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Abstract

This study describes a methodology and gives an
example of a simplified analysis to determine the
steady propagation speed of a projectile fired into a
gaseous mixture of fuel and oxidizer. For tractabil-
ity, the steady supersonic flow of an inviscid calori-
cally perfect ideal reacting gas with high activation
energy over a symmetric double wedge, unconfined
by a cowl, is considered. A search of parameter space
reveals propagation speeds which give rise to shocks
of such strength which induce a flame sheet to be
at a location which allows the combustion-induced
thrust to balance the wave drag. For a fixed heat
release greater than a critical value, two steady prop-
agation speeds are predicted. The solution at the
higher Mach number is stable to quasi-static pertur-
bations while the solution at the lower Mach number
is unstable. This methodology is that which should
be applied to analyze devices which have more com-
plex geometries such as the ram accelerator or oblique
detonation wave engine.

Introduction

It is possible to employ oblique shock waves to
induce combustion to generate thrust. Recent dis-
cussion has been motivated by the ram accelera-
tor, which has been used to propel projectiles to
high speeds, and the oblique detonation wave engine
(ODWE), which has been proposed to propel the Na-
tional Aerospace Plane (NASP). For such devices, it
is of fundamental importance to have a theory which
can predict a steady propagation speed.
Recent theoretical studies1−5 related to ram accel-

erators and ODWE’s have not given analysis to de-
termine a steady propagation speed. Typically these
studies treat the related problem of flow with a fixed
incoming Mach number over a fixed geometry and
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concentrate on discussing the features of the result-
ing flow field. Only a small number of incoming
Mach numbers are studied. The problems posed are
physical in the sense that one could envision an ex-
periment in which the projectile is fixed in a wind
tunnel in which the incoming Mach number is con-
trollable. Such an approach, however, says nothing
about what the steady speed of a freely propagating
vehicle should be. Additionally, of the cited studies,
only that of Yungster2 considers a tip-to-tail projec-
tile geometry, which is necessary to determine the net
force. The experimental studies of Hertzberg, et al.6,7

report observations of projectile velocities in ram ac-
celerators up to 2, 500 m/s in a 16 m tube but also
show that the projectile is continuing to accelerate
when the end of the tube is reached.
In this paper we describe a general methodology
for determining the steady propagation speed of ei-
ther ram accelerator projectiles or ODWE-powered
aerospace planes, describe a simple model problem
to illustrate the technique, describe standard jump
conditions used to evaluate surface forces, develop
an estimate of the induction zone length based upon
thermal explosion theory, give our results, and rec-
ommend an approach for actual physical scenarios.

Methodology and Model Problem

The chosen approach is to first select a model for
the conservation principles and constitutive behav-
ior. Next one chooses a projectile geometry and fluid
properties (heat release, kinetic parameters, specific
heats, etc.) The model equations are studied in the
reference frame in which the projectile is stationary;
thus, the incoming flow velocity, which is the steady
propagation speed, is thought of as an adjustable pa-
rameter at this stage. For a given incoming velocity,
solution of the model equations leads to a pressure
distribution on the projectile surface which may or
may not result in a net force on the projectile. Should
the particular incoming velocity lead to zero net force
on the projectile, that velocity is a candidate for a
steady propagation speed. The quasi-static stabil-
ity of the candidate solutions is easily determined.
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Figure 1: Schematic of generic configuration

Should a perturbation in the incoming velocity lead
to a net force which tends to restore the projectile
to its speed at which there is zero net force, the so-
lution is stable in a quasi-static sense; otherwise the
solution is unstable.

We illustrate this methodology through the use of
a model problem which is related to the ram accel-
erator and ODWE. For tractability, we consider a
highly simplified model and geometry which retains
the essential physics of the real devices. The geome-
try, shown in Figure 1, is a symmetric double wedge
with half angle θ and length L. Two cowl surfaces are
placed symmetrically about the wedge and are sepa-
rated by height H . The depth of the double wedge
and cowl is taken to be infinite and the flow is as-
sumed to have no variation in this direction. The
Cartesian coordinate system, with its origin at the
leading edge and with the x axis aligned with the
incoming flow is also indicated. It is appropriate to
think of a ram accelerator as the axisymmetric analog
of Figure 1 in which the projectile moves while the
cowl is stationary; likewise, an aerospace plane pow-
ered by an ODWE can be thought of as the axisym-
metric analog of Figure 1 in which the cowl moves
with the wedge. In both scenarios one must assume
that the incoming fuel and oxidizer are completely
mixed; in actuality this is more appropriate for the
ram accelerator than the ODWE.

Analysis of the geometry of Figure 1 leads in gen-
eral to a complicated interaction of shocks, rarefac-
tions, and combustion processes as the flow propa-
gates between the projectile and cowl surface. To
further simplify, we only consider the limit H → ∞,
Figure 2. Consequently, our geometry shares only
the most rudimentary resemblence to actual devices,
but has the advantage of being amenable to simple
analysis.

Again for tractability, the flowmodel employed also
has only a rudimentary resemblence to commonly
used models for real devices. We consider a calor-
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Figure 2: Detailed schematic for H →∞

ically perfect ideal reacting gas with one-step irre-
versible Arrhenius kinetics in the high activation en-
ergy limit. As a result, we are able to break the flow
into discrete regions as shown in Figure 2. The ambi-
ent fluid in Region 1 encounters an attached oblique
shock at the leading edge. No appreciable reaction
occurs within the shock or in Region 2, near the
front face. The flow is turned through a centered
Prandtl-Meyer expansion in Region 3 till it attains a
velocity parallel to the lee wedge surface in Region 4.
We take the reaction to occur in a flame sheet which
is perpendicular to the lee surface. The location of
this flame sheet is given by an induction zone length
based upon thermal explosion theory and is related to
the incoming Mach number and kinetic parameters.
A Rankine-Hugoniot deflagration analysis gives the
flow variables in Region 5 based upon values in Re-
gion 4 and the heat released in the flame sheet. The
flow passes through a final oblique shock to Region 6
where it attains a velocity with only an x component.
The net force is then determined by integrating the
pressure over the entire surface area.

Model Equations

The model equations are taken to be the unsteady
Euler equations and species evolution equation for a
reactive calorically perfect ideal gas. These are ex-
pressed in dimensionless form using Cartesian index
notation:

dρ

dt
++ρ

∂vi

∂xi
= 0, (1)

ρ
dvi

dt
+
∂P

∂xi
= 0, (2)

dP

dt
− γ P
ρ

dρ

dt
=
(γ − 1)ρκq(1− λ)

M20
exp

( −Θ
M20T

)
(3)

2



dλ

dt
= κ (1− λ) exp

( −Θ
M20T

)
, (4)

e =
1

γ − 1
P

ρ
− λq
M20
, (5)

P = ρT. (6)

The variables contained in Eqs. (1–7) are the den-
sity ρ, the Cartesian velocity component vi, the pres-
sure P , the temperature T , the internal energy e, the
reaction progress variable λ, and the Cartesian po-
sition coordinate xi. Here the substantial derivative
d
dt
= ∂
∂t
+ vi

∂
∂xi
The freestream Mach number is M0.

Other dimensionless parameters include the ratio of
specific heats γ, a kinetic parameter κ, the heat of re-
action q, and the activation energy Θ. Equations (1–
3) represent the conservation of mass, momenta, and
energy, respectively. Equation (4) is a species evolu-
tion equation which incorporates an Arrhenius deple-
tion model. Equations (5–6) are caloric and thermal
equations of state. A single, first-order, irreversible,
exothermic reaction is employed, A → B. The re-
action progress variable λ ranges from zero before
reaction to unity at complete reaction. Species mass
fractions, Yi are related to the reaction progress vari-
able by the formulae, YA = 1 − λ, YB = λ. Initial
pre-shock conditions are specified as ρ = 1, u =

√
γ,

v = 0, P = 1/M20 , and λ = 0.
Equations (1-6) have been scaled such that in the
hypersonic limit (M20 → ∞) the pressure, density,
and velocities are all O(1) quantities behind the lead
shock. The geometric length of the projectile (L) is
chosen as the reference length scale. In terms of di-
mensional variables (indicated by the notation “˜”)
and dimensional pre-shock ambient conditions (indi-
cated by the subscript “0”), the dimensionless vari-
ables are defined by

ρ =
ρ̃

ρ̃0
, P =

P̃

M20 P̃0
,

u =
ũ

M0

√
P̃0/ρ̃0

, v =
ṽ

M0

√
P̃0/ρ̃0

,

x =
x̃

L
, y =

ỹ

L
. (7)

Remaining dimensionless parameters are defined by
the following relations:

q =
ρ̃0q̃1

P̃0
, Θ =

ρ̃0Ẽ

P̃0
, κ =

k̃

M0
L

√
P0
ρ0

, (8)

Here, Ẽ is the dimensional activation energy, q̃ is the
dimensional heat of reaction, and k̃ is the dimensional
kinetic rate constant.

Jump Relations

A series of jump relations can be developed from
Eqs. (1-6) to determine the pressure on each surface
as a function of the incoming Mach number. We take
the high activation energy limit, Θ >> 1, so that it
is proper to describe the entire combustion process
as a thin flame sheet and choose kinetic parameters,
Θ, κ, q such that estimates from thermal explosion
theory place the flame sheet on the lee wedge surface.
Consequently, it is possible to use standard relations8

for inert oblique shocks and centered Prandtl-Meyer
expansions to determine the pressure in Regions 2, 3,
and 4. For the oblique shock between Regions 1 and
2, the weak solution branch is chosen so as to match
to a Mach wave at distances far from the projectile.
The flow expands in a Prandtl-Meyer expansion from
Region 2 through Region 3 until the flow velocity is
parallel to the lee wedge surface in Region 4. With
the assumption that the flame sheet is perpendicular
to the wedge surface, a Rankine-Hugoniot relation
with heat release gives the pressure in Region 5. The
deflagration solution branch is chosen here. Though
not important in determining the net force, it is also
possible to choose an oblique shock location such that
the flow in Region 6 is in the x direction only.

Thermal Explosion Theory

Thermal explosion theory provides an estimate for
the flame sheet location. With the assumption of
chemical reaction occuring in a fixed volume, well-
stirred reactor with zero fluid velocity, Equations (1-
6) are suitable to determine a time when the reaction
rate becomes unbounded. This induction time is a
function of the shocked fluid state and kinetic param-
eters. The shocked fluid velocity is used to associate
an induction distance with the induction time. The
flame sheet is fixed at this induction distance, which
is measured along the wedge surface.
With the assumption of a static fluid vi = 0, Eq. (1)

holds that the fluid is incompressible and Eq. (2)
holds that the P is only a function of time. Using
the state relation (6), the system reduces to two equa-
tions in P and λ:

dP

dt
=
(γ − 1)ρκq(1− λ)

M20
exp

( −Θ
M20T

)
(9)

dλ

dt
= κ (1− λ) exp

( −Θ
M20T

)
, (10)

P (0) = P2, λ(0) = 0.

3



Here, the initial condition on pressure is given by the
shock pressure, and the reaction progress is initially
zero. These equations can be linearized by assuming
P = P2 + P

′, λ = λ′, where the primed quantities
are relatively small. The linearized equation can be
solved exactly for the pressure perturbation P ′:

P ′ = −M
2
0Ps

Θρs

× ln
[
1− Θρs

2

M4
0Ps

2 (γ − 1) qκ
(
exp −Θρs

M2
0Ps

)
t
]
. (11)

The pressure perturbation becomes unbounded as the
argument of the logarithm approaches zero. This con-
dition fixes a time, tind, when the reaction rate be-
comesO(1) and gives rise to a thermal explosion. The
induction time and distance, Dind, are given by

tind =
M40P2

2

(γ − 1)Θρ22qκ exp
[
Θρ2
M20P2

]
(12)

Dind = tind
√
u22 + v22, (13)

where u2 and v2 are the x and y components of veloc-
ity behind the lead shock, respectively. The scaling
chosen in this problem makes it difficult to see from
Eq. (13) the behavior of the induction zone distance
with increasing M0, as M0 is implicit in many vari-
ables. Calculations show that in general the induc-
tion zone length decreases with increasing M0.

Results

We hold our upstream ambient fluid properties,
except for incoming Mach number and heat release,
constant. Our scaling, however, involves M0; conse-
quently, the dimensionless parameters vary from test
to test. The ambient conditions which are held con-
stant are P̃0 = 1.015 × 105 Pa, ρ̃0 = 1.225 kg/m3,
γ = 7/5, k̃ = 1 × 107 s−1, Ẽ = 1.019 × 106 J/kg,
θ = 5◦, L = 0.1 m. Several values of heat re-
lease are chosen within the range 1.276× 106 J/kg ≤
q̃ ≤ 1.326 × 106 J/kg. These values were chosen
not so much to model a real system but so that the
method could be successfully illustrated. Our values
can be compared to typical values for H2 − O2 sys-
tems. The terms P̃0, ρ̃0, and γ are representative
of a diatomic gas at atmospheric conditions. The
heat release roughly corresponds to that of a lean
H2−O2 mixture with equivalance ratio φ in the range
of 0.0477 ≤ φ ≤ 0.0492. This particularly narrow
range of φ was chosen to illustrate an interesting bi-
furcation phenomena. It is possible to obtain less in-
teresting solutions for broader ranges of equivalance
ratios. The activation energy is of the same order of
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Figure 3: Wave drag force versus incoming Mach
number

magnitude of those found in H2 −O2 reaction steps.
The dimensionless activation energy Θ is 12.3, which
suggests the high activation energy limit is appro-
priate. For our one-step first-order reaction kinetic
model, it is difficult to compare our value of k̃ to typ-
ical models used in H2 − O2 combustion as different
assumptions on the order of reaction are made for
each step.
The projectile will have a steady velocity when the
force due to pressure wave drag which tends to retard
the motion is balanced by forces induced by combus-
tion which tend to accelerate the projectile. The wave
drag per unit depth FD, defined to be positive in the
positive x direction, was determined as a function of
M0 by applying the oblique shock and Prandtl-Meyer
relations for zero heat release. The force was deter-
mined by integrating the pressure over the wedge area
and is given by

FD = P4 sin θ (1/2 cosθ)− P2 sin θ (1/2 cosθ) . (14)
The result is shown in Figure 3. The characteris-
tic force per unit depth used for scaling is P0M

2
0L.

Because of this scaling, the scaled drag force drops
with M0, while the magnitude of the dimensional
drag force increases with M0.
When combustion is allowed, the net thrust force
can be computed. The net thrust force per unit
depth, Fnet, defined to be positive if pointing in the
negative x direction and is given by

Fnet = P4 sin θ (Dind − 1/2 cosθ)
+P5 sin θ (1/ cos θ −Dind)− P2 sin θ (1/2 cosθ) .

(15)
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Figure 4: Net thrust force versus Mach number, vary-
ing heat release
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Figure 5: Combustion-induced thrust versus Mach
number, varying heat release

Figure 4 shows Fnet versus M0 for several values
of heat release. For low heat release the net thrust
force is negative; the thrust force induced by combus-
tion is not sufficient to overcome the wave drag. The
combustion-induced thrust, Fc, is shown in Figure 5.

At a critical value of heat release, q = 15.53, there
is a balance of combustion-induced thrust and drag
such that the net thrust is zero. This occurs at a
Mach number of 8.05. As heat release continues to in-
crease, there are two distinct Mach numbers for which
there is no net thrust. A perturbation in the Mach
number for the steady solution at the lower Mach
number results in a perturbed net force which tends
to accelerate the projectile away from the equilibrium
Mach number. Consequently, this is an unstable equi-
librium. In the same manner, it is easily seen that
the equilibrium solution at the higher Mach number
is stable to such perturbations. As heat release is
increased, the stable, high Mach number solution’s
Mach number increases and the flame sheet is located
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Figure 6: Bifurcation diagram for steady state speed
versus equivalance ratio

closer to the expansion fan, while the unstable, low
Mach number solution’s Mach number decreases and
the flame sheet is located closer to the trailing edge.
The results are summarized on the bifurcation dia-
gram in Figure 6. Here we plot the equilibrium Mach
numbers versus equivalance ratio, q/Q. Here the
value of Q is appropriate for stoichiometric H2 −O2
combustion and has a dimensionless value of 325.42.
The lower branch is unstable while the upper branch
is stable. The solutions shown correspond to stable
flight speeds in the range of 2, 700m/s − 3, 200m/s.

Conclusions and Recommendations

This study has shown the importance of the inter-
action of kinetic length scales with geometric length
scales in determining steady propagation velocities
for high Mach number propulsion devices. In partic-
ular, the Chapman-Jouguet velocity does not enter
into this calculation.
This work can be used to guide full-scale numeri-
cal studies of similar problems for real materials. We
recommend this in order to better understand the full
capabilities of the ram accelerator or oblique detona-
tion wave engine.
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