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Abstract— Slow Invariant Manifolds (SIM) are calculated
for isothermal closed reaction-diffusion systems as a model
reduction technique. Diffusion effects are examined using a
Galerkin projection that rigorously accounts for the coupling
of reaction and diffusion processes. This method reduces
the infinite dimensional dynamical system by projecting
it on a low dimensional approximate inertial manifold. A
robust method of constructing a one-dimensional SIM by
calculating equilibria and then integrating heteroclinic orbits
is discussed. A diffusion-coupling of length and time scales
is shown. Examples are demonstrated on a physical reaction
mechanism.

I. I NTRODUCTION

Reactive flow problems display a disparity in physical
scales, which manifests itself as stiffness in numerical
computations. Reaction mechanisms induce multiple time
scales, while diffusion couples these time scales to length
scales. The full range of spatial and temporal scales must
be resolved for a verifiable simulation. Model reduction
offers an ability to reduce the range of scales while
maintaining consistency with the physical model. The
reviews of Griffiths [1] and Lu and Law [2] describe
various model reduction techniques; however, most of the
methods address only reaction mechanisms. Research that
extends model reduction to systems with diffusion often
only examines a limit of long length scales.

This research considers the extension of Slow Invariant
Manifolds (SIM) to systems with diffusion in the limit of
small length scales. The SIM is a unique trajectory of the
dynamical system that efficiently describes the long time
dynamics of the system’s evolution. Davis and Skodje
[3] and Al-Khateeb et al. [4] describe the calculation
of a one-dimensional SIM by integrating a heteroclinic
orbit between the system’s physical and non-physical
equilibrium points.

The SIM is extended to systems with diffusion by
modeling spatial variations using a Galerkin projection.
This reduces the governing partial differential equations
(PDEs) into an approximate inertial manifold (AIM)
system of ordinary differential equations (ODEs) in a
technique described by Robinson [5]. A subset of the
ODEs includes the spatially homogeneous system. These
ODEs are then evaluated to identify the SIM.

II. M ODEL

We model a system of detailed reaction kinetics of
N species reacting inJ reactions with diffusion in one
spatial dimension. The key assumptions in our model
include: ideal gas, negligible advection, isochoric, and a

single constant mass diffusivity. Our governing species
evolution equation is

ρ
∂Yi

∂t
+

∂jm
i

∂x
= Miω̇i, for i ∈ [1, N ], (1)

whereYi ∈ R
N is a vector of mass fractions,jm

i ∈ R
N is

a vector of diffusive mass fluxes,ω̇i ∈ R
N is the reaction

source term,Mi is the molecular mass of speciesi, andρ
is the constant density. The spatial domain,x ∈ [0, ℓ], has
homogeneous Neumann boundary conditions atx = 0
and x = ℓ. The constitutive equation for the diffusive
mass flux is

jm
i = −ρD

∂Yi

∂x
, (2)

whereD is constant mass diffusivity.
This set of PDEs hasL algebraic constraints, which

can be integrated from (1) as a result of stoichiometric
balance; this requires initial spatially homogeneous distri-
butions of the constrained values that are not perturbed by
the boundary conditions. Let us now use these constraints
to transform variables into a set of reduced variables,

zi ≡
Yi

Mi

for i ∈ [1, N − L], (3)

which are governed by the PDEs

∂zi

∂t
=

ω̇i

ρ
+ D

∂2zi

∂x2
, for i ∈ [1, N − L]. (4)

We apply a Galerkin projection to (4), reducing it to an
approximate inertial manifold (AIM) [5]. To accomplish
this, we assume a spectral decomposition of

zi(x, t) =

∞
∑

m=0

zi,m(t)φm(x), for i ∈ [1, N − L], (5)

wherezi,m(t) is themth time-dependent amplitude asso-
ciated with speciesi, andφm(x) are the corresponding
basis functions. Notice that this projection is only in the
reduced variables; the algebraic constraints, which remain
constant in space, govern the evolution of the remaining
variables. We chooseφm as the eigenfunctions of the
diffusion operator,∂2/∂x2 φm = µm φm, that match the
boundary conditions, which gives us the complete basis

φm = cos
(mπx

ℓ

)

, for m ∈ [0,∞). (6)

These basis functions are orthogonal, and their eigenval-
ues are real, given byµm = −(mπ/ℓ)2. By substituting
(5) into (4) and taking the inner product with each basis
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function, φm, we obtain an infinite system of ODEs for
the evolution of the amplitudes

dzi,m

dt
=

<φm, ω̇i(
∑∞

n=0
zi,nφn)/ρ>

<φm, φm>
− µmDzi,m,

for i ∈ [1, N − L] andm ∈ [0,∞). (7)

For our choice of basis functions,<φm, φm> = ℓ for
m = 0 and <φm, φm> = ℓ/2 for m ≥ 1. For small
ℓ and m ≥ 1, the diffusion term dominates the reaction
term, which makes them ≥ 1 amplitudes decay rapidly.

We can reduce the infinite system of ODEs in (7) by
truncating the system at a sufficiently largeM ; this results
in the system of(M + 1)(N − L) ODEs,

dzi,m

dt
=

ω̇i,m

ρ
−

m2π2D

ℓ2
zi,m, for i ∈ [1, N − L]

andm ∈ [0, M ], (8)

whereω̇i,m is the reaction term recovered from the inner
product in (7). This term can be obtained analytically
for isothermal reactions with our choice of simple basis
functions. In some cases a truncation atM = 0 is
appropriate, in which case (7) reduces to a spatially
homogeneous system,

dzi

dt
=

ω̇i

ρ
, for i ∈ [1, N − L]. (9)

This is a reasonable truncation if there are no spatial
variations in the initial conditions or in the limit where
ℓ → 0. For the infinitesimal length scale case, the
diffusion term will dominate the reaction term making
diffusion infinitely fast; any spatial inhomogeneities will
rapidly equilibrate, and we recover a spatially homoge-
neous system.

III. R EACTION MECHANISM

We evaluate the Zel’dovich mechanism ofNO pro-
duction identical to the system studied by Al-Khateeb et
al. [4] (see Table I). This system hasN = 5 species and

TABLE I

THE ZEL’ DOVICH MECHANISM FORNO PRODUCTION.

aj βj Ej

j Reaction [mol/(cm s K)] [cal/mol]
1 N + NO ⇌ N2 + O 2.107 × 1013 0.00 0.0
2 N + O2 ⇌ NO + O 5.839 × 109 1.01 6196

J = 2 reactions. The system is taken to be isothermal
at T = 4000 K, isochoric atV = 1000 cm3, and has
constant algebraic constraints which are uniform in space
and correspond to each of the five species having initial
conditions of10−3 mol. Conservation of atomic elements
yields two algebraic constraints, while a third algebraic
constraint, conservation of molecules, is obtained since
the system is comprised of exclusively bimolecular reac-
tions. This leavesL = 3 species constraints that allow the
system to be simplified toN − L = 2 reduced variables;
we choose to evaluate the specific moles ofNO andN
as z1 and z2, respectively. The evolution of the three
remaining speciesN2, O, and O2, are coupled to the
evolution ofz1 andz2 by the algebraic constraints.
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Fig. 1. One branch of the SIM in a spatially homogeneous system.

IV. RESULTS AND DISCUSSION

We first examine the spatially homogeneous limit,
corresponding to truncation atM = 0. To calculate the
SIM, we find the system’s equilibria via an algebraic
method and use a local linear analysis to characterize
these equilibria as sources, saddles, or sinks. The SIM
is found by integrating a heteroclinic orbit from a non-
physical saddle to the physical sink. Each branch of the
SIM emerges from a non-physical saddle equilibria along
its only unstable eigenvector and approaches the physical
equilibrium sink along the eigenvector associated with its
slowest stable, least negative, eigenvalue. One branch of
the SIM is shown in Fig. 1 which connects the non-
physical saddle,R2, to the physical equilibrium,R3.
This figure also indicates the boundary of the physical
domain, where all species concentrations are positive,
represented as a blue dashed line. The green lines are
various trajectories that display why the SIM is important
as a reduction technique; as the trajectories evolve in time,
the amplitudes associated with their fast time scales decay
quickly, and the trajectories become exponentially close
to the SIM in a finite amount of time.

We now include diffusion correction terms, which
increase the number of eigenvalues in the local linear
analysis by a factor ofM + 1,

λi,m = λi −
m2π2D

ℓ2
, for i ∈ [1, N − L],

andm ∈ [0, M ], (10)

where λi are the spatially homogeneous eigenvalues.
Defining time scales as the reciprocal of these eigenvalues
and truncating atM = 1, we plot the time scales of the
first correction for diffusion in Fig. 2 as a function of
length scale. These time scales are defined in the local
linear region about the physical equilibrium,R3. In the
limit of ℓ → 0, diffusion becomes infinitely fast, all spatial
variations will instantaneously diffuse, and the system
behaves spatially homogeneous. For small finite length
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Fig. 2. Time scales of theM = 1 reaction-diffusion system as a
function of length scale.

scales the first correction for diffusion adequately resolves
spatial variations; for systems with longer length scales
the truncation atM = 1 does not sufficiently resolve
the dynamics. To fully resolve systems with long length,
additional modes must be considered.

We now examine a diffusion correction in the short
length scale limit for the Zel’dovich mechanism. In Fig. 3
we see a projection of the four dimensional phase space
for this problem with a length scaleℓ = 16.6 µm, where
D = 14 cm2/s is approximated from an average of
the ordinary multicomponent diffusion coefficients in the
CHEMKIN TRANSPORT database [6]. The vertical axis
shows thez1,1 concentration, while the horizontal axes
show the two spatially homogeneous concentrations;z2,1

is not depicted in this figure, but decays in a similar
fashion toz1,1 for our choice ofτD. The projection of this
system into thez1,0-z2,0 plane is nearly identical to Fig. 1.
Fig. 3 shows two equilibria:R3, the physical equilibrium
sink, andR2, a non-physical saddle equilibrium with one
positive eigenvalue. Both of these equilibria exist in the
spatially homogeneous subspace of the system (zi,m = 0
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Fig. 3. SIM branch with one mode of diffusion correction.

for all i and m ≥ 1), and therefore are identical toR2

and R3 in Fig. 1. The additional eigenvalues at each
equilibria are more negative than their analogous spatially
homogeneous eigenvalues; therefore, for this length scale
the branch of the SIM betweenR2 andR3 remains in the
spatially homogeneous subspace of the system and is the
same spatially homogeneous SIM shown in Fig. 1.

V. CONCLUSIONS

We have successfully identified a diffusion-corrected
SIM for the limit of short length scales. Whenℓ is
below a critical length scale where the diffusion has a
time scale that is the same order as the slowest reaction
time scale, the effects of diffusion on a reactive system
are minimal. In this limit the SIM remains spatially
homogeneous. When lengths are at or above this critical
length, diffusion plays a more important role. Our choice
of ℓ shorter than the critical length scale allowed us to
maintain spatial resolution with a truncation atM = 1.
For large ℓ, the fundamental modes are dominated by
reaction, and in these modes diffusion evolves on slower
scales than reaction. To fully resolve the system in this
case, additional modes must be included until the highest
frequency mode is diffusion-dominant.

This technique also provides a framework for future
research to evaluate how to best account for coupling
of reaction and diffusion processes. It provides a good
basis for examining the amount of this coupling, by iden-
tifying the diffusion-modulation of reaction eigenvalues.
The method also has the ability to identify the slow
dynamics of a reaction-diffusion system. When identified,
the slow dynamics provide an ideal basis for reduction.
This technique can be extended to capture a larger number
of spatial modes, allowing this method to be applied to
globally analyze systems of longer characteristic lengths.
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