Calculation of Slow Invariant Manifolds for Reactive Systems

Ashraf N. Al-Khateeb Joseph M. Powers Samuel Paolucci
Department of Aerospace and Mechanical Engineering

Andrew J. Sommese Jeffery A. Diller
Department of Mathematics

University of Notre Dame, Notre Dame, Indiana

47th AIAA Aerospace Science Meeting
Orlando, Florida
8 January 2009
Outline

• Introduction
• Slow Invariant Manifold (SIM)
• Method of Construction
• Illustration Using Model Problem
• Application to Hydrogen-Air Reactive System
• Summary
Introduction

Motivation and background

- Detailed kinetics are essential for accurate modeling of real systems.
- Reactive flow systems admit multi-scale solutions.
- Severe stiffness arises in detailed gas-phase kinetics modeling.
- Computational cost for reactive flow simulations increases with the spatio-temporal scales’ range, the number of species, and the number of reactions.
- Manifold methods provide a potential for computational saving.
Partial review of manifold construction in reactive systems

• ILDM, CSP, and ICE-PIC are approximations of the system’s slow invariant manifold.

• MEPT, RCCE, and similar methods are based on minimizing a thermodynamic potential function.

• Iterative methods may not converge.

• Davis and Skodje, 1999, present a technique to construct the 1-D SIM based on global phase analysis.

• Creta et al. and Giona et al., 2006, extend the technique to slightly higher dimensional reactive systems.
Long-term objective

Create an efficient algorithm that reduces the computational cost for simulating reactive flows based on a reduction in the stiffness and dimension of the composition phase space.

Immediate objective

Construct 1-D SIMs for dynamical system arising from modeling unsteady spatially homogenous closed reactive systems.
Slow Invariant Manifold (SIM)

- The composition phase space for closed spatially homogeneous reactive system:

\[
\frac{dz}{dt} = f(z), \quad z \in \mathbb{R}^3.
\]
• An invariant manifold is defined as a subset \(S \subset \mathbb{R}^{N-L-Q} \) if for any solution \(z(t), z(t_0) \in S \), implies that for any \(t_f > t_0 \), \(z(t) \in S \) for all \(t \in [t_0, t_f] \).

• Not all invariant manifolds are attracting.

• SIMs describe the asymptotic structure of the invariant attracting trajectories.

• Attractiveness of a SIM increases as the system’s stiffness increases.

• On a SIM, only slow modes are active.

• SIMs can be constructed by identifying all critical points, finite and infinite, and connecting relevant ones via heteroclinic orbits.
Mathematical Model

For a mixture of mass \(m \) confined in volume \(V \) containing \(N \) species composed of \(L \) elements that undergo \(J \) reversible reactions,

\[
\frac{dn_i}{dt} = V \dot{\omega}_i, \quad i = 1, \ldots, N,
\]

where,

\[
\dot{\omega}_i = \sum_{j=1}^{J} \nu_{ij} k_j \left(\prod_{i=1}^{N} \left(\frac{n_i}{V} \right)^{\nu'_{ij}} - \frac{1}{K_{cj}^c} \prod_{i=1}^{N} \left(\frac{n_i}{V} \right)^{\nu''_{ij}} \right), \quad i = 1, \ldots, N,
\]

\[
k_j = A_j T^{\beta_j} \exp \left(\frac{-E_j}{\mathcal{R}T} \right), \quad j = 1, \ldots, J,
\]

\[
K_{cj}^c = \left(\frac{p^o}{\mathcal{R}T} \right)^{\sum_{i=1}^{N} \nu_{ij}} \exp \left(-\frac{\sum_{i=1}^{N} \bar{\mu}_i^o \nu_{ij}}{\mathcal{R}T} \right), \quad j = 1, \ldots, J.
\]
System reduction

- In chemical reactions, the total number of moles of each element is conserved,

\[
\sum_{i=1}^{N} \phi_i n_i^* = \sum_{i=1}^{N} \phi_i n_i, \quad l = 1, \ldots, L.
\]

- Additional \(Q \) constraints can arise in special cases.

- The reactive system is recast as an autonomous dynamical system,

\[
\frac{dz_i}{dt} = f_i (z_1, \ldots, z_{N-L-Q}), \quad i = 1, \ldots, N - L - Q,
\]

where,

\[
z = \mathcal{L} (n) \mid \mathcal{L} : (\mathbb{R}^N \to \mathbb{R}^{N-L-Q}).
\]
Method of Construction

- For isothermal reactive systems, reaction speeds depend on combinations of polynomials of z.
- The set of equilibria of the full reaction network is complex:
 \[\{ z^e \in \mathbb{C}^{N-L-Q} \mid f(z^e) = 0 \} \].
- The set consists of several different dimensional components and contains finite and infinite equilibria.
- A 1-D SIM has a maximum of two branches that connect the unique physical critical point (a sink) to two equilibria.
- These equilibria are identified by their special dynamical character: their eigenvalue spectrum typically contains only one unstable direction.
Projective space

- One-to-one mapping of the composition space, $\mathbb{R}^{N-L-Q} \rightarrow \mathbb{R}^{N-L-Q}$,

\[
Z_k = \frac{1}{z_k}, \quad k \in \{1, \ldots, N-L-Q\},
\]
\[
Z_i = \frac{z_i}{z_k}, \quad i \neq k, \quad i = 1, \ldots, N-L-Q.
\]

- This maps equilibria located at infinity into a finite domain.

- To deal with the time singularity, we add the transformation

\[
\frac{dt}{d\tau} = (Z_k)^{d-1},
\]

where d is the highest polynomial degree of $\mathbf{f}(\mathbf{z})$.
Computational strategy

- We use the Bertini software (based on a homotopy continuation numerical technique) to compute the system’s equilibria up to any desired accuracy.

- Thermodynamic data is obtained from Chemkin-II.

- The SIM heteroclinic orbits are obtained by numerical integration of the species evolution equations using a computationally inexpensive scheme.

- Computation time is typically less than 1 minute on a 2.16 GHz Mac Pro machine.
Simple Hydrogen-Oxygen Mechanism

- The mechanism consists of $J = 8$ bimolecular elementary reactions involving $N = 6$ species $\{H, H_2, O, O_2, OH, H_2O\}$ and $L = 2$ elements $\{H, O\}$. In addition, since the total number of moles is constant, $Q = 1$. Subsequently, $z \in \mathbb{R}^3$.

- The system is spatially homogenous with isothermal and iso-choric conditions, $T = 1200 \, K$, $V = 10^3 \, cm^3$.

- Selected species are $i = \{1, 2, 3\} = \{H_2, O, O_2\}$.

- Initial number of moles of all species are $n_i^* = 10^{-3} \, mol$.
Reactive system evolution

$n_i/m \times 10^{-3}$

$[\text{mol/g}]

n_i/m$ vs t [s]

- H
- H$_2$O
- O$_2$
- O
- H$_2$
- OH

$t = 10^{-10} - 10^{4}$
Dynamical system

\[
\begin{align*}
\frac{dz_1}{dt} &= 3.45 \times 10^4 - 1.68 \times 10^{11} z_1 - 3.47 \times 10^{16} z_1^2 \\
&\quad - 1.35 \times 10^{10} z_2 + 6.27 \times 10^{16} z_1 z_2 + 1.40 \times 10^{10} z_3 \\
&\quad + 1.11 \times 10^{17} z_1 z_3 - 1.35 \times 10^{16} z_2 z_3 - 2.04 \times 10^{16} z_3^2,
\end{align*}
\]

\[
\begin{align*}
\frac{dz_2}{dt} &= 7.69 \times 10^5 + 2.66 \times 10^{11} z_1 + 2.25 \times 10^{16} z_1^2 \\
&\quad - 1.29 \times 10^{12} z_2 - 2.47 \times 10^{17} z_1 z_2 \\
&\quad + 3.91 \times 10^{17} z_2^2 - 8.66 \times 10^{11} z_3 - 1.51 \times 10^{17} z_1 z_3 \\
&\quad + 7.49 \times 10^{17} z_2 z_3 + 2.46 \times 10^{17} z_3^2,
\end{align*}
\]

\[
\begin{align*}
\frac{dz_3}{dt} &= 6.84 \times 10^{11} z_2 + 1.37 \times 10^{17} z_1 z_2 - 2.74 \times 10^{17} z_2^2 \\
&\quad - 4.10 \times 10^{17} z_2 z_3 - 2.24 \times 10^{15} z_3 \left(10^{-6} - z_1 + z_3\right),
\end{align*}
\]

\[\equiv \mathbf{f}(\mathbf{z}).\]
Finite equilibria

\[R_1 \equiv (z_1^e, z_2^e, z_3^e) = (-5.84 \times 10^{-2}, 6.85 \times 10^{-4}, -3.52 \times 10^{-4}) \text{ mol/g}, \]
\[(\lambda_1, \lambda_2, \lambda_3) = (5.93 \times 10^6 \pm i5.10 \times 10^5, -1.18 \times 10^6) \text{ 1/s}, \]

\[R_2 \equiv (z_1^e, z_2^e, z_3^e) = (4.65 \times 10^{-2}, 0, 3.49 \times 10^{-2}) \text{ mol/g}, \]
\[(\lambda_1, \lambda_2, \lambda_3) = (-1.01 \times 10^7, -3.35 \times 10^6, 7.93 \times 10^5) \text{ 1/s}, \]

\[R_3 \equiv (z_1^e, z_2^e, z_3^e) = (3.73 \times 10^{-3}, 6.32 \times 10^{-3}, 1.61 \times 10^{-2}) \text{ mol/g}, \]
\[(\lambda_1, \lambda_2, \lambda_3) = (-1.02 \times 10^7, -1.23 \times 10^6, -4.30 \times 10^5) \text{ 1/s}, \]

\[R_4 \equiv (z_1^e, z_2^e, z_3^e) = (6.33 \times 10^{-3}, -1.86 \times 10^{-3}, 2.49 \times 10^{-2}) \text{ mol/g}, \]
\[(\lambda_1, \lambda_2, \lambda_3) = (6.88 \times 10^6, 3.51 \times 10^6, 1.57 \times 10^6) \text{ 1/s}, \]

\[R_5 \equiv (z_1^e, z_2^e, z_3^e) = (1.28 \times 10^{-3}, -5.98 \times 10^{-2}, 6.00 \times 10^{-2}) \text{ mol/g}, \]
\[(\lambda_1, \lambda_2, \lambda_3) = (5.65 \times 10^7, 3.56 \times 10^6, -1.06 \times 10^4) \text{ 1/s}, \]

\[R_6 \equiv (z_1^e, z_2^e, z_3^e) = (1.43 \times 10^{-3}, -7.58 \times 10^{-2}, 7.08 \times 10^{-2}) \text{ mol/g}, \]
\[(\lambda_1, \lambda_2, \lambda_3) = (7.19 \times 10^7, 4.47 \times 10^6, 1.05 \times 10^4) \text{ 1/s}. \]
Infinite equilibria

• Employ the projective space mapping with $d = 2$ and $k = 2$:

$$\frac{d}{d\tau} \begin{pmatrix} t \\ Z_1 \\ Z_2 \\ Z_3 \end{pmatrix} = Z_2^2 \cdot \begin{pmatrix} Z_2^{-1} \\ f_1 (Z_1, Z_2, Z_3) - Z_1 f_2 (Z_1, Z_2, Z_3) \\ -Z_2 f_2 (Z_1, Z_2, Z_3) \\ f_3 (Z_1, Z_2, Z_3) - Z_3 f_2 (Z_1, Z_2, Z_3) \end{pmatrix} \equiv F(Z),$$

$I_1 \equiv (Z^e_1, Z^e_2, Z^e_3) = (-9.77, 0, -4.59),$
$(\lambda_1, \lambda_2, \lambda_3) = (-5.74 \times 10^{12} \pm i7.83 \times 10^{12}, 6.10 \times 10^{12}),$

$I_2 \equiv (Z^e_1, Z^e_2, Z^e_3) = (0.60, 0, -0.48),$
$(\lambda_1, \lambda_2, \lambda_3) = (-1.19 \times 10^{13}, 7.35 \times 10^{11}, 6.32 \times 10^{11}),$

$I_3 \equiv (Z^e_1, Z^e_2, Z^e_3) = (-0.01, 0, -0.67),$
$(\lambda_1, \lambda_2, \lambda_3) = (-1.12 \times 10^{13}, -6.50 \times 10^{11}, 7.62 \times 10^9).$
The system’s 1-D SIM

\[R_2 \]

\[R_3 \]

\[I_3 \]
Detailed Hydrogen-Air Mechanism

- The mechanism consists of $J = 19$ reversible reactions involving $N = 9$ species, $L = 3$ elements, and $Q = 0$, so that $z \in \mathbb{R}^6$.

- Closed and spatially homogenous system with isothermal and isochoric conditions at $T = 1500$ K, and $p^* = 10^7$ dyne/cm2.

- Stoichiometric mixture $2H_2 + (O_2 + 3.76N_2)$.

- Selected species are

$$i = \{1, 2, 3, 4, 5, 6\} = \{H_2, O_2, H, O, OH, H_2O\}.$$
Reactive system evolution

\[z_i \text{ [mol/g]} \]

\[t \text{ [s]} \]

\[\begin{align*}
\text{H}_2 & \\
\text{O}_2 & \\
\text{O} & \\
\text{OH} & \\
\text{H} & \\
\text{H}_2\text{O} & \\
\end{align*} \]
System’s equilibria

- The system has 284 finite and 42 infinite equilibria.
- The set of finite equilibria contains 90 real and 186 complex 0-D, one 1-D, one 2-D, and six 3-D equilibria.
- The set of infinite equilibria contains 18 real and 18 complex 0-D, and six 1-D equilibria.
- Only 14 critical points have an eigenvalue spectrum that contains only one unstable direction.
- Inside the physical domain there is a unique equilibrium:

$$R_{19} = \left(1.98 \times 10^{-6}, 9.00 \times 10^{-7}, 1.72 \times 10^{-9},
2.67 \times 10^{-10}, 3.66 \times 10^{-7}, 1.44 \times 10^{-2} \right) \text{ mol/g.}$$
3-D projection of the system’s SIM
Summary and Conclusions

- Once the difficult task of identifying all equilibria is complete, constructing the actual SIM is computationally efficient and algorithmically easy; thus, there is no need to identify it only approximately.

- Identifying all critical points, finite and infinite, plays a major role in the construction of the SIM.

- The construction procedure can be systematically extended to construct higher-dimensional SIMs.
Simple Reactive System

\[A + A \rightleftharpoons B \quad k_f^A = 1, \quad k_b^A = 10^{-5}. \]
\[B \rightleftharpoons C \quad k_f^B = 10, \quad k_b^B = 10^{-5}. \]

- Model consists of \(J = 2 \) reversible reactions involving \(N = 3 \) species \(\{c_A, c_B, c_C\} \)
- Conservation of mass, \(c_A + c_B + c_C = 1 \), so that \(z \in \mathbb{R}^2 \).
- Major species are \(i = \{1, 2\} = \{A, B\} \),
The system’s global phase space

The projective space.

Projection from Poincaré’s sphere.
The 1-D SIM vs. MEPT
Idealized Hydrogen-Oxygen

- Kinetic model adopted from Ren et al.a

- Model consists of $J = 6$ reversible reactions involving $N = 6$ species $\{H_2, O, H_2O, H, OH, N_2\}$ and $L = 3$ elements $\{H, O, N\}$, with $Q = 0$, so that $z \in \mathbb{R}^3$.

- Spatially homogenous with isothermal and isobaric conditions with $T = 3000 \text{ K}, p_o = 1 \text{ atm}$.

- Major species are $i = \{1, 2, 3\} = \{H_2, O, H_2O\}$.

- Initial conditions satisfying the element conservation constraints are identical to those presented by Ren et al.

The system’s 1-D SIM

![Diagram showing a 3D graph with axes labeled z_1, z_2, and z_3, with points R_6 and R_7 and a path labeled SIM.]
The system’s 1-D SIM