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Fully resolved predictions of steady, one-dimensional detonations near the Chapman-

Jouguet state in mixtures of methane-air and methane-oxygen-argon are presented. The

model is restricted to inviscid continuum mixtures of calorically imperfect ideal gases de-

scribed by detailed Arrhenius kinetics. Consistent with estimates from an underlying

molecular collision theory, an eigenvalue analysis of locally linearized equations reveals

that the continuum theory predicts evolution of species mass fractions on scales as fine

as 10−5 cm, the mean free path length scale. In that such scales are orders of magnitude

smaller than most discretization scales employed in simulations of combustion in engineer-

ing devices, it is suggested that one potential explanation for existing discrepancies between

numerical prediction and observed data is that the calculations are highly under-resolved.

I. Introduction

C
omputational simulation of compressible reactive flow utilizing detailed kinetic mechanisms pervades
the modern aerospace engineering literature and is endemic in industry. Detailed kinetics enable the

robust capture of a variety of physical phenomena ranging from ignition delay events to pollution formation
as well as any phenomena in which the dynamically evolving physical properties of a multi-component
mixture play an important role. And despite great advances in hardware and software, great challenges
remain.1 Many of these challenges are directly related to the multi-scale nature of the flow and the difficulty
in computing solutions which resolve all physically relevant scales intrinsic to the underlying mathematical
model.2 For example, a recent exercise3 in which several computational algorithms were employed in an effort
to reproduce results of a benchmark experiment of a ram accelerator generated, according to the authors,
“widely different outcomes,” with strong sensitivity to induction zone dynamics. Another recent study4

which included both computational predictions and observations of pulse detonation engines concluded
that the important run-up distance to detonation to be “underpredicted” and that “simulation of the DDT
[deflagration to detonation transition] process remains a challenge.” Such issues, of course, transcend reactive
gas dynamics; analogous difficulties in related fields are easily found. For example, Kadanoff5 summarizes
some notable recent failures in computational simulations of sonoluminescence, Rayleigh-Taylor instability,
and wave breaking. He concludes that “resolution matters.”

This paper poses and answers a focused, critical question in multi-scale one-dimensional steady reactive
flow of methane-based mixtures: what is the minimum length scale which must be resolved in order for the
mathematical problem to be verified.6−7 This work is a direct extension of the authors’ recent study8 of
length scales in H2/O2/N2 detonation. It further draws upon an upcoming review2 to summarize some more
general concepts. That such a question is important is explicitly recognized by the AIAA, which states,9 “The
AIAA journals will not accept for publication any paper reporting (1) numerical solutions of an engineering
problem that fails adequately to address the accuracy of the computed results...” In explaining this policy, it
is noted, “The accuracy of the computed results is concerned with how well the specified governing equations
in the paper have been solved numerically. The appropriateness of the governing equations for modeling the
physical phenomena and comparison with experimental data is not part of this evaluation.”
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The key new conclusion is that, in the same way that H2/O2/N2 continuum detonation simulations with
detailed kinetics demand grid resolutions near 10−5 cm, so also do simulations of CH4/O2/N2/Ar mixtures.
An analysis is given to demonstrate that such fine length scales predicted by continuum theory are fully
consistent with the averaged predictions of the underlying molecular collision theory.

To guarantee that the new results for methane detonation length scales are fully reproducible, the model
and parameters are presented in great detail. This is in response to many deficiencies in the existing literature:
it is an unfortunate practice that many authors omit, or render opaque, critical details in their published
work to the extent that their results are irreproducible by others. In fact, in response to such endemic
shortcomings, the program chairmen of the upcoming 31st International Combustion Symposium recently
entreated all referees to suggest appropriate remedies, stating a “If the mechanisms are not openly available
(now and into the future), the scientific basis of the paper is questionable, in that it is not possible for other
researchers to verify or refute the conclusions drawn.”

The paper is organized as follows. First, the model equations are presented in a fashion similar to that
of Ref. 8. Next, the detailed kinetic model of Yungster and Rabinowitz,10 a reduction of the model given
by Frenklach,11 is presented. For minor software-compatibility reasons, the three reactions with pressure-
dependent rates from Ref. 10 were replaced by their equivalent from GRI 3.0.12 A brief description is given of
how the reactive flow model is reduced and length scales are determined through local linear analysis of the
system’s spatial eigenvalues. The kinetic model is then mathematically verified against predictions given by
Petersen and Hanson13 and validated in a limited sense against experimental observations of Spadaccini and
Colket14 and Tieszen, et al.15 As recently noted,16 full experimental validation of methane kinetic models
under a broad range of conditions remains a challenge, but this issue is not considered here. Next, detailed
results, qualitatively similar to those of Ref. 8, for a detonation near the Chapman-Jouguet (CJ) state in
a stoichiometric methane-air mixture initially at standard atmospheric conditions are given, and minimum
length scales are presented. These scales are compared to predictions of a simplified molecular theory, and
comments are given on why the continuum theory is appropriate to use at and above these scales. Modern
published unsteady and multi-dimensional steady simulations of methane-based detonation with detailed
kinetics 10,17−20 are examined and found to be severely under-resolved. The paper is closed with brief
conclusions.

II. Mathematical Model

A. Governing Equations

The set of model equations, equivalent to those of Ref. 8, is given next. Detailed explanations of their
physical justification are given in a variety of sources, cf. Kuo21 or Kee, et al.22

1. Fundamental Evolutionary Equations

The following equations, written in unsteady conservative form, describe the behavior of a one-dimensional
inviscid mixture of N gaseous molecular species composed of L atomic elements which undergo J reactions:

∂ρ

∂t
+
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(ρu) = 0, (1)
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= 0, (3)

∂

∂t
(ρYi) +

∂

∂x
(ρuYi) = ω̇iMi, (i = 1, . . . , N − 1). (4)

The independent variables are the distance coordinate, x, and time, t. The dependent variables are density
ρ, velocity u, pressure p, specific internal energy e, species mass fraction Yi, i = 1, . . . , N − 1, and molar
production rate per unit volume for specie i, ω̇i, i = 1, . . . , N − 1. The parameters are the molar mass of
molecular specie i, Mi, i = 1, . . . N − 1. Equations (1-3) describe the conservation of mixture mass, linear
momentum, and energy, respectively. Equations (4) describe the evolution of N − 1 molecular species mass
fractions.

aAlden, M., and Pope, S. B., private communication, December 2005.
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2. Algebraic Constitutive Models

The system is completed by the following algebraic equations:

p = ρ<T
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mlφli, (i = 1, . . . , N), (16)
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φliνij , (j = 1, . . . , J), (l = 1, . . . , L), (17)

νij = ν′′
ij − ν′

ij , (i = 1, . . . , N), (j = 1, . . . , J). (18)

New dependent variables are the temperature T , specific heat at constant pressure of the ith specie cpi,
mass fraction of the N th specie YN , reaction rate of the jth reaction rj , temperature-dependent Arrhenius
coefficient for the jth reaction kj , and so-called equilibrium “constant” of the jth reaction Kc

j . Also, a set

of new variables for the ith specie, denoted with a superscript “o” to indicate evaluation at the reference
pressure, are defined as the chemical potential per unit mole, enthalpy per unit mass, and entropy per unit
mass, µo

i , ho
i , and so

i , respectively. The bar notation indicates a per mole basis, and T̂ is a dummy variable
of integration.

Parameters in Eqs. (5-18) are as follows. The universal gas constant is < = 8.314×107 erg/mole/K. The
pressure and temperature at the reference state are pref = 1 atm and T ref = 298 K, respectively. For each
molecular specie from i = 1, . . . , N , one has reference state specific enthalpy and entropy, href

i , sref
i . For each

reaction j = 1, . . . , J , one has collision frequency factor Aj , exponent characterizing power-law temperature
dependency βj , activation temperature Θj , and stoichiometric coefficients denoting the number of moles
of reactant and product, respectively, of specie i in reaction j, ν ′

ij , ν′′
ij , as well as the net stoichiometric

coefficients νij . The parameters a1i, . . . , a5i are coefficients in a fourth order polynomial curve fit for cpi. For
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l = 1, . . . , L, the molar mass of element l is ml. For specie i = 1, . . . , N , and atomic element l = 1, . . . , L,
the species atomic element index giving number of moles of atomic element l in specie i is φli.

Equation (5) is a thermal equation of state for a mixture of ideal gases which obeys Dalton’s law.
Equation (6) is the corresponding caloric equation of state. Equation (7) constrains the species mass fractions
to sum to unity. Equation (8) is an expression for the molar species evolution rate per unit volume for specie
i. Equation (9) is an expression of the law of mass action for reaction j constructed so as to insure the forward
and reverse reaction rate components satisfy Le Châtlier’s principle as each individual reaction approaches
equilibrium. Equation (10) defines the temperature-dependent Arrhenius rate coefficient. Equation (11) is
an equation for the equilibrium “constant” for each reaction; actually Kc

j is a function of T . Equation (12)
is the fourth order polynomial curve fit for cpi. Equations (13-15) define the enthalpy, entropy, and chemical
potential of specie i, evaluated at pref , as functions of temperature. Equation (16) defines the molar mass of
molecular specie i in terms of its constitutive atomic elements. Equation (17) is a stoichiometric constraint
on atomic element l in reaction j which represents an atomic mass balance for each atom. Finally, Eq. (18)
defines the net stoichiometric coefficients.

3. Pressure-Dependent Reaction Rates

A small number of reaction rates can exhibit pressure-dependency and are known as “fall-off” reactions. For
such reactions, Eq. (10) is not used to calculate kj ; instead, the convoluted procedure described fully in a
variety of sources21,22 is employed and summarized here.

At high pressures, one set of values for Aj , Θj , and βj are adopted and labeled A∞
j , Θ∞

j , and β∞
j . Using

Eq. (10), these yield the Arrhenius coefficient

k∞
j = A∞

j T β∞

j exp

(

−
Θ∞

j

T

)

. (19)

Such reactions are typically independent of the molar concentration of a third body, denoted by [M ]. At
low pressures, the reaction rates come to depend on [M ], and a second set of kinetic coefficients is utilized,
namely A0

j , Θ0
j , and β0

j , which define the low pressure Arrhenius coefficient

k0
j = A0

jT
β0

j exp

(

−
Θ0

j

T

)

. (20)

The actual kj used in the calculation is an interpolation between k∞
j and k0

j . While a variety of interpo-

lation protocols can be employed, here the Troe method23 is used. This method requires the following steps.
First, define [M ] as

[M ] = ρ

N∑

i=1

ηi
Yi

Mi
. (21)

Here, ηi is an empirically determined dimensionless collision efficiency parameter. Unless otherwise specified,
ηi = 1. Next, define the dimensionless so-called “reduced pressure,” pr

j , as

pr
j =

k0
j [M ]

k∞
j

. (22)

In addition, define the temperature-dependent dimensionless variable F cent
j as

F cent
j = (1 − αj) exp

(

− T

T ∗∗∗
j

)

+ αj exp

(

− T

T ∗
j

)

+ exp

(

−
T ∗∗

j

T

)

. (23)

Here, αj , T ∗∗∗
j , T ∗

j , and T ∗∗
j are constants fixed for each reaction; αj is dimensionless, while the other three

parameters have units of K. Then, define the intermediate temperature-dependent dimensionless variables
cj and nj , and constant d as

cj = −0.4 − 0.67 log10 F cent
j , (24)

nj = −0.75 − 1.27 log10 F cent
j , (25)

d = 0.14. (26)
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Next, one calculates the new dimensionless variable Fj from

log10 Fj =
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



1 +

(

log10 pr
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)

)2
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

−1

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(
log10 F cent

j

)
. (27)

Finally, knowing Fj , one calculates the interpolated Arrhenius rate coefficient to be

kj = k∞
j

(

pr
j

1 + pr
j

)

Fj . (28)

Note that because of the ambiguity of the “log” operator, which is found in most sources, e.g. Ref. 21,
some sources, e.g. Ref. 13, incorrectly interpret the operator to be a natural logarithm instead of a base ten
logarithm, as explicated by Ref. 22 and the actual Fortran source code.24

4. Complete System

After use of Eqs. (8-28) to eliminate ω̇i in Eq. (4), Eqs. (1-7) form 5 + N equations in the 5 + N unknowns,
ρ, u, p, e, T , Y1, . . . , YN .

5. Auxiliary Equations

Additional useful auxiliary equations are as follows:
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)

, (i = 1, . . . , N).

(38)

New dependent variables in Eqs. (29-38) are as follows. For each molecular specie, i = 1, . . . , N , one has the
specific heat at constant volume, cvi. One also has the mass-averaged specific heats at constant pressure and
volume, respectively, cp, cv, the ratio of specific heats for the mixture, γ, the frozen acoustic speed, c, and
the Mach number, M. New parameters are a6i, a constant in the definition of ho

i , and a7i, a constant in the
definition of so

i . Equations (29-34) are definitions of cvi, cp, cv, γ, c, and M, respectively. Equations (35)

and (37) are consequences of applying Eq. (12) to Eqs. (13) and (14). The constants href
i and a6i are
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related through Eq. (36). Likewise, sref
i and a7i must satisfy Eq. (38). As a relic of the form chosen for

the polynomial curve fit, one must tolerate a clumsy form in which terms with the “units” of logarithm of
temperature appear in Eqs. (38); proper selection of a7i from Eq. (38) guarantees cancellation of such terms.

B. Reduction to Standard Dynamic Systems Form

It is shown in detail in Ref. 8 how this system can be reduced significantly. In short, one first employs
conservation of atomic elements and uses the fact that only mixtures which are initially spatially homogeneous
are being considered. This allows one to integrate L differential equations to form L algebraic constraints.
Next, one assumes that a steady state solution exists in a reference frame traveling at velocity D. In this
frame, the partial differential equations reduce to ordinary differential equations (ODEs), and the mass,
momentum, and energy equations can be explicitly integrated to form three additional algebraic equations,
which are extensions of the well-known Rankine-Hugoniot jump conditions. The extensions are actually valid
both over a shock jump as well as throughout the reaction zone structure. The solutions are double valued,
and care must be used to distinguish the subsonic and supersonic branches. Here, primary concern for the
flow past the shock is with the subsonic branch. Combination of the element conservation equations, the
extended Rankine-Hugoniot equations, and the thermodynamic state equations with the remaining ODEs
allows the system to be written in the standard dynamical systems form

dYi

dx
= fi(Yi, . . . , YN−L), Yi(0) = Yio, (i = 1, . . . , N − L), (39)

where fi is a non-linear function of the dependent variables given by fi = ω̇iMi/(ρoD), (i = 1, . . . , N −L).
As a subscript, “o” denotes an unshocked ambient value. Equation (39) can be solved by a variety of well
known numerical methods to obtain Yi(x), (i = 1, . . . , N−L). Subsequently, because all secondary variables,
such as p, T , and u, are available as algebraic functions of Yi, (i = 1, . . . , N −L), they can also be found as
functions of x.

To correlate the position in the reaction zone with the time elapsed since a Lagrangian fluid particle has
traversed the shock, one can integrate the fluid particle velocity definition, u = dx/dt, to form

t =

∫ x

0

dx̂

u(x̂)
. (40)

Here x̂ is a dummy variable of integration, and x = 0 is aligned with the shock wave, which is stationary
in this reference frame. This calculation is useful in obtaining the ignition delay time, tign, commonly
measured in shock tube experiments. One can also estimate tign by reformulating Eqs. (1-18) into a spatially
homogeneous isobaric time-dependent system and then solving an alternate system of time-dependent ODEs.
Both methods yield essentially identical results.

C. Length Scale Estimation

It is shown in detail in Ref. 8 how the local length scales can be estimated. One first finds the Jacobian J,
defined by

J ≡ ∂fi

∂Yj

∣
∣
∣
∣
Yk, k 6=j

, (i = 1, . . . , N − L; j = 1, . . . , N − L; k = 1, . . . , N − L). (41)

When evaluated at a given spatial point, J is a constant matrix. It has a set of N − L eigenvalues, λi, (i =
1, . . . , N −L), and the amplitude of a given local eigenmode will have significant variation over a length scale
`i defined by

`i ≡
1

|Re(λi)|
, (i = 1, . . . , N − L). (42)

Should the eigenvalues come in complex conjugate pairs, their eigenmodes will have amplitudes evolving on
the same length scale, and a new oscillatory length scale will appear. While this oscillatory length scale is
not difficult to consider, nearly all the eigenvalues in this study are real, as well as negative, and so no special
consideration will be given to the complex case here.
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III. Computational Method

All calculations were performed on a single processor Hewlett-Packard Linux desktop computer with
an approximate speed of around 1 GHz. Typical calculations, done in double precision, were completed
within three minutes. A Fortran 90 code that drew upon standard International Mathematical and
Statistical Libraries (IMSL) routines DNEQNF for Newton iteration, DFDJAC for Jacobian evaluation, and
DEVLRG for eigenvalue computation was used. For evaluation of thermochemical properties and kinetic
rates, subroutines available in a double precision version of the public domain edition of the Chemkin24

package were utilized; no other general Chemkin tools for solving specific physical problems were employed.
Using a well documented method,25 this package draws upon a standard thermodynamic data base12 which
contains properties for a wide variety of constituents; these include coefficients for polynomial curve fits for
the variation of specific heats with temperature as well as constants which can be correlated with reference
state values of species enthalpy and entropy.

For numerical integration, an implicit Adams method with functional iteration as embodied in the stan-
dard code DLSODE27 was used. In this method, the user requests a solution with a specified precision at
the end of an external step. The software then selects internal step sizes so as to achieve this goal. For
all but one species the absolute error tolerance was set at 10−12. Because some species have very small,
but rapidly evolving mass fractions, a simple dynamic tolerance was imposed on a limited basis: for the
minor species C2H6, a tolerance of 10−25 was set in early stages of the calculation, x ≤ 2 × 10−5 cm; for
x > 2 × 10−5 cm, the tolerance was reset to 10−12. With DLSODE, it was straightforward to adjust the
external spatial discretization step so as to generate detailed results in the induction zone, and coarser results
near equilibrium. However, even near equilibrium, it was seen that the number of internal steps taken to
achieve the error tolerance was consistent with the discretization at the spatial scale dictated by the finest
physical scale.

IV. Results

Results are focused on stoichiometric methane oxidation. A kinetic model with N = 21 species (19 of
which are reactive), L = 5 atomic elements, and J = 52 reversible reactions, nearly identical to that employed
by Yungster and Rabinowitz10 in their methane-air calculations, is used. The twenty-one species modeled are
H2, H, O, O2, OH, H2O, HO2, H2O2, CH3, CH4, CO, CO2, CHO, CH2O, CH3O, C2H3, C2H4, C2H5,
C2H6, N2 and Ar. Nitrogen and argon are regarded as inert diluents. The five atomic elements are H, O,
C, N , and Ar. Reactions and high pressure kinetic rate parameters are listed in Table 1. Dimensionless
third body enhancement factors, ηi, are listed in Table 2. Some minor changes were made to the kinetic
model of Ref. 10. First, Ref. 10 employed three reactions (33, 48, and 49) with pressure-dependent rates;
however, the interpolation coefficients which dictate the rate fall-off were not given in a form which was
transparently able to be utilized with the Chemkin software package. Consequently, kinetic data for these
three reactions were taken from a standard alternate source.12 Low pressure kinetic rate parameters and
Troe centering parameters for these three reactions are listed in Table 3. Second, Ref. 10 did not consider
Ar, which is admitted here in order to compare predictions against some experimental data. Coefficients
a1i, . . . , a7i for polynomial curve fits from GRI 3.012 for cpi, ho

i , and so
i are listed in Tables 4 and 5 to three

significant figures; actual calculations utilized the nine significant figures given in Ref. 12. Table 4 fits the
data well for 1000 K < T < 3500 K and is used for the bulk of the calculations in the reaction zone past
the shock. Table 5 is valid for lower temperatures, 200 K < T < 1000 K, found before the lead shock; only
species modeled as present before the lead shock are included in Table 5.

A. Mathematical Verification

A necessary condition for a mathematically verified model is that it yield the same predictions as have
been obtained by previous researchers exercising the same model. One common test is to compute tign in
a spatially homogeneous adiabatic, isobaric time-dependent system. Here, tign is mathematically defined as
the time at which d2T/dt2 crosses zero; i.e., an inflection point of T (t). Ref. 10 provides such calculations
based on conditions cited in Ref. 11, which are in fact difficult to discern; thus, these calculations could
not be repeated. However, Ref. 13 provides calculations of tign using the kinetic model of Ref. 10 as well
as sufficient details to reproduce their results. Ref. 13 is mainly concerned with high pressure combustion
of fuel-rich mixtures, and they find that the kinetic model of Ref. 10 gives reliable predictions as long as
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the initial temperature is above a threshold value. Here, comparisons are given in Table 6 for the case
documented in Fig. 1 of Ref. 13 for a mixture of 3CH4 +2O2 +10N2 at po = 150 atm, 1333 ≤ To ≤ 1500 K.
Agreement is good.

A second qualitative method of mathematical verification is to examine results for different error toler-
ances and determine if new flow structures arise. Though not reported here, this was done, and no new
structures were predicted as tolerances were reduced, although for coarse tolerances, numerical roundoff
errors become apparent for minor species mass fractions, and for extremely fine tolerances, local iterative
convergence becomes more difficult. As demonstrated in Ref. 8, a more robust mathematical verification is
given by detailed convergence studies in which computational step sizes are systematically varied and the
rate at which error norms approach zero are compared to the inherent order of convergence of the numerical
method. This was not performed here, but as the same method and code were used as in robustly verified
Ref. 8, there is no real reason for concern.

B. Validation with Experiment

When one is confident that the computational predictions of the model are behaving in a fashion consistent
with its underlying mathematics, it is appropriate to consider how well its predictions match experiment.
There are two validation tests in common usage: 1) comparison with measured ignition delay times, and
2) correlation of predicted induction zone lengths, `ind, with measured detonation cell widths, `cell. Here,
`ind is defined as the distance at which d2T/dx2 crosses zero, i.e. the inflection point in T (x). Of these,
1) is the more reliable, as 2) is the consequence of a fully three-dimensional unsteady phenomena, which is
beyond the capability of a one-dimensional steady state model. However, as exemplified in Ref. 15, there is
a long history of attempting to correlate three-dimensional cell sizes with the predictions of one-dimensional
theory. Ratios of `cell/`ind between 10 and 40 are common in hydrocarbon mixtures. It is recognized that
both these validations are incomplete in many ways; for example, neither provide fine scale data for minor
species.

1. Spatially Homogeneous Ignition Delay Time

Spadaccini and Colket14 provide a large data set of ignition delay times for methane oxidation. Nine of
their cases were selected for comparison, each of which considered the stoichiometric mixture 0.035CH4 +
0.070O2 + 0.895Ar at various po and To. Comparisons are shown in Table 7, and the degree of agreement is
quantified in Eqs. (43-44):

t
exp
ign ∼

(
2.21 × 10−4

s
)
−

(
2.73 × 10−3

s
)(To − 1718.56 K

1718.56 K

)

+
(
2.20 × 10−5

s
)(po − 6.24 atm

6.24 atm

)

, (43)

t
comp
ign ∼

(
2.48 × 10−4

s
)
−

(
3.54 × 10−3

s
)(To − 1718.56 K

1718.56 K

)

+
(
1.04 × 10−4

s
)(po − 6.24 atm

6.24 atm

)

. (44)

Each of these are linear least squares curve fits of tign(To, po) to the experimental data and computational
predictions, respectively, centered about the mean values of To and po. Clearly, the model does best in
capturing the correct mean value and temperature sensitivity. The relative pressure sensitivity has the
correct sign, but differs by an order of magnitude from the measured value. There is also a much stronger
sensitivity to relative changes in temperature instead of pressure.

2. Comparison with Detonation Cell Size

For a stoichiometric methane-air mixture with an initial state of CH4+2O2+7.52N2 and po = 1 atm, Tieszen,
et al.15 measure `cell and use their own kinetic model to predict `ind at two different initial temperatures:
To = 298 K and 373 K. The present model was exercised under the same conditions, comparisons are given
in Table 8. Once again, agreement is good.

The detonation was modeled at near-CJ conditions; the precise CJ state is achieved when the states of
chemical equilibrium and M = 1 are achieved simultaneously. As described by Fickett and Davis,26 rigorous
steady detonation theory only has shown the CJ state to be the speed of propagation of an unsupported
wave for irreversible exothermic reactions. Most other detonation models, including those with reversible
reaction rates such as considered here, admit solutions which are perturbations of the CJ state. For reactions
dominated by strong exothermicity in the forward rate, the deviation from CJ is small. Consequently, the
results here, labeled “CJ,” actually represent a solution with as small an overdrive as possible to prevent
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a sonic point from being reached at a point where the reaction was not in equilibrium. This state was
determined by iteration.

C. Stoichiometric Near-CJ Methane-Air Detonation at Standard Conditions

With confidence that the kinetic model was verified and validated to a presently accepted, albeit imperfect,
standard, a detailed examination was undertaken of a minimally overdriven, near-CJ, detonation of a stoi-
chiometric mixture of CH4 +2O2 +7.52N2, which in its unshocked state was at po = 1 atm and To = 298 K.
Values of various thermochemical and dynamic properties at the initial state, shock state, and equilibrium
state are given in Table 9.

Figure 1 gives a plot of the spatial distribution of species mass fractions throughout the reaction zone.
The use of log-log scaling in Fig. 1 reveals a variety of scales over which the mass fractions evolve. The
shock front is located at x = 0 cm. Just past the shock, collisions of the major species CH4, O2, and
N2 commence with more vigor, and minor species are generated. For small distances from the shock front
0 < x < 10−4 cm, the mass fractions of minor species grow at rates which are well modeled by power laws,
while major species mass fractions are essentially unchanged. At x ∼ 10−4 cm, one notices the slopes of
the curves begin to change; this indicates that, at this scale, there is beginning to be significant chemical
interactions of the minor species. For 10−4 < x < 100 cm, major species collisions continue, minor species
mass fractions continue to rapidly grow, and the minor species continue to interact. Just past x = 100 cm,
a particularly vigorous stage of the reaction ensues in which all species mass fractions, except the inert
N2, undergo significant change. This region is considered to be near the end of the induction zone, whose
thickness is given by `ind = 1.58 × 100 cm. It is also the beginning of the thermal explosion zone, which
extends from roughly 1.58 × 100 < x < 1.60 × 100 cm. This is followed by a relatively long recombination
zone, 1.60 × 100 < x < 101 cm, in which radicals recombine exothermically into the predominant product
species, H2O and CO2. For x > 101 cm, it is clear from Fig. 1 that the system has come to an equilibrium,
as all spatial gradients are near zero. This is confirmed by calculating the equilibrium state with an iterative
Newton solver for fi(Yi, . . . , YN−L) = 0.

The multi-scale nature of the problem is most clearly displayed in Fig. 2. Here, the length scales `i(x)
predicted by the local eigenvalue analysis described earlier are shown as functions of the distance from the
shock. Each curve corresponds to the reciprocal of the absolute value of the real part of an eigenvalue.
Most importantly, the finest length scale is seen to vary from near 10−4 cm in the induction zone to as low
as `f = 1.04 × 10−5 cm in the recombination zone. The largest length scales range from around 108 cm
in the induction zone to around 100 cm at equilibrium state. The smallest length scale is consistent with
the scale on which mass fractions are seen to vary in Fig. 1. Moreover, the smallest scale is roughly equal
to the internal step size utilized by the adaptive DLSODE integration subroutine, in which the size of the
integration step is automatically chosen to maintain stability as well as achieve the specified accuracy. The
largest length scale is not as critical, but its value at equilibrium provides a useful estimate of the overall
length of the reaction zone.

Additional features of Fig. 2 are noteworthy. For the bulk of the domain, there are N −L = 16 real and
distinct eigenvalues. For x > 2 × 100 cm, the real parts of all sixteen eigenvalues are negative, indicating
a relaxation to equilibrium. The spikes in some of the curves near x = 1.5 × 100 cm indicate some of the
eigenvalues have real parts passing through zero; hence, their reciprocals approach infinity. In a few isolated
regions near the end of the induction zone and in the thermal explosion zone, some of the eigenvalues are
complex conjugates. This is indicative of a local oscillatory behavior and is seen in Fig. 2 when some of the
curves merge in a thin zone.

A plot of temperature in the reaction zone is given in Fig. 3. The induction zone is seen to be a region
of essentially constant temperature. This seeming serenity cloaks a cauldron of activity as species mass
fractions evolve rapidly within this zone. In contrast, the evolution of temperature in the recombination
zone is mild in comparison.

V. Equivalence to the Molecular Collision Length Scale

The most striking result of the previous section is the dramatically small length scale, ∼ 10−5 cm, that
must be considered in order to claim a fully resolved, direct numerical simulation (DNS). Ref. 8 showed
essentially the same result for H2/O2/N2 mixtures and went on to show that no existing calculation of

9 of 19

American Institute of Aeronautics and Astronautics Paper 2006-0950



unsteady detonation flow fields with detailed kinetics has employed sufficiently fine grid scales to resolve all
flow structures inherent to the chosen mathematical model. A common, but flawed, defense of calculations
with overly coarse grids is that detailed kinetics models are not appropriate as scales approach mean free
path distances, and only should be used on scales which encompass at least dozens, if not hundreds, of mean
free paths. This section will appeal to continuum mechanics and its underlying collision theory to argue that
such a defense is, in fact, groundless.

Rational continuum theories, as exemplified in Eqs. (1-18), rely upon constitutive models whose constants
can be deduced either from 1) experiment, or 2) averaging methods applied to a more fundamental underlying
model valid at a smaller, sub-continuum, scale. It is well known, cf. Vincenti and Kruger,28 that diffusive
transport properties such as viscosity and thermal conductivity, as well as reaction parameters such as Aj , Θj ,
and βj , can be directly related to molecular properties. For example, for simple dissociation recombination
reactions, Ref. 28 estimate in their Eq. (VII.6.7b) the continuum constitutive theory parameters Aj and βj .
In a simplified limit, this reduces to

Aj ∼ 2Nd
2

√

2πk

m
, βj =

1

2
, (45)

where new parameters, described in detail on p. 25 of Ref. 28, are N = 6.02 × 1023 1/mole, Avogadro’s
number; k = </N = 1.38 × 10−16 erg/K, the Boltzmann constant; m, the mass of a molecule, and d,
the molecular collision cross-section diameter. Adopting Ref. 28’s estimate of d = 3.7 × 10−7 cm for
air, calculating M = 27.1 g/mole, the mixture molar mass at the CJ state, estimating m = M/N =
(27.1 g/mole)/(6.02 × 1023 1/mole) = 4.50 × 10−23 g, one finds that Eq. (45) yields an estimate of
Aj ∼ 7.24× 1012 cm3/mole/s/K1/2. As discussed in Ref. 22, p. 411, such estimates are not largely different
from actual values used in calculation for simple atomic and diatomic molecules; however, they can yield
errors of many orders of magnitude for uni-molecular reactions and reactions involving complex molecules.
And while actual reaction rate estimates typically have collision theory as their foundation, there is a host
of refinements, e.g. transition state theory, developed over the decades by kineticists; Ref. 22 provides a
modern summary. Whatever refinement might exist, once constructed, continuum theories can be queried to
yield results at any length scale; however, one must realize that the results are physically meaningful at or

above a cutoff length scale. Below the cutoff length scale, continuum theories continue to yield predictions.
However, these predictions exhibit no additional structures and simply interpolate between the structures
found above the cutoff length scale, yielding results valid only in an average sense.

For continuum theories whose constitutive model parameters are averaged manifestations of molecular
collision theories, the cutoff length scale is `mfp, the mean free path distance between collisions. Ref. 28 in
their Eq. (I.4.3b) gives a simple estimate for `mfp:

`mfp ∼ m√
2πd2ρ

, (46)

Taking the CJ density of ρ = 2.04× 10−3 g/cm3, one estimates `mfp ∼ 3.6× 10−6 cm. This estimate is well
correlated with the actual `f = 1.04×10−5 cm predicted by the eigenvalue analysis and reported in Table 8,
and so provides additional evidence in support of the eigenvalue analysis. A plot of `mfp, `f , and `ind for
CJ detonation in a mixture of CH4 + 2O2 + 7.52N2 at To = 298 K and various po is given in Fig. 4. The
estimates from Eq. (46) agree well the predictions of `f from the eigenvalue analysis. And both are roughly
three orders of magnitude finer than `ind under the same conditions.

It is also easy to show that `mfp is the foundational cutoff length scale for all continuum theories of
gas dynamics, and that it applies equally as well to mass, momentum, and energy diffusion mechanisms in
addition to reaction. And, though often unrecognized in much of the aerospace propulsion community, it
has long been known that continuum theories can excel in predicting phenomena at scales at or above `mfp.
A well documented example which considers finite width viscous structures for shocks of moderate strength
is summarized in Ref. 28, pp. 412-24. Here, it is clearly seen that predictions of temperature given by a
continuum Navier-Stokes theory agree well with both 1) experiment, and 2) predictions of a more robust
theory based on a non-continuum Burnett theory. As stated by Ref. 28, “...comparisons with experiment
show that the Navier-Stokes solution is accurate for larger values of [Mach number] then [sic] might be
expected from purely theoretical considerations....It is sometimes said that the test of a good theory is
whether its usefulness exceeds its expected range of validity; the Navier-Stokes equations amply satisfy this
criterion.” As M increases, the shock wave becomes thinner, gradients become steeper, and higher order
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non-continuum effects, neglected by the Navier-Stokes theory, become more important. However, even for
M = 5 flow, Fig. 4, p. 423 of Ref. 28 shows a Navier-Stokes solution has a high degree of fidelity with the
predictions of a non-continuum theory.

Note further that for compressible flow, the so-called Kolmogorov scale of turbulence is one and the same
with the scale of shock thicknesses, which itself is on the order of `mfp, as can be shown by simple scaling
arguments.29 Thus, for a compressible flow with elementary reactions, all finest scales are related to the
mean free path. The common flamelet approach in which some fine scale flame structures are not resolved in
some low Mach number simulations of combustion loses its physical rationale for a DNS30 of detonation. In
summary, then, one can say that a true DNS of compressible reactive flow with detailed kinetics which has
full fidelity with the underlying molecular collision theory needs to include all collision-based mechanisms,
both for reaction and diffusion of mass, momentum, and energy. The common justification for reactive Euler
equations that diffusion can be neglected relative to reaction is not true when one considers a fully resolved
calculation with detailed kinetics. That said, reactive Euler equations retain value for qualitative studies
used to predict trends.

VI. Necessary Grid Resolution for Previously Published Studies

As detailed kinetics models are often coupled with fluid flow models in aero-propulsion computational
studies, it is instructive to compare the grid resolution employed in such studies10,17−20 with that which is
necessary for complete resolution of continuum reaction length scales intrinsic to the chosen model of the
studies. It can be difficult to precisely determine the grid sizes and induction lengths from published reports;
sometimes even rough estimates are impossible. In the interest of scientific reproducibility, it is imperative
that such parameters and results be reported. Most important for grid resolution issues is to clearly state
sufficient information so that the physical size of the smallest grid dimension can be determined; the common
practice of reporting only the number of grid points without the corresponding dimensions of the domain
is insufficient. Whatever the case, best estimates have been made, and results are summarized in Table 10.
Obviously, the previously published results have not resolved the scales by several orders of magnitude.

The fact that detailed kinetics models demand fine spatial resolution has not been lost upon some
researchers, who have explicitly chosen simpler kinetic models tailored specifically so as to avoid the necessity
of modeling at this scale. Such an approach is well exemplified by the study of Bielert and Sichel,31 who
employ a front-tracking model to describe one-dimensional DDT in a methane-air mixture. Their conclusion,
albeit directed towards turbulent combustion with detailed kinetics, remains, with two caveats, true today:
that computation “...in complex geometries with detailed kinetics is still beyond the capacities of modern
computers.” The caveats are 1) that the largest geometries have common aerospace engineering maximum
length scales, e.g. 103 cm, and 2) no adaptive mesh refinement, such as employed in recent calculations
of H2/O2/Ar detonations32 and useful when a small number of regions with steep gradients is present, is
employed.

VII. Conclusions

The present results conclusively confirm that continuum models of methane-based compressible reactive
flow contain the same small (10−5 cm) mean free path length scales previously recognized8 in combustion of
hydrogen-based mixtures. The direct linkage, shown originally here, of the eigenvalue-predicted length scales
with the predictions of molecular collision theory suggests this conclusion will hold for any collision-based
continuum theory; there should be no need for a series of studies for every conceivable gas mixture.

These small scales, when attached to problems with much larger engineering scales, e.g. 103 cm, pose a
true multi-scale grand challenge; the ratio of scales is as much as 108. In fact, it is demonstrated in Ref. 2
that even with the best of modern supercomputers with up to 3.2 × 1013 byte RAM , the largest breadth
of scales for one-, two-, and three-dimensional aero-propulsion problems that can be loaded into random
access memory is roughly 1012, 106, and 104, respectively. On such a machine, assuming the smallest
length scale is 10−5 cm, the largest one-, two-, and three-dimensional devices that could be simulated have
linear dimensions of 107 cm, 101 cm, and 10−1 cm, respectively. On a more ordinary desktop computer
with 109 byte RAM , the equivalent peak dimensions are 103 cm, 10−1 cm, and 10−3 cm, respectively. To
summarize, for aero-propulsion devices with common engineering geometric scales, it is presently possible
to consider flow with resolved detailed kinetics in one spatial dimension on desktop machines and two
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spatial dimensions on modern supercomputers. And this only speaks to the ability to load a problem into
memory; a time-dependent calculation still may be prohibitively expensive if the simulation time is too long.
Adaptive gridding can moderate these conclusions for flows in which steep gradients are confined to a few
small regions. However, many computational challenges remain for adaptation in a dynamic environment;
moreover, adaptation is of little use when regions of steep gradient are distributed throughout the domain,
as can be common in turbulent combusting environments.

Now, it is clear that in order to address problems of technological interest, detailed kinetic mechanisms
are being used and will be used even more so in the foreseeable future. There are at present two challenges
that a researcher encounters in achieving and reporting reproducible results. The first challenge is the
requirement of appropriate resolution of all scales embodied in the model. If insufficient resolution is used
due to lack of computational resources, this should be acknowledged and the conclusions appropriately
tempered. The second challenge is in reporting sufficient details so that results can be reproduced. While it
is recognized that the standard for scientific reproducibility requires that the problem’s details be provided,
we realize that it is impractical to routinely publish extensive tables of detailed mechanisms and associated
thermodynamic data. Thus, we strongly advocate the creation and maintenance of a standard database to
which all researchers can refer in published works.

In conclusion, it is recommended that the aero-propulsion modeling community aspire to present numer-
ical computations which are first mathematically verified and second experimentally validated.6,7 Such an
exercise is necessary to fully realize the goal of predictive, science-based design and engineering. Moreover,
it is clear that many predictions with detailed kinetics do not agree with observation; perhaps the reason
is because of lack of proper resolution. It thus should be axiomatic that modern computational predictions
should accurately reflect the true solution of the underlying mathematical model, however simple or complex
that model may be.
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j Reaction Aj βj Θj

1 H + O2
⇀↽ OH + O 1.59 × 1017 −0.927 8491.28

2 O + H2
⇀↽ OH + H 3.87 × 104 2.700 3151.16

3 OH + H2
⇀↽ H2O + H 2.16 × 108 1.510 1725.92

4 OH + OH ⇀↽ O + H2O 2.10 × 108 1.400 −199.65

5 H + H + M ⇀↽ H2 + M 6.40 × 1017 −1.000 0.00

6 H + OH + M ⇀↽ H2O + M 8.40 × 1021 −2.000 0.00

7 H + O2 + M ⇀↽ HO2 + M 7.00 × 1017 −0.800 0.00

8 HO2 + H ⇀↽ OH + OH 1.50 × 1014 0.000 505.15

9 HO2 + H ⇀↽ H2 + O2 2.50 × 1013 0.000 348.79

10 HO2 + O ⇀↽ O2 + OH 2.00 × 1013 0.000 0.00

11 HO2 + OH ⇀↽ H2O + O2 6.02 × 1013 0.000 0.00

12 H2O2 + M ⇀↽ OH + OH + M 1.00 × 1017 0.000 22851.89

13 CO + OH ⇀↽ CO2 + H 1.22 × 107 1.350 −317.52

14 CO + O + M ⇀↽ CO2 + M 3.01 × 1014 0.000 1515.44

15 CHO + H ⇀↽ CO + H2 7.23 × 1013 0.000 0.00

16 CHO + O ⇀↽ CO + OH 3.00 × 1013 0.000 0.00

17 CHO + OH ⇀↽ CO + H2O 1.00 × 1014 0.000 0.00

18 CHO + O2
⇀↽ CO + HO2 4.20 × 1012 0.000 0.00

19 CHO + M ⇀↽ CO + H + M 1.86 × 1017 −1.000 8551.42

20 CH2O + H ⇀↽ CHO + H2 1.26 × 108 1.620 1094.49

21 CH2O + O ⇀↽ CHO + OH 3.50 × 1013 0.000 1768.01

22 CH2O + OH ⇀↽ CHO + H2O 7.23 × 105 2.460 −488.31

23 CH2O + O2
⇀↽ CHO + HO2 1.00 × 1014 0.000 20085.61

24 CH2O + CH3
⇀↽ CHO + CH4 8.91 × 10−13 7.400 −481.09

25 CH2O + M ⇀↽ CHO + H + M 5.00 × 1016 0.000 38487.40

26 CH3 + O ⇀↽ CH2O + H 8.43 × 1013 0.000 0.00

27 CH3 + OH ⇀↽ CH2O + H2 8.00 × 1012 0.000 0.00

28 CH3 + O2
⇀↽ CH3O + O 4.30 × 1013 0.000 15503.20

29 CH3 + O2
⇀↽ CH2O + OH 5.20 × 1013 0.000 17559.87

30 CH3 + HO2
⇀↽ CH3O + OH 2.28 × 1013 0.000 0.00

31 CH3 + CHO ⇀↽ CH4 + CO 3.20 × 1011 0.500 0.00

32 CH3 + CH3
⇀↽ C2H5 + H 4.90 × 1012 0.000 5905.41

33a H + CH3(+M) ⇀↽ CH4(+M) 1.39 × 1016 −0.534 269.75

34 CH4 + H ⇀↽ CH3 + H2 7.80 × 106 2.110 3896.85

35 CH4 + O ⇀↽ CH3 + OH 1.90 × 109 1.440 4365.91

36 CH4 + O2
⇀↽ CH3 + HO2 5.60 × 1012 0.000 28179.99

37 CH4 + OH ⇀↽ CH3 + H2O 1.50 × 106 2.130 1226.79

38 CH4 + HO2
⇀↽ CH3 + H2O2 4.60 × 1012 0.000 9056.57

39 CH3O + H ⇀↽ CH2O + H2 2.00 × 1013 0.000 0.00

40 CH3O + OH ⇀↽ CH2O + H2O 5.00 × 1012 0.000 0.00

41 CH3O + O2
⇀↽ CH2O + HO2 4.28 × 10−13 7.600 −1775.23

42 CH3O + M ⇀↽ CH2O + H + M 1.00 × 1014 0.000 12628.68

43 C2H3 + O2
⇀↽ CH2O + CHO 3.98 × 1012 0.000 −120.27

44 C2H4 + H ⇀↽ C2H3 + H2 3.16 × 1011 0.700 4029.15

45 C2H4 + OH ⇀↽ C2H3 + H2O 3.00 × 1013 0.000 1503.41

46 C2H5 + H ⇀↽ C2H4 + H2 3.00 × 1013 0.000 0.00

47 C2H5 + O2
⇀↽ C2H4 + HO2 2.00 × 1012 0.000 2513.71

48a H + C2H4(+M) ⇀↽ C2H5(+M) 5.40 × 1011 0.454 915.95

49a CH3 + CH3(+M) ⇀↽ C2H6(+M) 6.77 × 1016 −1.180 329.14

50 C2H6 + H ⇀↽ C2H5 + H2 5.40 × 102 3.500 2621.95

51 C2H6 + OH ⇀↽ C2H5 + H2O 2.20 × 107 1.900 565.28

52 C2H6 + CH3
⇀↽ C2H5 + CH4 5.50 × 10−1 4.000 4173.48

Table 1. Twenty-one species (nineteen reacting), fifty-two step skeletal reversible reaction mechanism for
a methane/oxygen/nitrogen/argon mixture from Yungster and Rabinowitz,10 with three substitutionsa from
GRI 3.0.12 Units of Θj are K. Units of Aj are such that the species production rate has units of mole/cm3/s; βj is
dimensionless. Third body enhancement coefficients are given in Table 2. For pressure-dependent reactionsa,
Aj = A∞

j
, βj = β∞

j
, and Θj = Θ∞

j
; low pressure coefficients are given in Table 3.
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j ηH2
ηO2

ηN2
ηH2O ηCO ηCO2

6 1.900 × 100 2.600 × 100 2.600 × 100 9.500 × 100 2.600 × 100 2.600 × 100

12 2.900 × 100 1.200 × 100 1.200 × 100 1.850 × 101 2.100 × 100 4.300 × 100

14 1.000 × 100 1.200 × 100 2.000 × 100 1.000 × 100 3.000 × 100 7.000 × 100

19 1.870 × 100 1.000 × 100 1.000 × 100 8.120 × 100 1.000 × 100 1.000 × 100

25 2.900 × 100 1.200 × 100 1.200 × 100 1.850 × 101 2.100 × 100 4.300 × 100

42 2.900 × 100 1.200 × 100 1.200 × 100 1.850 × 101 2.100 × 100 4.300 × 100

Table 2. Dimensionless third body enhancement factors, ηi, for selected reactions from a twenty-one species,
fifty-two step reversible reaction mechanism for a methane/oxygen/nitrogen/argon mixture extracted from
Yungster and Rabinowitz.10

j A0

j β0

j Θ0

j αj T ∗∗∗
j T ∗

j T ∗∗
j

33 2.620 × 1033
−4.760 × 100 1.228 × 103 7.830 × 10−1 7.400 × 101 2.941 × 103 6.964 × 103

48 6.000 × 1041
−7.620 × 100 3.508 × 103 9.753 × 10−1 2.100 × 102 9.840 × 102 4.374 × 103

49 3.400 × 1041
−7.030 × 100 1.390 × 103 6.190 × 10−1 7.320 × 101 1.180 × 103 9.999 × 103

Table 3. Low pressure limit kinetic rate parameters and Troe centering factors for selected reactions from a
twenty-one species, fifty-two step reversible reaction mechanism for a methane/oxygen/nitrogen/argon mixture
from GRI 3.0.12 Units of Θ0

j
are K. Units of A0

j
are such that the species production rate has units of mole/cm3/s;

β0

j
is dimensionless; αj is dimensionless. Units for T ∗∗∗

j
, T ∗

j
, and T ∗∗

j
are K.

i Specie a1i a2i (1/K) a3i (1/K2) a4i (1/K3) a5i (1/K4) a6i (K) a7i

1 H2 0.234 × 101 0.798 × 10−2 −0.195 × 10−4 0.202 × 10−7 −0.738 × 10−11 −0.918 × 103 0.683 × 100

2 H 0.250 × 101 0.705 × 10−12 −0.200 × 10−14 0.230 × 10−17 −0.928 × 10−21 0.255 × 105 −0.447 × 100

3 O 0.317 × 101 −0.328 × 10−2 0.664 × 10−5 −0.613 × 10−8 0.211 × 10−11 0.291 × 105 0.205 × 101

4 O2 0.378 × 101 −0.300 × 10−2 0.985 × 10−5 −0.968 × 10−8 0.324 × 10−11 −0.106 × 104 0.366 × 101

5 OH 0.399 × 101 −0.240 × 10−2 0.462 × 10−5 −0.388 × 10−8 0.136 × 10−11 0.362 × 104 −0.104 × 100

6 H2O 0.420 × 101 −0.204 × 10−2 0.652 × 10−5 −0.549 × 10−8 0.177 × 10−11 −0.303 × 105 −0.849 × 100

7 HO2 0.430 × 101 −0.475 × 10−2 0.212 × 10−4 −0.243 × 10−7 0.929 × 10−11 0.295 × 103 0.372 × 101

8 H2O2 0.428 × 101 −0.543 × 10−3 0.167 × 10−4 −0.216 × 10−7 0.862 × 10−11 −0.177 × 105 0.344 × 101

9 CH3 0.367 × 101 0.201 × 10−2 0.573 × 10−5 −0.687 × 10−8 0.254 × 10−11 0.164 × 105 0.160 × 101

10 CH4 0.515 × 101 −0.137 × 10−1 0.492 × 10−4 −0.485 × 10−7 0.167 × 10−10 −0.102 × 105 −0.464 × 101

11 CO 0.358 × 101 −0.610 × 10−3 0.102 × 10−5 0.907 × 10−9 −0.904 × 10−12 −0.143 × 105 0.351 × 101

12 CO2 0.236 × 101 0.898 × 10−2 −0.712 × 10−5 0.246 × 10−8 −0.144 × 10−12 −0.484 × 105 0.990 × 101

13 CHO 0.422 × 101 −0.324 × 10−2 0.138 × 10−4 −0.133 × 10−7 0.434 × 10−11 0.384 × 104 0.339 × 101

14 CH2O 0.479 × 101 −0.991 × 10−2 0.373 × 10−4 −0.380 × 10−7 0.132 × 10−10 −0.143 × 105 0.603 × 100

15 CH3O 0.211 × 101 0.722 × 10−2 0.534 × 10−5 −0.738 × 10−8 0.208 × 10−11 0.979 × 103 0.132 × 102

16 C2H3 0.321 × 101 0.151 × 10−2 0.259 × 10−4 −0.358 × 10−7 0.147 × 10−10 0.349 × 105 0.851 × 101

17 C2H4 0.396 × 101 −0.757 × 10−2 0.571 × 10−4 −0.692 × 10−7 0.270 × 10−10 0.509 × 104 0.410 × 101

18 C2H5 0.431 × 101 −0.419 × 10−2 0.497 × 10−4 −0.599 × 10−7 0.231 × 10−10 0.128 × 105 0.471 × 101

19 C2H6 0.429 × 101 −0.550 × 10−2 0.599 × 10−4 −0.708 × 10−7 0.269 × 10−10 −0.115 × 105 0.267 × 101

20 N2 0.330 × 101 0.141 × 10−2 −0.396 × 10−5 0.564 × 10−8 −0.244 × 10−11 −0.102 × 104 0.395 × 101

21 Ar 0.250 × 101 0.000 × 100 0.000 × 100 0.000 × 100 0.000 × 100 −0.745 × 103 0.437 × 101

Table 4. Polynomial curve fit coefficients from GRI 3.012 for thermodynamic properties for 1000 K ≤ T < 3500 K.

i Specie a1i a2i (1/K) a3i (1/K2) a4i (1/K3) a5i (1/K4) a6i (K) a7i

4 O2 0.328 × 101 0.148 × 10−2 −0.758 × 10−6 0.209 × 10−9 −0.217 × 10−13 −0.109 × 104 0.545 × 101

10 CH4 0.749 × 10−1 0.134 × 10−1 −0.573 × 10−5 0.122 × 10−8 −0.102 × 10−12 −0.947 × 104 0.184 × 102

20 N2 0.293 × 101 0.149 × 10−2 −0.569 × 10−6 0.101 × 10−9 −0.675 × 10−14 −0.923 × 103 0.598 × 101

21 Ar 0.250 × 101 0.000 × 100 0.000 × 100 0.000 × 100 0.000 × 100 −0.745 × 103 0.437 × 101

Table 5. Polynomial curve fit coefficients from GRI 3.012 for thermodynamic properties for 200 K < T < 1000 K
for species which are modeled in the unshocked state.
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To (K) tign (s) tign (s)

Ref. 13 present study

1500 3.0 × 10−5 2.51 × 10−5

1429 6.2 × 10−5 5.16 × 10−5

1333 1.1 × 10−4 1.68 × 10−4

Table 6. Computational predictions of ignition delay times for mixtures of 3CH4 + 2O2 + 10N2 at po = 150 atm
and various initial temperatures given by the the present twenty-one species, fifty-two step reversible reaction
mechanism under isobaric spatially homogeneous conditions from two separate sources: 1) estimates extracted
from Petersen and Hanson,13 and 2) the present study.

To (K) po (atm) tign (s) tign (s)

experimental14 present study

1705 6.55 1.15 × 10−4 1.39 × 10−4

1672 6.28 2.36 × 10−4 1.87 × 10−4

1918 7.97 2.20 × 10−5 2.76 × 10−5

1799 7.58 7.50 × 10−5 6.22 × 10−5

1516 5.78 5.93 × 10−4 7.79 × 10−4

1525 5.90 5.93 × 10−4 7.04 × 10−4

1820 8.28 4.30 × 10−5 5.03 × 10−5

1759 4.02 1.46 × 10−4 1.35 × 10−4

1753 3.77 1.71 × 10−4 1.49 × 10−4

Table 7. Ignition delay times for mixtures of 0.035CH4 + 0.070O2 + 0.895Ar at various initial temperatures
and pressures as measured in experiment14 and predicted by the present twenty-one species, fifty-two step
reversible reaction mechanism under isobaric spatially homogeneous conditions.

To (K) `cell (cm) `ind (cm) `ind (cm) `f (cm) DCJ (cm/s)

Ref. 15 Ref. 15 present study present study

298 30.5 2.76 1.58 1.04 × 10−5 1.81053 × 105

373 26.0 2.37 1.41 1.27 × 10−5 1.80439 × 105

Table 8. Experimentally observed15 detonation cell widths `cell, predictions of induction zone lengths `ind,
and finest collision-based length scale `f for near-CJ detonations for mixtures of CH4 + 2O2 + 7.52N2 initially at
po = 1 atm and various initial temperatures.
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Property Units Initial Shock CJ

p atm 1.00000 × 100 3.16139 × 101 1.73128 × 101

T K 2.98000 × 102 1.53240 × 103 2.79971 × 103

u cm/s 1.81053 × 105 2.94498 × 104 1.00271 × 105

ρ g/cm3 1.13011 × 10−3 6.94776 × 10−3 2.04058 × 10−3

e erg/g −3.46389 × 109 8.77863 × 109 1.99057 × 108

cp erg/g/K 1.07682 × 107 1.46889 × 107 1.54873 × 107

cv erg/g/K 7.75954 × 106 1.16802 × 107 1.24167 × 107

γ 1.38774 × 100 1.25759 × 100 1.24729 × 100

c cm/s 3.52738 × 104 7.61456 × 104 1.03550 × 105

M 5.13279 × 100 3.86757 × 10−1 9.68338 × 10−1

YH2
0.00000 × 100 0.00000 × 100 5.98774 × 10−4

YH 0.00000 × 100 0.00000 × 100 6.56356 × 10−5

YO 0.00000 × 100 0.00000 × 100 8.60924 × 10−4

YO2
2.20149 × 10−1 2.20149 × 10−1 1.47849 × 10−2

YOH 0.00000 × 100 0.00000 × 100 6.64695 × 10−3

YH2O 0.00000 × 100 0.00000 × 100 1.14482 × 10−1

YHO2
0.00000 × 100 0.00000 × 100 1.13149 × 10−5

YH2O2
0.00000 × 100 0.00000 × 100 1.27034 × 10−6

YCH3
0.00000 × 100 0.00000 × 100 5.23100 × 10−14

YCH4
5.51873 × 10−2 5.51873 × 10−2 1.53351 × 10−14

YCO 0.00000 × 100 0.00000 × 100 2.36488 × 10−2

YCO2
0.00000 × 100 0.00000 × 100 1.14235 × 10−1

YCHO 0.00000 × 100 0.00000 × 100 7.22950 × 10−8

YCH2O 0.00000 × 100 0.00000 × 100 1.43914 × 10−9

YCH3O 0.00000 × 100 0.00000 × 100 1.88495 × 10−15

YC2H3
0.00000 × 100 0.00000 × 100 1.38657 × 10−21

YC2H4
0.00000 × 100 0.00000 × 100 6.00001 × 10−22

YC2H5
0.00000 × 100 0.00000 × 100 8.53497 × 10−26

YC2H6
0.00000 × 100 0.00000 × 100 4.26483 × 10−27

YN2
7.24664 × 10−1 7.24664 × 10−1 7.24664 × 10−1

YAr 0.00000 × 100 0.00000 × 100 0.00000 × 100

Table 9. Thermochemical and dynamic properties for a mixture of CH4 + 2O2 + 7.52N2.

Ref. Mixture To (K) po (atm) Mo `ind (cm) `ind (cm) `f (cm) ∆x (cm)

present reported

study value

10 CH4 + 2O2 + 7.52N2 295 0.503 6.61 3.6 × 10−2 1.2 × 10−2 1.8 × 10−6 1.4 × 10−2 b

17 CH4 + 2O2 + 7.52N2 295 0.509 6.61 3.8 × 10−2 1.4 × 10−2 1.9 × 10−6 2.1 × 10−4

18 9.5CH4 + 19.0O2 + 71.5N2 295 0.493 6.64 3.7 × 10−2 < 1.0 × 10−1 c 1.9 × 10−6 2.7 × 10−4 b

19 CH4 + 2O2 + 7.52N2 295 0.503 6.61 3.6 × 10−2 1.4 × 10−2 1.8 × 10−6 2.8 × 10−4 b

20 CH4 + 2O2 300 0.987 6.71 2.6 × 10−2 < 1.0 × 100 c 1.2 × 10−5 - d

Table 10. Comparison of length scales among various models which use detailed kinetics to describe detonations
in methane-based systems. Values for `f were predicted from the algorithm of the present study; values for

`ind were predicted from the present study and reported from the cited sources. bDiscretization length not
clearly specified; value estimated. cInduction length not clearly specified; value estimated. dAdaptive grid
used; finest resolution not specified.

17 of 19

American Institute of Aeronautics and Astronautics Paper 2006-0950



10
−6

10
−4

10
−2

10
0

10
2

10
−40

10
−30

10
−20

10
−10

10
0

x (cm)

Y
i

Figure 1. Species mass fraction versus distance for conditions of Table 9.
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Figure 2. Length scales versus distance for conditions of Table 9.
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Figure 3. Temperature versus distance for conditions of Table 9.
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Figure 4. Induction zone length `ind, finest reaction zone length `f , and mean free path
estimate `mfp versus unshocked pressure po, with To = 298 K for near-CJ detonation in
CH4 + 2O2 + 7.52N2.

19 of 19

American Institute of Aeronautics and Astronautics Paper 2006-0950


