compare the mole fraction values of a minor species XOH, at the
final point x = 10−4 cm to the prediction of the benchmark case. For

each discretization and integration method, a value of the relative
error εOH

εOH =
∣∣∣∣ XOH, approximate − XOH, benchmark

XOH, benchmark

∣∣∣∣
x = 10−4 cm

was calculated. Had other variables been chosen or an error norm
encompassing a broader domain been chosen, the convergence rates
would not have been affected.

The first-order Euler method in fact gives error predictions that
converge at a rate of 1.006, effectively equivalent to its expected
value. At the smallest �x = 5 × 10−11 cm studied, the method is
still converging and has not yet reached its machine roundoff limit.
The second-order Runge–Kutta method predicts errors to converge
at a rate of 2.008, again equivalent to its expected value. Its er-
ror is always lower than that of the first-order method, and near
�x = 2 × 10−9 cm, it appears that the machine roundoff limit has
been reached as further refinement results in no improvement in
the error. The actual relative error at this limit is just under 10−10,
which indicates that the accuracy exceeds that of single precision. It
is likely that the strict double precision limit of 10−16 is not reached
because of the effects of accumulation of roundoff error after many
millions of operations.

D. Numerical Stability
A series of calculations was subsequently performed at discretiza-

tion levels near the threshold of numerical instability. Conditions
again were identical to those used to predict Fig. 1. Figure 8 shows
predictions of XH over the range 0 < x < 5 × 10−3 cm using a first-
order explicit Euler integration. Similar results could have been
obtained for other variables or using other integration schemes; it
is difficult, however, for the subroutine DLSODE to generate spa-
tially unstable numerical results because it uses automatic step size
selection to prevent this from happening. Thus, in effect DLSODE
is providing an atypical adaptive mesh refinement. In more chal-
lenging spatiotemporal problems, multiscale effects often require
adaptation in space and time. In such cases, solvers like DLSODE
are confined to adaptation in time; independent algorithms, such as
the wavelet adaptive multilevel representation,20 are required to ad-
dress the multiscaled spatial structures. This extension to adaptation
in space and time is nontrivial.

For a value of �x = 1.00 × 10−5 cm, well below the finest phys-
ical length scale predicted by the eigenvalue analysis, the evolution
of XH is well-behaved. Increasing �x to a value in the neighbor-
hood of the smallest physical length scale, �x = 2.00 × 10−4 cm,
results in a prediction that is oscillatory but stable. Increasing the
discretization length slightly to �x = 2.38 × 10−4 cm triggers an
unstable numerical oscillation.

Fig. 8 XH vs x in the near-shock region using with first-order explicit
Euler method.
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POWERS AND PAOLUCCI 1097

If one were to model a similar detonation using a computational
model that allowed for both time and space variation and one were to
choose a computational grid that did not capture the finest physical
length scale, the following result would be likely. In the steady-state
limit, the model would be inclined to predict relaxation to a spa-
tially oscillatory state similar to that shown in the large �x case
of Fig. 8. Such oscillations are damped, however, in the unsteady
model by artificial diffusion, which depends on both the grid and
computational algorithm employed. This may account for the wide
disparity in the small-scale structures that one often sees in predic-
tions of identical cases by either the same algorithm on different
grids, different algorithms on the same grid, or even the same algo-
rithm and same grid on different computers. A good discussion of
how grid- and algorithm-dependent numerical diffusion arises for
various numerical methods for hyperbolic systems of equations is
given by LeVeque.37

E. Comparison with Recent Results
Finally, predictions of the current algorithm are compared with

some of the best calculations of detonations in hydrogen-based sys-
tems that have appeared in the recent archival literature. In all cases,
these calculations give predictions that have no obvious macroscale
errors. The results are summarized in Table 3, which lists the induc-
tion zone length 
ind, the finest length predicted by the eigenvalue
analysis 
 f , and the grid discretization �x employed in the study.
Unless otherwise indicated in Table 3, parameters are inferred from
those reported by the original authors and are for CJ detonations. For
each case, the algorithm presented here was exercised on the pub-
lished models under the appropriate conditions reported. In addition,
when available, 
ind as reported in the cited sources is listed. The in-
duction length scale obtained for the low-pressure 2H2 + O2 + 7Ar
case agrees within 11 and 9% to the results reported, respectively, in
Refs. 15 and 13, but not with that reported in Ref. 12. It is believed
that the value reported in Ref. 12 (2 × 10−3 cm) is a typographical
error because agreement is obtained with other reported values from
Ref. 12. The induction zone length predicted in Ref. 20 differs by
a factor of three with that of the present study. Possible causes for
this discrepancy are that in Ref. 20 diffusion was included, a looser
definition of 
ind was employed, and not all of the fine-scale reac-
tion lengths were fully resolved. However, the key results found
in Table 3 are 1) none of these independent studies has captured

 f , most employ grids whose finest scale is orders of magnitude

Table 3 Comparison of length scales among various models that use detailed kinetics to describe detonations in hydrogen-based systems


ind, cm

Ref. Mixture T0, K p0, atm Present study Reported value 
 f , cm �x , cm

12 2H2 + O2 + 7Ar 2.98 × 102 6.58 × 10−2 1.47 × 10−1 2.00 × 10−3 2.17 × 10−4 3.88 × 10−3a

13 2H2 + O2 + 7Ar 2.98 × 102 6.58 × 10−2 1.47 × 10−1 1.60 × 10−1 2.17 × 10−4 2.50 × 10−3

15 2H2 + O2 + 7Ar 2.98 × 102b
6.61 × 10−2 1.46 × 10−1 1.30 × 10−1 ——c ——d

16 2H2 + O2
e 2.92 × 102 2.45 × 10−1 2.35 × 10−2 —— 4.74 × 10−5 8.20 × 10−3f

18 2H2 + O2 + 3.76N2
g 2.98 × 102b

1.00 × 100b
1.50 × 10−2 —— 1.23 × 10−5 5.00 × 10−4a

19 2H2 + O2 + 3.76N2
h 3.00 × 102 8.39 × 10−1 2.82 × 10−2 —— 2.82 × 10−5 1.00 × 10−2i

20 2H2 + O2 + 7Ar 1.20 × 103 1.17 × 100 1.54 × 10−2 4.70 × 10−2 2.76 × 10−5 8.14 × 10−5j

21 2H2 + O2 + 7Ar 1.20 × 103 1.17 × 100 1.54 × 10−2 —— 2.76 × 10−5 3.00 × 10−2

22 2H2 + O2 3.00 × 102 1.00 × 100 5.30 × 10−3 —— 7.48 × 10−6 1.00 × 10−2a

23 2H2 + O2 + 3.76N2 9.00 × 102 2.27 × 10−1 1.38 × 10−1k
—— 2.23 × 10−4k

1.00 × 100f

24 2H2 + O2 + 3.76N2
h 3.00 × 102 2.50 × 101 1.80 × 10−2 —— 5.61 × 10−7 5.94 × 10−2

aSmallest discretization considered.
bValue not explicitly reported, but presumed.
cIntrinsic low-dimensional manifold used, finest scale not obvious.
dAdaptive mesh refinement method used, grid size not obvious.
eCJ adopted; original study employs underdrive.
fRough estimate from parameters provided.
gPresumed stoichiometric; detonation overdriven at D = 2.065 × 105 cm.
hCJ adopted; original study employs overdrive.
iAdaptive mesh refinement used with three levels of refinement; grid size estimated.
jAdaptive mesh refinement method used with 16 levels of refinement.
kEffects of nitrogen chemistry neglected in estimate.

larger than 
 f , and 2) the capture of 
ind is at best not precise, some
have the proper order of magnitude, whereas others again have grids
whose finest scale is much larger than 
ind. Whereas these are some
of the best calculations, it is not difficult to find worse cases in the
literature.

One may legitimately question why the underresolved detona-
tion calculations just described produce results that in some regards
seem to be intuitively correct. The following hypotheses are of-
fered. First, the intuition of many practitioners has its foundation
in equilibrium thermodynamics. Properties such as final tempera-
ture, pressure, species concentrations, and wave speed, at least in
one-dimensional steady calculations, are not strongly linked to the
details of the reaction zone structure, and so it is entirely possible
to calculate an incorrect structure that relaxes to the correct equilib-
rium. Also in that numerical diffusion, inherent in all calculations
with time and space dependency, serves to suppress the instabilities
that underresolved steady calculations exhibit (Fig. 8), the influence
of underresolution is often not obvious.

Second, whereas the actual macroscale effects of underresolution
in a specific unsteady calculation remain to be shown, it is not dif-
ficult to speculate on physical scenarios in which problems might
arise. Three are considered here: 1) It is likely that a precise pre-
diction of the induction zone length requires a proper resolution of
those causal fine-scale phenomena that trigger this highly nonlinear
event. One does not find in the literature systematic grid conver-
gence studies for the induction zone length, and so it is difficult to
say how well the physics have been captured. 2) For detonations with
curvature, new geometric length scales are introduced that compete
with the reaction zone length scales in determining overall wave
dynamics. Correctly capturing the speeds of detonations diffracting
in a multidimensional environment hinges on correctly representing
the physics of the reaction zone length scales and curvature length
scales. 3) In any unsteady calculation, a Fourier decomposition of
any transient detonation will have high wave number modes whose
wavelength is the same order of magnitude as the finest scales in the
steady structure. In many cases, the high wave number modes tend
to be stable, but one can envision cases in which unstable modes
exist whose wavelength is of the same order of magnitude as the
finest length scales of the steady system. In any case, and especially
in unstable cases, fully capturing the unsteady dynamics demands
that length scales at or below the finest steady length scale be ex-
amined. Otherwise numerical viscosity may be suppressing a true
physical instability.
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1098 POWERS AND PAOLUCCI

V. Conclusions
It has been unambiguously shown that the finest length scales

predicted by a one-dimensional steady analysis of a common sto-
ichiometric CJ hydrogen–air detonation model under standard at-
mospheric conditions are roughly three orders of magnitude finer
than the induction zone thickness. Consequently, many modern
calculations using detailed kinetics coupled with a strategy to resolve
at most the induction zone are formally underresolved. Moreover,
the precise calculation of the induction zone thickness likely requires
a proper resolution of the fine-scale structures that constitute the in-
duction zone. It is also clear that to meet the strictest demands of
rigorous scientific computing for detonations with detailed kinetics,
one must employ a computational grid with a characteristic length
at or below the values predicted by the present analysis. In fact when
other physics is considered, such as detonations with curvature,5 or
those in which high wave number instabilities are present,6 the de-
mands of spatial resolution may be even more stringent than those
suggested here. Furthermore, because preliminary calculations in-
dicate the finest reaction zone length scales are of the same order as
diffusion length scales in shocks, it is likely the case that a physi-
cally consistent resolved model of detonation that includes detailed
kinetics needs also to consider diffusion. This is because constitu-
tive theories for detailed kinetics and mass, momenta, and energy
diffusion are representations of the same molecular collision-based
phenomena.

That underresolved computations often produce plausible results
is understandable when one considers that a wide variety of cal-
culations are driving toward a stable equilibrium state that is fixed
by path-independent thermodynamics. It is often the case that these
near-equilibrium properties are the easiest to predict as well as ob-
serve. However, for many classes of problems, such as those with
inherent unsteadiness, the journey is as important as the destination,
and agreement with equilibrium wave speeds, pressures, and tem-
peratures is a necessary but insufficient requirement. In such cases,
the journey is only properly completed when the spatial structures
are properly resolved. Short cuts to equilibrium provided by under-
resolved paths do not reflect the full richness of the process and run
the risk of leading the journey to a nonphysical catastrophe.

It is often argued that such fine discretizations are not necessary
because the small scales will not influence the scales of engineering
importance. First, such a conclusion cannot be made a priori; indeed,
the field of nonlinear dynamics provides many counterexamples in
which small-scale disturbances ultimately manifest themselves on
a large scale. Lorenz’s38 now-celebrated study of transition to chaos
is but one such case. Thus, until such calculations are actually made
that prove the unimportance of small scales, the possibility of their
relevance cannot be cavalierly dismissed. Second, if it is indeed
the case that these small scales are of no consequence, then it is
appropriate for the modeling community to employ only mathe-
matical models that do not contain such inherently fine scales. To
argue on one hand that it is critical that modern engineering appli-
cations require a consideration of detailed chemical kinetics and on
the other hand that fine-scale phenomena are of no consequence is
scientifically incoherent. That said, the present study is incapable of
answering the critical question of how important the fine-scale struc-
tures are. It just provides a simple diagnosis that most computational
combustion results in the literature are afflicted with underresolu-
tion. The prognosis, however, can still be bright but only if a careful
regimen of detailed, resolved calculations of key physical problems,
transparently presented so that a skeptical broader community can
have full confidence in the predictions, is undertaken.

References
1Roache, P. J., “Quantification of Uncertainty in Computational Fluid

Dynamics,” Annual Review of Fluid Mechanics, Vol. 29, 1997, pp. 123–160.
2Roache, P. J., “Verification of Codes and Calculations,” AIAA Journal,

Vol. 36, No. 5, 1998, pp. 696–702.
3Oberkampf, W. L., and Blottner, F. G., “Issues in Computational Fluid

Dynamics Code Verification and Validation,” AIAA Journal, Vol. 36, No. 5,
1998, pp. 687–695.

4Oberkampf, W. L., and Trucano, T. G., “Verification and Validation in
Computational Fluid Dynamics,” Progress in Aerospace Sciences, Vol. 38,
No. 3, 2002, pp. 209–272.

5He, L., “Theoretical Determination of the Critical Conditions for the Di-
rect Initiation of Detonations in Hydrogen–Oxygen Mixtures,”’ Combustion
and Flame, Vol. 104, No. 4, 1996, pp. 401–418.

6Short, M., and Sharpe, G. J., “Pulsating Instability of Detonations with a
Two-Step Chain-Branching Reaction Model: Theory and Numerics,” Com-
bustion Theory and Modelling, Vol. 7, No. 2, 2003, pp. 401–416.

7Fickett, W., and Davis, W. C., Detonation, Univ. of California Press,
Berkeley, CA, 1979, Chap. 5.

8Westbrook, C. K., “Hydrogen Oxidation Kinetics in Gaseous Deto-
nations,” Combustion Science and Technology, Vol. 29, Nos. 1–2, 1982,
pp. 67–81.

9Shepherd, J. E., “Chemical Kinetics of Hydrogen–Air–Diluent Detona-
tions,” Dynamics of Explosions, edited by J. R. Bowen, J.-C. Leyer, and
R. I. Soloukhin, Vol. 106, Progress in Astronautics and Aeronautics, AIAA,
New York, 1986, pp. 263–293.

10Mikolaitis, D. W., “An Asymptotic Analysis of the Induction Phases of
Hydrogen–Air Detonations,” Combustion Science and Technology, Vol. 52,
Nos. 4–6, 1987, pp. 293–323.

11Lu, T., Law, C. K., and Ju, Y., “Some Aspects of Chemical Kinetics
in Chapman–Jouguet Detonation: Induction Length Analysis,” Journal of
Propulsion and Power, Vol. 19, No. 5, 2003, pp. 901–907.

12Oran, E. S., Weber, J. W., Stefaniw, E. I., Lefebvre, M. H., and Anderson,
J. D., “A Numerical Study of a Two-Dimensional H2–O2–Ar Detonation Us-
ing a Detailed Chemical Reaction Model,” Combustion and Flame, Vol. 113,
Nos. 1–2, 1998, pp. 147–163.

13Hu, X. Y., Khoo, B. C., Zhang, D. L., and Jiang, Z. L., “The Cellular
Structure of a Two-Dimensional H2/O2/Ar Detonation Wave,” Combustion
Theory and Modelling, Vol. 8, No. 2, 2004, pp. 339–359.

14Eckett, C. A., Quirk, J. J., and Shepherd, J. E., “The Role of Unsteadiness
in Direct Initiation of Gaseous Detonations,” Journal of Fluid Mechanics,
Vol. 421, 2000, pp. 147–183.

15Pintgen, F., Eckett, C. A., Austin, J. M., and Shepherd, J. E., “Direct
Observations of Reaction Zone Structure in Propagating Detonations,” Com-
bustion and Flame, Vol. 133, No. 3, 2003, pp. 211–229.

16Sheffer, S. G., Martinelli, L., and Jameson, A., “An Efficient Multigrid
Algorithm for Compressible Reactive Flows,” Journal of Computational
Physics, Vol. 144, No. 2, 1998, pp. 484–516.

17Sheffer, S. G., Martinelli, L., and Jameson, A., “Simulation of React-
ing Hydrocarbon Flows with Detailed Chemistry,” Combustion Science and
Technology, Vol. 136, Nos. 1–6, 1998, pp. 55–80.

18Tsuboi, N., Katoh, S., and Hayashi, A. K., “Three-Dimensional Nu-
merical Simulation for Hydrogen/Air Detonation: Rectangular and Diag-
onal Structures,” Proceedings of the Combustion Institute, Vol. 29, 2002,
pp. 2783–2788.

19da Silva, L. F. F., Azevedo, J. L. F., and Korzenowski, H., “Un-
structured Adaptive Grid Flow Simulations of Inert and Reactive Gas
Mixtures,” Journal of Computational Physics, Vol. 160, No. 2, 2000,
pp. 522–540.

20Singh, S., Rastigejev, Y., Paolucci, S., and Powers, J. M., “Viscous
Detonation in H2–O2–Ar Using Intrinsic Low-Dimensional Manifolds and
Wavelet Adaptive Multilevel Representation,” Combustion Theory and Mod-
elling, Vol. 5, No. 2, 2001, pp. 163–184.

21Fedkiw, R. P., Merriman, B., and Osher, S., “High Accuracy Numeri-
cal Methods for Thermally Perfect Gas Flows with Chemistry,” Journal of
Computational Physics, Vol. 132, No. 2, 1997, pp. 175–190.

22Ebrahimi, H. B., and Merkle, C. L., “Numerical Simulation of a Pulse
Detonation Engine with Hydrogen Fuels,” Journal of Propulsion and Power,
Vol. 18, No. 5, 2002, pp. 1042–1048.

23Dudebout, R., Sislian, J. P., and Oppitz, R., “Numerical Simulation of
Hypersonic Shock-Induced Combustion Ramjets,” Journal of Propulsion
and Power, Vol. 14, No. 6, 1998, pp. 869–879.

24Choi, J.-Y., Jeung, I.-S., and Yoon, Y., “Numerical Study of Scram
Accelerator Starting Characteristics,” AIAA Journal, Vol. 36, No. 6, 1998,
pp. 1029–1038.

25He, X., and Karagozian, A. R., “Numerical Simulation of Pulse Detona-
tion Engine Phenomena,” Journal of Scientific Computing, Vol. 19, Nos. 1–3,
2003, pp. 201–224.

26Sichel, M., Tonello, N. A., Oran, E. S., and Jones, D. A., “A Two-
Step Kinetics Model for Numerical Simulation of Explosions and Deto-
nations in H2–O2 Mixtures,” Proceedings of the Royal Society of London,
Series A: Mathematical and Physical Sciences, Vol. 458, No. 2017, 2002,
pp. 49–82.

27Kawai, S., and Fujiwara, T., “Numerical Analysis of First and Second
Cycles of Oxyhydrogen Pulse Detonation Engine,” AIAA Journal, Vol. 41,
No. 10, 2003, pp. 2013–2019.

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
N

O
T

R
E

 D
A

M
E

 o
n 

Ja
nu

ar
y 

8,
 2

02
2 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.1
16

41
 



POWERS AND PAOLUCCI 1099

28Korobeinikov, V. P., Levin, V. A., Markov, V. V., and Chernyi, G. G.,
“Propagation of Blast Waves in a Combustible Gas,” Astonautica Acta,
Vol. 17, Nos. 4–5, 1972, pp. 529–537.

29Whitham, G. B., Linear and Nonliner Waves, Wiley, New York, 1974,
pp. 113–117.

30Strang, G., Linear Algebra and its Applications, 3rd ed., Harcourt Brace
Jovanovich, Fort Worth, TX, 1988, pp. 275–277.

31Kee, R. J., Rupley, F. M., and Miller, J. A., “Chemkin-II: A Fortran
Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinet-
ics,” Sandia National Labs., Rept. SAND89-8009B, Livermore, CA, Nov.
1991.

32Kee, R. J., Rupley, F. M., and Miller, J. A., “The Chemkin Thermo-
dynamic Data Base,” Sandia National Labs., Rept. SAND87-8215B, Liver-
more, CA, March 1990.

33Hindmarsh, A. C., “ODEPACK, a Systematized Collection of ODE
Solvers,” Scientific Computing, edited by R. S. Stepleman, et al., North-
Holland, Amsterdam, 1983, pp. 55–64.

34Miller, J. A., Mitchell, R. E., Smooke, M. D., and Kee, R. J., “To-
ward a Comprehensive Chemical Kinetic Mechanism for the Oxidation
of Acetylene: Comparison of Model Predictions with Results from Flame
and Shock Tube Experiments,” Proceedings of the Nineteenth Symposium
(International) on Combustion, Combustion Inst., Pittsburgh, PA, 1982,
pp. 181–196.

35Hirschfelder, J. O., Curtis, C. F., and Bird, R. B., Molecular Theory of
Gases and Liquids, Wiley, New York, 1954, pp. 441–667.

36Laidler, K. J., Chemical Kinetics, McGraw–Hill, New York, 1965,
pp. 63–68.

37LeVeque, R. J., Finite Volume Methods for Hyperbolic Problems,
Cambridge Univ. Press, Cambridge, England, U.K., 2002, pp. 151–155.

38Lorenz, E. N., “Deterministic Nonperiodic Flow,” Journal of the Atmo-
spheric Sciences, Vol. 20, March 1963, pp. 130–141.

C. Kaplan
Associate Editor

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
N

O
T

R
E

 D
A

M
E

 o
n 

Ja
nu

ar
y 

8,
 2

02
2 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.1
16

41
 


