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On slow manifolds of chemically reactive systems
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This work addresses the construction of slow manifolds for chemically reactive flows. This
construction relies on the same decomposition of a local eigensystem that is used in formation of
what are known as Intrinsic Low Dimensional Manifolds~ILDMs!. We first clarify the accuracy of
the standard ILDM approximation to the set of ordinary differential equations which model spatially
homogeneous reactive systems. It is shown that the ILDM is actually only an approximation of the
more fundamental Slow Invariant Manifold~SIM! for the same system. Subsequently, we give an
improved extension of the standard ILDM method to systems where reaction couples with
convection and diffusion. Reduced model equations are obtained by equilibrating the fast dynamics
of a closely coupled reaction/convection/diffusion system and resolving only the slow dynamics of
the same system in order to reduce computational costs, while maintaining a desired level of
accuracy. The improvement is realized through formulation of an elliptic system of partial
differential equations which describe the infinite-dimensional Approximate Slow Invariant Manifold
~ASIM! for the reactive flow system. This is demonstrated on a simple reaction-diffusion system,
where we show that the error incurred when using the ASIM is less than that incurred by use of the
Maas-Pope Projection~MPP! of the diffusion effects onto the ILDM. This comparison is further
done for ozone decomposition in a premixed laminar flame where an error analysis shows a similar
trend. © 2002 American Institute of Physics.@DOI: 10.1063/1.1485959#
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I. INTRODUCTION

A wide variety of combustion processes involve a lar
number of elementary reactions occurring simultaneou
within a complex flow field. These processes are modeled
a large number of partial differential equations~PDEs! rep-
resenting the evolution of numerous reactive chemical s
cies, coupled with the full Navier–Stokes equations. Fu
resolved solution of these model equations, which incor
rate detailed finite rate chemical kinetics, often require
prohibitive amount of computational resources. Hence, th
is a need to develop methods which rationally reduce
model equations such that numerical simulations can be
complished in a reasonable amount of computational ti
Elementary chemical reactions occur over a wide range
time scales which is manifested as stiffness in the mo
equations, and subsequently high computational costs.
stable systems, this stiffness can be reduced by system
cally equilibrating the fast time scale chemical processes
resolving only the relevant slow time scale chemical p
cesses. The reduced model equations describe the slow
namics under the assumption that the fast dynamics ca
neglected. Most chemical time scales are faster than t
scales associated with fluid mechanical phenomenon suc
convection and diffusion. Nevertheless, it is important t
the reduced model equations maintain the coupling of
flow processes with those chemical processes which occ
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similar time scales. In this work we illustrate how this co
pling of fluid and chemical processes can be maintained s
that an approximate and less expensive numerical solutio
the reduced model equations is consistent with the more
curate and expensive numerical solution of the full mo
equations.

Several strategies have been used for reduction of
tailed chemical kinetics. The simplest method of frozen flo
assumes all chemical species to have fixed mass fracti
Another approach assumes all chemical species to be in
equilibrium, which is equivalent to the assumption that
chemical processes occur at an infinitely fast time sc
These approaches, discussed by Vincenti and Kruger,1 miss
the coupling between chemical processes and flow ev
which occur at similar finite time scales. Simple and oft
useful strategies, which may capture some of the reac
time scales, consist of systematically replacing hundred
elementary reaction steps by explicit one- or two-step re
tion models.2–5Also useful are the commonly employed pa
tial equilibrium assumptions for some of the elementary
actions, and steady state assumptions for some of
chemical species.6,7 However, these methods require su
stantial, fallible intuition, and considerable human time
develop. Another problem with these approaches is t
while the reduced models may be useful for a certain ra
of compositions of chemical species for which they ha
been calibrated, it is often easy to find scenarios where t
cannot accurately reproduce the results of full chemi
kinetics.8 Other approaches for obtaining reduced chemi
kinetics models include lumping methods,9 sensitivity
analysis,10 and optimization approaches.11,12 The review ar-
2 © 2002 American Institute of Physics
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ticles by Griffiths13 and Okinoet al.14 discuss in detail mos
of these reduction strategies.

The methods of Intrinsic Low Dimensional manifold
~ILDM ! ~Ref. 8! and Computational Singular Perturbatio
~CSP! ~Refs. 15,16! use a dynamical systems approach
time scale analysis to systematically reduce the stiffness
troduced by chemistry. Both methods are developed for s
tially homogeneous premixed reactive systems~in the ab-
sence of any transport processes such as convection
diffusion!, which can be modeled by systems of ordina
differential equations~ODEs!. The behavior of these reactiv
systems can be described by trajectories in the assoc
phase space or composition space starting from an in
condition and relaxing to a chemical equilibrium.

The ILDM method identifiesab initio a low-dimensional
subspace, known as the ILDM, within the compositi
space, which closely approximates the subspace in w
slow time scale processes evolve. For systems initially
the ILDM, all the fast processes rapidly approach the ILD
and partially equilibrate. Ifn chemical species are involve
in the chemical kinetics scheme, then in then-dimensional
composition space, anm-dimensional (m,n) ILDM can be
identified by a local eigenvalue-eigenvector analysis. If
chemical processes associated with (n2m) fast time scales
are equilibrated, then the chemical processes associated
m slow time scales occur close to them-dimensional ILDM
in the composition space. On them-dimensional ILDM,m
ODEs with reduced stiffness are required to be solv
coupled with (n2m) nonlinear algebraic equations descri
ing the ILDM. The ILDM method is only useful after th
phase space trajectory which starts from the initial condit
has relaxed onto the ILDM. This is acceptable under
assumption that fast time scale processes can be neglect
proper projection is required from the initial condition to th
ILDM such that there is at most a small temporal phase e
between the solution obtained using the ILDM method a
the solution of the full system of ODEs.

The CSP method also uses a local eigenval
eigenvector analysis to reduce the stiffness, but does no
duce the number of dependent variables.17 Another advan-
tage of the ILDM method is that the ILDM can be comput
a priori in the composition space and stored in a tab
Hence, the ILDM method has a significant computatio
advantage over the CSP method, as the expensive com
tion of local eigenvalues and eigenvectors is not requi
during the actual computations with the reduced model eq
tions. A number of studies have appeared in recent ye
advancing the ILDM method and some variants, cf. Blas
brey et al.,18 Eggelset al.,19 Schmidtet al.,20 Yang et al.,21

Rhodeset al.,22 Lowe et al.,23 Gicquel et al.,24 and Correa
et al.25

The ILDM is only an approximation of what we call th
Slow Invariant Manifold~SIM!. Relative to the more funda
mental SIM, the ILDM contains a small intrinsic error fo
large finite stiffness. Consequently, it will be shown that t
contention of Rhodeset al.22 that the Maas and Pope algo
rithm identifies a slow invariant manifold is in error. Th
SIM, which can be obtained analytically by perturbati
analysis26 for simple systems, or using algebraic function
Downloaded 11 Jul 2002 to 129.74.24.121. Redistribution subject to AI
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iteration27,28 or computed using numerical functiona
iteration29 for more complex systems, describes the slow d
namics of the spatially homogeneous reactive systems a
rately. However, provided that a spectral gap condition
satisfied, the ILDM does a good job of approximating t
SIM, and in our experience, computation of high dime
sional ILDMs appears to be more tractable than that of h
dimensional SIMs.

The previously described methods achieve compu
tional efficiency in spatially homogeneous reactive syste
modeled by a system of ODEs. In more realistic problem
is important to achieve similar computational efficiency f
simulating spatially inhomogeneous reactive systems wh
are modeled by PDEs and which have infinite dimensio
SIMs. Hadjinicolaouet al.30 have extended the CSP metho
to reaction diffusion equations. Yannacopolouset al.31 illus-
trate, using inertial manifolds, infinite dimensionality of slo
manifolds associated with PDEs when compared to fin
dimensionality of slow manifolds associated with ODE
However, the algebraic determination of these infini
dimensional inertial manifolds is only suitable for simpl
cases where the segregation of slow and fast variable
fixed for all times and throughout phase space. This is not
case with general systems of chemical kinetics where c
positions of slow and fast variables change locally in ph
space.

Maas and Pope have proposed an extension of the IL
method to reactive flow systems described by PDEs.32 They
assume that if flow processes occur at time scales of
order of them slow chemical time scales associated with t
m-dimensional reaction ILDM, then the flow processes on
perturb the system off the ILDM, while the fast chemic
processes rapidly relax the system back onto the ILD
Therefore, in the Maas and Pope Projection~MPP!,
convection-diffusion terms in reactive flow PDEs are pr
jected back onto the finite dimensional tangent subspac
the ILDM, signifying that the reactive system never leav
the ILDM in the composition space. The dimension of t
ILDM to be used is determined by prescribing a cutoff f
the chemical time scales, based on the fastest flow t
scales. If the flow time scales are faster than the chem
time scales associated with an ILDM of a certain dimensi
then a higher dimensional ILDM is required, which is esse
tial to maintain full coupling of the flow and chemical pro
cesses. A problem with the MPP method is that a differ
dimensional ILDM is often required at different locations
physical space as the flow time scales vary locally and
chemical time scales vary in both physical and composit
spaces. Hence, this amounts to solving a different numbe
reduced PDEs at different locations in physical space. A
other problem is that it is difficult to determinea priori the
magnitude of the flow time scales which control the dime
sion of the ILDM to be used.

One way to overcome these problems is to use Str
operator splitting33 between the reaction source terms and
convection-diffusion terms when solving the reactive flo
model equations.34 In the first step, each point in physica
space is treated as a spatially homogeneous premixed re
with convection-diffusion suppressed, and the result
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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ODEs for the reaction part are solved using the stand
ILDM method. This allows the use of different dimensio
of the ILDM at different locations in physical space. If th
chemical composition at a certain location in the physi
space does not lie near the ILDM, implicit integration of t
full equations is used in the reaction step, until the chem
composition relaxes to the ILDM. In the second step,
reaction part of the reactive flow equations is suppressed,
the resulting PDEs for the convection-diffusion part a
solved using standard discretization techniques for in
flows. The second step perturbs the reactive system off
ILDM; it is projected back onto the ILDM along the direc
tion of the fast eigenvectors associated with the chemistr
the composition space. Even though the ILDM method
duces the number of ODEs to be solved in the first step,
number of PDEs to be solved in the second step is the s
as the number of original model equations. Another dis
vantage of this method is that errors are incurred due
operator splitting. Strang splitting has second order accur
in time provided both steps have second order accurac
the chemical time scales are highly disparate from the fl
times scales, the operator splitting method will induce err
in wave speeds. These can be minimized by resolving
spatial and temporal scales in the thin reaction zones u
adaptive mesh refinement methods.35

In this work we propose a more systematic approach
preserve the coupling between chemistry and flow phys
The full model equations are projected onto the fast and s
basis vectors associated with chemistry. A set of ellip
PDEs is obtained by equilibrating the fast dynamics. Th
elliptic PDEs are analogous to the algebraic equations
scribing the ILDM. The elliptic PDEs describe the infinite
dimensional Approximate Slow Invariant Manifold~ASIM!
to which the reactive flow system relaxes to before reach
steady state. The ASIM accounts for the effects of conv
tion and diffusion in the reactive flow system, as opposed
the ILDM. When using the ASIM, we solve a set of ellipt
PDEs in physical space coupled with time-dependent
duced PDEs associated with the slow dynamics.

The paper is organized as follows. A description of t
standard ILDM method developed for a spatially homog
neous premixed reactor is first given. It is then shown t
the ILDM is an approximation of the SIM for a spatiall
homogeneous reactive system. Then a theoretical deve
ment of the ASIM associated with a spatially inhomogene
reactive system, as an extension for the standard IL
method, is discussed. Subsequently, we compare and con
use of the ASIM with that of the MPP method for a simp
reaction diffusion model problem. Finally, a similar compa
son is also made for the decomposition of ozone in a o
dimensional premixed laminar flame.

II. ILDM METHOD FOR A SPATIALLY HOMOGENEOUS
PREMIXED REACTOR

A spatially homogeneous premixed reactor can be m
eled by the system of ODEs,

dy

dt
5f~y!, f~0!50, ~2.1!
Downloaded 11 Jul 2002 to 129.74.24.121. Redistribution subject to AI
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whereyPR n represents a set of dependent variables,f(y) is
the reaction source term typically modeled by Arrhen
chemical kinetics, andt is the independent time variable
Without loss of generality, the origin is translated to t
chemical equilibrium point, which, for fixed mass adiaba
systems, has a unique value when the domain is restricte
physically accessible regions of composition space.36 The
nonlinear reaction source term typically induces severe s
ness in Eq.~2.1! and makes it computationally expensive
solve. The stiffness is due to the widely disparate time sca
over which different chemical reactions occur. The eigenv
ues of the JacobianJ5]f/] y identify the local time scales
associated with the reactive system. The eigenvectorsJ
identify the local directions associated with the correspo
ing time scales in then-dimensional phase space. It is e
sured that there are no zero eigenvalues by eliminating
conserved quantities from Eq.~2.1!. These conserved quan
tities can arise, for example, due to the conservation of ato
in the spatially homogeneous premixed reactor, and can
described by algebraic equations. The eigenvalues and ei
vectors can be obtained by the following decomposition ofJ,
with Ṽ5V21:

J5VLṼ, ~2.2a!

~2.2b!

~2.2c!

~2.2d!

Here v1 , . . . ,vn represent the right eigenvectors ofJ and
form the column vectors of then3n right eigenvector matrix
V. The diagonal matrixL, also of dimensionn3n, contains
the eigenvalues,l (1) , . . . ,l (n) , of J along its main diago-
nal, with their real parts ordered from least negative to m
negative. Sufficiently close to the chemical equilibriu
point, all the eigenvalues are real and negative. Thus, for
following discussion, we will assume that all eigenvalues
real and negative. The reciprocal vectors to the right eig
vectors are represented byṽ1 , . . . ,ṽn , which form the row
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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1485J. Chem. Phys., Vol. 117, No. 4, 22 July 2002 On slow manifolds of chemically reactive systems
vectors of the inverse right eigenvector matrixṼ. The local
time scales in phase space are given by the inverse of
magnitudes of the eigenvalues, 1/ul (1)u , . . . , 1/ul (n)u, and
are ordered from slowest to fastest.

Defining g to be the nonlinear part off,

g5f2Jy, ~2.3!

Eq. ~2.1! can be rewritten as

dy

dt
5Jy1g. ~2.4!

A new set of variables defined byz5Ṽy is used with Eq.
~2.4! to obtain

dz

dt
1Ṽ

dV

dt
z5Lz1Ṽg. ~2.5!

The time evolution of processes associated with thei-th time
scale, in Einstein notation, is given by

1

l ( i )
S dzi

dt
1 ṽi (

j 51

n
dvj

dt
zj D 5zi1

1

l ( i )
~ ṽig!, i 51, . . . ,n.

~2.6!

It is assumed that we are not interested in the dynamic
events which occur at a time scale of 1/ul (m11)u or faster,
and that there arem slow time scales and (n2m) fast time
scales.

The transients of fast processes equilibrate before t
sients of the slow processes because the fast processe
associated with the eigenvalues which are negative and l
in magnitude. Equation~2.6! represents the dynamical sy
tem in Eq.~2.1!, in a form equivalent to that of a singularl
perturbed system,37 with 1/ul (m11)u , . . . , 1/ul (n)u as the
small parameters multiplying the time derivatives on the le
hand side of the equations. Hence, by neglecting the
hand side of Eq.~2.6! for i 5m11, . . . ,n, we effectively
equilibrate the fast dynamics and obtain a set of approxim
(n2m) algebraic equations given by

zi1
1

l ( i )
~ ṽig!50, i 5m11, . . . ,n. ~2.7!

This is expected to be accurate only if a significant spec
gap exists betweenul (m)u andul (m11)u. A direct substitution
of Eqs.~2.2!, ~2.3!, and the definition ofz is used to rewrite
Eq. ~2.7! as

Ṽ f f50, ~2.8!

which is the algebraic equation for the ILDM as obtained
Maas and Pope.8 The matrixṼ f has dimension (n2m)3n,
and its row vectors contain the reciprocal vectors of the ri
eigenvectors associated with the (n2m) fast time scales. In
writing Eq. ~2.7!, we are assuming thatigi5O(ul (m11)u) or
greater, and hence, the second term cannot be neglected
ILDM is an approximation of anm-dimensional subspace
defined by Eq.~2.8!, within ann-dimensional phase space o
which processes associated with slow time scales occur.
fast time scale processes, prior to equilibration, rapidly
proach the ILDM. Once the fast time scale processes h
equilibrated, the slow dynamics for Eq.~2.1! can be approxi-
Downloaded 11 Jul 2002 to 129.74.24.121. Redistribution subject to AI
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mated by what we refer to as the standard ILDM meth
which is defined by the following set of differential algebra
equations,

Ṽs

dy

dt
5Ṽsf, ~2.9a!

05Ṽ f f, ~2.9b!

where the matrixṼs has dimensionm3n, and its row vec-
tors contain the reciprocal vectors to the right eigenvect
associated with them slow time scales.

The differential algebraic Eqs.~2.9! have reduced stiff-
ness compared to the original Eq.~2.1!, and the number of
ODEs to be integrated has also been reduced tom. The re-
duction in stiffness allows for larger time steps when in
grating Eqs.~2.9!, than when integrating the original Eq
~2.1! with explicit numerical methods, thereby reducing t
computational time. Moreover, because matrix inversions
not necessary, the method is faster than implicit method
well. To further reduce computational time, the algebraic E
~2.9b! is solveda priori in a predetermined domain of th
n-dimensional phase space. Them-dimensional ILDM in
phase space, obtained by the solution of the Eq.~2.9b!, is
stored in a table parameterized bym chosen state variables
The table can then be used during the integration of
~2.9a!, instead of solving the differential algebraic system
Eqs.~2.9!. Another advantage of storing the ILDM in tabula
form is that the table can be re-used for different sets
computations involving the same reaction kinetics. Details
this procedure and the computation of the ILDM in pha
space is given by Maas.38

Outside the subspace of them-dimensional ILDM, Eqs.
~2.9! do not apply. In general, initial conditions may not l
on the ILDM, though the trajectory starting from an arbitra
initial condition in the phase space will rapidly approach t
ILDM as the fast time scale processes equilibrate. The p
jection of the initial condition onto the ILDM has to be don
carefully in order to avoid a large phase error in the tim
dependent solution of the reduced differential algebraic s
tem of equations. An accurate method, although comp
tionally expensive, is to use implicit integration of the fu
system of Eq.~2.1!, until the trajectory is close to the ILDM
and then integrate the reduced differential algebraic sys
of equations.34 A more efficient approach remains an ou
standing problem.

Based on Eq.~2.8!, the ILDM can also be defined as a
m-dimensional subspace of then-dimensional phase spac
where the vectorf lies in the local linear subspace spann
by the eigenvectors associated with the slow time sca
This is illustrated in Fig. 1 for a two-dimensional system. F
n52, Vs5v1 and V f5v2 are the eigenvectors associat
with slow and fast time scales, respectively. The correspo
ing reciprocal bases, are given by the vectorsṼs5 ṽ1 and
Ṽ f5 ṽ2 . Figure 1 also gives a graphical representation of
~2.8! describing the ILDM. The ILDM consists of the set o
points in phase space where the vectorf has the same orien
tation as the slow eigenvectorVs . This does not ensure tha
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 1. Graphical representation o
the ILDM for a two-dimensional dy-
namical system, depicting that th
ILDM is a set of points in the phase
space where the vectorVs has the
same orientation as the vectorf.
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the vectorf is tangent to the ILDM. By definition37 an in-
variant manifold is a subspaceS,R n, if for any solution
y(t), y(0)PS, of Eq. ~2.1!, implies that for someT.0,
y(t)PS for all tP@0,T#. Hence, the SIM, like all invarian
manifolds, is also a trajectory in phase space, and the ve
f must be tangent to it.

It is easily shown that the ILDM is not a trajectory i
phase space; instead, it is only an approximation of the S
Using Eq.~2.8!, the normal vector to the ILDM is given by

“~Ṽ f f!5Ṽ fJ1~“Ṽ f !f5L( f )Ṽ f1~“Ṽ f !f, ~2.10!

where in two dimensions l ( f )5l (2) , “5(]/]y1)ê1

1(]/]y2)ê2 , and ê1 and ê2 are unit normal vectors. Iff is
linear iny, the eigenvectors in phase space are constant,
thus we have that“Ṽ f50. Then from Eq.~2.10! it is evident
that the normal to the ILDM is in the same direction as t
vectorṼ f , and hence, the vectorf is tangent to the ILDM. To
summarize for a linear system, the ILDM is a phase sp
trajectory as well as the SIM, and it is a linear subspace
the phase space defined byzf5Ṽ fy50, as given by Eq.
~2.7!. For a nonlinear system the second term on the ri
hand side of Eq.~2.10! is nonzero and corresponds to a loc
measure of the curvature of the manifold; consequently,
normal to the ILDM is not in the same direction as the vec
Ṽ f , nor is the vectorf tangent to the ILDM. To summarize
for a nonlinear system, the ILDM is not a trajectory in pha
space, but, as long as a spectral gap exists, it can be ded
from Eq.~2.10! that in the limit of largeiL( f )i , the deviation
of the ILDM from the phase space trajectory and the S
becomes small.

III. COMPARISON OF SIM WITH ILDM

If one assumes the existence of anm-dimensional SIM
in an n-dimensional phase space, it can be described as

yi5yi~y1 , . . . ,ym!, i 5m11, . . . ,n, ~3.1!
Downloaded 11 Jul 2002 to 129.74.24.121. Redistribution subject to AI
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wherey1 , . . . ,ym are the independent state variables cho
to parameterize the SIM, andym11 , . . . ,yn are the depen-
dent state variables. The assumed form of the SIM is t
differentiated to obtain

dyi

dt
5(

j 51

m
]yi

]yj

dyj

dt
, i 5m11, . . . ,n. ~3.2!

All trajectories in phase space, including them-dimensional
SIM defined by Eq.~3.1!, satisfy the following equation
which is obtained by eliminating time derivatives from E
~3.2! with the use of Eq.~2.1!,

f i~ym11 , . . . ,yn ;y1 , . . . ,ym!

5(
j 51

m

f j~ym11 , . . . ,yn ;y1 , . . . ,ym!

3
]yi~y1 ,y2 , . . . ,ym!

]yj
, i 5m11, . . . ,n. ~3.3!

Fraser27 and Roussel and Fraser28 have used functiona
iteration to solve Eq.~3.3!. For eachyi , i 5m11, . . . ,n, an
initial function of the formyi5yi

0(y1 , . . . ,ym) is chosen.
Functional iteration is then performed on the following equ
tions, which are obtained by rewriting Eq.~3.3!,

Gi S ym11
k11 , . . . ,yn

k11 ,
]yi

k

]y1
, . . . ,

]yi
k

]ym
;y1 , . . . ,ymD 50,

i 5m11, . . . ,n, ~3.4!

where the superscript indicates the iteration number star
from k50. One can use computer algebra to perform fu
tional iteration. For high dimensional systems and for s
tems where Eq.~3.4! is not explicit in yi

k11 , i 5m
11, . . . ,n, it is more convenient to use the modified meth
of Davis and Skodje,29 which uses numerical functional it
eration. A discrete form of initial functionsyi

0(y1 , . . . ,ym),
i 5m11, . . . ,n, are now chosen in a domainH where the
SIM is to be estimated, such that (y1 , . . . ,ym)PH. For nu-
merical computations, the domainH is discretized into a
finite number of points, and partial derivatives in Eq.~3.4!
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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are approximated by finite differences. Numerical functio
iteration is then performed on the resulting implicit algebr
equations. The choice of state variables used for param
ization of the SIM in Eq.~3.1! may be arbitrary, though it is
essential that these variables be chosen in such a way tha
manifold functions given in Eq.~3.1! are single-valued. A
proper choice of parametric state variables makes nume
computations of the SIM easier. The functional iteration
expected to converge to the SIM if~a! the initial functional
guess is good,~b! the initial guess does not correspond to
phase space trajectory, and~c! there exists an attractive SIM
in the phase space as assumed. Both Davis and Skodje,29 and
Roussel,39 and Roussel and Fraser40 have suggested method
to enhance the stability of the numerical and algebraic fu
tional iterations, respectively.

Davis and Skodje,29 using a simple example, have illus
trated the difference between the ILDM and the SIM. Th
two-dimensional system, of the form of Eq.~2.1!, is analo-
gous to a system which models a spatially premixed hom
geneous reactor and is given by

d

dt S y1

y2
D 5S 2y1

2gy21
~g21!y11gy1

2

~11y1!2
D , ~3.5!

whereg.1 gives a measure of stiffness for the system. Ig
is increased, stiffness will increase. The Jacobian of
right-hand side is

J5S 21 0

g211~g11!y1

~11y1!3
2gD , ~3.6!

and has eigenvalues (l (1) ,l (2))5(21,2g). The right
eigenvectors and their reciprocal vectors are given by

~3.7!

Equation ~2.8! is used to determine the one-dimension
ILDM for this system, which can be written in closed form

y25
y1

11y1
1

2y1
2

g~g21!~11y1!3
. ~3.8!

The slow,Ṽs (dy/dt) 5Ṽsf, and fast,Ṽ f (dy/dt) 5Ṽ f f,
equations for this example are given, respectively, by

dy1

dt
52y1 , ~3.9a!
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1

g S 2
g211~g11!y1

~g21!~11y1!3

dy1

dt
1

dy2

dt D
52y21

y1

11y1
1

2y1
2

g~g21!~11y1!3
. ~3.9b!

The order of the terms on both sides of Eq.~3.9b! can be
represented by

O~g21!1O~g22!1•••5O~1!1O~g21!1O~g22!

1••• . ~3.10!

The standard ILDM approximation neglects all terms on
left-hand side of the fast equation while retaining all term
on the right-hand side. This makes the ILDM an inconsist
approximation to the SIM. On the other hand a systema
matching of terms of all orders will correctly lead to th
SIM. This is demonstrated by Kaper and Kaper.26 However,
it is not clear how to implement a systematic perturbat
analysis for a system where parameters such asg21 are dif-
ficult to define explicitly and globally in composition spac
This is the case in complicated systems of chemical kinet
whereg plays the role of the magnitude of fast eigenvalu
In such systems, the order of eigenvalues and their mem
ship in the slow and fast sets change with time!

Here we solve Eq.~3.3! using an approach often used
center manifold theory.37 The SIM is assumed to exist an
have the following polynomial form:

y25y2~y1!5 (
k50

`

cky1
k , ~3.11!

where ck are constant coefficients. Equation~3.3!, in this
case, is given by

2gy21
~g21!y11gy1

2

~11y1!2
5

dy2

dy1
~2y1!. ~3.12!

Substituting Eq.~3.11! in Eq. ~3.12!, we obtain the following
coefficients for the SIM:

c050, ck5~21!k11, k51, . . . ,̀ . ~3.13!

Hence, the SIM is given by

y25y1~12y11y1
22y1

31y1
41••• !5

y1

11y1
. ~3.14!

When the ILDM in Eq.~3.8! is compared with the SIM in
Eq. ~3.14! for this simple system, it is obvious that~1! the
ILDM is not a SIM, and~2! the error in the ILDM approxi-
mation decreases asg increases. Though the assumption f
the SIM to be of polynomial form, as in Eq.~3.11!, works
well in this example, it may not work for more complicate
systems. This is primarily because such a representatio
the SIM is only accurate sufficiently close to the equilibriu
point and, in general, diverges rapidly away from it. To fin
the global SIM for more complicated systems, we have
resort to numerical computations such as those propose
Davis and Skodje.29

The inconsistency in the ILDM procedure in matching
terms of similar orders, leads to errors as shown in t
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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simple system. We emphasize that the error in the ILD
approximation is small only for systems in which the spec
gap conditionul (m)u/ul (m11)u!1 is valid. Fortunately this
situation arises frequently in complicated systems associ
with chemical kinetics. Also, in our experience, the nume
cal computation of the ILDM is more tractable in its impl
mentation than the numerical computation of the SIM.

IV. REACTIVE FLOW EQUATIONS

The governing equations for a one-dimensional reac
flow system can be written in the following compact form

]y

]t
5f~y!2

]

]x
~h~y!!, ~4.1!

whereyPR n represents a set of dependent variables,h(y)
represents the convective and diffusive flux vector, andf(y)
represents the reaction source term. The independent
and space variables aret andx, respectively.

We again rewrite the reaction-diffusion equations
terms of a new set of variables defined byz5Ṽy. The eigen-
vector matrix of the Jacobian of the source termf is repre-
sented byV and is again defined by Eq.~2.2!. We note that
this basis,V, is derived solely from the chemistry of a sp
tially homogeneous system. While this will eventually le
to an improved estimation of the system’s behavior, a be
basis on which to project would take account of the infini
dimensional eigenfunctions associated with the convect
diffusion operator. This, however, is difficult.

We can then rewrite Eq.~4.1! as

1

l ( i )
S dzi

dt
1 ṽi (

j 51

n
dvj

dt
zj D

5zi1
1

l ( i )
~ ṽig!2

1

l ( i )
S ṽi

]h

]xD , i 51, . . . ,n. ~4.2!

We again assume that we are only interested in the dyna
of the processes occurring at time scales of 1/ul (m)u or slower
and that a spectral gap exists. Hence, we assume tha
other processes occurring at faster time scales can be
glected and are equilibrated by neglecting the left hand s
which is O(1/ul (m11)u) or smaller, of Eq.~4.2! for i 5m
11, . . . ,n, while the right-hand side isO(1) or larger for
the same. Hence, the following is obtained:

zi1
1

l ( i )
~ ṽig!2

1

l ( i )
S ṽi

]h

]xD50, i 5m11, . . . ,n.

~4.3!

If convection and diffusion processes occur at time sca
which are slower than reaction time scales of ord
1/ul (m11)u, then we can neglect the third term
1/l ( i ) ( ṽi(]h/] x)) in Eq. ~4.3!, as it becomesO(1/ul (m11)u)
or smaller while the remaining terms areO(1) or larger, and
obtain Eq.~2.7!. Instead, if convection and diffusion tim
scales overlap with fast chemical time scales, then we ca
make such an approximation as the third term in Eq.~4.3!
will become O(1) or larger. No robust analysis exists
determine convection and diffusion time scalesa priori. We
assume that convection and diffusion processes occur at
Downloaded 11 Jul 2002 to 129.74.24.121. Redistribution subject to AI
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scales of 1/ul (p)u for m,p,n and slower. Then by equili-
brating the fast dynamics, we obtain the differential algebr
system of equations given by

zi1
1

l ( i )
~ ṽig!2

1

l ( i )
S ṽi

]h

]xD50, i 5m11, . . . ,p,

~4.4a!

zi1
1

l ( i )
~ ṽig!50, i 5p11, . . . ,n. ~4.4b!

These equations can be rewritten in a more convenient f
as

Ṽ f sf2Ṽ f s

]h

]x
50, ~4.5a!

Ṽ f f f50, ~4.5b!

where now

~4.6!

where the matrixṼ f s has dimension (p2m)3n and its row
vectors contain the reciprocal vectors of the right eigenv
tors associated with the time scales 1/ul (m11)u , . . . , 1/ul (p)u,
and the matrixṼ f f has dimension (n2p)3n and its row
vectors contain the reciprocal vectors of the right eigenv
tors associated with the time scale
1/ul (p11)u , . . . , 1/ul (n)u . Equations ~4.5! represent the
infinite-dimensionalApproximate Slow Invariant Manifold
~ASIM! on which the slow dynamics occurs once all fa
time scale processes have equilibrated. Equations~4.5! cor-
respond to a system of differential algebraic equations wh
have to be solved in physical space dimensions together
the prescribed boundary conditions. Hence, the slow dyn
ics for Eq.~4.1! is approximated by integrating the followin
set of partial differential algebraic equations:

Ṽs

]y

]t
5Ṽsf2Ṽs

]h

]x
, ~4.7a!

05Ṽ f sf2Ṽ f s

]h

]x
, ~4.7b!

05Ṽ f f f. ~4.7c!

The reduced PDEs in Eq.~4.7a! describe the time evolution
of the slow dynamics, and are solved in conjunction w
Eqs.~4.7b! and~4.7c! describing the ASIM. The ASIM is an
infinite dimensional manifold which accounts for the effec
of convection and diffusion. The stiffness due to the react
source term in Eq.~4.1! is substantially reduced in Eqs.~4.7!.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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It is obvious that for two- and three-dimensional react
flow equations the ASIM is described by a set of ellip
partial differential algebraic equations.

V. A SIMPLE EXAMPLE

We extend the simple system in Eq.~3.5! by including
diffusion effects in one spatial dimension so as to obtain
equation of the form of Eq.~4.1!. Specifically we takey,
f(y), andh(y) so as to obtain the following system of equ
tions:

]y1

]t
52y11D]2y1

]x2
, ~5.1a!

]y2

]t
52gy21

~g21!y11gy1
2

~11y1!2
1D]2y2

]x2
. ~5.1b!

The chemical time scales are 1 andg21, while the diffusion
time scale depends on the parameterD and local spatial gra-
dients. The ILDM for this system is given by Eq.~3.8!. We
choose a spatial domainxP@0,1# and the following bound-
ary conditions which lie on the ILDM:

y~ t,0!5S 0

0D , y~ t,1!5S 1

1

2
1

1

4g~g21!
D . ~5.2!

The reason for choosing the boundary conditions to lie
the ILDM will be clarified later. The following initial condi-
tions are chosen which, for convenience only, linearly int
polate between the two boundary conditions,

y~0,x!5S x

S 1

2
1

1

4g~g21! D xD . ~5.3!

Figure 2 depicts results at timet55 for the integration
of the full system of Eqs.~5.1!, for D50.1, 0.01 andg
510. The numerical computations are done using a unifo
grid of 100 points in the spatial dimensionx. A central dif-
ference approximation of second order is used for spa
discretization. A backward difference formula~BDF! of sec-
ond order accuracy in time is used for time advancem
with the aid of theLSODE ~Ref. 41! package. The solution is
plotted in the two-dimensional phase space of the depen
variables. Stars represent the solution at various grid po
in physical space. The timet55 is long enough for the fas
time scales to equilibrate; in fact, the system is close
steady state. It can be seen from the figures that the st
state solution does not lie on the the ILDM. Hence, forci
the solution onto the ILDM, or approximating the slow d
namics of Eqs.~5.1! by the ILDM, will lead to large errors.
The effect of reducing the value ofD is the appearance o
sharper gradients in the solution in physical space. The m
mum, or theL` norm, of the difference between the fu
solution and the ILDM for fixedg is seen in Fig. 3 to remain
large even whenD is decreased.

Figure 4 depicts results at timet55, for the integration
of the full system of Eqs.~5.1!, for g5100 andD50.1. It
can be seen that for this case the solution is closer to
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ILDM primarily because the diffusion term in Eq.~4.3! has a
smaller effect. Hence, the slow dynamics are better appr
mated by the ILDM for largeg. TheL` norm of the differ-
ence between the full solution and the ILDM for fixedD is
seen in Fig. 5 to decrease asg, or the stiffness due to the
reaction source termf(y), increases.

The slow dynamics for Eqs.~5.1!, obtained by using the
ASIM as done in Eqs.~4.7!, for n52, m51 andp5n, is
given by

]y1

]t
52y11D]2y1

]x2
, ~5.4a!

052y21
y1

11y1
1

2y1
2

g~g21!~11y1!3

2S g211~g11!y1

g~g21!~11y1!3DD]2y1

]x2
1

1

g
D]2y2

]x2
. ~5.4b!

We will compare the solution obtained by Eqs.~5.4! to the
solution obtained by integration of the full system of Eq

FIG. 2. Comparison of solution of the full PDEs att55 with the ILDM, for
g510 andD50.01, 0.1, for Davis and Skodje’s~Ref. 29! model problem
extended to include diffusion.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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~5.1!. Note that the boundary conditions and initial conditi
for y1(t,x) are the same as before, but the initial conditi
y2(0,x) must be chosen such that Eq.~5.4b!, which repre-
sents the ASIM for the system, is satisfied for giveny1(0,x).
That is, the initial condition is chosen so that it lies on t
ASIM and minimizes the phase error that might occur if
arbitrary initial condition is used. Equation~5.4b! with
boundary conditions given in Eq.~5.2! constitute a two-point
boundary value problem which can be written in the form

Ly25F~y1~ t,x!!, y2~ t,0!50,
~5.5!

y2~ t,1!5
1

2
1

1

4g~g21!
,

where

FIG. 3. Maximum error (L`@0,1#) between solution of the full PDEs att
55 and the ILDM, for fixedg510 and varyingD, for Davis and Skodje’s
~Ref. 29! model problem extended to include diffusion. Stars indicate
values ofD for which the computations were done.

FIG. 4. Comparison of solution of the full PDEs att55 with the ILDM, for
g5100 andD50.1, for Davis and Skodje’s~Ref. 29! model problem ex-
tended to include diffusion.
Downloaded 11 Jul 2002 to 129.74.24.121. Redistribution subject to AI
L5
]2

]x2
2

g

D , ~5.6!

F~y1~ t,x!!52
g

D S y1

11y1
1

2y1
2

g~g21!~11y1!3

2S g211~g11!y1

g~g21!~11y1!3
D]2y1

]x2 D D , ~5.7!

the solution of which is given by

y2~ t,x!5S 1

2
1

1

4g~g21! D
sinhSAg

D xD
sinhSAg

DD
1E

0

1

G~x,s!F~y1~ t,s!!ds, ~5.8!

where the Green’s functionG(x,s) is given by

G~x,s!5

¦

sinhSAg

D~s21!D sinhSAg

DxD
Ag

DsinhSAg

DD , 0<x<s,

sinhSAg

D~x21!D sinhSAg

DsD
Ag

DsinhSAg

DD , s<x<1.

~5.9!

Maas and Pope32 have proposed a different projectio
~MPP! method when the diffusion time scales are of the
der of the slow chemical time scales and much slower t
the fast chemical time scales. They assume that diffus

e

FIG. 5. Maximum error (L`@0,1#) between solution of the full PDEs att
55 and the ILDM, for varyingg and fixedD50.1, for Davis and Skodje’s
~Ref. 29! model problem extended to include diffusion. Stars indicate
values ofg for which the computations were done.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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processes perturb the system off the ILDM, but it rapid
relaxes back to the ILDM due to the fast chemistry. Th
procedure is implemented by the following projection of t
convection diffusion term in Eq.~4.1! along the local slow
subspace on the reaction ILDM,

]y

]t
5f~y!2VsṼs

]

]x
~h~y!!. ~5.10!

The corresponding equations for the example are then g
by

]y1

]t
52y11D]2y1

]x2
, ~5.11a!

]y2

]t
52gy21

~g21!y11gy1
2

~11y1!2

2S g211~g11!y1

g~g21!~11y1!3DD]2y1

]x2
. ~5.11b!

One then solves either of the Eqs.~5.11a! or ~5.11b! along
with the ILDM Eq. ~3.8!. Hence, the slow dynamics for th
MPP method is described by

]y1

]t
52y11D]2y1

]x2
, ~5.12a!

y25
y1

11y1
1

2y1
2

g~g21!~11y1!3
. ~5.12b!

We see that the MPP method effectively choosesn52 and
m5p51. Hence, the MPP method forces the solution o
the finite dimensional ILDM, which will incur a large erro
for the cases depicted in Fig. 2. Equation~5.12b! of the MPP
method has as its analog Eq.~5.8! of the ASIM method. It is
clear that Eq.~5.8! accounts for slow reaction, diffusion, an
boundary conditions, while Eq.~5.12b! only accounts for
slow reaction.

Figure 6 compares the solution obtained by full integ
tion, use of the ASIM and the MPP method, all using a fix
grid of 100 points, with the baseline solution obtained by f
integration at high spatial resolution of 10 000 points. T
computations are forg510 and D50.1. The numerical
scheme used is the same as described previously. Use
implicit time stepping scheme is not required when using
ASIM or the MPP method. Also, larger time increments c
be used for the solution of Eqs.~5.4a! and ~5.8! when using
the ASIM and Eqs.~5.12! for the MPP method, than that fo
the solution of Eqs.~5.1!, if explicit numerical methods are
used, due to the reduced stiffness in the equations. Howe
since the accuracy of the three methods is to be compa
the numerical solutions of all the three methods are obtai
using the same LSODE package with the same time in
ments until steady state is achieved. Note that a nume
quadrature of Eq.~5.8! is done in the ASIM procedure. Th
L2 norm of the errors between the solutions obtained by
three methods and the baseline solution at various times
been plotted. When full integration is used, discretizat
error is incurred as the 100 grid points used for the com
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tation are substantially fewer than those used for the com
tation of the baseline solution. At steady state, the error in
full integration method becomes constant. The initial er
incurred when using the ASIM is due to the fact that t
solution from the initial condition takes some time to relax
the ASIM. Near steady state the error incurred when us
the ASIM and the error incurred by full integration are e
sentially identical. A large error is incurred by the MP
method in both transient and steady state periods. This is
to the fact that this method forces the solution onto the fin
dimensional ILDM even though the solution does not lie
it. It can be seen that the overall error incurred when us
the ASIM is substantially less than the error incurred wh
using the MPP method.

If the boundary conditions were not chosen on t
ILDM, then the MPP method would incur larger errors,
that would further cause the solution to not lie on the ILDM
On the other hand, errors incurred when using the ASIM w
not be affected by the choice of the boundary conditio
Figure 7 depicts the solutions in the phase space at timt
55, obtained using the three methods, for a case where

of the boundary condition,y2(t,1)5 3
4, does not lie on the

ILDM. It can be seen that the error in the solution obtain
by the MPP method will always remain large near the bou
ary at x51 which does not lie on the ILDM. In the earlie
case for which the errors are plotted in Fig. 6, the error d
to the boundary conditions in the MPP method is elimina
so as to separate these errors.

VI. PREMIXED LAMINAR FLAME FOR OZONE
DECOMPOSITION

The governing equations which model the tim
dependent, one-dimensional, isobaric, premixed lami
flame for ozone decomposition in Lagrangian coordinates
derived from the Navier–Stokes equations under the assu
tions of low Mach number,42

FIG. 6. Comparison of errors incurred by the three methods at a resolu
of 100 grid points relative to a baseline solution of full integration at
resolution of 10 000 grid points, forg510 andD50.1, for Davis and Skod-
je’s ~Ref. 29! model problem extended to include diffusion.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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]T

]t
1ṁ0

]T

]c
52

1

rcp
(
k51

3

v̇kMkhk1
1

cp

]

]c S rl
]T

]c D
1 (

k51

3 cp
k

cp
r2Dk

]Yk

]c

]T

]c
, ~6.1a!

]Yk

]t
1ṁ0

]Yk

]c
5

1

r
v̇kMk1

]

]c S r2Dk

]Yk

]c D , k51,2,3,

~6.1b!

where the dependent variables are the fluid temperatuT
and the mass fractions in the fluid mixture,Y1 , Y2 , andY3 ,
of oxygen atom O, oxygen molecule O2, and ozone mol-
ecule O3, respectively. The termsMk and cp

k represent the
molecular mass and the specific heat capacity at cons
pressure, respectively, of speciesk. The mass averaged sp
cific heat capacity at constant pressure of the fluid mixtur
given bycp5(k51

3 Ykcp
k . The specific enthalpy of speciesk

is given by hk5h0k1*T0

T cp
kdT, where h0k is the standard

enthalpy of formation per unit mass of speciesk at the stan-
dard temperatureT05298 K. The diffusion coefficient of
speciesk into the fluid mixture isDk , while the thermal
conductivity of the fluid mixture isl. The mixture density is
r. The independent variables are timet, and the Lagrangian
coordinatec, where

c~ t,x!5E
0

x

r~ t,x̃!dx̃, ~6.2!

wherex is the spatial coordinate. The inlet mass flow ra
ṁ0 , is given by

ṁ0~ t !5ruux50 , ~6.3!

whereu is the flow velocity. The molar rate of production o
speciesk per unit volume,v̇k , is given by the law of mass
action with Arrhenius kinetics,

FIG. 7. Comparison of solutions obtained by full integration, using
ASIM and the MPP method att55, for g510 andD50.1, for a case where
the boundary condition atx51 does not lie on the ILDM.
Downloaded 11 Jul 2002 to 129.74.24.121. Redistribution subject to AI
nt

is

,

v̇k5(
j 51

J

ajT
b j expS 2Ej

RT D ~nk j9 2nk j8 !)
i 51

N S rYi

Mi
D n i j8

,

k51, . . . ,N, ~6.4!

whereJ514 is the number of elementary reaction steps
the ozone decomposition reaction mechanism andN53 is
the number of species. The constant parametersaj , b j , Ej ,
nk j8 , nk j9 , andR represent the kinetics rate constant of rea
tion j, the temperature dependence exponent of reactionj, the
activation energy of reactionj, the stoichiometric coefficien
of thekth species in reactionj of the reactants and product
and the universal gas constant (R58.314 413107 erg
mol21 K21), respectively. The elementary reaction steps
the ozone decomposition reaction mechanism, with the a
ciated parameters, are given in Table I. The system of E
~6.1! are closed using the ideal gas equation of state

p05rRT(
k51

3
Yk

Mk
, ~6.5!

wherep058.323105dyn/cm2 is the constant pressure.
Following Margolis,42 the governing equations are sim

plified using the following assumptions and constants:

D15D25D35D, ~6.6a!

r2D54.33631027 g2/~cm4 s!, ~6.6b!

rl54.57931022 g2/~cm2 s3 K!, ~6.6c!

cp
15cp

25cp
35cp51.0563107 erg/~g K!, ~6.6d!

M1516 g/mol, M2532 g/mol, M1548 g/mol,
~6.6e!

h0151.53431011 erg/g, h0250 erg/g,

h0353.01131010 erg/g. ~6.6f!

The initial and the boundary conditions are applied in
frame of reference in which the fluid is initially at rest.
semi-infinite computational domain is considered with t
following boundary conditions:

TABLE I. Three-species, 14-step reaction mechanism for ozone decom
sition ~Ref. 42! Units of aj are in appropriate combinations of cm, mol,

and K so thatv̇k has units of mol cm23 s21; units of Ej are in erg mol21.

j Reaction aj b j Ej

1 O31O→O21O1O 6.763106 2.50 1.0131012

2 O21O1O→O31O 1.183102 3.50 0.00
3 O31O2→O21O1O2 6.763106 2.50 1.0131012

4 O21O1O2→O31O2 1.183102 3.50 0.00
5 O31O3→O21O1O3 6.763106 2.50 1.0131012

6 O21O1O3→O31O3 1.183102 3.50 0.00
7 O1O3→2O2 4.583106 2.50 2.5131011

8 2O2→O1O3 1.883106 2.50 4.1531012

9 O21O→2O1O 5.713106 2.50 4.9131012

10 2O1O→O21O 2.473102 3.50 0.00
11 O21O2→2O1O2 5.713106 2.50 4.9131012

12 2O1O2→O21O2 2.473102 3.50 0.00
13 O21O3→2O1O3 5.713106 2.50 4.9131012

14 2O1O3→O21O3 2.473102 3.50 0.00
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]T

]c
5

]Y1

]c
5

]Y2

]c
5

]Y3

]c
50, for c50,̀ and t>0.

~6.7!

These conditions are equivalent to zero flux of thermal
ergy and species mass atc50,̀ , which also leads to
u(t,0)50, and hence,ṁ050. Using these assumptions wit
a unity Lewis number and nondimensionalization as done
Margolis,42 Eqs.~6.1! can be simplified to

]T*

]t*
52

1

r*
(
k51

3

v̇k* Mk* hk* 1
]2T*

]c* 2
, ~6.8a!

]Yk

]t*
5

1

r*
v̇k* Mk* 1

]2Yk

]c* 2
, k51,2,3, ~6.8b!

where the star superscript denotes nondimensional quant
The governing equations can be further simplified

replacing the species evolution equation fork52, in Eq.
~6.8b!, by the following algebraic equation for the mass fra
tions:

(
k51

3

Yk51. ~6.9!

The total enthalpyh* of the fluid mixture, in its nondimen-
sional form, is given by the following equation:

h* 5 (
k51

3

Ykhk* 5 (
k51

3

Ykh0k* 1T* 2T0* . ~6.10!

Using Eqs.~6.9!–~6.10! with Eqs. ~6.8! and boundary con-
ditions in Eq.~6.7! we obtain

]h*

]t*
5

]2h*

]c* 2
, with

]h*

]c*
~ t* ,0!5

]h*

]c*
~ t* ,`!50.

~6.11!

If the initial conditions are chosen such thath* (0,c* )
5hr* , wherehr* is the total specific enthalpy of the reacta
mixture, then Eq.~6.11! ensures that there is no tendency f
the total specific enthalpy of the fluid mixture to change fro
its uniform initial value, and thus remains constant for allc*
and t* . Hence, Eq.~6.8a! can be replaced by the followin
Schwab–Zeldovich relation:

T* 5T0* 1hr* 2 (
k51

3

Ykh0k* . ~6.12!

Therefore, we require the solution of only two PDEs fro
Eq. ~6.8b!, for k51 and 3 ~O and O3!, coupled with alge-
braic Eqs.~6.9! and ~6.12!.

A computational domain of finite length is chosen fro
c* 50 to 2000. The following initial and boundary cond
tions are chosen:

Y1~0,c* !50, 0<c* <2000, ~6.13a!

Y3~0,c* !50.15, 0<c* <300, ~6.13b!
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Y3~0,c* !50.1520.15 cos5S p

2

c*

2000D ,

300,c* <2000, ~6.13c!

]Y1

]c*
~ t* ,0!5

]Y1

]c*
~ t* ,2000!

5
]Y3

]c*
~ t* ,0!5

]Y3

]c*
~ t* ,2000!50. ~6.13d!

The initial conditions are chosen such that the computatio
domain nearc* 50 has a small pocket of gas which has
composition close to that of the products at chemical eq
librium. The rest of the computational domain contains t
reactant mixture. There is a reaction zone or a flame fron
small initial thickness between the products and reac
mixture. After the flame front is fully developed, it propa
gates into the reactant mixture at a steady flame speed.
reactant mixture is at temperatureT5300 K, hence,hr*
51.432.

Figure 8 depicts the steady state solution of the f
PDEs, plotted in the two-dimensionalYO–YO2

phase space
Stars represent the steady state solution at the actual
points. One thousand equally spaced Lagrangian grid po
were used, and for clarity every tenth grid point has be

FIG. 8. Comparison of the steady state solution of the full PDEs with
ILDM in the phase space for ozone decomposition laminar flame:~a! global
view; ~b! close-up view.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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plotted. The numerical computations are done using sec
order, central difference approximations for spatial discr
zation and the second order BDF method in LSODE for ti
advancement. Also plotted is the one-dimensional ILDM a
curve in the same phase space. It can be seen from the
ures that the steady solution does not lie on the ILDM. T
is emphasized in Fig. 8~b! which shows a close up of th
region of phase space where the difference between
steady state solution and the ILDM is maximum. Hen
forcing the solution onto the ILDM, as done in the MP
method, will lead to errors. The steady state temperature
file and mass fraction distribution of O, O2 , and O3, in the
ozone decomposition flame, are plotted in Fig. 9. The reg
of phase space depicted in Fig. 8~b! corresponds to the flam
front in physical space. Within the flame front the tempe
ture gradients and the mass fraction gradients are la
hence, the effects of diffusion are large. Therefore, the ste
solution deviates the most from the ILDM within the flam
front, as the ILDM is obtained from chemistry alone witho
incorporating effects of diffusion.

It can be seen from Fig. 9 that the steady profiles
tained when using the ASIM are nearly identical to tho

FIG. 9. Ozone decomposition flame profile att* 570 000 for~a! tempera-
ture, and~b! species mass fractions.
Downloaded 11 Jul 2002 to 129.74.24.121. Redistribution subject to AI
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obtained by full integration. In this case, since the ASIM
given by the solution of a nonlinear boundary value proble
we have not constructed a Green’s function, but inste
solved a discretized form of the differential equation. Ho
ever, we believe that a numerical Green’s function constr
tion procedure for solving Eq.~4.7b! may be possible.

Figure 10 compares the phase error in the solutions
tained by full integration, use of the ASIM, and the MP
method, all using a spatial resolution of 1000 grid poin
relative to the baseline solution obtained by full integrati
at a spatial resolution of 10 000 grid points. The numeri
computations are done using second order, central differe
approximations for spatial discretization and the second
der BDF method, in the differential algebraic solv
DASSL,43 for time advancement. Use of DASSL is not r
quired for full integration, but it is required when using th
ASIM and for the MPP method for solving the resultin
differential algebraic system of equations from spatial d
cretization. For error analysis all the computations are d
using the DASSL package with same time increments u
steady state is achieved, in order to remove any numer
bias as done for the simple example in the previous sect
The phase errord is measured as the Lagrangian distan
between the location within the flame front where the m
fraction of O3 is 0.075, for the solution obtained by the thre
methods and the baseline solution. We note that there
phase difference between the full integration at 1000 g
points and the baseline solution due to the inherent ph
error in the BDF numerical method used. This is depicted

FIG. 10. The phase errord incurred in computations of the ozone lamina
flame with the three methods, at a resolution of 1000 points, relative
computations using full integration at a resolution of 10 000 points.
P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Fig. 10, where stars represent the phase error in the ful
tegration. At steady state the flame front propagates at a
form speed, and the phase difference increases line
which signifies that different flame propagation speeds
burning rates are predicted at different grid resolutions. N
steady state, as can be seen from Fig. 10, the phase e
incurred when using the ASIM and full integration with th
same resolution, are essentially identical. On the other h
the phase error incurred by the MPP method is substant
larger. Hence, there is also an error in the prediction of fla
propagation speed or the burning rate by the MPP meth
This is evident from the difference in slopes of the pha
error curve for the MPP method and the slope of the ph
error curve when the ASIM or full integration is used.

We have also computed the amplitude error in the so
tions obtained by the three methods relative to the base
solution. To estimate the amplitude error the phase error
to be eliminated. This is done by first estimating the diff
ence in the flame front propagation speeds obtained by
three methods from that of the baseline solution. The fla
propagation speed can be estimated from the slope of
linear part of the phase error curves at steady state. The fl
profiles are then shifted to minimize the phase error at
times. Finally, the amplitude error is estimated as theL`

norm of the error between the solution obtained by the th
methods and the baseline solution. While not shown here
find that the error incurred when using the ASIM and t
error incurred by full integration is essentially identical, a
both relax to a constant value of 3.7531025 at steady state
On the other hand the error in the MPP method is sligh
larger (4.531025) and increases slowly due to the fact th
the solution is forced onto the ILDM when it does not l
there.

VII. CONCLUSIONS

It has been shown that the ILDM is not a SIM, contra
to the conclusions of Rhodeset al.,22 but approaches the SIM
in the limit of large stiffness for spatially homogeneous
active systems which are modeled by ODEs. While no rob
analysis exists to determine convection and diffusion ti
scalesa priori, we find that in reactive flow systems in whic
convection and diffusion have time scales comparable
those of reactions, MPP can lead to large transient and st
state errors. Thus, the error incurred when using the ASIM
much smaller than that in the MPP method. Using the AS
reaction, convection and diffusion can be better coup
while systematically equilibrating fast time scales. T
ASIM is shown to be a good approximation for the long tim
dynamics of reactive flow systems. At this point the fast a
slow subspace decomposition is dependent only on reac
and should itself be modified to account for convectio
diffusion effects. In this work we have illustrated the im
proved accuracy in describing the slow dynamics of t
simple reaction-diffusion systems, when using the ASI
with a concomitant decrease in computational cost.
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