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Introduction

Motivation and Background

• Dimension reduction can reduce the computational cost of mod-

eling reactive systems.

• Several methods (e.g. RCCE, MIM, ICE-PIC, MEPT) employ

assumptions from thermodynamics to aid construction of reactive

systems’ attractive manifolds.

• The alternate SIM construction based on the projective space

method relies on the direct use of the reaction dynamics.
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Analysis

• For a mixture of mass M confined in a closed volume V containing

N species composed of L elements that undergo J reversible

isothermal reactions,

dn

dt
= V (ν · r) , n ∈ R

N , r ∈ R
J .

• The evolution of this system in the reduced space is described by

dz

dt
= ẇ, {z, ẇ} ∈ R

R, R
R ⊂ R

N ,

where,

z =
1

M

(
D

T · D
)
−1

· DT · (n − n
∗) , D : R

N → R
R.



Thermodynamic conditions

• Adopting Dalton’s law for this reactive mixture, which is at temper-

ature T and pressure p,

S = n · s = n ·

(

so −ℜ ln

(
p

po

))

, s ∈ R
N ,

G = n · µ = n ·

(

µo + ℜT ln

(
p

po

))

, µ ∈ R
N .

• In non-equilibrium thermodynamics,

dS = deS + diS,

diS = −
1

T
(µ · dn) ,

σ ≡
diS

dt
= −

M

T

(

µ · D ·
dz

dt

)

.



• In general,

J =
∂ẇ

∂z
,

H =
∂2

∂z ∂z
,

σ = −
1

T

(
∂G

∂z
· ẇ

)

.

• Near the system’s equilibrium,

G = G|
z

e +

(
∂G

∂z

∣
∣
∣
∣
z=z

e

· z′
)

︸ ︷︷ ︸

=0

+

(
1

2
z
′T · He

G · z′
)

+ . . . ,

σ = σ|
z

e +

(
∂σ

∂z

∣
∣
∣
∣
z=z

e

· z′
)

︸ ︷︷ ︸

=0

+

(
1

2
z
′T · He

σ · z′
)

+ . . . ,



• Thermodynamics unambiguously tells us G is minimum and σ is

minimum and zero at equilibrium.

• Thermodynamics does not provide dynamics near equilibrium.

• The eigenvectors of Je define the dynamics near equilibrium.

• It is easy to show that

H
e
σ = −

1

T

(

H
e
G · Je + (He

G · Je)T
)

.

• The eigenvectors associated with the largest/smallest eigenval-

ues of He
G and H

e
σ are aligned with major/minor axes of G and

σ contours.

• The SIM can be identified from Hσ only when HG is diagonal

with equal eigenvalues. This has not been observed in nature.



Model Problem: Zel’dovich mechanisma
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aA. N. Al-Khateeb et al., J. Chem. Phys. submitted.



Thermodynamics and SIM

• At the physical equilibrium point,

H
e
σ : (λ,υ) = (8.17 × 1023, 1.01 × 1020),

([1.78 × 10−3,−1.00]T , [−1.00,−1.78 × 10−3]T ),

H
e
G : (λ,υ) = (9.44 × 1019, 1.06 × 1018),

([5.97 × 10−4,−1.00]T , [−1.00,−5.97 × 10−4]T ),

J
e : (λ,υ) = (−1.73 × 107,−1.91 × 105),

([−0.107, 0.994]T , [1.00, 1.79 × 10−3]T ).

• The difference between the angle at which the SIM approaches

R3 and the angles at which σ approaches R3 increases as T

increases.
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• Equilibrium

thermodynamic

functions do not

coincide with the

system’s actual SIM.

• The gradients of these

thermodynamic scalar

functions do not drive

the system’s dynamics.



Simple Reactive System

A + A ⇋ B kf = 1, kb = 10−5.

B ⇋ C kf = 10, kb = 10−5.

• System of Lebiedz, 2004, J. Chem. Phys. 120 (15), pp. 6890-

6897.

• Model consists of J = 2 reversible reactions involving N = 3

species {cA, cB, cC}

• Conservation of mass, cA + cB + cC = 1, so that z ∈ R
2.

• Selected species are i = {1, 2} = {A,B},



Dynamical system formulation

• The evolution of the system is described by:

d

dt

0

@

z1

z2

1

A =

0

@

10−5
z2 − z

2

1

z
2

1 + (1 − 1001z2 − z1) × 10−5

1

A ≡ f(z).

• Employ the projective space mapping with d = 2 and k = 2:

d

dτ

0

B

B

@

t

Z1

Z2

1

C

C

A

=

0

B

B

@

Z2

10−5
Z2 − Z

2

1 + 10−5
Z1Z2 (1001 + Z1 − Z2) − Z

3

1

−Z
2

1Z2 + 10−5
Z

2
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The system’s 1-D SIM
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Projective space portrait
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SIM vs. MEPT
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Idealized Hydrogen-Oxygen

• Kinetic model adopted from Ren et al.b

• Model consists of J = 6 reversible reactions involving N =

6 species {H2, O,H2O,H,OH,N2} and L = 3 elements

{H,O,N}. So, z ∈ R
3.

• Spatially homogenous with isothermal and isobaric conditions

with T = 3000 K, p = 1 atm.

• Selected species are i = {1, 2, 3} = {H2, O,H2O},

• Initial conditions satisfying the element conservation constraints

are identical to those presented by Ren et al.

bZ. Ren, S. Pope, A. Vladimirsky, J. Guckenheimer, 2006, J. Chem. Phys. 124, 114111.



Time evolution of species
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System’s equilibria

• The set of finite equilibria contains 7 real and 8 complex 0-D
equilibria. The real ones are:

R1 ≡ (ze) =
(
−1.67 × 10−1, 3.04 × 10−3, 3.53 × 10−3

)
mol/g,

R2 ≡ (ze) =
(
6.44 × 10−2, 1.21 × 10−2,−7.12 × 10−3

)
mol/g,

R3 ≡ (ze) =
(
−6.47 × 10−3,−2.01 × 10−2,−2.19 × 10−3

)
mol/g,

R4 ≡ (ze) =
(
1.98 × 10−3, 5.04 × 10−3, 9.42 × 10−3

)
mol/g,

R5 ≡ (ze) =
(
−1.21 × 10−3,−4.45 × 10−3, 5.03 × 10−3

)
mol/g,

R6 ≡ (ze) =
(
2.72 × 10−3, 3.34 × 10−4, 4.72 × 10−3

)
mol/g,

R7 ≡ (ze) =
(
2.03 × 10−3, 3.10 × 10−4, 3.07 × 10−3

)
mol/g.

• The set of infinite equilibria contains one 1-D and one 2-D

equilibria.



The system’s 1-D SIM
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1-D SIM vs. 2-D ICE-PIC
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Summary and Conclusions

• Equilibrium thermodynamic potentials do not in general deter-

mine reactive systems’ dynamics.

• Even near the physical equilibrium state, a reactive system’s SIM

cannot be identified by consideration of the topology of a classical

thermodynamic function.

• Many modern approaches to estimate SIMs over-rely on thermo-

dynamic potentials, both near and far from equilibrium; conse-

quently, slow dynamics throughout physical phase space are not

accurately captured.


