
Initiation of Viscous Detonation

Christopher M. Romick,
University of Notre Dame, Notre Dame, IN

Tariq D. Aslam,
Los Alamos National Laboratory, Los Alamos, NM

and

Joseph M. Powers

University of Notre Dame, Notre Dame, IN

2013 SIAM International Conference on Numerical Combustion

San Antonio, Texas

April 9, 2013



Motivation:

• A standard result from non-linear dynamics is that small phenomena can

cascade to affect large phenomena

• Might the small scale phenomenon of physical diffusion play an important role in

determining inherent scales in the ignition process of detonation from an initially

slow moving flame

• After initiation, detonations nearly universally exhibit instability, giving rise to

complex dynamics; in order, to capture these dynamics all inherent length

scales must be properly resolved

• In one-step kinetics, the number of points in steady L1/2 is used as standard

reference for the resolution of a simulation; however, the dynamics of the

detonation cause the predicted L1/2 to vary in time

• Additional complexity is added when studying detailed kinetics, as it gives rise to

multiple intrinsic length scales



Unsteady, Compressible, Reactive Navier-Stokes
(NS) Equations
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Computational Methods

• Inviscid

– Fifth order shock-fitting algorithm, adapted from Henrick et al. (J. Comp.

Phys., 2006), assures numerical errors are minimal

– Shock-capturing using WENO5M

– Both methods use a fifth order Runge-Kutta scheme for time integration

• Viscous

– Using WAMR, Vasilyev and Paolucci (JCP, 1996,1997), which is an adaptive

mesh refinement technique utilizing wavelet functions

– Using a 5th order WENO scheme for advective terms and a 4th order

central difference scheme for diffusive terms

– Utilized either a fifth order Runge-Kutta scheme or a second order

Runge-Kutta-Legrendre scheme employing a Strang operator split for time

integration



Model Parameters
Hydrogen-Air Detailed Kinetics

po = 1 atm

To = 293 K

Linduct = 1.9 × 10−2 cm

DCJ ≈ 1993 m/s

fcr ≈ 1.2

Powers & Paolucci (AIAAJ, 2005)

One-step

Set # 1 Set # 2 Set # 3

γ = 1.17 γ = 1.4 γ = 1.2

M = 21 g/mol M = 28 g/mol M = 24 g/mol

Ea = 46.37, q = 43.28 Ea = various,q = 21 Ea = various, q = 50

po = 1 atm po = 1 atm po = 1 atm

To = 293 K To = 300 K To = 293 K

L1/2 = 1.927 × 10−2 cm L1/2 = 1.665 × 10−2 cm L1/2 = 2 × 10−2 cm

DCJ = 1993 m/s DCJ = 1991 m/s DCJ = 2167 m/s

Eacr = 19.21 Eacr = 36.01 Eacr = 25.26

Gamezo et al. (Comb. & Flame, 2008) Kassoy et al. (CTM, 2008;CTM, 2012) Henrick et al. (JCP, 2006)



Energy Deposition Function
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• When the time scale of heat addition is on the order of the local ambient

acoustic time scale, partial inertial confinement transpires, leading to a

moderately localized pressure increase in spite of simultaneous expansion

• The pressure increase generates compression waves which coalesce to form a

shock and cause hot spot formation

• At the same time, a chemical explosion occurs within the region of energy

deposition yielding an initial reaction wave traveling slower than the shock

Kassoy et al. (CTM, 2008;CTM, 2012)



Inviscid Initiation - Parameter Set #2 - Ea = 13.8
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The peak pressure of 40.9 atm occurs at 25.7 µs.



Inviscid Initiation - Ea = 14, 15
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The peak pressure for Ea = 14 is 41.6 atm at 28.0 µs, and for Ea = 15 is

62.7 atm at 49.3 µs.



Inviscid Initiation
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A dramatic increase in the time to detonation occurs, with a 164 times increase from

Ea = 14 to Ea = 17.



Viscous Initiation - Ea = 13.8
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A viscosity of 2 × 10−2 Ns/m2 was used to give an upper bound on the effect of

diffusion, likewise the mass diffusion coefficient and thermal conductivity were set

such that Lµ ∼ Lk ∼ LD . The inviscid peak pressure of 40.9 atm occurs at

25.7 µs and the viscous analog’s peak pressure of 35.0 atm occurs at 16.7 µs.



Viscous Initiation - Overview
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At Ea = 17 the viscosity induces a reduction in the time to detonation by a factor of

60.



Effect of Reducing Viscosity - Ea = 17
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As the viscosity is reduced towards more realistic values, the time to detonation

continues to increase towards the the inviscid limit.



Inviscid CJ Detonations - Parameter Set # 3
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Lee & Stewart (JFM, 1990), Bourlioux et al. (SIAM J. App. Math., 1991), Sharpe &

Falle (CTM, 2000), Kasimov & Stewart (Phys. Fluids, 2004), Ng et al. (CTM, 2005),

and Henrick et al. (JCP, 2006) as well as others have given insight into the behavior

of inviscid planar CJ detonation waves.



Inviscid CJ - Ea = 25
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Below the neutral stability boundary, a stable, steadily propagating wave develops

with L1/2 relaxing to a constant distance behind the shock front.



Overview
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Inviscid CJ - Ea = 26
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Above Eacr = 25.26, the detonation front becomes unstable, and gives rise to a

minimum reaction zone length of L1/2min
= 1.33 × 10−2 cm and

L1/2max
= 2.71 × 10−2 cm yielding L1/2max

/L1/2min
= 2.04.



Overview
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Inviscid CJ - Ea = 28
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This activation energy yields a chaotic detonation, and the ratio of

L1/2max
/L1/2min

becomes 7.29.



Overview
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Let us examine a higher activation energy that is more representative of a

hydrogen-air mixture where shock-capturing must be used.



Inviscid CJ - Ea = 35
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The detonation fails initially, leading to the formation of a weakened leading shock,

contact discontinuity, and a rarefaction wave to the CJ state, before an eventual

re-ignition.



ZND Profile
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Inviscid CJ - Ea = 35
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The detonation fails initially, leading to the formation of a weakened leading shock,

contact discontinuity, and a rarefaction wave to the CJ state, before an eventual

re-ignition.



Profile After Failure
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Inviscid CJ - Ea = 35
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The detonation fails initially, leading to the formation of a weakened leading shock,

contact discontinuity, and a rarefaction wave to the CJ state, before an eventual

re-ignition.



Profile After Re-ignition
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Longest Length Scale Estimate

• Solve Riemann problem from ambient conditions and CJ conditions

• Assume inertial confinement (adiabatic, isochoric thermal auto-ignition) behind

the leading weakened shock:

∂λ

∂t
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„

−Ea

(p/ρ)

«

,

p

(γ − 1) ρ
− qλ = C

• This yields an auto-ignition time and distance of:
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1
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”dλ,

Lign = (Ds − us)tign

• The kinetic rate constant, a, is maintained such that L1/2 = 2 × 10−2 cm

for the steady CJ -ZND profile



Shortest Length Scale Estimate

• After re-ignition, the detonation becomes strongly overdriven

• At a high enough overdrive, the shocked temperature dominates the activation

energy in the chemical reaction term

• This causes the exponential in the Arrenhenius kinetics to be ∼ 1

• Given that the kinetic rate constant, a, is maintained such that the steady

L1/2 = 2 × 10−2 cm, there is a specific overdrive at which the interaction

between the rate of chemical reaction and the post-shock velocity yields a

minimum L1/2



L1/2 Variation
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Once the detonation becomes unstable, the minimum L1/2 decreases and the

maximum L1/2 increases as activation energy increases.



L1/2 Ratio - Inviscid
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Once the detonation becomes unstable, the L1/2 ratio shows a power law growth

before approaching the upper bound estimate as the activation energy increases.



L1/2 Ratio - Inviscid
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L1/2 Ratio - Inviscid
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L1/2 Ratio - Inviscid
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Viscous CJ - Ea = 26
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By adding µ = 2 × 10−2 Ns/m2, we obtain an upper bound on the effect of

diffusion on the propagation, similar to the initiation. At this activation energy, a stable

detonation forms yielding a constant L1/2 at long times.



Viscous CJ - Ea = 28
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Even with viscosity, a high enough activation energy gives rise to an unstable

detonation. For this period-1 detonation, the ratio L1/2max
/L1/2min

= 2.53.



Viscous CJ - Ea = 33
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Similar to that predicted in the inviscid limit, at activation energies more

representative of a hydrogen-air mixture, the detonation fails initially. In this case, the

ratio of L1/2max
/L1/2min

grows to 224.



L1/2 Ratio - Viscous
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The addition of diffusion causes a shift in the neutral stability, and thus reduces the

ratio of L1/2 at a given activation energy.



L1/2 Ratio - Viscous
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L1/2 Ratio - Viscous
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L1/2 Ratio - Viscous
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Chemical Mechanism
Having a better understanding of the length scales present in the one-step model,
let’s examine detailed kinetics using the parameter of overdrive.

j Reaction aj βj Ej

1 H2 + O2 ⇋ 2OH 1.70 × 1013 0.00 47780

2 OH + H2 ⇋ H2O + H 1.17 × 109 1.30 3626

3 H + O2 ⇋ OH + O 5.13 × 1016 −0.816 16507

4 O + H2 ⇋ OH + H 1.80 × 1010 1.00 8826

5 H + O2 + M ⇋ HO2 + Ma 2.10 × 1018 −1.00 0

6 H + O2 + O2 ⇋ HO2 + O2 6.70 × 1019 −1.42 0

7 H + O2 + N2 ⇋ HO2 + N2 6.70 × 1019 −1.42 0

8 OH + HO2 ⇋ H2O + O2 5.00 × 1013 0.00 1000

9 H + HO2 ⇋ 2OH 2.50 × 1014 0.00 1900

10 O + HO2 ⇋ O2 + OH 4.80 × 1013 0.00 100

11 2OH ⇋ O + H2O 6.00 × 108 1.30 0

12 H2 + M ⇋ H + H + Mb 2.23 × 1012 0.50 92600

13 O2 + M ⇋ O + O + M 1.85 × 1011 0.50 95560

14 H + OH + M ⇋ H2O + Mc 7.50 × 1023 −2.60 0

15 H + HO2 ⇋ H2 + O2 2.50 × 1013 0.00 700

16 HO2 + HO2 ⇋ H2O2 + O2 2.00 × 1012 0.00 0

17 H2O2 + M ⇋ OH + OH + M 1.30 × 1017 0.00 45500

18 H2O2 + H ⇋ HO2 + H2 1.60 × 1012 0.00 3800

19 H2O2 + OH ⇋ H2O + HO2 1.00 × 1013 0.00 1800

Enhanced third-body efficiencies with M :

Ma : fH2O = 21.0, fH2
= 3.30, fN2

= 0.00, fO2
= 0.00

Mb : fH2O = 6.00, fH = 2.00, fH2
= 3.00

Mc : fH2O = 20.0

Miller (19th Symposium (International) on Combustion, 1982)



Strongly Overdriven - Stable (f = 1.25)
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At a strong enough overdrive, a hydrogen-air detonation becomes stable, producing a

steady propagating wave.



Strongly Overdriven - Stable - Length Scales
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Even for a stable detonation in hydrogen-air, multiple lengths scales appear.

Lmin = 6.0 × 10−6 cm and Lmax = 1.7 × 101 cm. This yields a ratio of

Lmax/Lmin = 2.8 × 106. The induction zone length is 7.3 × 10−3 cm.



Overdriven - Unstable (f = 1.15)
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Below the neutral stability point, the ZND detonation is unstable. If a quasi-steady

ZND profile is assumed at the maximum and minimum overdrives predicted, an

estimate of the length scales present during the evolution can be obtained.



Overdriven - Unstable - Length Scales
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Using Lmin = 6.3 × 10−6 cm from the higher overdrive and

Lmax = 8.3 × 101 cm from the lower overdrive, the largest ratio of

Lmax/Lmin = 1.3 × 107. The ratio of the maximum to minimum induction

zone length is 1.74.



f = 1.08
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The detonation pressure has gone through a bifurcation, yielding a nearly period-2

detonation. Additionally, the amplitude of oscillations has increased.



f = 1.08 - Length Scales
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Since the lower overdrive is below the CJ detonation velocity, we are unable to obtain

a length scale approximation at this overdrive; thus, we will use the length scales

given by the near CJ detonation. With Lmin = 1.1 × 10−6 cm occuring at the

higher overdrive and Lmax = 2.9 × 102 cm occuring at the near CJ conditions,

yields the largest ratio of Lmax/Lmin = 2.6 × 108. The ratio of the maximum

to minimum induction zone length is 13.1.



Conclusions

• Even small changes in activation energy can yield dramatic changes in the

inherent length and time scales in detonation initiation in the one-step model

• The addition of diffusion reduces the time and distance to detonation; however,

as more realistic viscosities are used, the inherent scales begin to approach

those in the inviscid limit for detonation initiation

• In an already-initiated detonation, the predicted L1/2 can vary significantly in a

time-dependent calculation with ratio of the maximum to minimum L1/2

growing as activation energy increases; the addition of diffusion reduces this

ratio at a given activation energy

• Diffusive effects play a larger role in the initiation than in the propagation of a

one-step detonation

• As the overdrive in a hydrogen-air detonation is lowered, the ratio of the length

scales increases, similar to that predicted in the one-step model as activation

energy increases


