
JOURNAL OF PROPULSION AND POWER

Vol. 22, No. 6, November–December 2006

Review of Multiscale Modeling of Detonation

Joseph M. Powers
University of Notre Dame, Notre Dame, Indiana 46556-5637

Issues associated with modeling the multiscale nature of detonation are reviewed, and potential applications to
detonation-driven propulsion systems are discussed. It is suggested that a failure of most existing computations
to simultaneously capture the intrinsic microscales of the underlying continuum model along with engineering
macroscales could in part explain existing discrepancies between numerical predictions and experimental obser-
vation. Mathematical and computational strategies for addressing general problems in multiscale physics are first
examined, followed by focus on their application to detonation modeling. Results are given for a simple detonation
with one-step kinetics, which undergoes a period-doubling transition to chaos; as activation energy is increased,
such a system exhibits larger scales than are commonly considered. In contrast, for systems with detailed kinet-
ics, scales finer than are commonly considered are revealed to be present in models typically used for detonation
propulsion systems. Some modern computational strategies that have been recently applied to more efficiently cap-
ture the multiscale physics of detonation are discussed: intrinsic low-dimensional manifolds for rational filtering of
fast chemistry modes, and a wavelet adaptive multilevel representation to filter small-amplitude fine-scale spatial
modes. An example that shows the common strategy of relying upon numerical viscosity to filter fine-scale physics
induces nonphysical structures downstream of a detonation is given.

Nomenclature
b = generic constant vector
D = diagonal matrix
D̄ = dimensionless detonation wave speed
d = number of dimensions
Ē = dimensionless activation energy
f = generic convective and diffusive flux
g = generic reaction source
h = generic function for linear representation
J = generic Jacobian matrix
L = generic length, m
� = local reaction length scale, m
M = number of dependent variables
N = number of spatial discretization points
P = matrix of eigenvectors
RAM = size of random access memory, byte
t = time, s
t̄ = dimensionless time
X = mole fraction
x = distance coordinate, m
x = generic distance vector
x̄ = dimensionless distance coordinate
Y = mass fraction
ȳ = dimensionless distance coordinate
A = eigenfunction amplitude
Λ = diagonal matrix of eigenvalues
λ = eigenvalue, 1/s
φ = generic dependent variable
ψ = generic orthonormal basis function
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Subscripts

i = eigenfunction counter, species counter
j = spatial discretization counter
max = maximum
min = minimum

Superscript

∗ = constant state

I. Introduction

O VER the past several years, revolutionary advances in com-
putational modeling of multiscale physics1−3 have prompted

numerous numerical simulations of the subject of this special issue,
detonation-driven propulsion devices.4−62 Among the devices in
which detonation physics plays a leading role are the ram accel-
erator, the hypothesized oblique detonation wave engine, and the
pulse detonation engine. And whenever shocks are present in the
vicinity of chemical reaction, as is the case for many rocket and
airbreathing propulsion applications, detonation physics is relevant.

The computational advances are embodied in improved mathe-
matical models, numerical solution algorithms, and computational
hardware. Most critically, the improvements have enabled a more
robust scientific design procedure in which the engineer can pre-
dict with greater precision the behavior of a device a priori. The
key to past and future enhancements in prognostic ability lies in the
increase in the engineer’s capacity to describe physical events that
evolve over a wide range of spatial and temporal scales. While in
the popular imagination, the so-called Moore’s law63 effect, which
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1218 POWERS

describes the exponentially increasing speed of computational hard-
ware, is celebrated as the chief enabler of these enhancements,
although in actuality, a quieter, but no less important set of im-
provements in computational modeling techniques deserves as much
credit. These gains range from more efficient compilers, new algo-
rithms to better exploit massively parallel hardware architectures,
improved fundamental algorithms for solution of large linear alge-
braic systems, advances in grid-generation methods, and improved
algorithms for solving large sets of ordinary and partial differential
equations.1,2

Although the gains of the past decades have been remarkable,
this paper will demonstrate that in many respects certain prob-
lems in detonation propulsion have barely been dented; many more
scales remain to be captured before one can claim true understand-
ing. As will be shown, key physical phenomena involving unsteady
and multidimensional effects, such as ignition, stability, transverse
wave dynamics, detonation diffraction, detailed reaction zone struc-
tures, and diffusive structures, remain unresolved for most important
engineering applications. As a result, it is argued that the aeropropul-
sion modeling community stands to benefit from more critical and
skeptical examination of reactive flow calculations used in design
than is employed at present. It will be recommended, then, that the
community continue to nurture advances in algorithms and hard-
ware, but to moderate its expectations so that they are consistent
with the scientific limitations of both.

In short, the physics are sufficiently complex that accurate numer-
ical prediction remains problematic. For example, a recent exercise31

in which several computational algorithms were employed in an
effort to reproduce results of a benchmark experiment of a ram
accelerator produced, according to the authors, “widely different
outcomes,” with strong sensitivity to induction zone dynamics.
Another recent study,49 which included both computational pre-
dictions and observations of pulse detonation engines, concluded
the important run-up distance to detonation to be “underpredicted”
and that “simulation of the deflagration to detonation transition
(DDT) process remains a challenge.” Analogous difficulties in re-
lated fields are easily found. For example, Kadanoff3 summarizes
some notable recent failures in simulations of sonoluminescence,
Rayleigh–Taylor instability, and wave breaking. He concludes
“resolution matters.”

It is speculated here that challenges associated with truly captur-
ing the multiscale physics in such flows can provide an explanation
as to why predictions do not always match data. This paper will
review modeling strategies to capture multiscale physics, with at-
tention given to problems that arise in shock-laden supersonic reac-
tive flow such as exists in detonation-driven propulsion devices. It
will not give a detailed discussion of individual studies of those de-
vices, which have been discussed in other review articles,5,8,28,30,41,48

or fundamentals of detonation theory, well covered, for example,
by Fickett and Davis.64 Nor is it intended for those already ex-
pert in multiscale modeling. Instead, it is offered as a summary for
those of the general propulsion community who might want to know
more about this topic and appreciate how the disciplines of reactive
gas dynamics, mathematics, computer science, and aerospace engi-
neering can come together with the goal of advancing propulsion
technology.

The plan of this paper is to open with a brief review of how mul-
tiscale physics is endemic in nature, and in particular, in supersonic
propulsion devices. A short discussion then follows of fundamental
mathematical modeling strategies that can be used to capture the ef-
fects of the physical mechanisms which dominate at broadly differ-
ent scales. An argument is made that continuum-based mathematical
models in the form of partial differential equations will remain for
some time the critical tool to describe the behavior of common
propulsion devices. A description of popular computational strate-
gies for modeling partial differential equations is then given, focus-
ing on how the multiscale physics is manifested mathematically.
The following section gives multiscale detonation modeling exam-
ples from previous work of the author and some of his colleagues
describing how 1) a simple model of detonation can undergo a clas-
sical period-doubling process and transition to a chaotic state,65

2) detailed gas-phase kinetic models give rise to fine-scale struc-
tures orders of magnitude below those commonly used in present
design analyses,66 3) a detailed gas-phase reaction kinetics model
can be rationally reduced so as to filter all fine timescale phenom-
ena below a given threshold,67,68 4) an adaptive-mesh-refinement
(AMR) technique can be used to simultaneously capture fine and
coarse structures in a viscous detonation with detailed kinetics,67

and 5) the effects of artificial numerical viscosity can corrupt some
postshock detonation flowfield structures predicted by models with
simple kinetic schemes.69 The paper is closed with some brief
comments on engineering applications followed by a short set of
conclusions.

II. General Issues and Strategies
in Multiscale Modeling

Here, we give a general discussion of multiscale modeling; a more
detailed complementary review is given by Oran and Boris.2

A. Multiscale Physics
Our universe has identifiable structures that span a tremendous

breadth of length scales. The popular book of Morrison et al.,70

which vividly illustrates the multiscale universe, describes scales
ranging from a proton-based scale of 10−16 m to a universe diameter
of 1025 m. Even more dramatic, physicists are now actively studying
a hypothesized quantum gravitational scale of 10−35 m (Ref. 71).
Moreover, observable phenomena are known to evolve on a broad
range of timescales, ranging from 10−25 s for the time necessary for a
photon to traverse a proton-based length, to 1017 s for the estimated
age of the universe.72 An overriding goal of much of science is
to develop the most efficient explanation for the behavior of the
universe, as well as its components, which spans as wide a set of
scales as is practical. The whole being a consequence of the parts,
it stands to reason that one path to understanding macrobehavior of
the universe is by understanding its building blocks and how they
interact. Generally, the wider breadth of scales, the more impractical
this strategy becomes.

B. Mathematical Strategies
As the naive theoretical approach of simply describing phenom-

ena at all scales holds little promise, a key to making progress in
developing predictive science has been the wise employment of as-
sumptions that decouple phenomena which evolve on one scale from
those that evolve on others. The most direct approach to this end
combines good intuition guided by experiment with mathematical
analysis to either eliminate or rationally account for phenomena that
evolve on dramatically different scales than those of the phenom-
ena of interest. Science being ultimately empirical, the proof of the
wisdom of such assumptions lies in comparing the predictions of
such theories to experiments whose results were not known before
the fact.

A famous example of such an approach is found in the devel-
opment of the kinetic theory of gases in the late 19th century. This
theory showed how systematic averaging of complex molecular col-
lision processes gives rise to a set of progressively simpler theories,
each of which captures fewer physical phenomena, but are often
more than sufficient for the task at hand. In a series of analytical
steps in which progressively more and more fine scales are removed
via averaging, one proceeds from a Liouville to a Boltzmann to a
Burnett to a Navier–Stokes model of reactive fluid mechanics.73−76

This theory relates both equation of state and diffusive transport
properties, valid at the macroscale, to the more fundamental theory
based on microscale molecular collisions. For simple molecules,
first principles estimates are available for the resulting constitutive
equations that are really models for capturing the average effect of
subcontinuum phenomena.

The success of this approach has sparked much research in the
same analytic vein. One need only consult the recent literature77,78

or any issue of the new journal Multiscale Modeling and Simulation
to see that one common conception of multiscale physics is of-
ten closely linked to developing custom models for highly distinct
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POWERS 1219

physical problems in which multiscale coupling plays a large role.
For many problems, this method of the modeling artisan is a useful
approach. For others, the basic mathematical models are reasonably
well established; however, their solution for general problems is not.
Such problems demand the tools of the algorithm artisan to meet
the challenges of multiscale physics, which are already intrinsic to
the models. The key problems in aeropropulsion tend to recommend
the latter approach, as most models for reacting gas dynamics are
generally accepted. The main challenges intrinsic in these models
arise from their highly nonlinear character, which admits complex
multiscale solutions in which disparate scales are often strongly
coupled.

When one confines consideration to continuum reactive fluid me-
chanics applicable to aeropropulsion devices, one nevertheless finds
widespread analytical efforts to filter the scales that remain in the
continuum. An estimate of the smallest length scale that is inher-
ent in the resulting continuum models is related to the mean free-
path distance between molecular collisions, typically on the order of
10−7 m. This minimum length scale of relevance is the foundation of
length scales predicted by continuum models of mass, momentum,
and energy diffusion, as well as elementary reaction kinetics.75 Note
further that for compressible flow, the so-called Kolmogorov scale
of turbulence is one and the same with the scale of shock thicknesses,
which itself is on the order of the mean free-path distance, as can
be shown by simple scaling arguments.79 Thus, for a compressible
flow with elementary reactions, all finest scales are related to the
mean free path. The common flamelet approach in which some fine-
scale flame structures are not resolved in some low-Mach-number
simulations of combustion loses its physical rationale for a direct
numerical simulation80 (DNS) of detonation. In contrast, the largest
length scale is typically a small multiple of the device length, which
can be 101 m. Within the span of these scales, Fig. 1 gives rough es-
timates of scales associated with common features in reactive fluid
mechanics, such as boundary layers and coarse scale reaction zones.
This span of eight orders of magnitude of length scale still repre-
sents a grand challenge to achieve quantitative predictions from any
theory.

The list of mathematical strategies to reduce the span of these
scales is long and includes methods for filtering both space and

Fig. 1 Estimate of range of length scales for continuum model of com-
pressible reactive flow with detailed kinetics in typical propulsion de-
vices along with range of scales that can be loaded into desktop computer
with 109 bytes RAM for one-, two-, and three-dimensional calculations
with M = 15 variables per cell.

timescales: 1) employment of Euler equations so as to neglect all
diffusion processes and their associated thin layers—notably, such
theories then admit true shock and contact discontinuities which
give rise to new problems when accurate numerical simulation is
attempted; 2) use of formal averaging theories to encapsulate fine-
scale behavior in a new constitutive model—such approaches are
common in flows involving granules and droplets; 3) a wide vari-
ety of asymptotic techniques such as boundary layer theory or the
method of multiple scales81,82; 4) analytic models for Kolmogorov-
scale turbulent fluid interactions; and 5) intrinsic low-dimensional
manifolds (ILDM)67,83,84 to locally equilibrate fast chemical reac-
tion modes.

Whether or not any further mathematical filtering strategy is
taken, the modeler is typically faced with a system of equations,
which will be taken to be of the form

∂φ

∂t
+ ∇ · f (φ) = g(φ) (1)

Here, φ is a generic set of M dependent variables, f is a nonlin-
ear function embodying convective and diffusive fluxes, and g is
a nonlinear reaction source term. These equations are solved on a
spatial domain of x ∈ Rd , where d = 1, 2, 3 gives the dimension of
the system and x is the spatial variable.

Much insight into general multiscale behavior can be gained by
considering the special case in which Eq. (1) is linear. In such a case,
one can define an infinite set of basis functions,ψi (x), i = 1, . . . ,∞,
which in this linear case are eigenfunctions of the spatial derivative
operator. For the linear system, one can always transform to the
wave-attached frame so as to remove the convection and be left
only with diffusion. Diffusion operators are typically self-adjoint
and thus have an infinite set of real eigenvalues and orthonormal
eigenfunctions. These eigenfunctions span the space, and thus any
arbitrary set of initial conditions can be cast as an infinite series in
terms of the eigenfunctions. The eigenfunctions are typically of a
spatially oscillatory nature, whose wave number rises with increas-
ing value of i . One then assumes that the dependent variables φ can
be separated into spatial and temporal modes via the eigenfunction
expansion

φ =
∞∑

i = 1

αi (t)ψi (x) (2)

Here αi (t) is the time-dependent amplitude of the i th eigenmode.
Then, Eq. (1) can be cast as an infinite set of linear ordinary differ-
ential equations (ODEs) of the form

dαi

dt
= λiαi , i = 1, . . . , ∞ (3)

which describes the temporal evolution of the amplitude of each
eigenmode. Here λi is the eigenvalue of the i th eigenmode. Criti-
cally, one notes that each ODE in Eq. (3) is uncoupled from all others
and thus can be solved individually. Consequently, an analytic solu-
tion can be obtained for the amplitude of each mode; one typically
finds, given that an entropy inequality is satisfied, that the amplitude
of a given high-frequency mode decays to zero as the mode number
increases to infinity. Thus, a finite series can accurately approximate
the solution, and one can estimate the error incurred by the trunca-
tion. Such solutions formally have a multiscale character, but there
is no coupling across scales, and the error of neglecting fine scales
is small and quantifiable.

There is no robustly accurate way to segregate the effects of re-
action and diffusion. Even in a purely linear version of Eq. (1), the
eigenvalues λi are consequences of the combined effects of reaction
and diffusion. An analysis of the related, operator-split, spatially
homogeneous version of Eq. (1), dφ/dt = g(φ), when g happens to
be a linear operator, gives rise to a finite set of M eigenvalues, whose
reciprocals give estimates of a finite set of reaction timescales. These
scales can indeed be widely disparate and indicate that chemically
induced stiffness is present. The stiffness however is finite and will
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1220 POWERS

always be dominated by stiffness induced by the continuous differ-
ential diffusion operator when spatial inhomogeneity is included.
In fact, only when enough modes are included so that limi → ∞ λi

is dominated by diffusion, and so transcends the largest eigenvalue
predicted by the spatially homogeneous model, are enough modes
present for the solution’s series to be in the asymptotically conver-
gent region, so that one can claim the essence of the solution is
spatially resolved. A discussion of the dangers of the common prac-
tice of splitting chemistry from convection and diffusion is given by
LeVeque and Yee.85 In fact, the artifice of operator splitting creates
the illusion that chemical stiffness can be segregated from that of
diffusion, when in fact the two are often highly coupled.

If Eq. (1) is nonlinear, one can still perform an expansion of φ
in terms of an infinite set of orthonormal basis functions ψi , which
no longer are eigenfunctions of the spatial operator. In this case one
can, in principle, approximate the system by an infinite set of ODEs
of the form

dαi

dt
= hi (α1, . . . ,α∞), i = 1, . . . ,∞ (4)

In the nonlinear case, there is coupling between modes, and it is
difficult to determine a priori how strong that coupling is. In practice,
it is often nearly impossible to form the exact representation given
in Eq. (4), and one usually has to resort to discrete approximations.
However, many spectral and pseudospectral methods, as well as low-
order nonlinear stability analyses, do take as their starting points
truncated versions of Eq. (4).

C. Computational Strategies
For nonlinear problems, exact solutions are typically not avail-

able, and the modeler most often turns to discretization of the
underlying partial differential equations to enable an approximate
numerical solution to be obtained. These equations contain their
own challenges for which a summary of approaches will be sum-
marized here. As the detonation-based aeropropulsion literature is
beginning to contain more calculations based on Navier–Stokes
models,35,46,61,86−91 attention will be focused on them; similar ar-
guments could be made for related models.

The ongoing development of the digital computer along with ap-
propriate algorithms over the past decades has enabled a widening
of the breadth of scales that can be modeled. However, it is often not
appreciated still how narrow the band is at present. Consider a calcu-
lation to be performed in a one-, two-, and three-dimensional linear,
square, and cubical box. Take d = 1, 2, 3, to be the dimension of the
box and Lmax to be its length. Take the minimum physical length
scale to be Lmin and M to be the number of dependent variables to
be calculated at each computational node. Then it is easy to show
the necessary size of the random access memory RAM is given by

RAM = M

(
Lmax

Lmin

)d

(5)

assuming a straightforward spatially uniform discretization of the
geometric domain.

The most desirable calculation is one that has sufficient resolution
to capture all of the relevant scales admitted by an underlying math-
ematical model. Such a calculation is a DNS. The real challenge as-
sociated with performing a DNS in a continuum calculation of flow
in an aeropropulsion device, even on modern computational hard-
ware, is evident on examination of Fig. 1. This figure presumes that
M = 15 variables are associated with each cell, which is a reason-
able estimate for calculation with detailed kinetics of, for example,
a hydrogen-oxygen system. Estimating that a good desktop com-
puter in the present day can have 109 bytes of RAM, it is seen that
such a machine can perform simulations that span a ratio of scales
Lmax/Lmin = 108, 104, and 102 for one-, two-, and three-dimensional
calculations, respectively. Only the one-dimensional calculation ap-
proaches the breadth of physical scales admitted by a continuum
model for aeropropulsion engineering devices.

Figure 1 also shows the results of two distinct approaches to
modeling. The purpose of the conservative DNS approach, whose

predictions are easier defended, is to always capture the finest scales.
In this approach then, the largest one-, two-, and three-dimensional
aeropropulsion problems, which can be loaded onto a 109 bytes
computer, have characteristic lengths of 101 m, 10−3 m, and 10−5 m,
respectively. This conservative approach is rarely adopted because
it cannot capture the macroscopic scales of interest in typical engi-
neering applications. In the more common, as well as more risky,
approach, the engineering scale is taken as the largest scale, and as
fine a discretization as is practical is used for a simulation. Assuming
the largest device geometric scale is 101 m, a modern desktop com-
puter with 109 bytes RAM can at best capture scales down to 10−7 m,
10−3 m, and 10−1 m in a given one-, two-, and three-dimensional
calculation. Phenomena that evolve below these scales are not cap-
tured in any detail and are typically overwhelmed by nonphysical
numerical diffusion.

Considering now supercomputers, recently developed massively
parallel systems have achieved as much as 3.2 × 1013 bytes RAM.92

Even then, the ability to span scales is not what is required for a first
principles scientific design. For such a machine, the ratios of scales
that can be spanned are 2 × 1012, 1 × 106, and 1 × 104 for one-,
two-, and three-dimensional calculations, respectively. The resolu-
tion of the necessary ratio of scales of Lmax/Lmin = 108 requires
1.5 × 109 bytes RAM, 1.5 × 1017 bytes RAM, and 1.5 × 1025 bytes
RAM for a one-, two-, and three-dimensional calculation, respec-
tively. Moreover, these estimates only speak to the necessary ability
to load the problem into RAM but ignore the critical issue of speed of
the actual computation, which increases dramatically with the fine-
ness of the discretization. An indication of the the range of scales
that can be resolved by such a DNS as a function of available RAM
is given in Fig. 2.

With some notion of the range of length scales that can or should
be modeled, the numerical analyst typically performs some class
of spatial discretization of Eq. (1) in which the solution is only
calculated at N discrete points. This allows the spatial differential
operators to be replaced by discrete counterparts and transforms
the coupled set of partial differential equations into a large set of
differential algebraic equations (DAEs) of the form

D · dφ j

dt
= −∇ j [ f (φ1, . . . ,φN )] + g(φ j ) j = 1, . . . , N (6)

Here ∇ j is a discrete counterpart to the continuous gradient operator,
and D is a diagonal matrix whose diagonal is composed of zeros or
ones. It arises because some methods give rise to purely algebraic
relations at some points. If A = I, the identity matrix, as it is for
several methods, the set of N DAEs becomes a set of N ODEs.

There is a wide choice of spatial discretizations in common use.
Among them are 1) finite difference/finite volume, 2) finite element,
3) spectral, 4) wavelet, and 5) manifold. There is a large body of
literature on the first three discretizations, nicely summarized by
Iserles93; for the hyperbolic equations used commonly for inviscid
detonation simulations, LeVeque94 gives a modern discussion. The

Fig. 2 Estimate of breadth of length scales that can be modeled for
a typical continuum calculation of compressible reactive flow with de-
tailed kinetics as a function of available random access memory (RAM).
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POWERS 1221

first two classes are related in that both involve a discretization in
which a small number of points in the neighborhood of point j are
used to estimate the spatial derivatives. Such discretizations have
a low order of spatial accuracy. Spectral methods95,96 involve dis-
cretizations in which all points in the domain are used to estimate
local values of spatial derivatives; at the expense of additional com-
plexity, these have a high order of accuracy for smooth problems.
The wavelet discretization is a relatively new class whose use admits
several advantages,67 especially in developing computational grids
that dynamically adapt to evolving flow structures. The manifold
discretization, described for reactive systems recently,68 is another
relatively new approach, which gives rise to a set of DAEs. The
algebraic relations force the solution to lie on specified manifolds
and amount to equilibrating fast timescale events.

Considering from this point on the case where D = I, Eq. (6) is a
large set of nonlinear ODEs in time of the form

dφ j

dt
= −∇ j [ f (φ1, . . . ,φN )] + g(φ j ) j = 1, . . . , N (7)

Spatial variables do not explicitly appear in Eq. (7). Consequently,
one can apply notions from the well-developed theory of non-
linear dynamic systems97 to understand behavior of the spatially
discretized system. In particular, Eq. (7) for N ≥ 3 contains the es-
sential general property of nonlinearity so that one might expect to
achieve a chaotic solution in time. In fact, such behavior is shown
explicitly in detonation systems in a recent study.65 Such solutions
formally admit an infinite number of timescales, and none can be
neglected. If a nonlinear system becomes chaotic, then small-scale
events, which could safely be neglected if the system were linear,
can no longer be simply dismissed. This is the fundamental conun-
drum of chaos: for such systems, even low-amplitude disturbances
at fine scales have the potential to cascade up to induce large dis-
turbances at coarse scales. In such cases, similar to homogeneous
turbulence, one must perform more specialized studies to determine
what meaningful statistically averaged information can be extracted
from the nonlinear system and not expect to recover deterministic
predictions at all scales.

Even if the solution to the ODEs of Eq. (7) were known to in-
finite precision, the solution might or might not represent well the
solution of the corresponding continuous system, Eq. (1). How well
the solution to Eq. (1) is approximated depends upon whether the
spatial discretization was chosen to be fine enough to capture the
intrinsic spatial scales of Eq. (1). This issue can only be resolved in
general by systematic study of if and how the approximate solution
is converging as the spatial discretization is refined. One can usu-
ally be confident in a solution if it is converging at a rate consistent
with the order of accuracy of the spatial discretization; however, in
the absence of an exact solution one cannot have absolute certainty
that one is converging to a correct, physically meaningful solution.
Imagine, as a counterexample, a sensitive nonlinear system with
multiple stable equilibria. Some equilibria can be physical and some
nonphysical. A small error at an intermediate stage of the computa-
tion can shift the solution path in phase space and send the solution
to an incorrect, and perhaps nonphysical, albeit stable, equilibrium
point. Fortunately, experience shows convergence to an incorrect
solution is rare for models that are mathematically well posed and
whose intrinsic scales have been computationally resolved. Lastly,
one notes that 1) a solution is never “converged,” but only can be
converging at an appropriate rate; and 2) only when a solution is
converging appropriately is it proper to ask the even more impor-
tant question for precision engineering of just how computationally
accurate is that solution.

Important information regarding the nonlinear temporal behavior
of a spatially discretized system can often be gleaned from a local
linearization, which when applied to Eq. (7) at a generic time and
state t∗, φ∗

j gives rise to the linear system of ODEs of the form

d

dt

(
φ j −φ∗

j

)= J · (φ j −φ∗
j

)+ b, φ j (t
∗) =φ∗

j j = 1, . . . , N

(8)

Here J is the locally constant Jacobian matrix, and b is a locally
constant vector. Standard linear systems analysis98 shows that each
local eigenmode of Eq. (8) evolves at a rate dictated by the eigen-
values of J and that local solutions take the form

φ j (t) = φ∗
j + {P · exp[Λ(t − t∗)] · P−1 − I} · J−1 · b (9)

Here P is the matrix whose columns are populated by the right
eigenvectors of J, and Λ is the diagonal matrix whose diagonal is
composed of the eigenvalues λ j , j = 1, . . . , N , of J. This solution
presumes that J can be diagonalized; if this is not possible, a related
Jordan decomposition can be performed. The reciprocal of the real
part of each eigenvalue λ j gives the local timescale of evolution of
each local eigenmode. Importantly, it can be shown that increasing
the spatial resolution, thus increasing N , has the effect of introducing
larger eigenvalues so as to increase their disparity, and thus the
stiffness. Consequently, there are more timescales to resolve in a
numerical solution.

It is Eq. (7) that is the departure point for a wide array of multiscale
methods found in the scientific computing literature. It is well known
that so-called time-explicit and time-implicit methods can be used
to solve such systems. Both require a second discretization, here in
time, with explicit methods using known values of φ j to evaluate
the right side of Eq. (7) and implicit methods using unknown values
of φ j to evaluate the same term. Explicit methods can be employed
via relatively simple algorithms and do not place excessive demands
on storage, but for numerical stability require that the discrete time
step be of the order of the reciprocal of the largest eigenvalue of J.
For fine grids, this can become prohibitively expensive.

Implicit methods require more complicated solution algorithms,
typically involving the iterative solution of a set of nonlinear alge-
braic equations, which places high demands on storage, with the
advantage that much larger time steps can be used while retain-
ing numerical stability. Most solution methods for nonlinear al-
gebraic systems require repeated inversion of large matrices. The
matrices that arise from stiff sets of ODEs have a large condi-
tion number, rendering their inversion computationally difficult.
The matrices that arise from finite difference, finite element, or
wavelet discretizations are usually sparse, which renders their in-
version somewhat easier. In fact, the inversion of such sparse sys-
tems poses the critical computational multiscale challenge for a
wide part of the scientific computing community. A large body of
literature has arisen as a result.99−102 Some of the key techniques
are so-called Jacobi and successive-overrelaxation iterative tech-
niques, Krylov subspace methods, and multigrid methods. As these
methods often require iterative techniques that need to be trun-
cated at some point, it is important to distinguish convergence of
an intermediate iterative solver from convergence of the solution
itself. For an approximate solution via a time-implicit technique to
Eq. (1) to be converged, one must indeed have convergence of the
iterative solver at each time step; in addition, one must use suffi-
cient spatial resolution to insure the approximation to φ itself is
converging.

Lastly, AMR methods must be mentioned. The literature on this is
rapidly developing103; moreover, it is beginning to impact the com-
bustion and detonation community.67,88−90,104−108 The promise of
these methods is that computational grids can be judiciously redis-
tributed in such a fashion to maintain a small error of approximation.
Precisely how to distinguish just what constitutes an error can pose
challenges to an AMR strategy when no a priori knowledge of the ex-
act solution exists. The idea is motivated by the fact that many flows
have large regions of small variation, and, consequently, coarse dis-
cretizations can be tolerated in these regions. Likewise, in regions
of steep gradients fine discretizations are necessary to capture the
physics correctly. Unsteady detonation problems are challenging in
that a dynamic adaptation is required in which the user cannot have
a priori knowledge as to where to adapt. Thus, algorithms must
be designed to automatically make decisions as to where to con-
centrate the discretization. This can pose serious challenges if the
user wants to operate in a massively parallel environment. For flows
with a small number of regions of steep gradients, AMR can be an
effective tool to efficiently capture multiscale phenomena, with a
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1222 POWERS

potential gain of orders of magnitude in computational time relative
to calculations performed on a uniformly fine grid. However, it is
easy to imagine that in a complicated multidimensional detonation
flowfield during which multiple reflections occur that the spatial do-
main could rapidly become saturated with interacting wavefronts,
each of which would need to be resolved. Thus, for such problems,
any AMR strategy would soon evolve into something close to a
uniformly fine grid.

III. Sample Multiscale Detonation Results
This section will provide a compact review of some of the author’s

and coworkers’ work in detonations that have a multiscale character.
There is, of course, a wider literature on this topic, much of which
is reviewed in the original source material.

A. Transition to Chaos with Simple Kinetics
Perhaps the simplest exposition of the multiscale character of

detonations can be demonstrated with a classical model of unsteady
one-dimensional detonation of a calorically perfect ideal gas whose
irreversible exothermic reaction is described by one-step Arrhenius
kinetics.65 There is a long history of studying the linear109,110

and nonlinear111 stability of steady detonations predicted by this
simple model; numerical studies of one-dimensional pulsating
detonations are also beginning to appear for systems with detailed
kinetics, although it is not clear that the finest scales have been
resolved.112

Reference 65 considers the unsteady behavior of waves that
have a Chapman–Jouguet (CJ) character when unsteady terms are
neglected. Activation energy is taken as a bifurcation parameter.
A standard case is considered in which the dimensionless heat re-
lease q = 50 and the ratio of specific heats γ = 6

5
. It is difficult to

compactly describe the scaling parameters; a description is given
in Ref. 65 and references therein. Results of unusually high accu-
racy are obtained by use of a novel shock-fitting scheme coupled
with a new fifth-order spatial discretization.113 In all cases, 20 points
are taken to describe the so-called half-reaction zone length L1/2,
which is the length in the steady detonation structure at which the
reaction progress variable takes on a value of 1

2
. Shock fitting is

a viable method because only a single discontinuity ever appears
in these flows. Consequently, there is no first-order corruption
of the results as a result of shock-capturing effects of numerical
viscosity, and the results have true fifth-order accuracy. This high-
order accuracy enables the revelation of multiscale behavior in det-
onations, which is hidden in closely related studies done at lower
order.114,115

For low activation energy, the steady detonation is hydrodynam-
ically stable. As activation energy is increased, the detonation be-
comes unstable. While linear stability theory predicts more and more
unstable modes at higher and higher frequencies as activation energy
is increased, in this study the only cases considered are those for
which the unstable behavior has as its origin a single unstable low-
frequency mode as predicted by the linear stability theory. Within
this confined range, interestingly, one finds a very different class
of multiscale behavior: the dimensionless detonation wave speed D̄
undergoes a classic period doubling behavior as activation energy is
increased. That is to say, more and more low-frequency modes are
exhibited. Consequently, to fully capture the behavior of the lowest
frequency mode of oscillation, one must integrate for a long time
over a large spatial domain; the largest scale admitted becomes ever
larger with increasing activation energy, at least in the limited range
studied.

This period doubling behavior is summarized in the bifurcation
diagram of Fig. 3. This figure is qualitatively similar to bifurcation
diagrams found in a wide variety of problems in nonlinear dynam-
ics, for example, the famous logistics equation.97 The bifurcation
points accumulate with geometrically increasing frequency in the
well-documented way of many chaotic systems. The Feigenbaum
constant116 for this accumulation rate is 4.66 ± 0.09, in close agree-
ment to the known value of 4.669201. Moreover, for even greater
values of activation energy there are windows of relative placid-
ity, in that only a small number of oscillatory modes are present;

Fig. 3 Numerically generated bifurcation diagram 25 < Ē < 28.4 for
one-dimensional inviscid detonation with one-step kinetics, adapted
from Ref. 65.

again, this is entirely consistent with general theories of nonlinear
dynamics. Figure 4 then shows numerical predictions of unsteady
detonation wave speed D̄ vs dimensionless time t̄ for a variety of
activation energies. For each of the activation energies, a different
class of oscillation is predicted, including one that is chaotic.

B. Reaction Zone Length Scales for
Steady Inviscid Models with Detailed Kinetics

Turing next to models with detailed kinetics, a recent study66 has
considered a standard one-dimensional model of steady inviscid CJ
detonation in a hydrogen-air mixture using a model of nine molecu-
lar species and 19 elementary reactions. The model was identical in
all respects to that used by Shepherd117 as well as Mikolaitis,118 and
predictions were completely consistent with their results. The model
was posed as a dynamic system of ODEs with the spatial coordinate
x as the independent variable. A numerical solution of the ODEs
gave a prediction of the reaction zone structure, shown in Fig. 5. In
contrast to earlier results, Fig. 5 is plotted on a logarithmic scale,
which better reveals the multiscale nature of this seemingly simple
system. At small values of distance from the shock in the region
known as the induction zone, the minor species are rapidly evolving
over small length scales of less than 10−6 m. It is not surprising that
this is similar to the length scale of molecular collisions as the con-
stitutive theory for the detailed kinetics builds on a foundation from
collision theory. The global effect of reaction evolves over a broader
length scale of around 10−1 m. An eigenvalue analysis of the local
Jacobian matrix, which characterizes the ODEs in space, reveals the
precise values of the length scales in the steady detonation. Because
the system has a finite number of ODEs, there are a finite number
of length scales, each of finite value. These are plotted in Fig. 6.
The smallest and largest, around 10−6 m and 10−1 m, respectively,
predict well the small and largest scales seen in Fig. 5.

The implications of this study for unsteady modeling are disturb-
ing. For the researcher to have full confidence in the predictions of
a model with detailed kinetics, at a minimum a spatial grid resolu-
tion below that of the finest length scale must be captured. That is
not the case in the bulk of the modern literature, and Ref. 66 lists
recent calculations that are underresolved from one to five orders
of magnitude. One must ask why the underresolved studies give
results that at least seem plausible. We speculate that it is because
combustion systems tend toward stable equilibria. Experience sug-
gests that underresolved calculations approach the same equilibrium
state as do resolved calculations, but at a rate dictated by numerical
viscosity rather than the underlying mathematical physics model.
It seems likely that a model that relies upon numerical viscosity
to describe the finest scales runs the risk of improperly describing
transient events such as ignition, DDT, and detonation instability.
These issues remained to be explored fully.

This point is illustrated by the recent work of Fusina et al.,91

which employs a Navier–Stokes model with detailed kinetics to
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POWERS 1223

a)

b)

c)

d)

e)

f)

Fig. 4 Numerically generated detonation velocity D̄ vs t̄, using a fifth-order discretization coupled with shock fitting for one-dimensional inviscid
detonation with one-step kinetics: a) Ē = 27.75, period-4; b) Ē = 27.902, period-6; c) Ē = 28.035, period-5; d) Ē = 28.2, period-3; e) Ē = 28.5, chaotic; and
f) Ē = 28.66, period-3, adapted from Ref. 65.

Fig. 5 Species mole fraction vs distance for steady CJ detonation in
inviscid hydrogen-air mixture predicted by a one-dimensional steady
model, adapted from Ref. 66.

study the stability of a two-dimensional Chapman–Jouguet oblique
detonation wave (ODW). In their study, which is representative of
the state of the art of detonation modeling for propulsion systems,
the authors take the engineering approach of capturing device-length
scales, but are not able to capture the finest viscous and reaction
scales. In a detailed grid-resolution study, they conclude “The grid
resolution . . . is not fine enough to capture all the length scales
present, such as the viscous shock thickness, but it is fine enough

Fig. 6 Local length scales vs distance for steady CJ detonation in invis-
cid hydrogen-air mixture predicted by a one-dimensional steady model,
adapted from Ref. 66.

for determination of ‘global’ or macroscopic phenomena such as the
ODW angle.” Because determination of stability hinges upon proper
resolution of length and timescales, it might be too early to conclude
that such CJ waves are stable, and the authors are careful to qualify
their conclusion on stability accordingly. Indeed, for flow of simpler
fluid over the same geometry, resolved calculations of Grismer and
Powers119 show that a significant overdrive is necessary to stabilize
inviscid oblique detonations predicted with one-step kinetics.
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C. Relaxation of Fast Timescale Kinetics with ILDM
When a fluid particle is both reacting and advecting, the length

of the reaction zone is roughly given by the product of the advec-
tion velocity and the reaction time. The small reaction zones of the
preceding section are direct consequences of fast reactions. One
important strategy to reduce the multiscale challenges of reactive
fluid mechanics is to develop reduced kinetic models. Unfortunately,
most of the well-known methods, for instance, those involving so-
called steady-state and partial equilibrium assumptions, come with
no guarantee that they can robustly capture the results of the de-
tailed kinetic models; that is to say, in such approaches there is no
systematic way to adjust parameters so as to converge to the full
kinetics solution. Moreover, even after these approaches have been
applied, there is no guarantee that fast timescale events have truly
been filtered from the system.

The relatively new ILDM83 and the related computational singular
perturbation84 methods offer a rational approach to systematically
reduce detailed kinetics models to simpler systems. The method is
built around spatially homogeneous systems and thus focuses on
filtering fast timescale events. The method relies on locally lineariz-
ing the ODEs that describe the temporal evolution of the reactive
system so as to find a local Jacobian matrix. An eigendecomposition
of the Jacobian matrix reveals an ordering of reactions from fastest
to slowest along with the directions in composition space associ-
ated with fast and slow modes. A slow manifold is then constructed
by forcing the manifold to lie orthogonal to all of the eigenvectors
associated with the fast modes. The dimension of this manifold is
chosen by the modeler.

One can then model the behavior of the spatially homogeneous
reactive system by projecting from an arbitrary initial condition to a
point on the manifold, thus avoiding the small time steps associated
with the fast dynamics. One lets the system evolve only on the
manifold, where the timescales are relatively slow, and inexpensive
explicit methods can be used to calculate the time variation. A small
error is introduced in neglecting the fast timescales; if the initial
condition is too far from the ILDM, the error can be large, and
special care must be taken to avoid this.

Figure 7 shows a projection of a composition space for the mass
fraction Y of two of the species of a nine-species, 37-step mechanism
that describes combustion in H2−O2−Ar systems.67 Here, the equi-
librium point, which can be thought of an ILDM of dimension zero,
is calculated a priori as is a one-dimensional ILDM. Also shown are
projections of several trajectories, each of which first relax to the
one-dimensional ILDM and then to the equilibrium point. On each
trajectory an × is plotted at equal time intervals. It is seen that these

Fig. 7 ILDM projection for a nine-species, 37-step reaction mecha-
nism of spatially homogeneous H2−O2−Ar combustion as a function
of YH2O along with trajectories from full time integration showing relax-
ation to the manifold and equilibrium. The symbol ×× denotes equally
space 0.10-μs time intervals. Total time to relax to equilibrium is near
0.1 ms, adapted from Ref. 67.

Fig. 8 Predictions of pressure vs distance at coarse and fine length
scales for one-dimensional viscous detonation of H2−O2−Ar with de-
tailed kinetics model, ILDM kinetics reduction, and wavelet adaptive
multilevel representation, adapted from Ref. 67.

agglomerate near the ILDM, indicating that the bulk of the time is
spent on the ILDM. The same approach can be used to generate
ILDMs of higher dimension, which can capture progressively more
timescales.

An a priori knowledge of the manifold can be employed in a spa-
tiotemporal calculation to reduce computation time at the expense
of a small error. This particular ILDM was used in a Navier–Stokes
detonation calculation,67 and the results are shown in Fig. 8, which
gives a plot of pressure vs distance at two highly disparate spatial
resolutions. In the fine-scale structure plot, the dots indicate the
predictions utilizing the ILDM method, and the solid line gives the
results of the full kinetic model. At this scale, they are indistinguish-
able, but there is a small difference. For this calculation, enough
points were sufficiently close to the ILDM to enable a reduction in
computational time of a factor of about two. For systems that were
closer to equilibrium throughout the domain, this efficiency gain
could be much larger.

D. Detonation for Unsteady Viscous Models with Detailed Kinetics
In addition to describing the ILDM method, Ref. 67 also exposes

other multiscale features of detonations. This study considered a
Navier–Stokes model and thus admitted shocks of finite thickness.
Here the thickness was a function of the physical viscosity and not
the numerical viscosity. The viscous layer associated with the shock
is thin, as seen in Fig. 8, which shows in its bottom half a microscale
portion of the macroscale given in the top half. The viscous layer
actually overlaps with some of the finest reaction zone lengths but
is distinct from the better understood induction zone.

These calculations were enabled by a relatively new adaptive
method known as the wavelet adaptive multilevel representation
(WAMR). To briefly summarize this complex method, a given set
of initial conditions is projected onto a basis of wavelet functions.
These functions have localization in both physical and wave-number
space. Basis functions whose amplitude is below a threshold value
are discarded, except for those in the near neighborhood of the
threshold. For systems such as this one that contain a small number
of zones with steep gradients, this projection and filtering greatly
reduces the number of equations that need be solved, as well as the
associated stiffness. The system is then evolved in time. If wavelet
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POWERS 1225

amplitudes fall below the threshold value, they are discarded. Those
in the near-threshold region whose amplitudes were calculated are
checked to see if they cross the threshold, and if so, they are included
in the next calculation. As a result of this WAMR method, the entire
one-dimensional unsteady viscous detonation with detailed kinetics
was represented by no more than 3 × 102 collocation points at any
given time. Had the same calculation been performed on a spatially
uniform grid, approximately 107 collocation points would have been
required to achieve the same accuracy. Had a similar calculation
been performed in multiple dimensions, the efficiency of the WAMR
method, relative to a uniform mesh, would have been even greater.

E. Two-Dimensional Detonation Structures with Simple Kinetics
A common practice in detonation calculations is to ignore dif-

fusion processes and only consider convection and reaction. In
multidimensional detonation studies, such as those of Bourlioux
and Majda120 or Williams et al.121 visually striking detonation
structures have been predicted with reactive Euler models. Recent
studies122,123 have further highlighted the detailed spatiotemporal
structures present in seemingly simple phenomena as detonation
corner-turning predicted by inviscid one-step models.

However, as continuum models of reaction and diffusion both
have molecular collision models as their foundation, and both mod-
els predict relaxation on the same length scales, it is difficult to phys-
ically justify neglecting diffusion without also neglecting reaction.
Nevertheless, as it is commonly done, its consequences should be
analyzed. One recent simplified analysis was given by Singh et al.69

There, a simple one-step chemistry model for the unsteady two-
dimensional behavior of a calorically perfect ideal gas nearly identi-
cal to that considered by Short and Stewart124 was considered under
the conditions found in Ref. 124 to contain one linearly unstable

Fig. 9 Isochores at three different spatial resolutions at three different times, t̄1, t̄2, t̄3, for two-dimensional Euler and Navier–Stokes detonation with
one-step Arrhenius kinetics. Domain for each simulation, x̄ ∈∈ [0, 15], ȳ ∈∈ [0, 20], adapted from Ref. 69.

mode. In contrast to Ref. 124, Ref. 69 considered both viscous and
inviscid models. The physical viscosity in the Navier–Stokes model
was adjusted so that the viscous layers were roughly one-tenth the
length of the global reaction zone length. Both the Euler and Navier–
Stokes models were subjected to a grid-refinement study, and the
results are summarized in Fig. 9. In the Euler calculations, intrinsic
numerical viscosity, which depends on the size of the grid and the de-
tails of the particular numerical method chosen, always plays a large
role in selecting the flow structures that evolve at and downstream of
the shock. In the Navier–Stokes calculations at coarse resolutions,
the same artificial viscosity dominates the physical viscosity, and
the structures depend on the grid. As the grid is refined for the Eu-
ler calculations, the artificial viscosity decreases, and fewer down-
stream instabilities, such as the Kelvin–Helmholtz instability, are
suppressed. Thus, it is possible to see ever-finer downstream struc-
tures in Fig. 9. At coarse resolutions in the Navier–Stokes model
predicts similar results as the Euler model. In this case, the inherent
numerical viscosity of the method dominates the physical viscosity.
However, as the grid is refined in the Navier–Stokes calculations, the
physical viscosity comes to dominate the numerical viscosity, and
no finer scale structures are apparent. The sensitivity of our results
to resolution is in general agreement with the recent related study
of Tegnér and Sjögreen.125

Clearly, the downstream structures in detonations are influ-
enced by the amount of viscosity, real or numerical present. More-
over, these difficulties are entirely analogous to those reported by
Kadanoff,3 which depend on a numerical viscosity in inviscid cal-
culations of a Rayleigh–Taylor instability; Ref. 3 concludes, “The
practical meaning is that we cannot promise different approxima-
tion approaches will converge to the same answer, and that any
one of those will correspond to the experimental system.” The most
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straightforward remedy is to employ physical viscosity and refine
the grid so that it dominates over numerical viscosity. However,
Ref. 126 has noted that the dynamics of the leading shock, which
are those that determine the patterns etched on walls that have long
been observed in experiment, seem to be insensitive to the magni-
tude of artificial viscosity in Euler calculations. Although fortuitous,
there is no guarantee that this result will extend to other important
issues. Also, as noted in Ref. 127, one will in very special cases
find that numerical viscosity captures the effects of physical viscos-
ity. However, with no a priori standard of what a viscous structure
should be, it is unlikely that one could discern that grid resolution
would lead to the correct calculation, and so this does not appear to
be of great practical interest.

IV. Detonation Propulsion Implications
What then are the implications for detonation applications in

propulsion? In the most general sense, the answer cannot be known
with certainty until one has performed calculations that actually cap-
ture the full multiscale nature of the flow, from molecular collision
scales to device scales. However, it is possible to offer some spec-
ulation. It must be said that many important parameters for system
performance, such as steady detonation wave speed and final det-
onation pressure, do not have a strong dependence on multiscale
dynamics and instead depend mainly on thermodynamic properties.
However, whenever transient events are relevant, such as in ignition,
a proper capturing of the multiscale space and timescales is critical
to predict device performance.

Consider, for example, the pulse detonation engine.41 This en-
gine relies upon the successful initiation of a detonation at a rate of
many cycles per second. In developing models for such devices, an
understanding of the ignition and DDT behavior is critical. Models
of actual reactive mixtures have heretofore not had great success
in this prediction.49 One cannot yet rule out a failure to capture the
multiscale nature of the ignition/DDT process as a reason for this
lack of success. In short, one must resolve the local timescales for
chemical power deposition and radical generation relative to the lo-
cal acoustic timescales in the spatial domain in which the transient
events are evolving. One might expect inertial confinement for fast
timescale events and wave generation for slower events. Many re-
cent studies of pulse detonation engines have focused on the use
of small geometric obstacles, such as Schelkin spirals, to enhance
the DDT process. Modeling of how shocks and detonations diffract
around such small-scale barriers so as to induce ignition is a pro-
cess in which multiscale physics clearly play a large role. Successful
transmission of a detonation from a large tube to a small tube with-
out inducing extinction is an issue in pulse detonation engines. And
once again, a proper numerical capture of this highly transient mul-
tidimensional effect represents a challenge for multiscale methods.
Another issue relating to the pulse detonation engine is the issue of
cellular detonation instability and transverse waves. Although such
waves can be predicted with models of one-step kinetics, much un-
certainty remains with regard to models of detailed kinetics to be
able to match the well-known results of fundamental experiments.
It is again likely that the present-day inability to capture fine-scale
phenomena lies at the heart of our inability to correctly predict these
structures. Certainly, one can say that grid-refinement studies in one-
step kinetic models reveal that the structures are sensitive to a proper
resolution of the reaction zones, and the same is likely true for mod-
els with detailed kinetics. As a pulse detonation engine relies for
thrust on the axial transmission of impulse, any impulse diverted to
transverse modes is that which cannot be used to generate thrust,
and so any theory that can suggest how that impulse can be directed
in a useful way will have value.

Similar comments could be made with regard to the ram acceler-
ator, the oblique detonation wave engine, and other devices. In any
device in that detonations must be initiated, where they can diffract,
where the detonation becomes unstable, or where extinction could
exist, an understanding of the fundamental science of multiscale
detonations has direct ramifications for device performance.

All this said, it must be remembered that not all calculations are
done for engineering design, and, as subtly argued by Kadanoff,128

that some numerical solutions can be both “inaccurate and impor-
tant.” Such a notion, detailed in his article which highlights astro-
physical detonation, is not inconsistent with that of Buckmaster,129

who holds for more conventional systems, “Modelers write down
false equations and extract useful, physically relevant informa-
tion from them.” Nor is it inconsistent with Williams’130 trio of
maxims: “Theory needn’t be right to be good...Theory needn’t
be mathematical to be right...Theory needn’t be incomprehensi-
ble to be mathematical.” None are arguing for inaccurate design
calculations relative to the highly desirable verified and validated
prediction.131,132 Instead, they remind the reader that if enhanced
scientific insight is the goal of the calculation, that such an end can
be achieved by making, what are for design purposes, inaccurate
calculations.

V. Conclusions
It is clear that observable detonation physics is richly complicated

with spatial and temporal structures evolving on a wide range of
scales. It is also clear that the nonlinear continuum theories that are
commonly used to mathematically model these physics have the
ability to predict many of the basic observable quantifiable features,
such as one-dimensional detonation wave speeds, as well as some
qualitative details, such as cellular structures.

How to explain those differences that remain, in evidence in the
“widely different outcomes” of Ref. 31, is a grand challenge. One
plausible hypothesis is that the underlying continuum mathematical
models are in fact correct and that it remains for us to devise better
ways to truly capture all of the scales these models admit. Such is
the nature of the mathematical exercise known as verification.131,132

Only after a model has been verified is it appropriate to ask the deeper
scientific question regarding validation: do the equations accurately
predict what is observed in experiment? In short, verification consid-
ers if the equations were solved correctly, and validation considers
if the correct equations were solved. And if a verified model cannot
be validated, it is only then suitable to begin to question the model-
ing assumptions, constitutive theories, and material property values.
The practice of harmonizing mathematically unverified calculations
with experimental observation by tuning adjustable parameters is
too common and often leads to models that are at best “postdictive”
rather than the preferred “predictive.” Such hasty calculations, when
otherwise done carefully, occasionally serve immediate needs, but
do little to further the progress of scientific aeropropulsion design,
nor do they do much to advance fundamental science. At best they
provide a useful tool to interpolate experimental results. At worst,
calculations performed with intemperate attention to both verifica-
tion and validation serve neither science nor engineering and can,
in extreme cases, pose a real danger to those who rely on such
calculations.

To conclude, the science-based engineering design process re-
quires significant effort, as do most enterprises that seek to truly
expand the frontiers of what can be achieved. Indeed, it will take
some time and further advances in both hardware and algorithms
before first principles models that are both verified and validated
will be able to be used with confidence to quantitatively predict,
with no a priori knowledge of the outcome, the detailed behavior of
detonation-driven propulsion devices. At a minimum for the present,
one can hope that the varied communities involved in this enterprise
can appreciate the challenges and limitations imposed by the mul-
tiscale physics on both theories and computational methods. But it
should also be realized that tremendous progress has been made in
the past in expanding the spectrum of scales that can be modeled,
and there is no reason why we should not continue to seek new ways
to expand them even further.
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