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One-dimensional slow invariant manifolds for dynamical systems arising from modeling

unsteady, isothermal, isochoric, spatially homogeneous, closed reactive systems are calcu-

lated. The technique is based on global analysis of the composition space of the reactive

system. The identification of all the system’s finite and infinite critical points plays a major

role in calculating the system’s slow invariant manifold. The slow invariant manifolds are

constructed by calculating heteroclinic orbits which connect appropriate critical points to

the critical point which corresponds to the unique stable physical critical point of chemical

equilibrium. The technique is applied to small and large detailed kinetics mechanisms for

hydrogen combustion.

I. Introduction

In detailed kinetics models, the presence of a wide range of scales induces a large computational cost
when calculations are fully resolved. Because direct numerical simulation (DNS) is not feasible for many
practical flows, the main challenge in modeling is to simplify the problem without significant loss of accuracy.
One of the major approaches employs lower dimensional manifolds,1 which are based on a reduction in the
composition space dimension.

For spatially homogeneous systems, reaction dynamics are described by a set of ordinary differential
equations (ODEs). The solutions of this set of ODEs are represented by trajectories in the species composition
space. Each trajectory represents the reactive system’s evolution with time for a specific initial condition.
The evolved trajectories seem to quickly be attracted to a special trajectory and stay exponentially close to
it until they reach equilibrium in infinite time.2 The reactive system’s slow modes are the only active ones
on this special trajectory. Thus, identifying this slow invariant manifold (SIM) for a reactive system will
make it possible to reduce the computational cost by filtering the system’s fast modes. For each reactive
system there are SIMs of different dimensions; this work focus on constructing only one-dimensional (1-D)
SIMs.

Here, 1-D SIMs for unsteady spatially homogeneous mixtures of calorically imperfect ideal gases described
by detailed kinetics are calculated. While such construction has been done for small two-dimensional model
systems,3,4 the present work offers the first construction of a SIM for a realistic detailed kinetics system of
greater than two dimensions. We note that here dimensionality refers to the dimension of the composition
space and not to the ordinary spatial dimension, as the systems we consider have no spatial inhomogeneity.
The SIM is constructed by a global analysis over the entire composition space. By finding all equilibria and
connecting them via heteroclinic orbits, it is easy to identify the system’s actual SIM. Detailed hydrogen-
air kinetic systems will be the focal mechanisms of this paper. These systems are of interest since they
are intrinsic to common combustion applications, included in the combustion of all hydrocarbons, and are
well-known and widely accepted.
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In comparison to other dimension reduction techniques that obtain approximate SIMs, such as the in-
trinsic low-dimensional manifold (ILDM),5 the computational singular perturbation (CSP),6 the invariant
constrained equilibrium edge preimage curve method (ICE-PIC),7 and the iterative method,8 the technique
presented here identifies the actual SIMs. In the first section, the governing ODEs for closed, isothermal,
isochoric, reactive system are presented. This is followed by a reduction of the ODEs into a system of
differential algebraic equations (DAEs) which describes the system’s evolution within the reduced composi-
tion space. Following a brief description of how we identify and examine all the system’s finite and infinite
equilibria, the numerical method to construct the SIMs is presented. For the main result of this study, the
1-D SIMs for two realistic detailed kinetics isothermal reactive systems are calculated. Once the difficult
task of identifying all of the equilibria is complete, it is seen that constructing the actual SIMs is easy and
computationally efficient.

II. Mathematical Model

II.A. Governing Equations

We consider a mixture of total mass m confined in a constant volume V containing N gas phase species
composed of L atomic elements that undergo J reversible reactions. The evolution is obtained from the
following set of ODEs:9

dni

dt
= V ω̇i, i = 1, . . . , N. (1)

Here, the independent variable is time t, and the dependent variables are the species’ number of moles ni.
Also, ω̇i is species i’s molar production rate per unit volume calculated using the following constitutive
equations:10

ω̇i =
J
∑

j=1

νijAj T βj exp
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i νij
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, j = 1, . . . , J. (3)

Equations (2-3) are expressions of the molar species evolution rate per unit volume of species i using the
Arrhenius reaction rate and the equilibrium constant of reaction j, respectively. In these equations, T is
the constant mixture temperature, < = 8.314 × 107 erg mol−1K−1 is the universal gas constant, and µ̄o

i is
the constant molar-basis chemical potential of species i at standard pressure. Also, for each reaction from
j = 1, . . . , J, the quantities Kc

j , Aj , βj , Ej , and νij represent the equilibrium constant, the collision frequency
factor, the temperature-dependent exponent, the activation energy, and the net stoichiometric coefficient for
the ith species, respectively. Moreover, po = 1 atm is the reference pressure, ν ′

ij and ν′′

ij are the stoichiometric
coefficients denoting the number of moles of reactants and products, respectively, with νij = ν′′

ij − ν′

ij .
Also, we will need the thermal state equation for an ideal gas mixture,

p =
<T

V

N
∑

i=1

ni, (4)

where p is the mixture pressure.

II.B. Reduced System

The complete system, Eq. (1), defines an N -dimensional composition space. The dimensionality of this
space is reduced by L + Q as a consequence of 1) the conservation of L elements, and 2) any Q additional
constraints that could possibly arise. As a result, the reactive system described by Eq. (1) is recast as an
autonomous standard dynamical system of the form

dzi

dt
= fi(z1, . . . , zN−L−Q), i = 1, . . . , N − L − Q, (5)

where zi = ni/m are the species specific moles, and fi is a set of non-linear coupled polynomials of degree
d connected with a given reaction mechanism. Reactive system solutions are trajectories that move on the
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reduced composition space R
N−L−Q which is a subspace of the full composition space R

N . Full details are
given by Al-Khateeb et al.11

III. Method

The proposed construction method of a reactive system’s SIM is based on identifying all the equilibria
of the ODEs that describe the species evolution, Eq. (5). In general, the set of equilibria of such functions
is complex. Moreover, as demonstrated by Perko,12 some of the dynamical system’s equilibria are located
at infinity. In this work, only the system’s real isolated finite and infinite equilibria are considered.

III.A. Equilibria

To find the dynamical system’s finite equilibria, we solve the algebraic problem fi(z1, . . . , zN−L−Q) = 0. One
of these finite equilibria is the unique critical point located inside the physically accessible domain.13 The
rest of the finite equilibria are non-physical since at least one of the species mole numbers is negative, ni < 0.
Then, the dynamic behavior of the system in the neighborhood of each finite equilibrium is investigated by
employing standard linearization techniques,

d

dt
(zi − zi

e) ≈ Je
ij (zj − zj

e) , i = 1, . . . , N − L − Q, j = 1, . . . , N − L − Q, (6)

where quantities with superscript (e) are at the equilibrium state. Here, Je
ij = ∂fi/∂zj |ze is the constant

Jacobian matrix evaluated at an equilibrium point. The stability of each critical point is determined by
examining the eigenvalue spectrum λi of its local Jacobian and the corresponding eigenvectors υi. The local
time scales over which the dynamical system, Eq. (6), evolves are given by the reciprocal of the real part of
the system’s eigenvalues, 1/|Re(λi)|. In general, the dynamical system’s eigenvalues are complex, where the
reciprocal of the real parts provides the scales of the amplitude growth, and the reciprocal of the imaginary
parts represents the period of oscillations. For the physical equilibrium point, the ratio between its largest
and smallest time scales identifies the system’s stiffness. In addition, the eigenvector associated with the
smallest eigenvalue represents the system’s slowest mode or direction in composition space along which the
trajectories approach the equilibrium.

The next step is to identify the system’s infinite equilibria. To do so, the projective space method is
employed.14 This technique maps the infinite critical points onto the finite domain, and it is realized by the
following relations

Zk =
1

zk

, k ∈ {1, . . . , N − L − Q}, (7)

Zi =
zi

zk

, i 6= k, i = 1, . . . , N − L − Q, (8)

where zk is any arbitrarily selected dependent variable, and Zi, i = 1, . . . , N −L−Q, are the state variables
in the projective space. By employing the projective space mapping, the original dynamical system, Eqs. (5),
is recast in the following form

dZi

dτ
= Fi (Z1, ..., ZN−L−Q) , i = 1, . . . , N − L − Q, (9)

where Fi is a set of non-linear functions that correspond to the non-linear functions fi in the projective
space, and τ is the transformed time in the projective space which is related to the time in the original space
by the following relation,

dt

dτ
= (Zk)

d−1
. (10)

The finite critical points of the resulting dynamical system with Zk = 0 represent the infinite equilibria of
the original system, Eq. (5).

III.B. Construction Method

The procedure for constructing the reactive system’s SIM is summarized in these steps. After identifying all
the equilibria, finite and infinite, the equilibria with at least one unstable mode are considered. Starting from
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each one of these equilibria, a heteroclinic orbit is generated along its unstable mode. Only the generated
orbits that connect to the physical equilibrium are considered. Among these orbits, two orbits represent the
two branches of the system’s 1-D SIM. These two orbits can be identified since they are the only ones that
approach the physical equilibrium point in the direction of its slowest mode. The procedure for constructing
a 1-D SIM can be systematically extended to construct higher-dimensional SIMs. Full details are given by
Al-Khateeb et al.11

III.C. Computational Method

The kinetic rates and the thermodynamic properties are calculated using the public domain edition of the
CHEMKIN package.15,16 The typical computational time to construct a 1-D SIM is less than one minute on a
2.16 GHz Mac Pro machine. All the calculations have been performed to high precision. However, all the
listed results are rounded to two significant digits. Integers indicate that the reported numbers are exact.
Also, Bertini,17 a C-code based on homotopy continuation, is used to obtain the system’s equilibria to any
desired accuracy. Moreover, all trajectories are obtained by numerical integration of the species evolution
equations using a computationally inexpensive explicit fourth-order Runge-Kutta scheme.

IV. Results

IV.A. Simple Hydrogen-Oxygen Mechanism

Here, the method is illustrated using a simple but realistic system, the Michael mechanism18 for the oxidation
of hydrogen. This mechanism contains N = 6 species, L = 2 elements, and J = 8 elementary reactions; see
Table 1. The chosen mixture temperature and volume are T = 1200 K and V = 103 cm3. The initial number
of moles of all species are n∗

i = 10−3 mol, i = 1, . . . , N . Thus, the initial mixture pressure is p∗ = 0.59 atm.
In this system, the total number of moles remain constant, as a consequence of the fact that the ki-

netics mechanism includes only bimolecular reactions. Consequently, one algebraic constraint, in addition
to element conservation, is provided to the system: Q = 1. Thus, the reactive system is described in the
N − L − Q = 3 dimensional reactive composition space,

dzi

dt
= fi(z1, z2, z3), i = 1, 2, 3. (11)

Here, i = {1, 2, 3} corresponds to the species {H2, O,O2}, respectively. The rest of the species are given by
the system’s constraints. The full time evolution of species is shown in Fig. 1. The multi-scale nature of
this system is clearly shown. Also, it can be visually noted that the times at which the first reaction event
commences and that at which the system relaxes onto its chemical equilibrium are approximately t = 10−9 s
and t = 10−4 s, respectively.

The dynamical system, Eq. (11), has six finite critical isolated points,

R1 = (ze
1, z

e
2, z

e
3) =

(

−5.84 × 10−2, 6.85 × 10−4,−3.52 × 10−4
)

mol/g,

R2 = (ze
1, z

e
2, z

e
3) =

(

4.65 × 10−2, 0, 3.49 × 10−2
)

mol/g,

R3 = (ze
1, z

e
2, z

e
3) =

(

3.73 × 10−3, 6.32 × 10−3, 1.61 × 10−2
)

mol/g,

R4 = (ze
1, z

e
2, z

e
3) =

(

6.33 × 10−3,−1.86 × 10−3, 2.49 × 10−2
)

mol/g,

R5 = (ze
1, z

e
2, z

e
3) =

(

1.28 × 10−3,−5.98 × 10−2, 6.00 × 10−2
)

mol/g,

R6 = (ze
1, z

e
2, z

e
3) =

(

1.43 × 10−3,−7.58 × 10−2, 7.08 × 10−2
)

mol/g.

It is clear that R1, R4, R5 and R6 are non-physical equilibria. Moreover, R2 is also a non-physical critical
point; this can be shown by computing the other species using the system’s constraints. Thus, R3 is the
system’s unique physical equilibrium point, consistent with the results in Fig. 1. Figure 2 shows part of the
system’s finite composition space, the physically accessible domain within the dashed simplex, and the finite
equilibria. It is clear that R3 is the only critical point inside the physically accessible domain.

The dynamical behavior analysis within the neighborhood of each critical point reveals that R1, R2, and
R5 are saddles, R4 and R6 are sources, and R3 is a sink. The system’s eigenvalues associated with each finite
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critical point are:

R1 : (λ1, λ2, λ3) = (5.93 × 106 ± i5.10 × 105,−1.18 × 106) 1/s,

R2 : (λ1, λ2, λ3) = (−1.01 × 107,−3.35 × 106, 7.93 × 105) 1/s,

R3 : (λ1, λ2, λ3) = (−1.02 × 107,−1.23 × 106,−4.30 × 105) 1/s,

R4 : (λ1, λ2, λ3) = (6.88 × 106, 3.51 × 106, 1.57 × 106) 1/s,

R5 : (λ1, λ2, λ3) = (5.65 × 107, 3.56 × 106,−1.06 × 104) 1/s,

R6 : (λ1, λ2, λ3) = (7.19 × 107, 4.47 × 106, 1.05 × 104) 1/s.

In addition to the system’s finite equilibria, Eq. (11) has three infinite equilibria. They are obtained
using the projective space method, in which we select k = 2 arbitrarily. These equilibria are:

I1 = (Ze
1 , Ze

2 , Ze
3) = (−9.77, 0,−4.59) ,

I2 = (Ze
1 , Ze

2 , Ze
3) = (0.60, 0,−0.48) ,

I3 =
(

Ze
1 , Ze

2 , Z3
3

)

= (−0.01, 0,−0.67) .

The eigenvalue spectra of these critical points are:

I1 : (λ1, λ2, λ3) = (−5.74 × 1012 ± i7.83 × 1012, 6.10 × 1012) g/(mol s),

I2 : (λ1, λ2, λ3) = (−1.19 × 1013, 7.35 × 1011, 6.32 × 1011) g/(mol s),

I3 : (λ1, λ2, λ3) = (−1.12 × 1013,−6.50 × 1011, 7.62 × 109) g/(mol s).

All of the dynamical system’s infinite equilibria are saddles.
Now, among the system’s equilibria, the eigenvalue spectra of three critical points contain only one

unstable direction (i.e. positive eigenvalue). These equilibria are R2, I1 and I3.To construct the SIM, the
dynamical system is numerically integrated, starting from these three critical points, in the direction of the
unstable mode. Subsequently, three heteroclinic orbits are generated; two of these orbits connect to the
physical equilibrium along its slowest mode. Thus, they represent the two branches of the 1-D SIM. These
two heteroclinic orbits are the ones that start from R2 and I3. In Fig. 3, the 1-D SIM for the reactive
system is shown. The attractiveness of the SIM is revealed by visually examining the relaxation of several
trajectories onto it.

IV.B. Detailed Hydrogen-Air Mechanism

In this section, the 1-D SIM for a detailed kinetics hydrogen-air reactive system is constructed using the
previously discussed technique. The used reaction mechanism is adopted from Miller et al.,19 and it consists
of J = 19 reversible reactions that describe how N = 9 species composed of L = 3 elements react, see
Table 2.

The stoichiometric hydrogen-air mixture is initially at p∗ = 107 dyne/cm2 and the chosen mixture
temperature is T = 1500 K. Because this system does not conserve the total number of moles, Q = 0. The
reactive system can be described by the following N − L = 6 ODEs,

dzi

dt
= fi(z1, . . . , z6), i = 1, . . . , 6, (12)

where the dependent variables are {zH2
, zO2

, zH , zO, zOH , zH2O}, which correspond to {z1, z2, z3, z4, z5, z6},
respectively.

To construct the system’s 1-D SIM, first all the system’s isolated equilibria, finite and infinite, are found.
Using the procedure discussed earlier, 326 finite and infinite equilibria are found. One of these critical points
represents the physical equilibrium state. This point is

R19 = (ze
1, z

e
2, z

e
3, z

e
4, z

e
5, z

e
6)

=
(

1.98 × 10−6, 9.00 × 10−7, 1.72 × 10−9, 2.67 × 10−10, 3.66 × 10−7, 1.44 × 10−2
)

mol/g.

Then, the dynamical character of each of the real finite and infinite critical points is determined. It is
found that among them there are only 14 critical points which have eigenvalue spectra that contain only one
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unstable direction. All of these 14 equilibria are finite. Finally by examining all the trajectories that emanate
from these 14 equilibria, only two of them are connected with R19 along its slowest mode via heteroclinic
orbits. These two critical points are:

R74 = (ze
1, z

e
2, z

e
3, z

e
4, z

e
5, z

e
6)

=
(

6.26 × 10−5, 3.43 × 10−5,−2.30 × 10−6, 4.80 × 10−7,−1.54 × 10−5, 1.44 × 10−2
)

mol/g,

R79 = (ze
1, z

e
2, z

e
3, z

e
4, z

e
5, z

e
6)

=
(

−3.34 × 10−6,−1.50 × 10−6, 5.27 × 10−9, 8.82 × 10−10,−6.66 × 10−7, 1.44 × 10−2
)

mol/g.

Figure 4 shows a 3-D projection of the 1-D SIM embedded inside the 6-D composition space. Since only
the slow modes are present on the SIM, this 1-D manifold is the best description of the system’s slowest
dynamics.

V. Conclusion

Actual 1-D SIMs for closed, spatially homogenous, isothermal, reactive systems described by detailed
kinetics are obtained. The construction method is based on a geometrical approach that relies upon find-
ing and examining the dynamical behavior of all the system’s critical points. It has been shown that the
construction of the 1-D SIMs are algorithmically easy and computationally efficient. The resulting proce-
dure provides a useful tool to significantly reduce the computational cost associated with modeling reactive
systems.
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Table 1. Simple hydrogen-oxygen mechanism. The species are H2, O2, H, O, OH, and H2O.

j Reaction Aj (cm3/mol/s/Kβj ) βj Ej (cal/mol)

1 H + O2 −→ O + OH 9.76 × 103 0.0 14842.5

2 O + OH −→ O2 + H 3.26 × 1011 0.375 −2208.4

3 O + H2 −→ OH + H 5.08 × 104 2.67 6289.3

4 OH + H −→ H2 + O 2.28 × 104 2.67 4420.6

5 H + H2O −→ OH + H2 9.39 × 108 1.52 18367.5

6 H2 + OH −→ H2O + H 2.14 × 108 1.52 3447.5

7 O + H2 −→ OH + OH 4.50 × 104 2.70 14542.7

8 OH + OH −→ O + H2O 4.33 × 103 2.70 −2484.3

Table 2. Hydrogen-air detailed kinetics mechanism. The species are H2, O2, H, O, OH, HO2, H2O2, H2O, and N2.

j Reaction Aj

(

(

mol/cm3
)1−

P

N
i=1

ν′

ij /s/Kβj

)

βj Ej (cal/mol)

1 H2 + O2 
 OH + OH 1.70 × 1013 0.000 47780

2 OH + H2 
 H2O + H 1.17 × 109 1.300 3626

3 H + O2 
 OH + O 5.13 × 1016 −0.816 16507

4 O + H2 
 OH + H 1.80 × 1010 1.000 8826

5 H + O2 + M 
 HO2 + M 2.10 × 1018 −1.000 0

6 H + O2 + O2 
 HO2 + O2 6.70 × 1019 −1.420 0

7 H + O2 + N2 
 HO2 + N2 6.70 × 1019 −1.420 0

8 OH + HO2 
 H2O + O2 5.00 × 1013 0.000 1000

9 H + HO2 
 OH + OH 2.50 × 1014 0.000 1900

10 O + HO2 
 O2 + OH 4.80 × 1013 0.000 1000

11 OH + OH 
 O + H2O 6.00 × 108 1.300 0

12 H2 + M 
 H + H + M 2.23 × 1012 0.500 92600

13 O2 + M 
 O + O + M 1.85 × 1011 0.500 95560

14 H + OH + M 
 H2O + M 7.50 × 1023 −2.600 0

15 H + HO2 
 H2 + O2 2.50 × 1013 0.000 700

16 HO2 + HO2 
 H2O2 + O2 2.00 × 1012 0.000 0

17 H2O2 + M 
 OH + OH + M 1.30 × 1017 0.000 45500

18 H2O2 + H 
 HO2 + H2 1.60 × 1012 0.000 3800

19 H2O2 + OH 
 H2O + HO2 1.00 × 1013 0.000 1800
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Figure 1. The species time evolution for the simple hydrogen-oxygen mechanism.
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selected trajectories.
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Figure 4. The one-dimensional slow invariant manifold for the detailed hydrogen-air reactive system.
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