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Exact Solution for Multidimensional Compressible Reactive Flow
for Verifying Numerical Algorithms

Joseph M. Powers∗

University of Notre Dame, Notre Dame, Indiana 46556-5637
and

Tariq D. Aslam†

Los Alamos National Laboratory, Los Alamos, New Mexico 87545

A new exact solution of an oblique detonation is developed for the supersonic irrotational flow of an inviscid
calorically perfect ideal gas, which undergoes a one-step, irreversible, exothermic, zero activation energy reaction
as it passes through a straight shock over a curved wedge. The solution gives expressions for the velocity, pressure,
density, temperature, and position as parametric functions of a variable characterizing the extent of reaction. For
Chapman–Jouguet solutions, an explicit form with dependency on distance is obtained in terms of the Lambert
W function. As the simple model employed is a rational limit of models used in the computational simulation of
complex supersonic reactive flows, the solution can serve as a benchmark for mathematical verification of general
computational algorithms. An example of such a verification is given by comparing the predictions a modern
shock-capturing code to those of the full exact solution. The realized spatial convergence rate is 0.779, far less
than the fifth-order accuracy that the chosen algorithm would exhibit for smooth flows, but consistent with the
predictions of all shock-capturing codes, which never converge with greater than first-order accuracy for flows
with embedded discontinuities.

Nomenclature
A = reactant
a1 = intermediate constant, m
a2 = intermediate constant
a3 = intermediate constant
a4 = intermediate constant
B = product
e = specific internal energy, J/kg
H = Heaviside function
i = discrete cell counter
j = discrete cell counter
L1 = absolute value norm of density error, kg/m
M = Mach number
N = number of points −1 in a given direction
p = pressure, Pa
q = specific heat release, J/kg
R = gas constant, J/kg · K−1

s = dummy variable of integration
T = temperature, K
t = time, s
U = X -velocity component, m/s
u = x-velocity component, m/s
V = Y -velocity component, m/s
v = y-velocity component, m/s
W = Lambert product-log function
w = dummy variable
X = rotated distance coordinate, m
x = distance coordinate, m
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Y = rotated distance coordinate, m
YA = mass fraction of reactant
YB = mass fraction of product
y = distance coordinate, m
α = reaction kinetic rate constant, 1/s
β = shock angle, rad
γ = ratio of specific heats
λ = reaction progress
ρ = density, kg/m3

ψ = level set function
ω = vorticity, 1/s

Subscripts

CJ = Chapman–Jouguet
e = exact
i = ignition
n = numerical
r = reaction zone
s = streamline
w = wall
0 = point on shock surface
1 = unshocked freestream

I. Introduction
A. Verification

C OMPUTATIONAL methods are increasingly being employed
throughout the design process of a variety of aerospace ap-

plications, including those involving supersonic reactive flow with
embedded shock waves, which are the topics of study here. For
the engineering community to have confidence in these predictive
tools, it is necessary for the predictions to be both verified and
validated.1−3 Verification indicates the computational algorithm is
converging to the solution of the underlying mathematical model.
Generally, verification is achieved when a computational scheme,
which satisfies the traditional notions of consistency and numeri-
cal stability,4 can be shown to be converging at a proper rate to a
benchmark solution. The more difficult process of validation con-
notes that the underlying mathematical model captures the essence
of experimental observation.

Although both verification and validation are necessary, this study
will focus on verification alone. To enable a more robust verification
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338 POWERS AND ASLAM

than can be obtained by traditional known inert and one-dimensional
solutions, a new benchmark exact solution for a supersonic reactive
flow known as an oblique detonation will be identified. The solution
contains the features of simplicity, two-dimensionality, an embed-
ded shock, and a reaction zone of finite thickness, which should ren-
der it an attractive option for use in verifying numerical algorithms.
In particular, the solution is not burdened with zones of numerical
viscosity, which can easily corrupt predictions of fine-scale reaction
zone lengths. The solution, that will be seen to give predictions con-
sistent with notions that have evolved over the past several decades,
does not significantly alter the standard understanding of oblique
detonations. Moreover, the significant assumptions required do not
render the reduced model appropriate to quantitatively describe an
actual laboratory experiment; thus, no validation will be reported
here. However, in addition to its value as a verification tool, there
is a pedagogical advantage to be realized in constructing simplified
exact solutions: one learns to distinguish the critical ingredients
necessary to achieve an oblique detonation from those that provide
higher-order corrections.

It is unfortunately easy to find in the literature widespread use
of unverified and inaccurate computational predictions of similar
flows. For example, using a one-dimensional framework, Powers
and Paolucci5 identify several modern calculations of detonations
with detailed chemical kinetics, that were predicted on grids that
were up to four orders of magnitude too coarse to capture the reac-
tion zone structures intrinsic to the chemistry embodied in the un-
derlying mathematical model. In such underresolved calculations,
spurious effects of numerical viscosity are dominant at the finest
length scales, and these are likely suppressing potentially important
physical effects, especially near physical stability limits.

In a two-dimensional framework, the challenges are greater. With
simple one-step kinetics, Wescott et al.6 required a discretization of
the reaction zone into 20 cells in the half-reaction zone length to gen-
erate an accurate numerical prediction of a detonation wave turning
a corner. In a related calculation, Bdzil et al.7 report “substantial dif-
ferences in computed wave speed with resolution.” Oran and Sichel8

were able to sufficiently resolve their calculations with a two-step
kinetic model of H2−O2 combustion to predict experimental data
of detonation diffraction; whether such success could be achieved
with a detailed kinetics model is questionable given present compu-
tational resources. Additional studies that show effects of numerical
resolution in detonation diffraction along with some striking results
are given by Arienti and Shepherd9 and Helzel et al.10

For such problems, two classes of length scales need be resolved:
1) those associated with reaction zone kinetics and 2) a radius of
curvature scale; moreover, there must be sufficient resolution to
suppress the effect of algorithm-induced length scales that arise
from numerical viscosity. Only when both classes of physical scales
are captured and dominate the discretization-induced scale is the
diffraction process correctly predicted. It is not difficult to identify
studies of multidimensional detonation that do not meet this exacting
standard.5

B. Oblique Detonation
An oblique detonation is defined as a shock-induced combus-

tion process in which the shock has a nonnormal angle of incli-
nation to the streamlines of the undisturbed flow. In a detonation,
the shock triggers the combustion, and the combustion contributes
to the support of the shock. It is generally the case that convective
transport dominates diffusive transport. In a typical oblique detona-
tion, an unreacted fluid particle traveling at supersonic velocity in
the freestream encounters an oblique shock. Typically, the shock is
supported by a stationary downstream solid wedge. As the fluid par-
ticle passes through the shock, it is irreversibly compressed such that
its temperature rises sufficiently high to induce exothermic reaction.
As the particle travels past the shock, it reacts, converting chemical
energy into thermal and kinetic energy. This local energy release
then propagates via acoustic waves within the domain between the
wedge and the shock, and there is a complex series of reflections and
interactions. Additionally, the fluid particle turns so that in the far
field its pathline is parallel to the supporting wedge. An observable

global consequence of this energy release and transport is that the
shock is displaced further from the wedge than it otherwise would
have been had the flow been inert.

The just-described portrait of an oblique detonation is qualita-
tively consistent with both experiments and a mathematical theory
that has been refined over the past 60 years. Here a small portion
of the theoretical literature that is most relevant to the present effort
is reviewed. Early analyses focused on the limit of infinitely fast
kinetic rates, which allowed an oblique detonation to be modeled
by a set of algebraic Rankine–Hugoniot jump conditions with heat
release, which gave rise to a prediction of a straight shock attached
to a straight wedge. Such an oblique detonation has an infinitely thin
reaction zone and can be thought of as structure free. Perhaps the
first analysis of this type published in the open literature was given
by Samaras.11 Later, Gross12 improved upon this to obtain a compact
and useful representation of the oblique detonation jump state. Pratt
et al.’s13 revisitation of the structure-free problem in many ways
triggered a renewed interest in oblique detonations for propulsion
applications.

In an exothermic analog to the related study of Lee,14 who con-
sidered flows with finite-rate vibrational relaxation, Powers and
Stewart15 extended the structure-free theory to account for the ef-
fects of a single reaction with finite-rate kinetics in the limit in which
the flow kinetic energy is large relative to the chemical and ambi-
ent thermal energies. A special nonorthogonal coordinate system
was used to facilitate their asymptotic analysis. Comparisons of the
predictions of this theory with those of a standard algorithm for
solving the full partial differential equations were given by Grismer
and Powers16 for the case of a curved shock attached to a straight
wedge. Using an orthogonal coordinate transformation, Powers and
Gonthier17 extended this theory to account for two finite-rate re-
actions for a straight shock, curved wedge system. Grismer and
Powers18 went on to use an unsteady two-dimensional reactive Eu-
ler model to computationally predict stable and unstable oblique
detonations with a straight shock and curved wedge.

These solutions, useful as verification tools, have not been widely
utilized in the decade since they appeared. Three factors have likely
inhibited the adaptation of the asymptotic solution as a verification
benchmark: 1) the asymptotic solution for the curved shock and
straight wedge has an elaborate form; 2) one must use great care to
distinguish errors of the asymptotic approximation from numerical
truncation errors; and 3) a realization of the often-critical need for
verified computational tools, as embodied for example in AIAA
standards on numerical accuracy, has not permeated throughout the
aerospace community. The present study is an attempt to address
these shortcomings.

C. Plan of the Paper
The plan of this paper is as follows. We first describe an unsteady,

two-dimensional, inviscid model equivalent to that of Ref. 15. Re-
action is described by one-step, irreversible kinetics, which allows
for reactant depletion to extinguish the reaction. Arrhenius effects
are embodied in a Heaviside step function, which suppresses re-
action before the shock and admits reaction following the shock.
Consequently the postshock reaction is equivalent to an Arrhenius
model with zero activation energy. This key assumption allows the
equations to be more amenable to analytic solution and the steady
solutions to be less susceptible to instability. Next an orthogonal
coordinate transformation is employed in a manner similar to that
used in Ref. 17. The flow is taken to be steady and have spatial
variation with only one of the variables in the transformed frame.
This, along with the assumption of a straight shock attached to a
curved wedge, dictates that the flow is irrotational. The conserva-
tion of mass, momentum, and energy equations is then seen to admit
algebraic solutions, similar to Rankine–Hugoniot relations, which
allows one to express all variables as functions of the extent of
reaction. These are deployed in the remaining ordinary differen-
tial equation for the reaction kinetics, whose simple form admits
then an exact solution giving distance as a function of extent of
reaction. Consequently, all flow variables have a parametric expres-
sion in terms of the extent of reaction. The exact solution is then
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POWERS AND ASLAM 339

employed for use in verification of a modern computational algo-
rithm for shock-laden reactive flows. It is shown that a third-order
time-accurate numerical algorithm, which can achieve fifth-order
spatial accuracy for smooth flows, converges at less than first-order
spatial accuracy for a flow containing a captured shock. This re-
sult is a feature of all shock-capturing schemes and is consistent
with Godunov’s theorem,19 which formally applies only to linear
algorithms, in contrast to the nonlinear method employed here.

II. Governing Equations
A. Evolution Axioms and Constitutive Equations

The two-dimensional unsteady reactive Euler equations for a
calorically perfect ideal gas that undergoes a single irreversible re-
action are expressed in conservative form as

∂ρ

∂t
+ ∂

∂x
(ρu) + ∂

∂y
(ρv) = 0 (1)

∂

∂t
(ρu) + ∂

∂x
(ρu2 + p) + ∂

∂y
(ρuv) = 0 (2)

∂

∂t
(ρv) + ∂

∂x
(ρuv) + ∂

∂y
(ρv2 + p) = 0 (3)

∂

∂t

{
ρ

[
e + 1

2
(u2 + v2)

]}
+ ∂

∂x

{
ρu

[
e + 1

2
(u2 + v2) + p

ρ

]}

+ ∂

∂y

{
ρv

[
e + 1

2
(u2 + v2) + p

ρ

]}
= 0 (4)

∂

∂t
(ρλ) + ∂

∂x
(ρuλ) + ∂

∂y
(ρvλ) = αρ(1 − λ)H(T − Ti ) (5)

e = 1

γ − 1

p

ρ
− λq (6)

p = ρRT (7)

Equations (1–7) form a set of seven equations in the seven unknowns
ρ, u, v, p, e, λ, and T . Here, as indicated in Fig. 1, the ordinary
Cartesian distance coordinates are x and y. Dependent variables in
Eqs. (1–7) are density ρ, x velocity u, y velocity v, pressure p,

Fig. 1 Schematic of configuration for straight-shock, curved wedge
oblique detonation.

specific internal energy e, reaction progress λ, and temperature T .
Parameters are the reaction kinetic rate constant α, ratio of specific
heats γ , heat release per unit mass q, gas constant R, and ignition
temperature Ti .

Equations (1–5) are, respectively, expressions of the conservation
of mass, x momentum, y momentum, and energy, and species evo-
lution. Equation (5) models the irreversible reaction of A → B in
which species A and B have identical molecular masses and specific
heats. The mass fractions of each species YA and YB can be given in
terms of the reaction progress variable by the relations YA = 1 − λ
and YB = λ. For a fluid particle that is initially composed exclusively
of species A and reacts until it is exclusively composed of species
B, one has λ beginning at zero and terminating at unity. The reaction
rate is limited by a reactant depletion model and is proportional to
the amount of reactant present. In Eq. (5), H(T − Ti ) is a Heaviside
step function, which suppresses reaction when the temperature is
below Ti ; this mimics a full Arrhenius model, in which the activa-
tion energy is infinite for T < Ti and zero for T > Ti . Equations (6)
and (7) are constitutive relations that give the caloric and thermal
state equations, respectively. Also useful will be the expression for
total and component Mach numbers

M =
√

(u2 + v2)/(γ RT ), Mx = u
/√

γ RT

My = v
/√

γ RT (8)

and the vorticity ω, which for this two-dimensional flow has only
one nonzero scalar component,

ω = ∂v

∂x
− ∂u

∂y
(9)

B. Freestream, Shock, and Boundary Conditions
Here, freestream, shock, and boundary conditions are given for

Eqs. (1–7). As only time-independent solutions will be considered,
a set of initial conditions is unnecessary. As indicated in Fig. 1, the
scenario of a uniform supersonic freestream encountering a straight
shock will be modeled. The shock is inclined at an angle β to the
horizontal. The freestream variables have values

u = u1, v = 0, ρ = ρ1, T = T1, λ = 0 (10)

Then by Eq. (7), the ambient pressure is p1 = ρ1 RT1, and by Eq. (8)
the freestream Mach number is M1 = u1/

√
(γ RT1).

A standard Rankine–Hugoniot analysis reveals that λ does not
jump through a shock discontinuity. This is understandable when
one considers that a fluid particle needs a finite amount of time to
react and that it spends an infinitesimally short time traversing the
shock jump. The shock jump is taken to be of sufficient strength to
raise the temperature above Ti , so as to cause reaction to commence.
Thus in the postshock state, the Heaviside function in Eq. (5) has
value unity and will not be written explicitly from here on. One can
also write a detailed set of Rankine–Hugoniot shock jump equations
for the other conservation relations; however, because the governing
equations are already in the required conservative form, they are
entirely consistent with the more general analysis that will follow.

Streamlines ys(x), which for the steady flow are also particle
pathlines, must satisfy the standard equation

dys

dx
= v

u
(11)

along with an appropriate initial condition. The shock is assumed to
be straight and is taken to be attached to a downstream wall of shape
y = yw(x). The wall shape necessary to induce a straight shock is
as of yet unknown and will be determined as part of the solution
procedure. For the inviscid flow, it is not necessary to satisfy a no-
slip condition at the downstream wall. It is however necessary to
satisfy a kinematic condition that allows no mass flow through the
wall surface. This will be guaranteed if the wall surface is coincident
with a streamline, so that

dyw

dx
= v

u
, yw(0) = 0, on y = yw(x) (12)
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340 POWERS AND ASLAM

III. Exact Solution
In this section, an exact oblique detonation solution, which is

appropriate for use in verification studies, is found.

A. Rotation of Axes
One first considers the rotation sketched in Fig. 1. Equations (1–

5) are invariant under a clockwise rotation of axes through an angle
π/2 − β. If β = π/2 is selected, there is no rotation, and all results
obtained here will be valid for the important limit of a strictly one-
dimensional detonation. The rotation transformation is effected by
the area-preserving linear mappings

X = x sin β − y cos β (13)

Y = x cos β + y sin β (14)

U = u sin β − v cos β (15)

V = u cos β + v sin β (16)

Here X and Y are the distance components in the rotated coordinate
system, and U and V are the corresponding velocity components.

A critical advantage of such a rotation is that in the rotated frame
the shock locus has the straightforward description X = 0. It is also
easily seen that magnitudes of distances and velocities are pre-
served under these transformations, that is, x2 + y2 = X 2 + Y 2 and
u2 + v2 = U 2 + V 2. Further, scalars such as p, ρ, e, and λ are also
invariant under the transformation. Thus, freestream scalars remain
unchanged; however, the freestream velocity components transform
to U1 = u1 sin β, V1 = u1 cos β. Equations for streamlines originat-
ing at a generic point on the shock surface X = 0, Y = Y0 transform to

dYs

dX
= V

U
, Ys(0) = Y0 (17)

ρ(λ) = ρ1(γ + 1)M2
1 sin2 β

1 + γ M2
1 sin2 β ±

√(
1 + γ M2

1 sin2 β
)2 − (γ + 1)M2

1 sin2 β
{

2 + [(γ − 1)/γ ](2λq/RT1) + (γ − 1)M2
1 sin2 β

} (31)

For the streamline at the wall, Y0 = 0, and the downstream wall con-
dition, Eq. (12), transforms to

dYw

dX
= V

U
, Yw(0) = 0, on Y = Yw(X) (18)

We seek solutions that have no variation in Y or t . In the rotated
coordinate system in these limits, Eqs. (1–5) reduce to

d

dX
(ρU ) = 0 (19)

d

dX
(ρU 2 + p) = 0 (20)

d

dX
(ρU V ) = 0 (21)

d

dX

{
ρU

[
e + 1

2
(U 2 + V 2) + p

ρ

]}
= 0 (22)

d

dX
(ρUλ) = αρ(1 − λ) (23)

Finally, the Mach numbers and vorticity transform to

M =
√

U 2 + V 2

γ RT
, MX = U√

γ RT
, MY = V√

γ RT
(24)

ω = dV

dX
(25)

B. Extended Rankine–Hugoniot Conditions
Here, a set of algebraic equations, which are extensions of the

standard Rankine–Hugoniot jump conditions, is obtained. Now,
Eqs. (19–22) are homogeneous and can be directly integrated to
arrive at a set of equations consistent with Rankine–Hugoniot jump
conditions. Doing this, applying freestream conditions, Eq. (10),
using Eq. (6) to eliminate e, and using Eq. (19) to simplify Eq. (23),
one finds

ρU = ρ1u1 sin β (26)

ρU 2 + p = ρ1u2
1 sin2 β + p1 (27)

V = u1 cos β (28)

γ

γ − 1

p

ρ
− λq + 1

2

(
U 2 + u2

1 cos2 β
) = γ

γ − 1

p1

ρ1

+ 1

2
u2

1 (29)

dλ

dX
= α

1 − λ

U
(30)

Equation (28) is consistent with the well-known result from in-
ert oblique shock theory that the velocity component tangent to the
oblique shock is unchanged through the shock. But here the condi-
tion is stronger, as our assumptions give the result that V remains
constant throughout the postshock reactive flowfield. Because V is
constant, Eq. (25) holds that the entire postshock flowfield must be
irrotational: ω = 0.

Equations (26–29) have full equivalents in Refs. 11–13, 15, and
17, albeit in slightly different notation. Now Eqs. (26), (27), and (29)
constitute three nonlinear algebraic equations in the four unknowns
ρ, U , p, and λ. A lengthy series of operations on these equations
leads one to form an explicit algebraic expression for ρ(λ):

Now for a physical density prediction, the term inside the radical
in Eq. (31) must be nonnegative for λ ∈ [0, 1]. Algebraic analysis
reveals that this condition will hold if

q ≤ γ RT1

(
M2

1 sin2 β − 1
)2

2(γ 2 − 1)M2
1 sin2 β

(32)

When the equality holds, the condition is the two-dimensional equiv-
alent of a Chapman–Jouguet (CJ) detonation. The CJ oblique deto-
nation given by this model can be shown to predict a locally sonic
component of velocity normal to the oblique shock at the point of
complete reaction (λ = 1).

It can be shown that the + solution of Eq. (31) is associated
with the unshocked branch and the − solution is associated with the
shocked branch. More specifically, when λ = 0, the + solution is the
ambient density ρ1, and the − solution is the classical inert oblique
shock solution. As the unshocked branch has no clear mechanism
to trigger ignition, it will be discarded from here on. The shocked
− branch of Eq. (31) is valid for the domain between the shock and
the confining wall. It is a function of known freestream parameters
and the as of yet unknown function λ(X). Other variables are then
easy to calculate. For example, using Eqs. (7), (26), and (27) one
obtains

U (λ) = ρ1u1 sin β

ρ(λ)
(33)

p(λ) = p1 + ρ2
1 u2

1 sin2 β

[
1

ρ1

− 1

ρ(λ)

]
(34)
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POWERS AND ASLAM 341

T (λ) = p1

ρ(λ)R
+ ρ2

1 u2
1 sin2 β

ρ(λ)R

[
1

ρ1

− 1

ρ(λ)

]
(35)

C. Reaction Zone Structure Solution
Now, the necessary ingredients are available for integration of

Eq. (30). Employing Eq. (33), Eq. (30) can be rewritten as

dλ

dX
= α

ρ1u1 sin β
ρ(λ)(1 − λ), λ(0) = 0 (36)

where ρ(λ) is taken from the shocked − branch of Eq. (31). Next
separation of variables allows Eq. (36) to be integrated to form an
exact solution for X (λ):

X (λ) = a1

((
2a3

(√
1 − a4λ − 1

) + ln

((
1

1 − λ

)a2

×
{[

1 −
√

(1 − a4λ)/(1 − a4)
][

1 +
√

1/(1 − a4)
][

1 +
√

(1 − a4λ)/(1 − a4)
][

1 −
√

1/(1 − a4)
]}a3

√
1 − a4

)))
(37)

where the intermediate parameters a1, . . . , a4 have the definitions

a1 = 1

(γ + 1)M1 sin β

√
γ RT1

α
(38)

a2 = 1 + γ M2
1 sin2 β (39)

a3 = M2
1 sin2 β − 1 (40)

a4 = 2
M2

1 sin2 β(
M2

1 sin2 β − 1
)2

γ 2 − 1

γ

q

RT1

(41)

Note that a1 has units of length and a2, a3, and a4 are dimension-
less. When a4 < 1, Eq. (32) is satisfied, and Eq. (37) predicts a real
solution. For a4 = 1, a CJ oblique detonation is predicted. If a4 > 1,
Eq. (32) is violated, and complex values of X are predicted. Numer-
ical experiments on Eq. (37) indicate that for λ ∈ [0, 1] that X (λ) is
single valued and monotonically increasing with λ. When nonphys-
ical large negative values of λ are considered, the function can be
multivalued.

One can find the locus of a generic streamline Ys originating at
the shock surface X = 0, Y = Y0 as a function of λ. Scaling Eq. (17)
by Eq. (30) and employing Eq. (28), one gets

dYs

dλ
= u1 cos β

α

1

1 − λ
, Ys(λ = 0) = Y0 (42)

Solving, one gets

Ys(λ) = (u1 cos β/α) ln[1/(1 − λ)] + Y0 (43)

For the streamline originating at the wall Y0 = 0, the wall shape is
given by

Yw(λ) = (u1 cos β/α) ln[1/(1 − λ)] (44)

A detailed asymptotic analysis20 for the limit in which the chemi-
cal energy is small relative to the kinetic energy shows that the order
of magnitude of the reaction zone thickness Xr is well estimated by

Xr ∼ γ − 1

γ + 1

u1 sin β

α

×
[

1 + 2

(γ − 1)M2
1 sin2 β

+ γ + 1

γ
(

M2
1 sin2 β − 1

) q

RT1

]
(45)

D. CJ Case
When the flow conditions are such that a4 = 1, the oblique det-

onation has a CJ character. The fluid velocity normal to the shock
at the end of such a reaction zone is locally sonic; moreover, one
set of characteristic curves becomes parallel to the shock wave. In
a one-dimensional flow with one-step irreversible kinetics, the CJ
velocity can be shown to be the velocity of an unsupported wave,
and thus it has an important physical significance. In contrast, there
is no particular tendency for most oblique detonations to relax to
the CJ state; in practice, they are usually overdriven. However, be-
cause a new result is obtained, which is useful in the important
one-dimensional limit, β → π/2, a brief characterization of the CJ
state is given here.

For a4 = 1, Eq. (37) reduces considerably to

XCJ(λ) = −a1

[
2a3

(
1 − √

1 − λ
) + a2 ln(1 − λ)

]
(46)

Equation (46) can be inverted to form an explicit expression for
λCJ(X):

λCJ(X) = 1 −
{

a2

a3

W0

[
−a3

a2

exp

(
− X

2a1a2

− a3

a2

)]}2

(47)

Here, W0(s) is the principal branch of the Lambert W function,21 of
the dummy variable s. When s = wew , W (s) = w, where w is also a
dummy variable; consequently, W can be thought of as an extended
logarithm, sometimes called the “product log.” For s ∈ [−e−1, 0], as
the argument is in Eq. (47), W (s) is dual valued with both values
negative. The principal branch W0(s) is taken as the branch, which
has an analytic continuation through the origin. On the principal
branch s ∈ [−e−1, 0] maps to W0 ∈ [−1, 0]. The alternate branch
W−1(s) is the branch that has an analytic continuation to negative
infinity and maps s ∈ [−e−1, 0] onto W−1 ∈ [−1, −∞). For s > 0,
W (s) is single valued, and for s < −e−1, W (s) has no real value.

With λCJ(X) from Eq. (47), it is easy to predict the variation of
other flow variables under CJ conditions using Eqs. (3), and (33–35).
The CJ reaction zone thickness is estimated by taking X rCJ ∼ 2a1a2.
Using Eqs. (38) and (39), this reduces to

X rCJ ∼ [2γ /(γ + 1)](u1 sin β/α)
[
1 + 1

/(
γ M2

1 sin2 β
)]

(48)

Last, one notes when a4 = 1, that M1 and q are no longer independent
by Eq. (41). Solving for M1 in terms of q for the CJ limit gives rise
to a quartic equation, which has four complicated solutions for left
and right running CJ deflagrations and detonations.

E. Predictions of the Exact Solution
A simple non-CJ test case is studied for a set of parameter val-

ues listed in Table 1. The numbers here are in infinite precision to
facilitate the formal verification. The larger the value of q that is
employed, the easier it is to visualize the effects of the heat release
on the flowfield. Here q = 300,000 J/kg meets the additional restric-
tion of Eq. (32), which for the parameters of Table 1 demand that
q ≤ 3,515,750/11 J/kg; using the nomenclature described in Ref. 17,

Table 1 Parameters used in sample
oblique detonation calculations

Parameter Unit Value

Independent

R J/kg · K−1 287
α 1/s 1,000
β rad π/4
γ 6/5
T1 K 300
M1 3

ρ1 kg/m3 1
q J/kg 300,000

Dependent

u1 m/s 18
√

2,870
p1 Pa 86,100
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342 POWERS AND ASLAM

Table 2 Solution values along the wall streamline for flow parameters of Table 1

λ X , m Yw , m x , m yw , m p, Pa T , K ρ, kg/m3

0.000000 0.000000 0.000000 0.000000 0.000000 86,100 300.000 1.00000
0.000000 0.000000 0.000000 0.000000 0.000000 414,845 423.416 3.41379
0.100000 0.021661 0.071842 0.066116 0.035483 406,941 439.454 3.22653
0.200000 0.047279 0.152154 0.141020 0.074158 398,616 455.334 3.05030
0.300000 0.078003 0.243204 0.227127 0.116815 389,794 471.027 2.88341
0.400000 0.115536 0.348314 0.327991 0.164599 380,374 486.496 2.72426
0.500000 0.162550 0.472633 0.449142 0.219261 370,215 501.688 2.57122
0.600000 0.223581 0.624787 0.599887 0.283695 359,111 516.525 2.42245
0.700000 0.307241 0.820947 0.797749 0.363245 346,734 530.883 2.27570
0.800000 0.433132 1.09742 1.08226 0.469723 332,510 544.549 2.12758
0.900000 0.664723 1.57005 1.58022 0.640165 315,234 557.069 1.97171
1.000000 ∞ ∞ ∞ ∞ 291,192 567.048 1.78927

a)

b)

c)

d)

Fig. 2 Exact solution for flow variables: a) reaction progress, b) density, c) temperature, and d) Mach number normal to the shock, as function of
normal distance from the shock X for parameters of Table 1.

this is an example of a weak overdriven oblique detonation. For
q > 3,515,750/11 J/kg, a different class of flow topology would be
predicted. For straightforward implementation into industrial codes,
all parameters and results reported here are dimensional. These pa-
rameters, although somewhat arbitrary, are not unreasonable for
common gases that might be operating in a high-speed propulsion
device. In particular they were chosen so that the global reaction
zone lengths were on the order of 1 m and that significant variation
in flow variables, such as ρ and T , could be predicted throughout
the reaction zone. It should be remembered, however, that the pur-
pose of this paper is to develop a useful verification methodology
utilizing the new exact solution; consequently, more flexibility in
parameter choices is exercised relevant to the equally important,
but distinct, task of validation relative to actual experiments.

In Fig. 2, a plot is given of various flow variables: reaction
progress, density, temperature, and Mach number in the direction
normal to the shock, as functions of the normal distance from the
shock X . Figure 2a demonstrates that reaction progress is zero until
the shock at X = 0 m is reached. At the shock, there is no jump in
λ, whereas there is a jump in its derivative. The irreversible reaction
induces a relaxation of λ to unity near X = 0.6 m. This agrees to the
proper order of magnitude with the prediction of Eq. (45), which
yields Xr ∼ 0.313 m.

Figure 2b shows the variation of density. Here the shock jump is
clearly seen at X = 0 m, followed by a relaxation to equilibrium in
the reaction zone. In Fig. 2c, the temperature is seen to jump from its

ambient value to over 423 K, which is followed by a further increase
as heat is released until reaches an equilibrium value of near 567 K.
The Mach number in the direction normal to the wave is initially
supersonic at MX = M1 sin β = 3

√
2/2. The shock jump reduces it

to a subsonic state, and then it increases through the reaction zone
to a final value of 0.862. Thus, this oblique detonation is, using
nomenclature of Ref. 17, weak, in the sense of an oblique shock,
and overdriven, in the sense of a detonation.

For use in a detailed flow verification of a computational code,
a set of benchmark values along the wall streamline is given in
Table 2. To perform a high-precision verification, as is reported in
the section, many more points need to be considered. The truncated
set given here simply provides the reader interested in performing
independent verifications another means to check results. Although
these predictions are valid for a single streamline, one can construct
the entire flowfield by translating each streamline to a different ori-
gin on the oblique shock. This is a consequence of the solution
only retaining variation in the X direction in the rotated coordinate
system.

F. Numerical Algorithm
The numerical method employs a uniform Cartesian grid, with

an internal boundary method to handle the curved wall bound-
ary condition. The internal boundary is represented by a level set
function ψ = 0, where ψ > 0 in the boundary region and ψ < 0
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POWERS AND ASLAM 343

in the flow region. The computational domain is x ∈ [xmin, xmax],
y ∈ [0, ymax], with xmin < 0, xmax > 0, and the apex of the curved
wedge at (x, y) = (0, 0). The boundary conditions along x = xmin

and y = ymax are such that all flow variables have zero gradient.
Along y = 0 for x ∈ [xmin, 0], reflection boundary conditions are
used. Above the wedge, along x = xmax, zero-gradient boundary
conditions are used. Note that if the shock exits the domain on
the x = xmax boundary, the boundary conditions along x = xmin,
y = 0, and y = ymax are adequate. One has to ensure, however,
a posteriori, that the flow characteristics are supersonic at the
x = xmax boundary to utilize zero-gradient conditions at that bound-
ary. The spatial discretization scheme is based on the nominally fifth-
order weighted essentially nonoscillatory shock-capturing scheme
of Jiang and Shu,22 in conjunction with a nondecomposition-based
Lax–Friedrichs solver. For temporal discretization, a third-order
Runge–Kutta time-integration technique is used. The details are
fully described in Xu et al.23 It is emphasized that the fifth-order
spatial accuracy can be realized only for flows that contain no dis-
continuities and for which no low-order boundary simulation errors
are introduced, unlike those of this study. The physical parameters
used in the computation are those in Table 1. In addition, the ignition
temperature Ti is chosen to be halfway between the freestream and
shock temperature Ti = 361.58 K.

G. Error Norm, Initial Conditions, and Time Integration
For verification, the exact solution must be compared with the

computed one. When flows contain captured shocks, it is important
to measure error using a norm such as L1; for obvious reasons shock-
capturing solutions will not converge in the L∞ norm. The error in
density, using an L1 norm, is denoted by

L1 =
N∑

i = 0

N∑
j = 0

H(−ψi j )|ρn,i j − ρe,i j |�x�y (49)

where ρn and ρe are the numerical and exact value of density, i
and j are the grid indices, and N + 1 is the number of points in
either direction. Note that L1, as defined, is dimensional with units
of density × area. In all cases uniform grid sizes are utilized with
�x = �y; from here on, only values for �x will be reported. Here
H(−ψi j ) is the Heaviside function and is used so that errors are
only measured in the flow region.

Because a time-dependent numerical algorithm is being used,
initial conditions also need to be specified. These are simply given
by the freestream conditions. When comparing a time-dependent
numerical solution to a steady exact solution, it is imperative to
consider a final time that is large enough to relax all physical tran-
sients. However, the computational predictions will never be exactly
steady, so that the modeler must exercise some discretion in choos-
ing when to terminate the calculation. In practice, it is not difficult
to discern an appropriate cutoff time. It is also noted, making an
inference from the study of Short and Stewart,24 that it is likely that
the exact physical solution is linearly stable to small perturbations
because the zero activation energy case has been taken. So, when the
time-dependent solution is near the steady, exact solution, all modes
should decay exponentially in time to the steady, exact solution. So,
for this problem, L1 can be tracked as a function of time, and the
solution is steady when L1 is no longer significantly changing.

H. Predictions of the Computational Algorithm
A finite computational domain is considered with xmin = − 1

4
m,

xmax = 7
4

m, ymax = 2 m. As the exact solution is obtained on a semi-
infinite spatial domain, additional error is potentially introduced by
the finite truncation. Although this error has not been quantified,
it is believed to be small: 1) as the domain length scaled by the
characteristic reaction zone length, Xr is 6.4 so that the solution is
essentially spatially relaxed; and 2) no characteristics at the right
outflow boundary are pointing into the domain, thus preventing cor-
ruption of the solution from effects external to the computational
domain.

Fig. 3 Predictions of shock locus and density contours from exact and
numerical approximation for parameters of Table 1 and 256 × 256 grid.

Fig. 4 L1 residual norm for difference between predictions of density
field from steady exact and time-dependent numerical methods as a
function of time at several different grid resolutions for parameters of
Table 1.

Fig. 5 L1 error norm for difference between predictions of density field
from exact and numerical methods in the long time limit as a function
of grid size for parameters of Table 1; convergence rate ∼ O(Δx0.779).

A comparison of exact and long time computed density contours
is made in Fig. 3. Here a spatial discretization of �x = 1/128 m was
employed. There is good agreement between the predictions of the
two methods. Figure 4 gives the L1 residual in ρ as time advances
for various spatial resolutions from �x = 1/32 m to �x = 1/512 m.
The residuals, for all spatial resolutions, decrease rapidly at early
time, and at nearly the same rate. When the residual starts to be-
come time independent and thus represents the steady-state error, is
a function of spatial resolution. This effect arises because the finer
grid resolutions can faithfully track the time-dependent decaying
modes further in time before being overwhelmed by the spatial in-
accuracies. For example, the �x = 1/32 m calculation appears to
be steady around t ≈ 0.005 s, whereas the �x = 1/512 m calcula-
tion is not steady until t ≈ 0.006 s. Figure 5 displays the L1 error in
density, at long time, vs grid discretization length. From this plot, it
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344 POWERS AND ASLAM

is determined that the approximate rate of convergence in density is
O(�x0.779), nearly, but not quite, first order. The errors in other field
variables show similar trends. The errors are likely attributable to the
combined effects shock-capturing, level set wall boundary approx-
imation, both of which are O(�x) accurate at best, and finite size
of the computational domain. The sub-first-order convergence is
typical of shock-capturing schemes where linearly degenerate char-
acteristics exist, but is often missed when reporting convergence
rates.

IV. Conclusions
A new exact solution, parameterized by reaction progress λ, for

steady two-dimensional compressible reactive flow with a leading
shock followed by a finite length reaction zone has been obtained.
For a CJ detonation, the parametric form is unnecessary as one
can go on to obtain an explicit representation of the flowfield as
a function of position. Exact solutions for flows of this class are
rare and have principal utility as benchmarks for verification of
the predictions of computational codes. Here, with the employment
of a modern shock-capturing code, an unambiguous example of a
verification has been provided. The convergence study clearly illus-
trates that even though a nominally high-order discretization was
employed inherent properties of the numerical scheme and limita-
tions in finite approximations of a semi-infinite domain combine to
suppress realization of high convergence rates when embedded dis-
continuities and complex boundaries are present. Although a formal
stability analysis has not been performed for this steady solution, the
fact that the unsteady numerical calculations relax to an apparently
steady state gives strong indication that the results are indeed stable.
This gives the solution even more value as a verification benchmark
that can be exercised before proceeding on to simulation of the more
challenging physically unstable detonation flows.

We envision the use of this solution in two ways. Perhaps most
importantly, code developers can have a simple reliable solution
against which to check if their code is capturing the leading-order
features of a nontrivial problem. The key features of a resolved
reaction zone structure and multidimensionality give an advantage
over the typical verification solutions, which are usually confined
to inert or one-dimensional problems. Second, the exact solution
provides a means to precisely identify the sources of error for a given
algorithm. For example, one could easily determine how the error
behaves as one systematically shrinks the discretization length while
holding the reaction zone length constant. Although this exercise is
seemingly obvious, one must recall that it is rarely performed, and
most modern calculations of detonations with detailed kinetics are
in fact underresolved by many orders of magnitude.5 Utilization of
careful verification methods will allow a properly skeptical general
community to have more trust in the predictions of computational
modelers.
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