JOURNAL OF CHEMICAL PHYSICS VOLUME 117, NUMBER 4 22 JULY 2002

On slow manifolds of chemically reactive systems

Sandeep Singh,? Joseph M. Powers,” and Samuel Paolucci®
Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame,
Indiana 46556-5637

(Received 13 November 2001; accepted 23 April 2002

This work addresses the construction of slow manifolds for chemically reactive flows. This
construction relies on the same decomposition of a local eigensystem that is used in formation of
what are known as Intrinsic Low Dimensional ManifoldsDMs). We first clarify the accuracy of

the standard ILDM approximation to the set of ordinary differential equations which model spatially
homogeneous reactive systems. It is shown that the ILDM is actually only an approximation of the
more fundamental Slow Invariant Manifol&IM) for the same system. Subsequently, we give an
improved extension of the standard ILDM method to systems where reaction couples with
convection and diffusion. Reduced model equations are obtained by equilibrating the fast dynamics
of a closely coupled reaction/convection/diffusion system and resolving only the slow dynamics of
the same system in order to reduce computational costs, while maintaining a desired level of
accuracy. The improvement is realized through formulation of an elliptic system of partial
differential equations which describe the infinite-dimensional Approximate Slow Invariant Manifold
(ASIM) for the reactive flow system. This is demonstrated on a simple reaction-diffusion system,
where we show that the error incurred when using the ASIM is less than that incurred by use of the
Maas-Pope ProjectiofMPP) of the diffusion effects onto the ILDM. This comparison is further
done for ozone decomposition in a premixed laminar flame where an error analysis shows a similar
trend. © 2002 American Institute of Physic§DOI: 10.1063/1.1485959

I. INTRODUCTION similar time scales. In this work we illustrate how this cou-
pling of fluid and chemical processes can be maintained such
A wide variety of combustion processes involve a largethat an approximate and less expensive numerical solution of
number of elementary reactions occurring simultaneouslyhe reduced model equations is consistent with the more ac-
within a complex flow field. These processes are modeled bgurate and expensive numerical solution of the full model
a large number of partial differential equatiofBDES rep-  equations.
resenting the evolution of numerous reactive chemical spe- Several strategies have been used for reduction of de-
cies, coupled with the full Navier—Stokes equations. Fullytailed chemical kinetics. The simplest method of frozen flow
resolved solution of these model equations, which incorpoassumes all chemical species to have fixed mass fractions.
rate detailed finite rate chemical kinetics, often requires @nother approach assumes all chemical species to be in full
prohibitive amount of computational resources. Hence, therequilibrium, which is equivalent to the assumption that all
is a need to develop methods which rationally reduce thehemical processes occur at an infinitely fast time scale.
model equations such that numerical simulations can be adhese approaches, discussed by Vincenti and Krugegss
complished in a reasonable amount of computational timethe coupling between chemical processes and flow events
Elementary chemical reactions occur over a wide range ofvhich occur at similar finite time scales. Simple and often
time scales which is manifested as stiffness in the modeliseful strategies, which may capture some of the reaction
equations, and subsequently high computational costs. Fdime scales, consist of systematically replacing hundreds of
stable systems, this stiffness can be reduced by systemaglementary reaction steps by explicit one- or two-step reac-
cally equilibrating the fast time scale chemical processes antion models’~° Also useful are the commonly employed par-
resolving only the relevant slow time scale chemical pro-tial equilibrium assumptions for some of the elementary re-
cesses. The reduced model equations describe the slow dgetions, and steady state assumptions for some of the
namics under the assumption that the fast dynamics can bhemical specie$’ However, these methods require sub-
neglected. Most chemical time scales are faster than timetantial, fallible intuition, and considerable human time to
scales associated with fluid mechanical phenomenon such gsvelop. Another problem with these approaches is that
convection and diffusion. Nevertheless, it is important thatwhile the reduced models may be useful for a certain range
the reduced model equations maintain the coupling of the@f compositions of chemical species for which they have

flow processes with those chemical processes which occur een calibrated, it is often easy to find scenarios where they
cannot accurately reproduce the results of full chemical
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ticles by Griffiths® and Okinoet al1* discuss in detail most iteratiorf”?® or computed using numerical functional
of these reduction strategies. iteratiorf° for more complex systems, describes the slow dy-
The methods of Intrinsic Low Dimensional manifolds namics of the spatially homogeneous reactive systems accu-
(ILDM) (Ref. 8 and Computational Singular Perturbation rately. However, provided that a spectral gap condition is
(CSP (Refs. 15,16 use a dynamical systems approach ofsatisfied, the ILDM does a good job of approximating the
time scale analysis to systematically reduce the stiffness inSIM, and in our experience, computation of high dimen-
troduced by chemistry. Both methods are developed for spasional ILDMs appears to be more tractable than that of high
tially homogeneous premixed reactive systefilsthe ab- dimensional SIMs.
sence of any transport processes such as convection and The previously described methods achieve computa-
diffusion), which can be modeled by systems of ordinarytional efficiency in spatially homogeneous reactive systems
differential equation$ODES. The behavior of these reactive modeled by a system of ODEs. In more realistic problems it
systems can be described by trajectories in the associatéslimportant to achieve similar computational efficiency for
phase space or composition space starting from an initisdimulating spatially inhomogeneous reactive systems which
condition and relaxing to a chemical equilibrium. are modeled by PDEs and which have infinite dimensional
The ILDM method identifiesb initio a low-dimensional ~ SIMs. Hadjinicolaouet al2® have extended the CSP method
subspace, known as the ILDM, within the compositionto reaction diffusion equations. Yannacopola@isl3! illus-
space, which closely approximates the subspace in whictrate, using inertial manifolds, infinite dimensionality of slow
slow time scale processes evolve. For systems initially ofinanifolds associated with PDEs when compared to finite
the ILDM, all the fast processes rapidly approach the ILDMdimensionality of slow manifolds associated with ODEs.
and partially equilibrate. Ih chemical species are involved However, the algebraic determination of these infinite-
in the chemical kinetics scheme, then in thelimensional dimensional inertial manifolds is only suitable for simpler
composition space, am-dimensional (n<<n) ILDM can be cases where the segregation of slow and fast variables is
identified by a local eigenvalue-eigenvector analysis. If thefixed for all times and throughout phase space. This is not the
chemical processes associated with-(m) fast time scales case with general systems of chemical kinetics where com-
are equilibrated, then the chemical processes associated witlositions of slow and fast variables change locally in phase
m slow time scales occur close to thedimensional ILDM  space.
in the composition space. On tma-dimensional ILDM, m Maas and Pope have proposed an extension of the ILDM
ODEs with reduced stiffness are required to be solvednethod to reactive flow systems described by PEfEEhey
coupled with fi—m) nonlinear algebraic equations describ- assume that if flow processes occur at time scales of the
ing the ILDM. The ILDM method is only useful after the order of them slow chemical time scales associated with the
phase space trajectory which starts from the initial conditiorm-dimensional reaction ILDM, then the flow processes only
has relaxed onto the ILDM. This is acceptable under theperturb the system off the ILDM, while the fast chemical
assumption that fast time scale processes can be neglectedpfocesses rapidly relax the system back onto the ILDM.
proper projection is required from the initial condition to the Therefore, in the Maas and Pope Projecti¢MPP),
ILDM such that there is at most a small temporal phase erroconvection-diffusion terms in reactive flow PDEs are pro-
between the solution obtained using the ILDM method andected back onto the finite dimensional tangent subspace of
the solution of the full system of ODEs. the ILDM, signifying that the reactive system never leaves
The CSP method also uses a local eigenvaluethe ILDM in the composition space. The dimension of the
eigenvector analysis to reduce the stiffness, but does not rétDM to be used is determined by prescribing a cutoff for
duce the number of dependent variadieAnother advan- the chemical time scales, based on the fastest flow time
tage of the ILDM method is that the ILDM can be computedscales. If the flow time scales are faster than the chemical
a priori in the composition space and stored in a tabletime scales associated with an ILDM of a certain dimension,
Hence, the ILDM method has a significant computationalthen a higher dimensional ILDM is required, which is essen-
advantage over the CSP method, as the expensive comput&l to maintain full coupling of the flow and chemical pro-
tion of local eigenvalues and eigenvectors is not requirestesses. A problem with the MPP method is that a different
during the actual computations with the reduced model equadimensional ILDM is often required at different locations in
tions. A number of studies have appeared in recent yeanshysical space as the flow time scales vary locally and the
advancing the ILDM method and some variants, cf. Blasenchemical time scales vary in both physical and composition
brey et al,'® Eggelset al,'® Schmidtet al,?° Yang et al,>>  spaces. Hence, this amounts to solving a different number of
Rhodeset al,?? Lowe et al,?® Gicquel et al,?* and Correa reduced PDEs at different locations in physical space. An-
etal?® other problem is that it is difficult to determireepriori the
The ILDM is only an approximation of what we call the magnitude of the flow time scales which control the dimen-
Slow Invariant Manifold(SIM). Relative to the more funda- sion of the ILDM to be used.
mental SIM, the ILDM contains a small intrinsic error for One way to overcome these problems is to use Strang
large finite stiffness. Consequently, it will be shown that theoperator splitting® between the reaction source terms and the
contention of Rhodest al?? that the Maas and Pope algo- convection-diffusion terms when solving the reactive flow
rithm identifies a slow invariant manifold is in error. The model equation3? In the first step, each point in physical
SIM, which can be obtained analytically by perturbationspace is treated as a spatially homogeneous premixed reactor
analysig® for simple systems, or using algebraic functionalwith convection-diffusion suppressed, and the resulting
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ODEs for the reaction part are solved using the standar@hereye R " represents a set of dependent varialfigg), is
ILDM method. This allows the use of different dimensions the reaction source term typically modeled by Arrhenius
of the ILDM at different locations in physical space. If the chemical kinetics, and is the independent time variable.
chemical composition at a certain location in the physicalWithout loss of generality, the origin is translated to the
space does not lie near the ILDM, implicit integration of the chemical equilibrium point, which, for fixed mass adiabatic
full equations is used in the reaction step, until the chemicasystems, has a unique value when the domain is restricted to
composition relaxes to the ILDM. In the second step, thephysically accessible regions of composition spRc&he
reaction part of the reactive flow equations is suppressed, antbnlinear reaction source term typically induces severe stiff-
the resulting PDEs for the convection-diffusion part areness in Eq(2.1) and makes it computationally expensive to
solved using standard discretization techniques for inersolve. The stiffness is due to the widely disparate time scales
flows. The second step perturbs the reactive system off thever which different chemical reactions occur. The eigenval-
ILDM,; it is projected back onto the ILDM along the direc- ues of the Jacobiad=df/dy identify the local time scales
tion of the fast eigenvectors associated with the chemistry imssociated with the reactive system. The eigenvectors of
the composition space. Even though the ILDM method reidentify the local directions associated with the correspond-
duces the number of ODEs to be solved in the first step, theng time scales in the-dimensional phase space. It is en-
number of PDEs to be solved in the second step is the sansured that there are no zero eigenvalues by eliminating all
as the number of original model equations. Another disadeonserved quantities from E¢R.1). These conserved quan-
vantage of this method is that errors are incurred due tdities can arise, for example, due to the conservation of atoms
operator splitting. Strang splitting has second order accuraciyn the spatially homogeneous premixed reactor, and can be
in time provided both steps have second order accuracy. described by algebraic equations. The eigenvalues and eigen-
the chemical time scales are highly disparate from the flowectors can be obtained by the following decompositiod, of
times scales, the operator splitting method will induce errorsyith V=V
in wave speeds. These can be minimized by resolving the _
spatial and temporal scales in the thin reaction zones using J=VAV, (2.23
adaptive mesh refinement methdds. | o |

In this work we propose a more systematic approach to .
preserve the coupling between chemistry and flow physics. V=| Vi +* ¥y Vyi1 -0 Vy | =(V,: V),
The full model equations are projected onto the fast and slow | | | | ) (2.2
basis vectors associated with chemistry. A set of elliptic
PDEs is obtained by equilibrating the fast dynamics. These Ny 0 -
elliptic PDEs are analogous to the algebraic equations de- . : 0
scribing the ILDM. The elliptic PDEs describe the infinite- ' .
dimensional Approximate Slow Invariant Manifol[&SIM) 0 Nmy -
to which the reactive flow system relaxes to before reaching “ N1y 0
steady state. The ASIM accounts for the effects of convec- :

. e . 0

tion and diffusion in the reactive flow system, as opposed to :

the ILDM. When using the ASIM, we solve a set of elliptic - 0 Ny

PDEs in physical space coupled with time-dependent re- Al 0

duced PDEs associated with the slow dynamics. = ( SRR ) , (2.29
The paper is organized as follows. A description of the 0 Ay

standard ILDM method developed for a spatially homoge- -y -

neous premixed reactor is first given. It is then shown that )

the ILDM is an approximation of the SIM for a spatially

homogeneous reactive system. Then a theoretical develop- - 5 - v

ment of the ASIM associated with a spatially inhomogeneous L £ ERRRERRAATRRRE =l (2.20

reactive system, as an extension for the standard ILDM T Vet vy

method, is discussed. Subsequently, we compare and contrast :

use of the ASIM with that of the MPP method for a simple - B

reaction diffusion model problem. Finally, a similar compari- Vi

son is also made for the decomposition of ozone in a onejere v, | . .. v, represent the right eigenvectors dfand

dimensional premixed laminar flame. form the column vectors of thex n right eigenvector matrix

V. The diagonal matrix\, also of dimensiomXn, contains
Il. ILDM METHOD FOR A SPATIALLY HOMOGENEOUS the eigenvalues\ 3y, ... A(n), Of J along its main diago-
PREMIXED REACTOR nal, with their real parts ordered from least negative to most
A spatially homogeneous premixed reactor can be modrje_gatlve. Sufflmently close to the cheml_cal equilibrium

point, all the eigenvalues are real and negative. Thus, for the
eled by the system of ODEs, . . i . .

following discussion, we will assume that all eigenvalues are
dy real and negative. The reciprocal vectors to the right eigen-

ar W, 10=0, @D ectors are represented By, ... v,, which form the row
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mated by what we refer to as the standard ILDM method,

time scales in phase space are given by the inverse of tphich is defined by the following set of differential algebraic

magnitudes of the eigenvalues|Ni4y|, ..., 1\q)|, and
are ordered from slowest to fastest.
Defining g to be the nonlinear part df

g="f-Jy, (2.3
Eqg. (2.1 can be rewritten as

dy

q Jy+g. (2.9

A new set of variables defined g=Vy is used with Eq.
(2.4) to obtain
dz+\7dv =Az+V
a EZ— z g.

The time evolution of processes associated withittietime
scale, in Einstein notation, is given by

dz . & dy
(aJrvijZlej

(2.9

1
A

1 .
=z+—(vig), i=1,...n.
A
(2.6

equations,
~ dy _
Vsa :st, (293
0=V/f, (2.9

where the matri¥/, has dimensiomxn, and its row vec-
tors contain the reciprocal vectors to the right eigenvectors
associated with then slow time scales.

The differential algebraic Eq%2.9) have reduced stiff-
ness compared to the original EQ.1), and the number of
ODEs to be integrated has also been reduceqh.tdhe re-
duction in stiffness allows for larger time steps when inte-
grating Egs.(2.9), than when integrating the original Eq.
(2.1) with explicit numerical methods, thereby reducing the
computational time. Moreover, because matrix inversions are
not necessary, the method is faster than implicit methods as
well. To further reduce computational time, the algebraic Eq.
(2.9b is solveda priori in a predetermined domain of the

It is assumed that we are not interested in the dynamics af-dimensional phase space. Thedimensional ILDM in

events which occur at a time scale of)d((ml)| or faster,
and that there aren slow time scales andn(-m) fast time
scales.

phase space, obtained by the solution of the @®b), is
stored in a table parameterized byychosen state variables.
The table can then be used during the integration of Eq.

The transients of fast processes equilibrate before tran2.93, instead of solving the differential algebraic system of

sients of the slow processes because the fast processes ggs.(2.9). Another advantage of storing the ILDM in tabular
associated with the eigenvalues which are negative and largerm is that the table can be re-used for different sets of
in magnitude. Equationi2.6) represents the dynamical sys- computations involving the same reaction kinetics. Details of
tem in Eq.(2.1), in a form equivalent to that of a singularly this procedure and the computation of the ILDM in phase
perturbed syster, with UN@mspls -+ Ul as the  space is given by Mad$.

small parameters multiplying the time derivatives on the left-  Qutside the subspace of thedimensional ILDM, Egs.
hand side of the equations. Hence, by neglecting the leftt2.9) do not apply. In general, initial conditions may not lie
hand side of Eq(2.6) for i=m+1,...n, we effectively  on the ILDM, though the trajectory starting from an arbitrary
equilibrate the fast dynamics and obtain a set of approximatgitial condition in the phase space will rapidly approach the

(n—m) algebraic equations given by

1 -
zi+—(vg)=0, i=m+1,...n 2.7
0

ILDM as the fast time scale processes equilibrate. The pro-
jection of the initial condition onto the ILDM has to be done

carefully in order to avoid a large phase error in the time-
dependent solution of the reduced differential algebraic sys-

This is expected to be accurate only if a significant spectralem of equations. An accurate method, although computa-

gap exists betweef\ | and|\ . 1)|. A direct substitution

tionally expensive, is to use implicit integration of the full

of Egs.(2.2), (2.3, and the definition of is used to rewrite
Eq. (2.7 as

system of Eq(2.1), until the trajectory is close to the ILDM,
and then integrate the reduced differential algebraic system
~ of equations* A more efficient approach remains an out-
Vif=0, (2.8 standing problem.

which is the algebraic equation for the ILDM as obtained by ~ Based on Eq(2.8), the ILDM can also be defined as an
Maas and Pop&The matrixV; has dimensionr(—m)xn, m-dimensional supspe}ce of thedimensional phase space
and its row vectors contain the reciprocal vectors of the rightVhere the vectof lies in the local linear subspace spanned
eigenvectors associated with the-(m) fast time scales. In P the eigenvectors associated with the slow time scales.
writing Eq. (2.7), we are assuming thdg] = O(/\ i 1) or This is illustrated in Fig. 1 for atwo-q|men5|onal system. For
greater, and hence, the second term cannot be neglected. Thg 2» Vs=V1 and Vi=v, are the eigenvectors associated
ILDM is an approximation of amm-dimensional subspace, with slow and fast time scales, respectively. T~he Eorrespond-
defined by Eq(2.8), within ann-dimensional phase space on ing reciprocal bases, are given by the vectuls=v; and
which processes associated with slow time scales occur. THé=V,. Figure 1 also gives a graphical representation of Eq.
fast time scale processes, prior to equilibration, rapidly ap{2.8) describing the ILDM. The ILDM consists of the set of
proach the ILDM. Once the fast time scale processes havpoints in phase space where the vedtbas the same orien-
equilibrated, the slow dynamics for EQ.1) can be approxi- tation as the slow eigenvectdf;. This does not ensure that
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o~ FIG. 1. Graphical representation of
> o5} the ILDM for a two-dimensional dy-
namical system, depicting that the
0.4 ILDM is a set of points in the phase
0al space where the vectovs has the
’ same orientation as the vector
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y1
the vectorf is tangent to the ILDM. By definitioH an in-  wherey, ...y, are the independent state variables chosen
variant manifold is a subspac®_ R ", if for any solution to parameterize the SIM, ang.,, . ...y, are the depen-

y(t), y(0)eS, of Eqg. (2.1), implies that for someT>0, dent state variables. The assumed form of the SIM is then

y(t) e S for all te[0,T]. Hence, the SIM, like all invariant differentiated to obtain

manifolds, is also a trajectory in phase space, and the vector

f must be tangent to it. LN 8 ,
It is easily shown that the ILDM is not a trajectory in dt =19y dt

phase space; instead, it is only an approximation of the SIMa|| trajectories in phase space, including timedimensional

Using Eq.(2.8), the normal vector to the ILDM is given by gim defined by Eq.(3.1), satisfy the following equation,

~ ~ _ - ~ which is obtained by eliminating time derivatives from Eqg.
VVi) =V d+ (V)= A Vi +(VVT, (210 (3.2 with the use of Eq(2.1),

dy, <« ay; dy,
Y i O i=m+1,...n. (3.2

where in two dimensions\ =\, V=(d/dy;)e, fiYmeas - YniYas - Ym)

+(alay,)e,, ande;, ande, are unit normal vectors. If is m

linear iny, the eigenvectors in phase space are constant, and = >, f;(Yms1, -+ YniV1s -« Ym)

thus we have tha V;=0. Then from Eq(2.10 it is evident =t

that the normal to the ILDM is in the same direction as the WYi(Y1,¥Y2, -+ Ym) .

vectorV;, and hence, the vectbis tangent to the ILDM. To x %% , I=mEl.n 33

summarize for a linear system, the ILDM is a phase space o 27 .4 Roussel and Fra&&have used functional
trajectory as well as the SIM, and it is a linear subspace of

) ~ i iteration to solve Eq(3.3). For eachy;, i=m+1,...n, an
the phase space defined ay=Vy=0, as given by Eq.. initial function of the formyi=y?(yl, ..., ¥Ym) is chosen.
(2.7). For a nonlinear system the second term on the righk,,tional iteration is then performed on the following equa-
hand side of Eq(2.10 is nonzero and corresponds to a local tions, which are obtained by rewriting E¢8.3),
measure of the curvature of the manifold; consequently, the
normal to the ILDM is not in the same direction as the vector [ ., K+1 ay; Yy .
., nor is the vectof tangent to the ILDM. To summarize =\ Ym+1 ==Y ooy oYio oo Ym =0.
for a nonlinear system, the ILDM is not a trajectory in phase .
space, but, as long as a spectral gap exists, it can be deduced i=m+1,...n (34
from Eq.(2.10 that in the limit of large| A4, the deviation ~ where the superscript indicates the iteration number starting

of the ILDM from the phase space trajectory and the SIMfrom k=0. One can use computer algebra to perform func-

becomes small. tional iteration. For high dimensional systems and for sys-
tems where Eq.(3.4) is not explicit in y<*! i=m
+1,...0n, itis more convenient to use the modified method
1. COMPARISON OF SIM WITH ILDM of Davis and Skodjé® which uses numerical functional it-
eration. A discrete form of initial functiong’(y1, . . . .Ym).
If one assumes the existence of mkdimensional SIM  i=m+1,...n, are now chosen in a domaii where the
in an n-dimensional phase space, it can be described as SIM is to be estimated, such thaty(, . .. yy) € H. For nu-
merical computations, the domail is discretized into a
Vi=Vi(Y1, -« ¥Ym), 1i=m+1,...n, (3.1 finite number of points, and partial derivatives in E§.4)
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are approximated by finite differences. Numerical functionaly

—1+(y+1)y, d d
iteration is then performed on the resulting implicit algebraic—| — u D B

equations. The choice of state variables used for parametet- (y=D(1+yy? dt  dt

ization of the SIM in Eq(3.1) may be arbitrary, though it is oy2

essential that these variables be chosen in such away thatthe — _y 4 Y1 + i ) (3.9b
manifold functions given in Eq(3.1) are single-valued. A 1ty y(y—1)(1+yy)®

proper choice of parametric state variables makes numerica}lhe order of the terms on both sides of E8.9b can be
computations of the SIM easier. The functional iteration isrepresented by |

expected to converge to the SIM(#) the initial functional
guess is good(b) the initial guess does not correspondtoa  O(y 1)+ O(y 2 +---=0(1)+O0(y 1)+ O(y™?)
phase space trajectory, afw) there exists an attractive SIM
in the phase space as assumed. Both Davis and Skbalje] e (310
Roussef® and Roussel and Frad&have suggested methods The standard ILDM approximation neglects all terms on the
to enhance the stability of the numerical and algebraic funcleft-hand side of the fast equation while retaining all terms
tional iterations, respectively. on the right-hand side. This makes the ILDM an inconsistent
Davis and Skodjé? using a simple example, have illus- approximation to the SIM. On the other hand a systematic
trated the difference between the ILDM and the SIM. Theirmatching of terms of all orders will correctly lead to the
two-dimensional system, of the form of E.1), is analo-  SIM. This is demonstrated by Kaper and KaffeHowever,
gous to a system which models a spatially premixed homott is not clear how to implement a systematic perturbation

geneous reactor and is given by analysis for a system where parameters such dsare dif-
ficult to define explicitly and globally in composition space.
Y1 This is the case in complicated systems of chemical kinetics,
E(yl) _ (y—1)y,+ 7y (3.5 wherey plays the role of the magnitude of fast eigenvalues.
dtly; =Yyt T A ' In such systems, the order of eigenvalues and their member-
(1+yy)? ship in the slow and fast sets change with time!

Here we solve Eq(3.3) using an approach often used in

wherey>1 gives a measure of stiffness for the systemy If .o htar manifold theory? The SIM is assumed to exist and
is increased, stiffness will increase. The Jacobian of th‘ﬁave the following polynomial form:

right-hand side is

%)

-1 0 Y2=Yy2(¥1)= 2 i, (3.11
J= m - ’ (3.6 where ¢, are constant coefficients. Equati@8.3), in this
(1+yy)® case, is given by
and has eigenvalues\ (3),\(2))=(—1,—v). The right N (y—1)y,+ yyf _dy, ) (3.12
eigenvectors and their reciprocal vectors are given by YY2 (1+y,)? dy, Y1) :
1 10 Substituting Eq(3.11) in Eq. (3.12, we obtain the following

V=(V,1 V)=| y=1+(y+1)y, NE coefficients for the SIM:
: (= 1)(1+y,)° : Co=0, c =(—1)*", k=1,...0>. (3.13

(3.7 Hence, the SIM is given by

Y1
AT PO L 0. Vomya(l=yatyi-yityi+ )= (314
V={-_*]=| y-l+(y+Dy . . _ _
AL — When the ILDM in Eq.(3.8) is compared with the SIM in

R 3
(y= 1T +y1) Eq. (3.19 for this simple system, it is obvious thét) the

ILDM is nota SIM, and(2) the error in the ILDM approxi-
mation decreases asincreases. Though the assumption for
the SIM to be of polynomial form, as in E¢3.11), works
2 well in this example, it may not work for more complicated

Y1 2y SR .

= + ) (3.8  systems. This is primarily because such a representation of

1+y:  y(y—1)(1+yy)°® the SIM is only accurate sufficiently close to the equilibrium
_ _ _ 3 point and, in general, diverges rapidly away from it. To find

The slow, V¢ (dy/dt) =V, and fastV¢ (dy/dt) =Vf,  the global SIM for more complicated systems, we have to

Equation (2.8) is used to determine the one-dimensional
ILDM for this system, which can be written in closed form,

Y2

equations for this example are given, respectively, by resort to numerical computations such as those proposed by
Davis and Skodjé®
% _ (3.93 The inconsistency in the ILDM procedure in matching of
dt Y1, ' terms of similar orders, leads to errors as shown in this
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simple system. We emphasize that the error in the ILDMscales of ]1/)\(p)| for m<p<n and slower. Then by equili-
approximation is small only for systems in which the spectralbrating the fast dynamics, we obtain the differential algebraic
gap condition|\ im|/|\m+1)|<1 is valid. Fortunately this system of equations given by

situation arises frequently in complicated systems associated

with chemical kinetics. Also, in our experience, the numeri- 7+ i(\?g)— i \7@) 0. i=m+1 D
cal computation of the ILDM is more tractable in its imple- gy T N\ tex) T o
mentation than the numerical computation of the SIM. (4.43
1 -
IV. REACTIVE FLOW EQUATIONS zi+3—(vig)=0, i=p+1,...n. (4.4b
()
The governing equations for a one-dimensional reactingl_ ) ] ) ]
flow system can be written in the following compact form, hese equations can be rewritten in a more convenient form
as
ay 9
S =fy = (hy)), (4.1 _ _ h
stf_VfS(?_X :O, (453

whereye R" represents a set of dependent variablgy)
represents the convective and diffusive flux vector, Hiydl J.f=0 (4.5H
represents the reaction source term. The independent time " ff ' '
and space variables ar@ndx, respectively. where now
We again rewrite the reaction-diffusion equations in
terms of a new set of variables definedyVy. The eigen- — Vit
vector matrix of the Jacobian of the source tefris repre-
sented by and is again defined by EQ.2). We note that ~ B
this basisV, is derived solely from the chemistry of a spa- < | 7 Y% T Vi
tially homogeneous system. While this will eventually lead I I B W ’
to an improved estimation of the system’s behavior, a better
basis on which to project would take account of the infinite-
dimensional eigenfunctions associated with the convection- - v, -
diffusion operator. This, however, is difficult.
We can then rewrite Eq4.1) as

(4.9

where the matrid/;¢ has dimensiongf—m) xn and its row
1 (dz - dv; vectors contain the reciprocal vectors of the right eigenvec-
— | — 4V 1. . . .
o | dt V'le dt & tors aSSOCIate'd’VWIth the tlme scglep\%ﬂﬂ e 1_,{)\(p)|,
and the matrixV¢; has dimension r{—p)Xn and its row

B 1 - 1 (~.0h . vectors contain the reciprocal vectors of the right eigenvec-
=zt m(vig)_ Ny Vigg): =L 42 tors associated with the time scales
UNp+1)ls -2 LNl . Equations (4.5 represent the

We again assume that we are 'only interested in the dynamlqﬁfinite—dimensionaIApproximate Slow Invariant Manifold

of the processes occurring a'.[ time scales bf(l‘()l or slower (ASIM) on which the slow dynamics occurs once all fast
and that a spectral 9ap exists. Henc_e, we assume that El’illlne scale processes have equilibrated. Equat{drs cor-
other processes oceurring at faster tw_ne scales can be_ nF‘e’spond to a system of differential algebraic equations which
gle_cted_ and are equilibrated by neglecting the left hand Sldehave to be solved in physical space dimensions together with
whichis (9(1/|.)\(m+1)|). or smaller., of_Eq.(4.2) for i=m the prescribed boundary conditions. Hence, the slow dynam-
+1,...n, while the nght-hgnd _S'de 'Q(l) or larger for ics for Eq.(4.1) is approximated by integrating the following
the same. Hence, the following is obtained: set of partial differential algebraic equations:

~ 1 [~¢oh
zi+ —(v;g)— vi—|=0, i=m+1,...n. ~ Yy ~ ~ dh
| )‘(‘)( o )‘(i)( 19X VSEZVSf—VSa—, (4.79
4.3 X

If convection and diffusion processes occur at time scales _ _ oh
which are slower than reaction time scales of order 0=Vif—Vio, (4.70
UN(m+1)l, then we can neglect the third term
1/)\0) (V,(&h/&x)) in Eq (43), as it becomeQ(1/|)\(m+1)|) O:vfff (47@

or smaller while the remaining terms af¥1) or larger, and

obtain Eq.(2.7). Instead, if convection and diffusion time The reduced PDEs in E@4.79 describe the time evolution
scales overlap with fast chemical time scales, then we cannaf the slow dynamics, and are solved in conjunction with
make such an approximation as the third term in &qg3 Eqgs.(4.7b and(4.79 describing the ASIM. The ASIM is an
will become O(1) or larger. No robust analysis exists to infinite dimensional manifold which accounts for the effects
determine convection and diffusion time scadepriori. We  of convection and diffusion. The stiffness due to the reaction
assume that convection and diffusion processes occur at tingource term in Eg4.1) is substantially reduced in Eg&.7).
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It is obvious that for two- and three-dimensional reactive 05

flow equations the ASIM is described by a set of elliptic oas| D =0.01 >
partial differential algebraic equations. ' -
041 *
V. A SIMPLE EXAMPLE odsr c *
We extend the simple system in E@.5) by including o < * Full PDE Solution
diffusion effects in one spatial dimension so as to obtain an .o ezst * = ILDM

%

equation of the form of Eq(4.1). Specifically we takey,
f(y), andh(y) so as to obtain the following system of equa-

tions: osr

W1 7y, N

7— —y1+Dy, (5.139 0.05F

) 2 5 00 0:1 0‘.2 0‘.3 0:4 0:5 0f6 0{7 0{8 0f9 1

J (y=Dyit+yy J

D2y e yzz_ (5.1 d

ot (1+yq) IX
The chemical time scales are 1 apd®, while the diffusion T <
time scale depends on the paraméd®eaind local spatial gra- 045" D=0.1 A
dients. The ILDM for this system is given by E(B.8). We ol ' i
choose a spatial domaine [0,1] and the following bound- *****
ary conditions which lie on the ILDM: T o

. 1 & * Full PDE Solution
o [ -**?* -—
Y(1,0)= ( 0), yev={1 1 | 2 T 'LDM
2 4y(y—1) 1
The reason for choosing the boundary conditions to lie on ™'
the ILDM will be clarified later. The following initial condi- o1f
tions are chosen which, for convenience only, linearly inter- |
polate between the two boundary conditions,
X 0 071 0{2 073 D.‘A 075 016 O‘.7 078 0{9 1
y1
y(0x)=1{ (1 1 . (5.3
5t /X FIG. 2. Comparison of solution of the full PDEstat 5 with the ILDM, for
2 4y(y-1) P

y=10 andD=0.01, 0.1, for Davis and Skodje{®Ref. 29 model problem
Figure 2 depicts results at timte=5 for the integration extended to include diffusion.

of the full system of Eqs(5.1), for D=0.1, 0.01 andy

=10. The numerical computations are done using a uniform

grid of 100 points in the spatial dimensionA central dif-  |LDM primarily because the diffusion term in E¢4.3) has a

ference approximation of second order is used for spatiadmaller effect. Hence, the slow dynamics are better approxi-

discretization. A backward difference formuldDF) of sec-  mated by the ILDM for largey. TheL., norm of the differ-

ond order accuracy in time is used for time advancemengnce between the full solution and the ILDM for fix@dis

with the aid of theLsopE (Ref. 4]) package. The solution is seen in Fig. 5 to decrease &s or the stiffness due to the

plotted in the two-dimensional phase space of the dependergaction source terrf(y), increases.

variables. Stars represent the solution at various grid points  The slow dynamics for Eq$5.1), obtained by using the

in physical space. The time=5 is long enough for the fast ASIM as done in Eqs(4.7), for n=2, m=1 andp=n, is

time scales to equilibrate; in fact, the system is close tqyven by

steady state. It can be seen from the figures that the steady

state solution does not lie on the the ILDM. Hence, forcing %Y1 _ +D@ (5.43
the solution onto the ILDM, or approximating the slow dy- at Y1 ox2’ '
namics of Egs(5.1) by the ILDM, will lead to large errors.

The effect of reducing the value @ is the appearance of Y1 2y?

sharper gradients in the solution in physical space. The maxi- 0=—y,+ 1+y + _ 3
, 1 y(y=1D(1+yy)

mum, or theL.. norm, of the difference between the full
solution and the ILDM for fixedy is seen in Fig. 3 to remain —1+(y+1)

; Y Y Y1
large even wherD is decreased. - EETYERRR] e VDa > (5.4b

Figure 4 depicts results at tinte=5, for the integration yiy= D4y, X X

of the full system of Eqgs(5.1), for y=100 andD=0.1. It  We will compare the solution obtained by Ed5.4) to the
can be seen that for this case the solution is closer to theolution obtained by integration of the full system of Egs.

Py1 1%y,
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FIG. 5. Maximum error [.,[0,1]) between solution of the full PDEs &t
=5 and the ILDM, for varyingy and fixedD=0.1, for Davis and Skodje’s
(Ref. 29 model problem extended to include diffusion. Stars indicate the
values ofy for which the computations were done.

FIG. 3. Maximum error I.[0,1]) between solution of the full PDEs &t
=5 and the ILDM, for fixedy=10 and varyingD, for Davis and Skodje’s
(Ref. 29 model problem extended to include diffusion. Stars indicate the
values ofD for which the computations were done.

32 Y
(5.2). Note that the boundary conditions and initial condition L= E D (5.6
for y,(t,x) are the same as before, but the initial condition
y»(0xX) must be chosen such that E&.4b, which repre- vl vi 2y?
sents the ASIM for the system, is satisfied for giyg(i0x). Fyu(tx)=—3 Y 1 3
That is, the initial condition is chosen so that it lies on the 1 y(y=DA+yy)
ASIM and minimizes the phase error that might occur if an y—1+(y+1)y, &y
arbitrary initial condition is used. Equatiob.4b with —( 13D 21 ) , (5.7
boundary conditions given in E¢5.2) constitute a two-point y(y=1)(1+y1)° X
boundary value problem which can be written in the form, the solution of which is given by
Ly,=F(yi(t,x)), Y2(t,00=0, . \/;
1 1 (5.5 y(tx):(£+ 1 )sm DX
YtD=5+ 01y 22T 46 SW( \ﬁ)
where D
1
+f G(x,5)F(yi(t,9))ds, (5.8
0
T C S where the Green'’s functio®(x,s) is given by
045 4
04 4 . Y . Y
- smr( \ﬁ(s— 1))smr( \ﬁx)
D D
0.351 b , X ,
—Ssin —
>,N 025+ 1 D D
« Full PDE Solution | G y "
— ILDM sin —(x—1) |sin —S
015 B D ’D
ol | , ss=x=l1
N {2
0,051 g —SIin —
D D
GO 0!1 0{2 0‘.3 0!4 0{5 016 0!7 0{8 0!9 1 (5 . 9)
Y Maas and Pop@ have proposed a different projection

FIG. 4. Comparison of solution of the full PDEstat 5 with the ILDM, for (MPP) method when t.he d!foSIOH time scales are of the or-
y=100 andD=0.1, for Davis and Skodje’éRef. 29 model problem ex-  der of the slow chemical time scales and much slower than
tended to include diffusion. the fast chemical time scales. They assume that diffusion
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processes perturb the system off the ILDM, but it rapidly 107
relaxes back to the ILDM due to the fast chemistry. This
procedure is implemented by the following projection of the
convection diffusion term in Eqgi4.1) along the local slow
subspace on the reaction ILDM,

MPP

ﬁy_ ~ d
E—f(Y)—VsVsa(h(Y))- (5-1© I\

_| Using ASIM

The corresponding equations for the example are then given
by

2
M yap’ 5.11
N a2’ (5.113 Full PDE Solution
10-5 -2 I-1 ID II 2
10 10 10 10 10
Y2 (y=Dy:+ w1 t
T Wt
ot (1+y,)? . . .
FIG. 6. Comparison of errors incurred by the three methods at a resolution
14+ (vl 2 of 100 grid points relative to a baseline solution of full integration at a
|y (y+Dy1| V1 (5.1 resolution of 10 000 grid points, fop= 10 andD=0.1, for Davis and Skod-
y(y— 1)(1+y1)3 ax2 ’ je’s (Ref. 29 model problem extended to include diffusion.

One then solves either of the Eg$.113 or (5.11h along

with the ILDM Eq. (3.8). Hence, the slow dynamics for the 44ion are substantially fewer than those used for the compu-
MPP method is described by tation of the baseline solution. At steady state, the error in the

ay, Py, full integration me_thod becomes_ constant. The initial error
7:—y1+D—2, (5.123  incurred when using the ASIM is due to the fact that the
X solution from the initial condition takes some time to relax to
5 the ASIM. Near steady state the error incurred when using

Vo= Y1 T 2y} ' (5.12H the ASIM and the error incurred by full integration are es-
1+y:  y(y—1)(1+y,)°® sentially identical. A large error is incurred by the MPP

Wi hat the MPP hod effectivelv chooses? and method in both transient and steady state periods. This is due
© see that the method efiectively choos an to the fact that this method forces the solution onto the finite

m= p_=_1. I—_|ence,_ the MPP method fo_rc_es the solution ONO4imensional ILDM even though the solution does not lie on
the finite dimensional ILDM, which will incur a large error it. It can be seen that the overall error incurred when using

for the cases depicted in Fig. 2. Equati@nl2h of the MPI_D the ASIM is substantially less than the error incurred when
method has as its analog E§.8) of the ASIM method. It is using the MPP method

glearéhat Eq(SdS) accour;]t'ls for slowzreactilon, diffusion,fand If the boundary conditions were not chosen on the
oundary conditions, while E5.12D only accounts for || py; then the MPP method would incur larger errors, as

slowFreactlon. h luti btained by full i that would further cause the solution to not lie on the ILDM.
igure 6 compares the solution obtained by tull integra-,, 4,0 giher hand, errors incurred when using the ASIM will

tiqn, use of th_e ASIM and the MPP meth(_)d, all “?"‘9 afixed ot pe affected by the choice of the boundary conditions.
grid of 100 points, with the baseline solution obtained by fu"Figure 7 depicts the solutions in the phase space at time

integration at high spatial resolution of 10000 points. Thezs, obtained using the three methods, for a case where one
computations are fory=10 and D=0.1. The numerical .. 3 .
the boundary conditiony,(t,1)= 3, does not lie on the

scheme used is the same as described previously. Use of !\bM It can be seen that the error in the solution obtained
implicit time stepping scheme is not required when using th : . .
P pping . g the MPP method will always remain large near the bound-

ASIM or the MPP method. Also, larger time increments can y . ; .
be used for the solution of Eqé5.43 and (5.8) when using ary atx=1 WhICh does not lie on the_ILD_M. In the earlier
the ASIM and Eqs(5.12 for the MPP method, than that for case for which the errors are plotted in Fig. 6, t.he error due
the solution of Eqs(5.1), if explicit numerical methods are to the boundary conditions in the MPP method is eliminated
used, due to the reduced stiffness in the equations. Howevet® 35 to separate these errors.

since the accuracy of the three methods is to be compared,

thg numerical solutions of all the thrge methods are obt.amegL PREMIXED LAMINAR ELAME EOR OZONE

using the same LSODE package with the same time incre= ECOMPOSITION

ments until steady state is achieved. Note that a numerica

qguadrature of Eq(5.8) is done in the ASIM procedure. The The governing equations which model the time-
L, norm of the errors between the solutions obtained by thelependent, one-dimensional, isobaric, premixed laminar
three methods and the baseline solution at various times hayame for ozone decomposition in Lagrangian coordinates are
been plotted. When full integration is used, discretizationderived from the Navier—Stokes equations under the assump-
error is incurred as the 100 grid points used for the computions of low Mach numbet?
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07

e MPP
o Using ASIM

* Full PDE Solution
— ILDM

0.6

05
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Yy
FIG. 7. Comparison of solutions obtained by full integration, using the

ASIM and the MPP method &t=5, for y=10 andD=0.1, for a case where
the boundary condition at=1 does not lie on the ILDM.

3

AN E.Mthl }\aT
Moy ron 1 T 091 o
Yy T
+Z kﬁl/fﬁ’ (6.1a
AL VI ey NLAL PP
a7t mo(w wkk(wP Koy | )
(6.1b

where the dependent variables are the fluid temperature
and the mass fractions in the fluid mixtuh,, Y,, andYj,

of oxygen atom O, oxygen molecule,Pand ozone mol-
ecule Q, respectively. The termdl, and ck represent the

molecular mass and the specific heat capacny at constant

pressure, respectively, of speciesThe mass averaged spe-

cific heat capacity at constant pressure of the fluid mixture is

given byc,= 2k 1Yka The specific enthalpy of speci&s
is given by h,= h0k+fT c dT, where hg, is the standard
enthalpy of formation per unit mass of specieat the stan-

dard temperaturd ;=298 K. The diffusion coefficient of
speciesk into the fluid mixture isD,, while the thermal
conductivity of the fluid mixture ia.. The mixture density is
p. The independent variables are titpend the Lagrangian
coordinatey,, where

P(t,x)= f:p(t&)c&, (6.2)

wherex is the spatial coordinate. The inlet mass flow rate,

My, iS given by

Mo(t) = puly—o, (6.3

whereu is the flow velocity. The molar rate of production of

speciesk per unit volumewy, is given by the law of mass
action with Arrhenius kinetics,

Singh, Powers, and Paolucci

TABLE I. Three-species, 14-step reaction mechanism for ozone decompo-
sition (Ref. 42 Units of a; are in appropriate combinations of cm, mol, s,

and K so thaw, has units of mol cm®s™%; units of E; are in erg mof .

j Reaction q; Bi E;
1 0O;+0-0,+0+0 6.76x10° 2.50 1.0 10%?
2  0,+0+0-0;+0 1.18x10?  3.50 0.00
3 O+0,-0,+0+0, 6.76x 10° 2.50 1.02x 10%2
4  0,+0+0,—-0;+0, 1.18<10* 350  0.00
5 0O;+0;—0,+0+0;, 6.76x1¢° 2.50 1.0x 10'2
6 0O,+0+03-0;+0; 1.18x1¢* 350  0.00
7 0+0;—20, 4.58<10° 2.50 2.5 10"
8 20,—0+0; 1.88x10° 250  4.15¢10%
9 0,+0—20+0 571x10° 250 4.9 107
10 20+0—0,+0 2.47x10F 350  0.00
11  0,+0,-20+0, 5.71x10° 2.50 4.91x 10'?
12 20+0,—0,+0, 2.47x10%  3.50 0.00
13 0,+0;—20+0, 5.71x 1¢° 2.50 4.91x 10'2
14 20+03—0,+0; 2.47x10° 350  0.00
J N !
Y\ Vi
_ B , pYi
wk JZ T Jex;{ %T)(v Vk])iI:[l ( Mi) ,
k=1,... N, (6.9

whereJ=14 is the number of elementary reaction steps in
the ozone decomposition reaction mechanism blndS is
the number of species. The constant parametgrs; , E;,
Vi, Vkj» andM represent the kinetics rate constant of reac-
tionj, the temperature dependence exponent of reaftibe
activation energy of reactiop the stoichiometric coefficient
of the kth species in reactiopof the reactants and products,
and the universal gas constanfi€8.31441x10" erg
mol~1K™1), respectively. The elementary reaction steps in
the ozone decomposition reaction mechanism, with the asso-
ciated parameters, are given in Table |. The system of Egs.
(6.1) are closed using the ideal gas equation of state
3
0=pRTZ, 1, 65
k=1

wherep,=8.32x 10°dyn/cnt is the constant pressure.

Following Margolis?? the governing equations are sim-
plified using the following assumptions and constants:

D,=D,=D;3=D, (6.6a
p’D=4.336x10 7 ¢?/(cnts), (6.6b
pA=4.579x 10 ? ¢g?/(cn? S’ K), (6.60
Cp=Ch=Co=C,=1.056<10" erglgK), (6.60
M;=16 g/mol, M,=32 g/mol, M;=48 g/mol,
(6.68
hoy=1.534x 10" erg/lg, hg,=0 erg/g,
ho3=3.011x 10'° erg/g. (6.6

The initial and the boundary conditions are applied in a
frame of reference in which the fluid is initially at rest. A
semi-infinite computational domain is considered with the
following boundary conditions:
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&T &Yl (9Y2 (9Y3 0 f lp 0 d t 0 3xm" . i a
—=—=—=—=0, for ¢=0> an =0.
ap Iy Iy Y * Full PDE Solution

(6.7 25t — |LDM

These conditions are equivalent to zero flux of thermal en- of
ergy and species mass @t=0,~, which also leads to
u(t,0)=0, and hencem,=0. Using these assumptions with > vst
a unity Lewis number and nondimensionalization as done in
Margolis*? Egs.(6.1) can be simplified to i

gT* 1S, T

ﬁt* :_p_*kzl wkMkhkdl—W’ (68@ )

Ne 1. Y b
(91'__*_ _*wk Mk 22’ k:1,2,3, (68b) 2 X10° . . . . . . . . .

*k Full PDE Solution

* *
L * ¥

where the star superscript denotes nondimensional quantities **f — |LDM *
The governing equations can be further simplified by

replacing the species evolution equation for2, in Eq.

(6.8b, by the following algebraic equation for the mass frac- o

: > 1sF
tions:

3
k; Yi=1. 6.9

The total enthalpyn* of the fluid mixture, in its nondimen- T T, —————-— L,
sional form, is given by the following equation: Yo,

3 3 FIG. 8. Comparison of the steady state solution of the full PDEs with the
h* = 2 Y hi = E Yihop +T*—T5 . (6.10 ILDM in the phase space for ozone decomposition laminar flameglobal
k=1 k=1 view; (b) close-up view.

Using Egs.(6.9—(6.10 with Egs. (6.8 and boundary con-
ditions in Eq.(6.7) we obtain

T *
Jh*  22h* Jh* Jh* Y5(0,4%)=0.15-0.15 coé(E%)),
=——, with (t*,0)= (t*,)=0.
at* (3,‘//*2 (5’1//* * . —
6.10 300< ¢* <2000, (6.130
- iy . Y, Yy
If the initial conditions are chosen such thht (0,4*) (t*,00= —(t*,2000
=h’ , whereh* is the total specific enthalpy of the reactant ~ d¢/* aY*
mixture, then Eq(6.11) ensures that there is no tendency for
the total specific enthalpy of the fluid mixture to change from — AL (t* 0):(9_Y3(t* 2000=0. (6.139
its uniform initial value, and thus remains constant for/l apr T oyt ' '

andt*. Hence, Eq(6.8a can be replaced by the following

Schwab—zeldovich relation: The initial conditions are chosen such that the computational

domain near/* =0 has a small pocket of gas which has a

3 composition close to that of the products at chemical equi-

T =T +h*— > Yhor. (6.12  librium. The rest of the computational domain contains the
k=1 reactant mixture. There is a reaction zone or a flame front of

Therefore, we require the solution of only two PDEs from small initial thickness between the products and reactant

_ , ~mixture. After the flame front is fully developed, it propa-
Eﬁéi?ég’(;og)kané (andz)g (O and Q), coupled with alge gates into the reactant mixture at a steady flame speed. The

reactant mixture is at temperatufie=300 K, hence,h’
=1.432.

Figure 8 depicts the steady state solution of the full
PDEs, plotted in the two-dimension‘a{b—Yo2 phase space.

A computational domain of finite length is chosen from
¢* =0 to 2000. The following initial and boundary condi-
tions are chosen:

Y.(0,4*)=0, O0<y*=<2000, (6.133  Stars represent the steady state solution at the actual grid
points. One thousand equally spaced Lagrangian grid points
Y3(0,4*)=0.15, 0O<y* <300, (6.13p  were used, and for clarity every tenth grid point has been
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FIG. 10. The phase erraf incurred in computations of the ozone laminar
flame with the three methods, at a resolution of 1000 points, relative to
computations using full integration at a resolution of 10 000 points.

mass fraction

o e e , obtained by full integration. In this case, since the ASIM is
Coo o me e e e e e e e given by the solution of a nonlinear boundary value problem,
we have not constructed a Green’s function, but instead
FIG. 9. Ozone decomposition flame profiletat=70 000 for(a) tempera-  SOlved a discretized form of the differential equation. How-
ture, and(b) species mass fractions. ever, we believe that a numerical Green’s function construc-
tion procedure for solving Eq4.7b may be possible.

Figure 10 compares the phase error in the solutions ob-
plotted. The numerical computations are done using secongined by full integration, use of the ASIM, and the MPP
order, central difference approximations for spatial discretiimethod, all using a spatial resolution of 1000 grid points,
zation and the second order BDF method in LSODE for timerelative to the baseline solution obtained by full integration
advancement. Also plotted is the one-dimensional ILDM as at a spatial resolution of 10000 grid points. The numerical
curve in the same phase space. It can be seen from the figemputations are done using second order, central difference
ures that the steady solution does not lie on the ILDM. Thisapproximations for spatial discretization and the second or-
is emphasized in Fig.(B) which shows a close up of the der BDF method, in the differential algebraic solver
region of phase space where the difference between tHBASSL* for time advancement. Use of DASSL is not re-
steady state solution and the ILDM is maximum. Hence,quired for full integration, but it is required when using the
forcing the solution onto the ILDM, as done in the MPP ASIM and for the MPP method for solving the resulting
method, will lead to errors. The steady state temperature pradifferential algebraic system of equations from spatial dis-
file and mass fraction distribution of O,,0and G, in the  cretization. For error analysis all the computations are done
ozone decomposition flame, are plotted in Fig. 9. The regiomusing the DASSL package with same time increments until
of phase space depicted in FigbBcorresponds to the flame steady state is achieved, in order to remove any numerical
front in physical space. Within the flame front the tempera-bias as done for the simple example in the previous section.
ture gradients and the mass fraction gradients are larg&he phase errop is measured as the Lagrangian distance
hence, the effects of diffusion are large. Therefore, the steadyetween the location within the flame front where the mass
solution deviates the most from the ILDM within the flame fraction of Oy is 0.075, for the solution obtained by the three
front, as the ILDM is obtained from chemistry alone without methods and the baseline solution. We note that there is a
incorporating effects of diffusion. phase difference between the full integration at 1000 grid

It can be seen from Fig. 9 that the steady profiles obpoints and the baseline solution due to the inherent phase
tained when using the ASIM are nearly identical to thoseerror in the BDF numerical method used. This is depicted in

v
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