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We prove the uniqueness of chemical equilibrium for an ideal mixture of ideal gases in a closed,
spatially homogeneous volume. Uniqueness, a fundamental issue of chemical physics, is
incompletely justified in textbooks and much of the scientific literature. We first reproduce a little
known proof by Zel’dovich and show in a more direct fashion than originally presented that a
unique equilibrium exists for isothermal reactions. Zel’dovich’s approach is then extended to the
adiabatic case, and a more complete exposition than that of Aris is provided. The example of an
isothermal, isochoric O-O2-O3 system provides an illustration of uniqueness. The discussion should
be useful for students and instructors of graduate level thermal physics, as well as for researchers in
macroscale reaction dynamics. © 2008 American Association of Physics Teachers.
�DOI: 10.1119/1.2919742�
I. INTRODUCTION

The identification of pressure, temperature, and molecular
species concentrations at chemical equilibrium is of funda-
mental importance in reaction dynamics as well as all of
chemical physics. Such an exercise is common in high
school and beginning college curricula. However, it is un-
usual in such courses to show that the equilibrium which is
identified is unique. The practical understanding of a variety
of physical devices and phenomena, ranging from internal
combustion engines to atmospheric chemical dynamics, re-
lies on the knowledge of whether or not the equilibrium state
exists and is unique. Thus, this problem is of fundamental
importance.

There are cases where the equilibrium is nonunique.1 It
has long been realized that the possibility of multiple physi-
cal equilibria exists in open systems,2 that is, systems for
which mass exchanges with the surroundings are permitted.
Such systems will not be considered here. Multiple physical
equilibria are also admitted in closed systems for nonideal
mixtures.3,4 Such mixtures are common in liquid solutions in
which the adhesive forces between molecules of different
type are different than the cohesive forces between mol-
ecules of the same type. Ideal mixtures, which include gases
which obey Dalton’s law of partial pressures, have a symme-
try of such forces. Third, when the entire pressure, tempera-
ture, and molecular species concentration space including
physically nonrealizable portions is considered, multiple
equilibria also exist in ideal mixtures in closed systems. It
seems, though, that all but one appear in physically unreal-
izable regions. Nevertheless, finding these nonphysical equi-
libria has value in constructing slow invariant manifolds as-
sociated with the long time dynamics of the system.5,6 In
short, their identification enables use of dynamic system
theory to efficiently construct heteroclinic orbits which de-
scribe the time evolution of the species concentrations. These
important orbits commence in nonphysical regions, pierce
into the physical domain, and proceed to a physical equilib-
rium. On such orbits the fast time scale events have been
equilibrated, and the system’s time dependency is strictly
confined to slow time scales. To construct such orbits, it is
crucial to know whether or not the physical equilibrium con-
dition is unique.
If we restrict ourselves to closed systems of ideal mix-
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tures, a physically realizable chemical equilibrium is nearly
always associated with a point in the pressure, temperature,
species composition space at which an appropriate thermo-
dynamic variable acquires an extremum value. A counter ex-
ample is discussed by Alberty7 in which the consideration of
reaction kinetics, if the number of reactions is small, can
render the physical equilibrium inaccessible; such a condi-
tion is rarely met for realistic systems with a large number of
reactions. It is typically assumed that if such a minimum is
found, it is unique, though the rigorous justification of such
an assumption is generally absent.

In special cases, a rigorous, but little known, uniqueness
proof exists. Zel’dovich8 showed this uniqueness for
isothermal-isochoric systems consisting of spatially homoge-
neous ideal mixtures of ideal gases. Many years later Aris,
who was likely unaware of Zel’dovich’s proof, provided a
terse exposition of uniqueness for isobaric systems under
isothermal9 and adiabatic10 conditions. Shortly thereafter,
and again apparently unfamiliar with Refs. 8–10, Shear11

gave an independent uniqueness proof based on Lyapunov
theory. Other discussions on the uniqueness of equilibria are
given in Refs. 12–15.

In this paper we illustrate and expand on the approach of
Zel’dovich, which we believe gives the most transparent ex-
planation. The present work clarifies the analysis and reveals
important nuances not readily evident in earlier studies. We
first reproduce Zel’dovich’s proof for an isothermal-
isochoric system using a more direct procedure based on a
differential form of the second law. We subsequently extend
the analysis to the isothermal-isobaric, adiabatic-isochoric,
and adiabatic-isobaric cases.

II. PRELIMINARY ANALYSIS

Before commencing with the uniqueness proof, it is nec-
essary to give a brief but complete exposition of the funda-
mental mass, energy, and entropy constraints, as well as defi-
nitions of the various thermodynamic variables and
assumptions.

We consider a system consisting of a mixture of N mo-
lecular species, with each species composed from L atomic
elements. We take N�L, N finite; the proof is easily adjusted
for the less common case of N�L. The system is assumed to

be closed to mass exchanges with its surroundings, open to
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mass exchanges among species within it, and open to work
and heat exchanges with the surroundings. We consider only
work and heat exchanges that are reversible; irreversible ex-
changes could be considered, but are extraneous to the
uniqueness proof.

A. Mass/mole constraints

In the absence of nuclear reactions the number of moles of
each element is conserved, and the total mass is conserved.
Mathematically, this conservation can be expressed as a sys-
tem of linear algebraic equations, and standard notions from
linear algebra16 can be exploited. A mass balance for each
atomic element requires the linear constraint:

�
i=1

N

�lini = �
i=1

N

�lini
*, �1�

where ni and n
i
* are, respectively, the instantaneous and ini-

tial number of moles of species i, with n
i
* assumed positive

semidefinite and finite, and �li is the number of atoms of
element l in species i. The term �li is described by an �L
�N� matrix which generally is nonsquare and full rank. Re-
call that a full rank matrix may be rectangular and has a rank
which is the smaller of the matrix dimensions. For our analy-
sis �li will be assumed to be nonsquare and of full rank L.
Unless otherwise stated, we will let i=1, . . . ,N, and l
=1, . . . ,L.

Equation �1� is generally underconstrained for the un-
known nis; we can find solutions of the form

ni = n
i
* + �

k=1

N−L

Dik�k. �2�

Equation �2� allows the N values of ni to be expressed in
terms of N−L values of the reduced composition variables
�k. It will be seen that because the nis are linearly dependent,
they are not the most convenient set of thermodynamic vari-
ables. In contrast, the linearly independent �ks are of greater
value. A detailed example, given later, will illustrate the con-
struction of Eq. �2� for a realistic chemical system. Here and
elsewhere, we take k=1, . . . ,N−L. The constant matrix Dik
is of dimension N� �N−L� and has full rank N−L. Each of
the �N−L� column vectors of Dik has length N and is linearly
independent of the remaining column vectors. This set is
composed of all the vectors that lie in the right null space of
the matrix �li:

�
i=1

N

�liDik = 0. �3�

The matrix Dik is not unique, which is of no consequence for
the analysis. We can differentiate Eq. �2� to obtain

� �ni

��p
�

�j�p

= Dip �p = 1, . . . ,N − L� . �4�

We require that ni�0 for all N species. The hyperplanes
given by ni=0 define a closed physical boundary in reduced
composition space. We next require that changes in ni which
originate from the surface ni=0 be positive. For such curves

we thus require that near ni=0, perturbations d�k be such that
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dni = �
k=1

N−L

Dikd�k � 0. �5�

B. Thermodynamic constraints

The Gibbs equation for a multicomponent material17,18 is

dU = − PdV + TdS + �
i=1

N

�idni. �6�

Here U=U�V ,S ,ni� is the internal energy, and the indepen-
dent canonical variables are volume V, entropy S, and ni. The
associated conjugate variables are pressure P, temperature T,
and the chemical potentials �i.

The first law for a closed system is

dU = �Q + �W , �7�

where �Q and �W are the inexact differentials of heat and
work transfer into the system, respectively. The notation � is
used to distinguish an inexact differential from an exact one,
which is denoted by d. We will restrict attention to reversible
work transfers arising from pressure forces:

�W = − PdV . �8�

The second law of thermodynamics for such a system is
given by

dS �
�Q

T
. �9�

Equation �7� with Eq. �8� allows Eq. �9� to be rewritten as

TdS � dU + PdV . �10�

We use Eqs. �5� and �6� to reduce Eq. �10� to

�
i=1

N

�i�
k=1

N−L

Dikd�k � 0. �11�

Thus, for a system that is confined to only reversible work
and heat transfer, the only source of irreversibility is chemi-
cal reactions.

C. Ideal mixtures of ideal gases

We further restrict attention to ideal mixtures of calorically
imperfect ideal gases obeying Dalton’s law of partial pres-
sures. For such a material17,18 we have

Pi =
niRT

V
, �12�

hi�T� = hi
o�T� = hi

o�To� + �
To

T

cPi�T̂�dT̂ , �13�

ui�T� = ui
o�T� = hi

o�T� − RT , �14�

si
o�T� = si

o�To� + �
To

T cPi�T̂�

T̂
dT̂ , �15�

si�T,P,ni� = si
o�T� − R ln� Pi 	 , �16�
Po
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gi�T,P,ni� = �i�T,P,ni� = hi − Tsi, �17�

�i�T,P,ni� = �i
o�T� + RT ln� Pi

Po
	 , �18�

f i�T,P,ni� = ui − Tsi, �19�

cPi�T� =
dhi

dT
, �20�

cvi�T� =
dui

dT
= cPi�T� − R . �21�

The superscript o denotes evaluation at a reference pressure
Po. For species i, Pi is the partial pressure, hi is the partial
molar enthalpy, cPi and cvi are the molar specific heats at
constant pressure and volume, respectively, ui is the partial
molar internal energy, si is the partial molar entropy, gi is the
partial molar Gibbs free energy, and f i is the partial molar
Helmholtz free energy. The reference state temperature is To,
and the universal gas constant is R.

The mixture pressure, internal energy, Helmholtz free en-
ergy, number of moles, and molar specific heats at constant
volume and pressure are P, U, F, n, cv, and cP, respectively,
and are given by

P = �
i=1

N

Pi, �22�

U = �
i=1

N

niui, �23�

F = �
i=1

N

nif i, �24�

n = �
i=1

N

ni, �25�

cv =
1

n
�
i=1

N

nicvi, �26�

cP =
1

n
�
i=1

N

nicPi. �27�

We also have the mixture enthalpy, H=�i=1
N nihi, mixture en-

tropy, S=�i=1
N nisi, and mixture Gibbs free energy, G

=�i=1
N nigi.

We note that no, the total number of moles at the reference
pressure, is

no 

PoV

RT
. �28�
With Eqs. �12�, �22�, and �28�, it is easy to see that
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Pi

Po
=

ni

no
. �29�

In general, no is constant only for isothermal-isochoric sys-
tems. Similarly, it is straightforward to show, using Eq. �25�,
that

Pi

Po
=

ni

n

P

Po
. �30�

Equation �30� is useful for isobaric systems.
To obtain a necessary expression for d�i

o /dT, we substi-
tute Eqs. �13� and �15� in Eq. �17� at the reference pressure to
get

�i
o = hi

o�To� + �
To

T

cPi�T̂�dT̂ − T�si
o�To� + �

To

T cPi�T̂�

T̂
dT̂	 .

�31�

We differentiate �i
o with respect to T to obtain

d�i
o

dT
= − si

o�T� . �32�

III. UNIQUENESS PROOFS

A. Isothermal-isochoric case

We consider the case discussed by Zel’dovich.8 For an
isothermal-isochoric system it is useful to employ the Leg-
endre transformation F=U−TS. We have dF=dU−TdS
−SdT, and Eq. �6� becomes

dF = − SdT − PdV + �
i=1

N

�idni. �33�

The canonical representation of the Helmholtz free energy is
of the form F�T ,V ,ni�, and the second law �10� becomes
dF�−SdT− PdV. For this case the second law reduces to

dF�T,V � 0. �34�

Thus, F must always decrease until it reaches a minimum, at
which

dF�T,V = 0. �35�

If we consider Eq. �33� in the isothermal-isochoric limit, we
find dF�T,V=�i=1

N �idni, so that at equilibrium, we have

dF�T,V = �
i=1

N

�idni = 0. �36�

Not all of the dnis are linearly independent in Eq. �36�, and
so there is concern about how Eq. �36� can be enforced. This
concern is removed by considering how F varies with the
independent reduced composition variables �p. We determine
this variation using Eq. �5� and the relation dF�T,V
=�p=1

N−L��F /��p�T,V,�j�p
�d�p, and cast Eq. �36� as

dF� = �
i=1

N

�i�
p=1

N−L

Dipd�p = �
p=1

N−L
�F

��p
�

T,V,�j�p

d�p = 0. �37�
T,V
Because the d�ps are linearly independent, Eq. �37� requires
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�F /��p�T,V,�j�p
=0 at equilibrium. Regrouping the middle

terms of Eq. �37�, we also find

�
p=1

N−L �� �F

��p
�

T,V,�j�p

− �
i=1

N

�iDip	d�p = 0. �38�

Again, because the d�ps are linearly independent, the only
way to guarantee satisfaction of Eq. �38� is to require that the
term multiplying d�p be zero for all p,
��F /��p�T,V,�j�p

�=�i=1
N �iDip. Thus at equilibrium, we have

�F = � �F

��p
�

T,V,�j�p

= �
i=1

N

�iDip = 0. �39�

We have adopted the Gibbs notation for the gradient of F,
where the � operator is the gradient in �p space. Equation
�39� is valid for a general equation of state. For the
isothermal-isochoric system, the chemical potential is a func-
tion of the �N−L� independent reduced composition vari-
ables �k, in which case, Eq. �39� forms �N−L� nonlinear
equations in the �N−L� unknowns.

We use Eqs. �18� and �29� and write Eq. �39� for an ideal
gas mixture as

�F = � �F

��p
�

T,V,�j�p

= �
i=1

N ��i
o + RT ln� ni

no
	
Dip = 0.

�40�

Following Zel’dovich,8 we rearrange Eq. �40� in the form:

ln�
i=1

N � ni

no
	Dip

= − �
i=1

N Dip�i
o

RT
. �41�

We use Eq. �2� to eliminate ni and obtain

ln�
i=1

N ��n
i
* + �

k=1

N−L

Dik�k	 1

no

Dip

= − �
i=1

N Dip�i
o

RT
. �42�

For isothermal-isochoric systems, every term in Eq. �42�,
except for �k, is constant. Equation �42� forms an
�N−L�-dimensional nonlinear system of algebraic equations
in the �N−L� unknown values of �k which can be solved
numerically by an iterative procedure. Note that as of yet, no
proof exists that the solution of this system is unique. Nor is
it certain whether or not F is minimized for such a solution.

We can determine if the solution is a minimum by exam-
ining the second derivative, obtained by differentiating Eq.
�40�. We find the Hessian, H, to be

H =
�2F

�� j � �p
= RT�

i=1

N DipDij

ni
. �43�

Here j=1, . . . ,N−L. Scaling each of the rows of Dip by a
constant does not affect the rank. So we can say that the N
� �N−L� matrix whose entries are Dip /�ni has rank N−L,
and consequently the Hessian H, of dimension �N−L�
� �N−L�, has full rank N−L, and is symmetric. It is easy to
show by means of singular value decomposition, or other
methods, that the eigenvalues of a full rank symmetic square
matrix are all real and nonzero.

Now, consider whether �2F /�� j��p is positive definite. By
definition, it is positive definite for an arbitrary vector zj of

length �N−L� with nonzero norm if 	TV is positive:
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	TV = �
j=1

N−L

�
p=1

N−L
�2F

�� j � �p
zjzp � 0. �44�

Here, and in the remainder of the text, we take 	 to denote
an appropriate positive definite scalar. The subscripts denote
the variables which are constant for the particular case, here
T and V for isothermal-isochoric. We define a vector yi of
length N, also with nonzero norm, as

yi 
 �
j=1

N−L

Dijzj , �45�

and substitute Eqs. �43� and �45� into Eq. �44� to show that

	TV = RT�
i=1

N
yi

2

ni
. �46�

If we restrict the domain to the physically accessible space,
ni�0, T�0, for arbitrary Dij and arbitrary yi �with �y � �0�,
we find that 	TV�0. Hence, we conclude that the Hessian
matrix of F is positive definite globally.

We next consider the behavior of F near a generic point in

the physical space �̂ where F= F̂. If we let d� represent �

− �̂, we can represent the Helmholtz free energy by the Tay-
lor series

F��� = F̂ + d�T · �F +
1

2
d�T · H · d� + ¯ , �47�

where �F and H are evaluated at �̂. Now if �̂=�eq, where eq

denotes an equilbrium point, �F=0, F̂=Feq, and

F��� − Feq =
1

2
d�T · H · d� + ¯ . �48�

Because H is positive definite in the entire physical domain,
any isolated critical point will be a minimum. Note that if
more than one isolated minimum point of F were to exist in
the domain interior, a maximum would also have to exist in
the interior, but maxima are not allowed by the global posi-
tive definite nature of H. Subsequently, any extremum which
exists away from the boundary of the physical region must
be a minimum, and the minimum is global.

Global positive definiteness of H alone does not rule out
the possibility of nonisolated multiple equilibria, as seen by
the following analysis. Because it is symmetric, H can be
orthogonally decomposed into H=QT ·� ·Q, where Q is an
orthogonal matrix whose columns are the normalized eigen-
vectors of H. Note that QT=Q−1. Also � is a diagonal matrix
with real eigenvalues on its diagonal. We can effect a
volume-preserving rotation of axes by taking the transforma-
tion dw=Q ·d�; thus, d�=QT ·dw. Hence,

F − Feq =
1

2
�QT · dw�T · H · QT · dw + ¯

=
1

2
dwT · Q · QT · � · Q · QT · dw + ¯

=
1

2
dwT · � · dw + ¯ . �49�

The application of these transformations gives in the neigh-

borhood of equilibrium the quadratic form
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F − Feq =
1

2 �
p=1

N−L


p�dwp�2 + ¯ . �50�

For F to be a unique minimum, 
p�0. If one or more of the

p=0, then the minimum could be realized on a line or
higher dimensional plane, depending on how many zeros are
present. The full rank of H guarantees that 
p�0. For our
problem the unique global minimum which exists in the in-
terior will exist at a unique point.

Finally, we need to verify that a local minimum does not
exist on the boundary of the physical region. We combine
Eqs. �16�, �18�, �19�, �24�, and �29� to obtain

F = RT�
i=1

N

ni�− 1 +
�i

o

RT
+ ln� ni

no
	
 . �51�

On the physical boundary given by nq=0, we must be careful
when i=q in Eq. �51� because of a potential logarithmic sin-
gularity. However, because limnq→0nq ln nq=0, F has no sin-
gularity on the boundary and takes on finite values.

We next examine changes in F in the vicinity of bound-
aries given by nq=0. We will restrict our attention to changes
which give rise to dnq�0. We employ Eq. �40� and find that

dF = �
p=1

N−L

d�p� �F

��p
�

T,V,�j�p

= �
i=1

N ��i
o + RT ln� ni

no
	
�

p=1

N−L

Dipd�p. �52�

On the boundary given by nq=0, the dominant term in the
sum is for i=q, and so on this boundary

lim
nq→0

dF = RT ln�nq

no
��

p=1

N−L

Dqpd�p

�0

→ − � .

�53�

The term identified by the brace is positive because of Eq.
�5�. Because R and T�0, we see that as nq moves away from
zero into the physical region, changes in F are large and
negative. So the physical boundary can be a local maximum,
but never a local minimum in F. Hence, the only admissible
equilibrium is the unique minimum of F found from Eq.
�42�; this equilibrium is found at a unique point in reduced
composition space.

B. Isothermal-isobaric case

For a system in which T and P are constant the appropriate
Legendre transformation is G=U+ PV−TS, where G is the
Gibbs free energy. We have dG=dU+ PdV+VdP−TdS
−SdT, and after substitution into Eq. �6� we obtain

dG = VdP − SdT + �
i=1

N

�idni. �54�

Hence, the canonical representation is of the form
G�P ,T ,ni�, and the second law �10� becomes dG�VdP
−SdT. For the isothermal-isobaric case this condition re-

duces to
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dG�T,P � 0, �55�

and G must decrease until it reaches a minimum. If we elimi-
nate dU in Eq. �6� in favor of dG and consider isothermal-

isobaric conditions, we have dG�T,P= �
i=1

N

�idni, so that at equi-

librium

dG�T,P = �
i=1

N

�idni = 0. �56�

As before, we consider the variation of G with the inde-
pendent variables �p and find

� �G

��p
�

�j�p

= �
i=1

N

�iDip = 0. �57�

We use Eqs. �18� and �30� and cast Eq. �57� in the form

�
i=1

N

Dip��i
o + RT ln� niP

nPo
		 = 0, �58�

or

ln�
i=1

N � niP

nPo
	Dip

= − �
i=1

N

Dip

�i
o

RT
. �59�

Again we use Eq. �2� to eliminate ni and n to get

ln�
i=1

N � �n
i
* + �k=1

N−L Dik�k�P

��q=1

N �n
q
* + �k=1

N−L Dqk�k��Po
	Dip

= − �
i=1

N

Dip

�i
o

RT
. �60�

Every term in Eq. �60� is constant except for the �N−L�
values of �k. These �N−L� nonlinear algebraic equations can
be solved for the �N−L� unknown �ks via iteration.

We can repeat our previous analysis to show that this equi-
librium is unique in the physically accessible region of com-
position space. By differentiating Eq. �57� it is seen that

�2G

�� j � �p
= RT�

i=1

N

Dip
�

�� j
ln�ni

n
	 , �61�

=RT��
i=1

N DipDij

ni
−

1

n
�
i=1

N

�
q=1

N

DipDqj	 . �62�

Next consider the sum

	TP = �
j=1

N−L

�
p=1

N−L
�2G

�� j � �p
zjzp = RT�

j=1

N−L

�
p=1

N−L ��
i=1

N DipDij

ni

−
1

n
�
i=1

N

�
q=1

N

DipDqj	zjzp. �63�

We use Eq. �45� and reduce Eq. �63� to the positive definite
form

	TP =
RT

n
�
N

�
N ��nj

ni
yi −�ni

nj
yj	2

� 0. �64�

i=1 j=i+1
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On the boundary ni=0, and as for the isothermal-isochoric
case, it can be shown that dG→−� for changes with dni
�0. Thus, the boundary has no local minimum, and we can
conclude that G is minimized in the interior and the mini-
mum is unique.

C. Adiabatic-isochoric case

For the isochoric and adiabatic case the Gibbs Eq. �6� is
already in terms of the canonical variables. The conditions
correspond to a chemical reaction in a fixed volume �dV
=0� which is thermally insulated ��Q=0�. For this system
the work vanishes, �W=−PdV=0. The first law, Eq. �7�, re-
duces to dU=0. The second law, Eq. �10�, reduces to

dS�U,V � 0, �65�

and S must monotonically increase until it reaches a maxi-
mum where

dS�U,V = 0. �66�

Next, we consider Eq. �6� for dU=0, dV=0, dS�U,V
=−�1 /T��i=1

N �idni, so that at equilibrium

dS �
U,V

= −
1

T
�
i=1

N

�idni = 0. �67�

We use Eq. �5� to eliminate dni:

dS = −
1

T
�
i=1

N

�
k=1

N−L

�iDikd�k. �68�

We then employ Eq. �18� and consider the variation of S near
equilbrium

� �S

�� j
�

U,V,�p�j

= −
1

T
�
i=1

N ��i
o + RT ln� Pi

Po
	
Dij = 0, �69�

=− �
i=1

N ��i
o

T
+ R ln� T

To
	

+ R ln�niRTo

PoV
	
Dij = 0. �70�

For convenience we define the temperature-dependent func-
tion �i�T� as

�i�T� 

�i

o

T
+ R ln� T

To
	 . �71�

We can rewrite Eq. �70� as

� �S

�� j
�

U,V,�p�j

= − �
i=1

N ��i�T� + R ln�niRTo

PoV
	
Dij = 0,

�72�

and rearrange Eq. �72� in the familiar form

ln�
i=1

N ��n
i
* + �k=1

N−L Dik�k�RT

PoV

Dij

= − �
i=1

N

Dij

�i
o

RT
. �73�

We see that Eq. �73� is a function of the �N−L� values of �k

as well as the unknown T, and hence the �N−L� equations

require an additional equation. The necessary equation is
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provided by the caloric equation of state �23�, in which the
energy is held constant at U*:

U* = �
i=1

N

niui�T� . �74�

To determine if the equilibrium solution obtained from
solution of Eqs. �73� and �74� is a maximum, consider the
Hessian matrix of S found by differentiating Eq. �72�:

�2S

��k � � j
= − �

i=1

N �d�i�T�
dT

�T

��k
+

R

ni
Dik	Dij . �75�

Equation �75� requires an expression for �T /��k. We differ-
entiate Eq. �74�

0 = �
q=1

N �nq
duq

dT
dT + uqdnq	 , �76�

employ the definitions Eqs. �21� and �26�, and use Eq. �5� to
obtain

dT = −
1

ncv
�
q=1

N

�
p=1

N−L

uqDqpd�p. �77�

Hence,

� �T

��k
�

U,V,�r�k

= −
1

ncv
�
q=1

N

uqDqk. �78�

Now consider the temperature derivative of Eq. �71�:

d�i

dT
= −

�i
o

T2 +
1

T

d�i
o

dT
+

R

T
. �79�

If we use Eqs. �32�, �14�, and �17�, we find that Eq. �79�
reduces to

d�i

dT
= −

1

T2ui. �80�

We substitute Eqs. �78� and �80� into Eq. �75� and find

�2S

��k � � j
= −

1

ncvT2�
i=1

N

�
q=1

N

uiuqDqkDij − R�
i=1

N DikDij

ni
. �81�

As before, we can use Eq. �45� and straightforward alge-
bra to show that

	UV = �
k=1

N−L

�
j=1

N−L
�2S

��k � � j
zkzj = −

1

ncvT2��
i=1

N

uiyi	2

− R�
i=1

N
yi

2

ni
. �82�

Because cv�0 and ni�0, and all other terms involve perfect
squares, it is obvious that 	UV
0, and the Hessian matrix is
negative definite. Consequently, the extremum point of S
represents a maximum. Because limni→0dS→� for changes
with dni�0, there is no local maximum on the boundary,
and any maximum of S in the interior is unique.

D. Adiabatic-isobaric case

A similar proof holds for the adiabatic-isobaric case. Here

the appropriate Legendre transformation is H=U+ PV, where
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H is the enthalpy. We omit the details, which are similar to
those of previous sections, and find a term which must be
negative semidefinite, 	HP:

	HP = �
k=1

N−L

�
j=1

N−L
�2S

��k � � j
zkzj �83�

=−
1

ncPT2��
i=1

N

hiyi	2

−
R

n
�
i=1

N

�
j=i+1

N ��nj

ni
yi −�ni

nj
yj	2

. �84�

Because cP�0 �see Eq. �27�� and ni�0, the term involving
hiyi is a perfect square, and the term multiplying R is positive
definite for the same reasons as discussed before. Hence,
	HP
0, and the Hessian matrix is negative definite.

IV. EXAMPLE

To illustrate the concepts that we have introduced we con-
sider a mixture of O, O2 and O3 for which N=3 and L=1.
We take i=1,2 ,3 to correspond to O, O2, and O3, respec-
tively. We will find the equilibrium state of an isothermal
�T=4000 K�, isochoric �V=1 m3� mixture which has initial
molar compositions of n

1
*=0 mole, n

2
*=0 mole, and n

3
*=1

mole with n*=n
1
*+n

2
*+n

3
*=1 mole. With R

=8.314 J /mole /K, Eqs. �12� and �22� give the initial mixture
pressure as 3.326�104 Pa.

For such a mixture �li= �1,2 ,3�. Equation �1� gives L lin-
ear equations, which for this L=1 system reduce to

n1 + 2n2 + 3n3 = n1
* + 2n2

* + 3n3
*

=0 =0 =1

= 3 mole.
�85�

The right-hand side is the number of atoms of element O.
The physical boundaries given by ni=0 are formed by the
surfaces

n1 = 0, n2 = 0, n3 = 1 −
1

3
n1 −

2

3
n2 = 0. �86�

The boundaries form a triangle in �n1 ,n2� space, whose
interior represents the physically realizable region. The
underconstrained Eq. �85� has three unknowns. We introduce
the reduced composition space variables �1 and �2 and write
a solution in the form of Eq. �2�:

�n1

n2

n3
� = �0

0

1
�

=n
i
*

+�
1 0

0 1

−
1

3
−

2

3
�

=Dik

��1

�2
� .

�87�

Because n1=�1, n2=�2, the �n1 ,n2� plane is coincident with
the reduced composition space. The differentials dni are thus

given by
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�dn1

dn2

dn3
� =�

1 0

0 1

−
1

3
−

2

3
��d�1

d�2
	 . �88�

For this system the chemical potentials at the standard state
pressure and T=4000 K are given by19 �1

o=−5.357
�105 J /mole, �2

o=−1.045�106 J /mole, and �3
o=−1.155

�106 J /mole. The mixture Helmholtz free energy can be
evaluated from Eqs. �51� and �87� as

F = − 5.690 � 105�1 − 1.078 � 106�2

− 1.188 � 106�1 −
1

3
�1 −

2

3
�2	

+ 3.326 � 104��1 ln �1 + �2 ln �2

+ �1 −
1

3
�1 −

2

3
�2	ln�1 −

1

3
�1 −

2

3
�2	
 . �89�

The constants are such that when �1 and �2 have the units of
mole, F has units of J. We can find the extremum of F by
setting its partial derivatives with respect to �1 and �2 equal
to zero and solving the resulting nonlinear algebraic equa-
tions via Newton–Raphson iteration. The solution is

�1
eq = n1

eq = 1.351 mole, �90�

�2
eq = n2

eq = 0.8247 mole, �91�

1 −
1

3
�1

eq −
2

3
�2

eq = n3
eq = 3.073 � 10−6 mole, �92�

Feq = − 1.649 � 106 J . �93�

It is no surprise that O3 has a relatively small value at equi-
librium, and that at the elevated temperature, O and O2 have
similar values. At T=4000 K molecular collisions are suffi-
ciently energetic to induce breakup of di- and especially tri-
atomic molecules; thus, O2, which is preferred at lower tem-
peratures, is no longer dominant. Note the number of moles
increased from n*=1 mole to neq=n1

eq+n2
eq+n3

eq=2.175 mole.
The ideal gas law gives the equilibrium pressure as Peq

=7.234�104 Pa. For the isothermal, isochoric equilibration
the pressure increase is due to the increase in number of
moles.

We can study the local behavior of F in the neighborhood
of equilibrium by considering its Taylor series. In matrix
form we have

F = Feq + �d�1 d�2 ��
�F

��1

�F

��2

�
�1

eq,�2
eq

=0

+
1

2
�d�1 d�2 �

��
�2F

��1
2

�2F

��1 � �2

�2F

��1 � �2

�2F

��2
2
�

�eq,�eq

�d�1

d�2
� + ¯ .
1 2 �94�
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Here d�i
�i−�i
eq is the deviation of �i from its value at

equilibrium. By the nature of the equilibrium, the gradient of
F must be zero. For our example, Eq. �94� reduces to the
quadratic form

F − Feq =
1

2
�d�1 d�2 ��1.203 � 109 2.405 � 109

2.405 � 109 4.810 � 109 	
��d�1

d�2 	 + ¯ . �95�

The units of the numbers in the matrix are J /mole2. Equation
�95� is of the form of Eq. �48�. After implementing the trans-
formations we have presented in the discussion preceding
Eq. �50�, we find

F − Feq =
1

2
�
1�dw1�2 + 
2�dw2�2� + ¯ , �96�

where 
1 and 
2 are the eigenvalues of H. In our example we
find 
1=6.012�109 and 
2=2.776�104, where the units are
J /mole2. The eigenvalues are both positive, which shows
that in the neighborhood of equilibrium, F is minimized,
which is consistent with our proof that F is a global mini-
mum in the physical region. Also note that the eigenvalues
are widely disparate, which indicates that contours of F in
the neighborhood of equilibrium are ellipses with a large
eccentricity.
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