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Review

Sources for guidance in model development:

• Pin-Puller tests: Bement, Schimmel, et al.

• Pyrotechnics chemistry: McLain, Conklin

• NSI ignition study: Varghese

• Multiphase combustion: Baer, Nunziato, Krier, Powers, etc.

• Automobile airbags: Butler

• Solid propellants: Williams, Kuo, Strehlow, etc.

• Solid state combustion synthesis: Varma



Engineering Problems

• Occurance of operational failures.

• Qualification only after many tests.

• Difficult to predict behavior of new formulations.

• Difficult to quantify effects of modifications:

– diffusive heat transfer,

– molecular heat transfer,

– pin puller geometry,

– friction,

– apparently random sample behavior.



Modeling Approaches

• Full Scale Models:

– time-dependent,

– three-dimensional spatial gradients,

– multiple species, multiple reactions,

– fully resolved chemical kinetics,

– compressibility,

– turbulence,

– real gas effects,

– boundary layers,

– essentially no detailed kinetic data available,

– more complex than justified by data.



Modeling Approaches, cont’d.

• Empirical Models:

– experimentally-based correlations,

– reliable in limited ranges,

– somewhat inflexible.

• Simple Models - present approach:

– analytically tractable,

– judgement required,

– simplicity at expense of loss of rigor,

– introduction of ad hoc assumptions.

• Stochastic Models:

– estimates for uncertainty required,

– could be coupled with simple model.



Assumptions for the Preliminary Model

( s)  Solid Pyrotechnic 

(g)  Gas Phase Products 
Burn Surface 

Piston 

Shear Pins 

(cp) Condensed Phase  
           Products zp 

• Model total system as 3 subsystems:

– solid pyrotechnic reactants (s)

– gas phase products (g)

– condensed phase products (cp)

• Well stirred reactor:

– spatial homogeneity

– time-dependent variables

– no mass, momentum, or energy diffusion



Assumptions cont’d.

Mass and Energy Exchange

• No mass exchange between total system and surroundings,

• Heat and work exchange between system and surroundings,

• Mass exchange from reactants to gas and condensed phase products,

• No work exchange between subsystems.

• Heat exchange between gas and condensed phase product subsystems.

Combustion Process

• Combustion products produced in ratios which minimize Gibbs free
energy (CEC76 routine):

– mass fractions frozen,

– gas phase products described by single mixture specific heat and
mixture gas constant,

– condensed phase products characterized by a single mixture den-
sity,

• Global kinetic burn rate estimated from solid propellant data.



Assumptions cont’d.

Other assumptions

• Ideal gas with temperature dependent specific heat (CHEMKIN II
data base and subroutines),

• Constant temperature vessel wall,

• No wall friction,

• Constant density solid pyrotechnic,

• Constant density condensed phase products,

• Kinetic energy of total system assumed negligible,

• Body forces assumed negligible.



Mass, Momentum, and Energy Principles

Mass Evolution Equations:

d

dt
[ρsVs] = −ρsApr,

d

dt
[ρcpVcp] = ηcpρsApr,

d

dt
[ρgVg] = [1 − ηcp]ρsApr.

Energy Evolution Equations:

d

dt
[ρsVses] = −ρsApesr,

d

dt
[ρcpVcpecp] = ηcpρsApesr − Q̇cp,g,

d

dt
[ρgVgeg] = [1 − ηcp]ρsApesr + Q̇cp,g + Q̇in − Ẇout.

Newton’s Second Law:

mp
d2zp

dt2
= Fp.



Geometrical and Constitutive Relations

A. Geometry

Total volume:

V = Vs + Vcp + Vg.

Piston position:

zp =
V

Ap
.



Geometrical and Constitutive Relations, cont’d.

B. Combustion Model

Reaction occurs in a single step:

Ns∑

i=1
νsi

Xsi
−→

Ncp
∑

i=1
νcpi

Xcpi
+

Ng
∑

i=1
νgi

Xgi
,

• Xsi
, Xcpi

, Xgi
: chemical species,

• νsi
, νcpi

, νgi: stoichiometric coefficients,

• νsi
, Xsi

: specified as inputs to the CEC76 code,

• Y ’s, ηcp can be determined from knowledge of ν’s.

Linear pyrotechnic burn rate:

r = r(Pg, Tg) = a(Tg) + b(Tg)P
n
g ,

• a(Tg), b(Tg), n: empirically determined.



Geometrical and Constitutive Relations, cont’d.

C. Thermal Equation of State

Pg = ρgRTg,

where

R = #
Ng
∑

i=1

Ygi

Mgi

, Ygi
=

νgi
Mgi

∑Ng
j=1 νgj

Mgj

.

D. Caloric Equations of State

es(Ts) =
Ns∑

i=1
Ysi

esi
(Ts),

ecp(Tcp) =
Ncp
∑

i=1
Ycpi

ecpi
(Tcp),

eg(Tg) =
Ng
∑

i=1
Ygi

egi
(Tg).

• Calculated using CHEMKIN II subroutines and data base.



Geometrical and Constitutive Relations, cont’d.

D. Model for Q̇in:

Q̇in = hAw [Tw − Tg]
︸ ︷︷ ︸

convection

+ σAw

[

αT 4
w − εT 4

g

]

︸ ︷︷ ︸

radiation

,

• Parameters:

– h, convective heat transfer coefficient,

– ε, emmissivity of the gas,

– α, absorptivity of the vessel’s walls,

– Tw, temperature of the vessel’s walls,

– σ, Stefan-Boltzmann constant.

E. Model for Ẇout:

Ẇout = Pg
dV

dt
.

• Only allow for pressure volume work.

F. Model for Fp:

Fp =









0 if PgAp < Fcrit

PgAp if PgAp ≥ Fcrit,

• Fcrit, constant critical force necessary for shear pin failure.



Geometrical and Contitutive Relations, cont’d.

G. Model for Q̇cp,g:

Q̇cp,g = hcp,g [Tcp − Tg] .

• hcp,g, heat transfer parameter.



Mathematical Reductions

Goal:

• To perform intermediate operations leading to a refined final model:

– six O.D.E.’s for V , Vs, Vcp, Tcp, Tg, and V̇

– all other variables expressed as a function of these six variables.

• Final model suitable for numerical integration.

Step I. Determination of ρg.

• Add together mass evolution equations:

d

dt
[ρsVs + ρcpVcp + ρgVg] = 0.

• Integrate, apply intital conditions, and solve for ρg:

ρg(V, Vs, Vcp) =
ρsVso + ρcpVcpo + ρgoVgo − ρsVs − ρcpVcp

V − Vs − Vcp
.



Mathematical Reductions, cont’d.

Step II. Expression for mixture energy evolution.

• Add together energy evolution equations:

d

dt
[ρsVses + ρcpVcpecp + ρgVgeg] = Q̇in − Ẇout.

– Note: this expression is not explicitly used in the analysis.

– For special case Q̇in = Ẇout = 0, can integrate:

ρsVses + ρcpVcpecp + ρgVgeg = ρsVsoeso + ρcpVcpoecpo + ρgoVgoego.

– Can use algebraic relation to evaluate code performance.

Step III. Determination of Pg.

• Use ρg from Step I and thermal equation of state to obtain:

Pg(V, Vs, Vcp, Tg) = ρg(V, Vs, Vcp)RTg.



Mathematical Reductions, cont’d.

Step IV. Determination of r and Fp.

• Using Pg from Step III, can obtain:

r = r(V, Vs, Vcp, Tg) = a(Tg) + b(Tg)P
n
g (V, Vs, Vcp, Tg),

Fp = Fp(V, Vs, Vcp, Tg).

Step V. Simplify remaining differential mass equations.

• Since ρs and ρcp are constants:

dVs

dt
= −Apr(V, Vs, Vcp, Tg), (1)

dVcp

dt
= ηcp






ρs

ρcp




 Apr(V, Vs, Vcp, Tg). (2)



Mathematical Reduction, cont’d.

Step VI. Simplification of energy equations.

• Consider energy evolution equation for solid pyrotechnic:

d

dt
[ρsVses] = −ρsApesr,

– subtract the following from this equation:





d

dt
[ρsVs] = −ρsApr



 es,

– obtain:

des

dt
= 0, =⇒ es = eso.

• Consider energy evolution equation for condensed phase products:

d

dt
[ρcpVcpecp] = ηcpρsApesr − Q̇cp,g,

– subtract the following:





d

dt
[ρcpVcp] = ηcpρsApr



 ecp,

– obtain:

ρcpVcp
decp

dt
= ηcpρsApr(V, Vs, Vcp, Tg)[eso−ecp(Tcp)]−Q̇cp,g(Tcp, Tg),



Mathematical Reductions, cont’d.

– using caloric equation of state ecp(Tcp):

dTcp

dt
=

ηcpρsApr(V, Vs, Vcp, Tg)[eso − ecp] − Q̇cp,g(Tcp, Tg)

ρcpccp(Tcp)Vcp
. (3)

• Consider energy evolution equation for gas phase products:

d

dt
[ρgVgeg] = [1 − ηcp]ρsApesr + Q̇cp,g + Q̇in − Ẇout,

– subtract the following:




d

dt
[ρgVg] = [1 − ηcp]ρsApr



 eg,

– obtain:

ρgVg
deg

dt
= [1 − ηcp]ρsApr[eso − eg] + Q̇in − Ẇout,

– using caloric equation of state eg(Tg):

dTg

dt
=

[1 − ηcp]ρsApr(V, Vs, Vcp, Tg) [eso − eg(Tg)] + Q̇cp,g(Tcp, Tg)

ρg(V, Vs, Vcp)cvg(Tg)[V − Vs − Vcp]

+
Q̇in(Tg) − Pg(V, Vs, Vcp, Tg)V̇

ρg(V, Vs, Vcp)cvg(Tg)[V − Vs − Vcp]
, (4)



Mathematical Reductions, cont’d.

Step VII. Newton’s second law governing piston motion.

• Split 2nd order O.D.E. into two 1st order O.D.E.’s:

dV

dt
= V̇ , (5)

dV̇

dt
=

Fp(V, Vs, Vcp, Tg)Ap

mp
. (6)



Final Form of Preliminary Model

Governing O.D.E.’s:

dV

dt
= V̇ ,

dVs

dt
= −Apr(V, Vs, Vcp, Tg),

dVcp

dt
= ηcp




ρs

ρcp



 Apr(V, Vs, Vcp, Tg),

dTcp

dt
=

ηcpρsApr(V, Vs, Vcp, Tg)[eso − ecp] − Q̇cp,g(Tcp, Tg)

ρcpccp(Tcp)Vcp

,

dTg

dt
=

[1 − ηcp]ρsApr(V, Vs, Vcp, Tg) [eso − eg(Tg)] + Q̇cp,g(Tcp, Tg)

ρg(V, Vs, Vcp)cvg(Tg)[V − Vs − Vcp]

+
Q̇in(Tg) − Pg(V, Vs, Vcp, Tg)V̇

ρg(V, Vs, Vcp)cvg(Tg)[V − Vs − Vcp]
,

dV̇

dt
=

Fp(V, Vs, Vcp, Tg)Ap

mp

,

Initial Conditions:

V (t = 0) = Vo, Vs(t = 0) = Vso, Vcp(t = 0) = Vcpo,

Tcp(t = 0) = Tcpo, Tg(t = 0) = Tgo, V̇ (t = 0) = 0.



Initial Results

The following results are presented:

• pressure-time predictions for a 10 cm3 closed bomb combustion of 114
mg of Zr/KClO4,

• pressure-time predictions and piston energy calculations for typical
operation of NSI driven pin puller.

Balanced Stoichiometric Equation:

3.6162Zr(s) + 2.6849KClO4(s) −→ 3.2354Zr(l) + 1.9712O(g)

+1.6988KCl(g) + 0.9766Cl(g)

+0.9041K(g) + 0.7454O2(g)

+0.3407ZrO2(g) + 0.0790KO(g)

+0.0401ZrO(g) + 0.0065ClO(g)

+0.0009K2ClO2(g) + 0.0006Cl2(g)

+0.0006K2(g).

NSI Pyrotechnic Composition:

• 114 mg of a Zr/KClo4 mixture:

– 53.6 mg of Zr(s),

– 60.4 mg of KClO4.



Closed Bomb Combustion (10 cm3)

• NASA specifications: firing an NSI containing 114 mg of Zr/KClo4

mixture into a 10 cm3 volume shall produce a peak pressure of 650±125
psi within 5 ms.

• Initial Conditions:

intial condition value

Vo 10.0 cm3

Vso 0.038 cm3

Vcpo 5.10×10−7 cm3

Tcpo 288.0 K
Tgo 288.0 K
V̇ 0.0 cm3/s

• Parameters:

parameter value

burn area, Ap 2.0 cm2

pyrotechnic density, ρs 3.0 g/cm3

temperature of pyrotechnic, Ts 288.0 K
condensed phase density, ρcp 1.51 gm/cm3

convective heat transfer coefficient, h 1.25×105 g/sec3/K
emissivity of the gas, ε 0.80

absorptivity of the vessel’s walls, α 0.80
heat transfer parameter, hcp,g 12.0×109 gcm2/sec3/K

• Pyrotechnic Burn Rate:

r = 0.004P 0.69
g .



Closed Bomb Combustion, cont’d.

Pr
es

su
re

 (p
si)

 

time (seconds) 



NSI Driven Pinpuller Results

• Initial Conditions:

intial condition value

Vo 0.824 cm3

Vso 0.038 cm3

Vcpo 3.40×10−6 cm3

Tcpo 288.0 K
Tgo 288.0 K
V̇ 0.0 cm3/s

• Parameters:

parameter value

burn area, Ap 0.634 cm2

pyrotechnic density, ρs 3.0 g/cm3

pyrotechnic temperature, Ts 288.0 K
condensed phase density, ρcp 1.51 gm/cm3

convective heat transfer coefficient, h 1.25×105 g/sec3/K
emissivity of the gas, ε 0.60

absorptivity of the vessel’s walls, α 0.60
heat transfer parameter, hcp,g 12.0×109 gcm2/sec3/K
critical shearing force, Fcrit 3.56×107 dynes (80 lb)

• Pyrotechnic Burn Rate:

r = 0.004P 0.69
g .



NSI Driven Pinpuller Results, cont’d.

• Pressure – time prediction:

time  (msec) 

Pr
es

su
re

  (
ps

i) 

experimental result 
predicted result 



Outline of Future Directions

• Study solution near equilibrium states,

• examine simplest possible case – constant volume, no heat transfer,
constant specific heats,

• better justify heat transfer coefficients,

• study wall surface effects on heat transfer,

• continue search for accurate burn rate data,

• perform sensitivity analysis,

• include grain size effects,

• study spatially resolved field,

• include more detailed chemistry.


