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Motivation

• Verification: solving the equations correctly. Validation: solving the correct

equations.

• For a predictive computation both verification and validation are necessary.

• A detonation is a shock-induced combustion wave in which the exothermic

energy release contributes to driving the shock.

• It is often argued that viscous forces and diffusive effects are small, do not affect

detonation dynamics, and thus can be neglected.

• Standard result from non-linear dynamics: small scale phenomena can

influence large scale phenomena and vice versa.

• Might there be risks in using numerical viscosity, LES, and turbulence modeling,

all of which filter small scale physical dynamics?



Motivation

• Tsuboi et al., (Comb. & Flame, 2005) reported, even when using micron grid

sizes, that some structures cannot be resolved.

• Powers, (JPP, 2006) showed that two-dimensional detonation patterns are

grid-dependent for the reactive Euler equations, but relax to a grid-independent

structure for comparable Navier-Stokes calculations.

• Using a one-step kinetics model, we (JFM, 2012) showed that when the viscous

length scale is similar to that of the finest reaction scale, viscous effects play a

critical role in determining the long time behavior of the detonation.

• This suggests grid-dependent numerical viscosity may be problematic and one

may want to consider the introduction of physical diffusion.
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Review of Hydrogen Detonation

• Powers & Paolucci (AIAA J., 2005) found the finest reaction length scales on the

order of sub-microns and the largest on the order of centimeters for steady,

inviscid hydrogen-air detonations with ambient conditions of 1 atm and

298 K.

• Yungster and Radhakrishan (Comb. Theory & Mod., 2004) found a minimum

resolution of near a micron was necessary to capture the dynamics in the

inviscid limit at ambient pressure of 0.197 atm.

• Daimon and Matsuo (Phys. Fluids, 2007) found that as the overdrive is lowered,

the long time behavior of the detonation became more complex.

• Using an adaptive mesh in parallel, Ziegler et al. (J. Comp. Phys., 2011)

examined a viscous double-Mach reflection detonation and found that even with

a resolution near a micron only qualitative convergence was achieved.



Model: Reactive Navier-Stokes (NS) Equations

• Unsteady, compressible, one-dimensional

• Detailed mass action kinetics with Arrhenius temperature-dependency

• Ideal mixture of calorically imperfect ideal gases

• Physical viscosity and thermal conductivity

• Multicomponent mass diffusion with Soret and DuFour effects

Case Examined

• Overdriven detonations with ambient conditions of 0.421 atm and 293.15 K

• Initial stoichiometric mixture of 2H2 + O2 + 3.76N2

• DCJ ∼ 1972 m/s

• Overdrive is defined as f = D2
o/D2

CJ

• Overdrives of 1.001 < f < 1.25 were examined



Unsteady, Compressible, Reactive NS Equations
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Intrinsic Scales

• The mean-free path scale is the cut-off minimum length scale associated with

continuum theories

• A simple estimate for this scale is given by Vincenti and Kruger (1967):

λ =
M√

2πNAρd2
∼ O

`

10−6 cm
´

• The finest reaction length scale is Lr ∼ O
`

10−4 cm
´

• A simple estimate of a viscous length scale is:

Lµ =
ν

c
=

6 × 10−1 cm2/s

9 × 104 cm/s
∼ O

`

10−5 cm
´

• λ < Lr & λ < Lµ



Inviscid Steady-State: ZND Profile
f = 1.25
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Inviscid Computational Method

• Viscosity, mass diffusion, and thermal conductivity are all set to zero

• Equations transformed to a shock-attached frame

• Jump conditions enforced at shock boundary

• Nominally fifth order shock-fitting algorithm adapted from Henrick et al. (J.

Comp. Phys., 2006)

• Shock-fitting technique used assures numerical viscosity is minimal

• Fifth order Runge-Kutta used for time integration



Inviscid Transient Behavior: Stable Detonation
f = 1.25
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Inviscid Transient Behavior: Unstable Detonation
f = 1.10
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• Frequency of 0.97 MHz agrees well with both the frequency,

1.04 MHz, observed by Lehr (Astro. Acta, 1972) in experiments and

the frequency, 1.06 MHz, predicted by Yungster and Radhakrishan.

• The maximum detonation front pressure predicted, 13.5 atm, is

similar to the value of 14.0 atm found by Daimon and Matsuo.



Maximum Pressure and Frequency Convergence
f = 1.08

Case ∆ x Max Pressure Frequency

1 4 µm 13.36749 atm 0.899336 MHz

2 2 µm 13.36927 atm 0.899549 MHz

3 1µm 13.36980 atm 0.899612 MHz
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Inviscid Bifurcation Behavior
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Viscous Computational Method

• The Wavelet Adaptive Multiresolution Representation (WAMR) method was

used.

• First developed by Vasilyev and Paolucci (J. Comp. Phys., 1996 & 1997).

• The basis functions have compact support in both space and scale.

• The nature of the wavelet basis allows multiscale signals to be efficiently

represented relative to many other common methods.

• User-defined threshold parameter controls error and guarantees a verified

solution.



Demonstration of WAMR

• Ma = 1.55 shock propagating in argon

• The structure of the viscous (NS) steady shock is governed by two ordinary
differential equations:

du

dx
=

ρoRT

M

uo

u
− ρouou − po − ρou

2
o

dT

dx
=

2ρouoRT − (γ − 1)M
“

ρouo

“

2eo + (u + uo)2
”

+ 2po(u + uo)
”

2(γ − 1)M

• Shooting problem from the shocked values (ρs, us, ps) to the ambient

conditions (ρo, uo, po)

• WAMR prediction is indistinguishable from the steady wave solution
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Stable, Viscous Detonation
f = 1.15
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The diffusive detonation relaxes to a steady propagating wave, similar to the inviscid

case.



Unstable, Viscous Detonation
f = 1.10
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The addition of viscous effects have a stabilizing effect, decreasing the amplitude of

the oscillations. The pulsation frequency relaxes to 0.97 MHz.



Validation: Lehr’s High Frequency Instability

(Astro. Acta, 1972)

• Shock-induced combustion experi-

ment (Astro. Acta, 1972)

• Stoichiometric mixture of 2H2 +

O2 + 3.76N2 at 0.421 atm

• Observed 1.04 MHz frequency

for projectile velocity corresponding

to f ≈ 1.1

• For f = 1.1, the predicted fre-

quency of 0.97 MHz agrees with

observed frequency and the predic-

tion by Yungster and Radhakrishan

of 1.06 MHz



Validation: Lehr’s Low Frequency Instability

(Astro. Acta, 1972)

• Lehr observed a 0.15 MHz fre-

quency at a projectile velocity below

the CJ detonation velocity

• For f0 ≈ 1, the main frequency

is near 0.10 MHz, even though

there are multiple modes
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Conclusions

• Shock fitting coupled with fifth order spatial discretization assures numerical

viscosity is minimal, thus giving rise to verified calculations of unsteady, inviscid

detonation dynamics when all reaction length scales are fully resolved.

• At high overdrives, the detonations are stable; as the overdrive is decreased, the

long time behavior becomes progressively more complex.

• The addition of diffusion has a stabilizing effect on the long time behavior of a

detonation; the amplitude of the oscillations can be significantly reduced.

• Comparison with Lehr’s experiments gives some, yet limited validation.

– The predicted frequency of 0.97 MHz for a f = 1.1 overdriven

detonation agrees with the frequency observed by Lehr of 1.04 MHz.

– The low frequency observed by Lehr (0.15 MHz) at a velocity below the

CJ velocity is similar to the predicted frequency of 0.10 MHz at low

overdrives.





Verification of WAMR

• Error proportional to thresholding parameter
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