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Henrick, 2008

Outline

® Signal v. Noise: first resolve the physics, then
verify!

® Pristine: convergence, asymptotic convergence
rates, multi-scale physics.

® Practical: scarce computational resources, error
difficult to define, what should retferees expect.

® Perimeter-Extending: nonlinear dynamics,
transition to chaos.

® 'ocus on continuum calculus-based models of
reacting fluid dynamics.
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Verification v. Validation

® Verification: solving the equations right.

® Validation: solving the right equations.
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® Pat Roache informed me in 1990 I was doing
verification. (I was, but didn’t know it.)

® Seemed unnecessary.

® | was wrong. The need exists.

® Widespread misunderstanding of V&V.

® Getting it right is important!

® 'ocus here is solution verification: ASME V& V20:

“Estimates the numerical accuracy of a particular
calculation.”

Roache, 2009
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Verification and Calculus

; y =a° ® Cathartic moment in 1978
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y 1605.
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Powers and Sen, 2015
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Contentions

® Getting a prediction that resolves the modeled physics is
ultimately the most important.

® This 1s often not achieved.

® Low order methods, with appropriate resolution, can get the
“signal.”

® Once this “signal” has been identified, one can and should verify it.
(“h-refinement”).

® Once this “signal” has been identified, high order methods may be
used for enhanced accuracy and efficiency (“p-refinement”).

J. M. Powers ASME V&V 2020 20 May 2020 5



Convergence of the Forward Euler Method

| . under-resolved _ —1
= | noise 4 = €
Ul relaxation time constant, 7 ~ 1,
© 107 Untl = Yn — Aty,, n=1,...,N
S .
< asymptotic _ ~ _—NAt
: 5 convergence . Crror = ‘ |yN € | ‘ ’
01 regime J
R
el R ® At > 7 : Solution not captured.
roundoff . d sional .
corruption 5 ® At~ 7: Solution captured.
. 10
1101S€E . -
| S e At < 7: Solution expensively captured.
10" 10" Af 0" 10

J. M. Powers ASME V&V 2020 20 May 2020 ©



the signal
and the noise

why so many
predictions fail —
but some don’t

nate silver

Silver, 2012

J. M. Powers

Signal v. Noise

® I'irst order of business: tune to the
signal to steer clear of the noise.

® Getting the low order estimate
“right” is important!

® A simple AM radio, tuned to the
station, conveys the signal with
some noise.

® A sophisticated FM radio, still
properly tuned, conveys the signal
with less noise.

ASME V&V 2020 20 May 2020
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Signal v. Noise in Computational Simulation
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Henrick, 2008

Signal Signal Signal or Noise?
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Signal v. Noise Generated by Discretization
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Fourier Series Decomposition Example
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® All frequencies represented in an arbitrary signal.
® T'ypically neglect low amplitude, high frequency modes.

® Such neglect may not be justified, especially for nonlinear problems.

J. M. Powers ASME V&V 2020 20 May 2020 10



Fourier Signal Analysis Example

DFT: no aliasing

original signal
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10| .'«\f ‘ W T ® Discrete Fourier Transtorm
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Signal Discernment for a Linear Problem

S evolution _advection -~ diffusion reaction
J __ | J _ . | J7 ~ | .
—Y (z,t) +u—Y (z,t) =D——=Y (z,t) —alY (z,t) — Yeq),
Ot ox Ox4
Y(2,0)=Y,, Y(0,t)=Y,, ——(00,t) 0.
J.r

Powers, 2016

® Consider a linear advection-reaction-diffusion problem.
® [ixact solution exists.

® (Gives guidance on fundamental length and time scales that
must be resolved for verification.

J. M. Powers ASME V&V 2020 20 May 2020 12



Time Scale for Spatially Homogeneous Limit

1Y (t | ]
( )-( ) _ _a(Y(t) — Yy, Y|,_ =Y, ¢ S}lppr.ess advection and
dt ditfusion.
e R Ve V. —_V. Ve at . . .
w‘lE Y(t) =Yeq + (Yo — Yeg)e™ ™ ® ixponential relaxation in
time to equilibrium.
. S >

® Time scale for reaction
identified as 1/a.

1072kt =1/a=10"%s

1073 |

1071 1078 107 1074

Powers, 2016
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Length Scale for Steady Limit

aY (z) — Dd r(z) a(Y (z) — Yeq), ® Suppress time-dependency.
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® Fixponential relaxation in

space to equilibrium.
107"

® Length scale for reaction
identified as the classical
Maxwellian prediction:
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Powers, 2016
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Length and Time Scales for a Fourier Mode

Y(z,t) = Yeq + B, e (I_Ut)_pkgt_at, ® [.ong wavelength modes
dominated by reaction.

® Short wavelength modes

/ lJa=7=10"8s dominated by diffusion.

- ® For verification, must
resolve down to the cutoft
- length scale where reaction
balances diffusion.
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Powers, 2016
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Two Reaction Extension: Stiff Linear Kinetics
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Nonlinear: Stiff Realistic Hydrogen Chemistry

® F'ully nonlinear steady advection-

- o reaction model of hydrogen-air, of
3\ 2 the form
o
dy
~ —f
) dx )

® K volution from unreacted to
equilibrium on the scale of
microns to meters.

0° 100 10° 100 100 10 10 ® Spatial eigenvalues of the local
X (cm) . .
Jacobilan matrix reveal the local
length scales.

Powers and Paolucci, 2005

J. M. Powers ASME V&V 2020 20 May 2020 17



Nonlinear: Stiff Realistic Hydrogen Chemistry

10° ¢ ) :
f | ® Reciprocals of spatial
10 ¢ eigenvalues of Jacobian
Of
— 107"}
s | oy
0 ® Yields physical length scales
10°} that span microns to meters.
107} _ ® GGives length scale necessary
N for verification.
107 10™ 107 10 10 10 10’
X (cm)

Powers and Paolucci, 2005
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Nonlinear: Stifl Realistic Hydrogen Chemistry:

Advection-Reaction-Diffusion
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Signal v. Noise: Summary

® Just like the simple Fourier series, for nonlinear and multiscale
problems, we find more structure if we include more terms.

® Sometimes the physics demands we retain many terms because high
frequency modes can carry a lot of energy.

® We induce error by neglecting some ot the structure, and hope we
retain enough structure to distinguish signal from noise.

® This is not verification, it is signal identification.

® Once we have a signal, we can try to verity it with pristine studies.

J. M. Powers ASME V&V 2020 20 May 2020 20



Pristine Verification

® Define a normed error.
® GGet a discrete solution that captures the “signal.”
® Fxamine how the error improves as the discretization is refined.

® Compare rate of convergence rate with the rate of the method

CrTror — ||de'screte - Yea?acth Or
ETTOT = HYdiscrete — Yhighly fr’efined‘ |p

Caution: If you use the second method, you might be converging to the
wrong exact solution, as nonlinear problems have non-unique solutions!

Either point or entire domain can be considered.

p=1, Manhattan norm; p=2, FEuclidean norm; p—=00, Chessboard norm.

J. M. Powers ASME V&V 2020 20 May 2020 21



Example: Verification of Oblique Detonation

1.0 }

0.5 ¢

0.0

exact
numerical

0.0

Powers and Aslam, 2006

J. M. Powers

0.5 1.0

-— P =2. g
<«—p =2.6 kg/m®
<«—p =2.3 kg/m®

ASME V&V 2020

® 2D, inviscid reactive flow.

® Straight shock.
® Curved wall.
® Simple one-step kinetics.

® 'xact solution exists.

® “Picture norm” reveals the
signal 1s captured by a standard

shock-capturing scheme.

® About 10 cells in the reaction

Z011€.

20 May 2020
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Example: Verification of Oblique Detonation

L. (kg/m :
(ko' ® Unsteady algorithm must allow
10 ' '
| time to relax to steady state.
64 x 64 -
128 x 128 ~ ® v (¢ : 99
N D56 ¥ DG - Similar to “iterative convergence.
T, 512 x 512 o - : ;
ST 1024 % 1024 » ® F'iner grids take longer to relax to
| e steady state.
T
0.1 | I
| T ® Once relaxed, the steady state
REITERTIERRER error 1s seen to decrease as grid
0.01 {(s) size 1S 1Increased.

0 0.002 0.004 0.006 0.008 0.01
Powers and Aslam, 2006
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Low Order Verification: Shock-Capturing

® Frror calculated over the entire
domain using the p=1,
Manhattan norm.

L, (kg/m)

® Frror determined after time

relaxation.

0.1
® The error is converging!

+ : ® The error is converging at 0.779,
001 | much less than the nominal fifth
o001 0ot o1 X (m) order method.

Powers and Aslam. 2006 ® T'ypical of most shock-capturing.

J. M. Powers ASME V&V 2020 20 May 2020 24



High Order Verification: Shock-Tracking

shock-capturing -——-

1072 | "’*f/— - =2

~
S~
D

104 |

10—0.9 10—0.8 10—().7 10—0.6‘ 10—0.5
h

Zahr and Powers, 2020

® Implicit shock-tracking and an optimization-based, r-adaptive discontinuous
Galerkin method lead to remarkably accurate solutions, under h-p refinement.

® Orders of magnitude better than shock-capturing!

® Verified at p=1,2,3.

J. M. Powers ASME V&V 2020 20 May 2020 25



Highest Order Verification: Spectral Shock-Fitting

o

’

I

\

. o aad
\ ) \\“',\ \\ \‘
\ '\\\

W

NN
AN

L\

3

q

N

\

\

\

A,

N
\\

\
N
\‘?\
\

N
\
\
\.\\

0
-0.2 0 0.2
Brooks, 2003

J. M. Powers

0.4

N

0.6

0.8

I
O

—A
-

L _[Q]errorinp

-
o
T .

—
CDI

|

\G"’"O

roundofl corruption

1

10

10°

10°

number of nodes

® Blunt body re-entry; 2D Euler equations.

® No exact solution; error small.

® Spectral convergence: verified!

ASME V&V 2020

20 May 2020
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Automatic Verification: Wavelet Adaptive Method
u’ (x) = Zuo kLo k(x)+2 > dj AW (%) -|-Ji1 > dj AW (%),

I3=0{A:|dj x|z} J=0{A: |d; A[<e}
wd _ R

0.1y

| 8.90 atm 107
NG 93 atm [ =0 ms
Pressure 4.95 atm 10_2'
2.98 atm l
= 1.00 atm '
£ 107 E. 10°
> 4 ! :
10~ ' 1
L {10
10_5 10—4' 4/'/)‘_/ ) —/ -
10°
-0.1
15 20 25 P
10 g g e
10°° 107> 107 10°° 102 107!
Romick, 2015 Brill, Grenga, Powers, Paolucci, 2015

® Complicated, highly accurate method.

® Like a Fourier series, a prior: error estimate allows user to select the
automatically verified error.
J. M. Powers ASME V&V 2020 20 May 2020 27



Practical Verification: What Should One Do?

® Most problems do not have exact solutions.
® Many problems are solved with software not developed by the user.

® Many problems have complex geometries and inherent instabilities
and /or turbulence.

® Many journals and institutions have strict (and useful)
requirements for verification.

® As a referee and journal editor, I see significant confusion,
summarized in the next slides, based on a 2011 presentation of

Rider.

J. M. Powers ASME V&V 2020 20 May 2020 23



Typical Plot in the Literature

o experimental data o o
computational prediction This 1s very COININOIL.

® [t 1s not verified.

® [t 1s not validated.

J. M. Powers ASME V&V 2020 20 May 2020 29



A Somewhat Better Plot, Occasionally Seen

J. M. Powers

cxperimental data

computational prediction

ASME V&V 2020

® Better, because an indication
of the experimental error is
glvern.

® The prediction calculation
remains unverified.

® So the prediction is
unvalidated.

20 May 2020 30



An Attempt at Verification, Often Seen

e experimental data conrse ° ShOWlng pre(.thl.OﬂS
computational prediction <" medium on several grldS 1S all
- "”? ,// fine improvement.
® T'his does not
demonstrate

verification, as the
solution 1s not
converging.

L

J. M. Powers ASME V&V 2020 20 May 2020 31



A Somewhat Better Verification

® Because the solution is
approaching something as the

o experimental data

coarse .1 4 c :
computational prediction _~" medium grld 1S reﬁned, 1t 1S ShOWlIlg
,/?: =" fine convergence, and perhaps
T =T : :
o verification.

® The error is not quantified.

® The order of convergence is
not quantified.

® We can do better in 2020!

J. M. Powers ASME V&V 2020 20 May 2020 32
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error at t=10
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A Much Better Verification

asymptotic

convergence "

reglme

1

At

10 10"

under-resolved

10

® Give a log-log plot of error as function

of grid size.

® Compare to the asymptotic
convergence rate.

® Often insist as referee and editor.

® You will get pushback.
® |t is usually unwarranted.

® Most authors will comply.

® Some will find real errors and fix them.

ASME V&V 2020

20 May 2020
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A Useful Tool:

Kditorial Policy Statement an the (Control of Numerical Accuracy

A professional problem exists in the computational fluic
dynamics community and also in the broader arca of computa-
tionzl physics. Namely, there 1s a need for higher standards on the
control of numencal accuracy.

The numerical fluid dynamics community is aware of this
problem but, although individual rescarchers strive to control accu-
racy. the issue has not to our knowledge been zddressed
collectively and formally by any protessional society of journal
editorial board. The problem is certainly not unigue w the JFE and
came into even tharper focus at the 1980 81 AFOSRHTTM
Stanford Conference on Complex Turhulent Flows It was a con-
clusion of that conference's Evaluation Committee' that, in most
of the submissions to that conference, it was impossible to evaluate
and compare the accuracy of different turbulence models, since
ane could not distinguish physical modeling errors from numerical
errors related to the algorithm and grid. This is especially the case
for first-order accurate methods and hybrid methods.

The practice of publishing comparisons bzased on coarse gnd
solutions, without systematic truncation error testing, may have
been accepiable in the past. Certainly ten to fifteen years ago any
calculation was of interest, and much of the exploratory work
deserved puhlication, as many researchers lacked the computa-
tionzl power or funds to do & thorough ard systemeatic error
cstimation. We¢ arc of the opinion that this practice, however
understandable 1n the past, 1s outmoded and that, with powertful
computers hecommmg more common, sandards should he mised
Consequently, this journal hereby announces the following policy:

The Journal of Fluids Enginecring will not accept for publica-
tion any paper reporting the numerica! solution of a fluids

J. M. Powers

engineering problem thar fails 1o address rhe rask of systemaric
truncarion error h‘.‘-‘f"tg and dccuracy estimation.

Although the formal announcement of this joumnal policy is
new, it has been the practice of many of cur cornscientious
reviewers, Thus the present announcement is nol 2 change i pol-
icy so much as a clanfication and standardization.

Metheds are available to accomplish this task, such as Richard-
son extrzpolaticn (when applicable), calculations with a high- and
low-order method on the same gnd, and straightforward repeat
calculations with finer or coarser grids. As in the case of expean-
mental uncertainty analysis, *“ .. any apprnpriate analysis s far
better than rone &s long as the procedure is explained."’ Whatever
thc authors usc will be considered in the review proccss, but we
must make it clear that ¢ single calculation in a ixed zrid will not
be acceptable, since 1t 15 1mpossible to infer an accuracy estimae
from such a calculation. Alsu, the editors will not consider @ rea-
sonablc agrcement with cxperimental data to be sufficient proof of
accuracy, especially if anv adjustable parameters are involved, as
ir. turbulencz modeling.

We recognize at 1l can be cosily w0 do a therough study, and
that many practical engineering calculations will continue to be
perfarmed on a smgle Axed grid. However, this practice is insuffi-
cient for publication in an archival journal.

Paitrick J. Roache
Kirti N. Ghia

I'rank M. White
JFE Editorial Board

ASME V&V 2020

Journal Policies

“The Journal of Fluids

Engineering will not accept for
publication any paper reporting
the numerical solution of a fluids
engineering problem that fails to
address the task of systematic
truncation error testing and
accuracy estimation.”

Roache, Ghia, White, 1986,
Journal of Fluids Engineering-
Transactions of the ASME

34 year-old policy!

20 May 2020
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My Boilerplate Language—Usually Works

An analysis of numerical errors, including grid dependence, etc., must be
conducted in accordance with AIAA editorial policy. For more details
regarding the latter, see

https://www.aiaa.org/publications/books/Publication-
Policies/Editorial-Policy-Statement-on-Numerical-and-
Experimental-Accuracy

Please provide a log-log plot of how some error measure decreases as the
grid is refined (or equivalently, coarsened) and a comparison of the
achieved order of convergence with the nominal convergence rate of your
chosen numerical method.

J. M. Powers ASME V&V 2020 20 May 2020 35
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Common Responses

® | don’t have enough computing resources. Then do grid
coarsening.

® My software package won’t let me verify. Do a point
convergence study.

® My problem is unsteady/turbulent. Seek an error norm

for an integrated quantity like drag coefficient or net
thrust.

® /'m not going to do 1t. Decline the manuscript.

J. M. Powers ASME V&V 2020 20 May 2020 36



J. M.

considered
here

Powers

Perimeter-Expanding Verification:

Challenge Areas

® Non-continuum regime where calculus-methods are difficult.

® Solutions with embedded surfaces of discontinuity (shocks, material interfaces).

® Problems with embedded “switches.”

® Problems with parameters (geometry, material properties,
forcing functions) with a stochastic nature.

® Problems that do not relax to steady-state.

® Nonlinear deterministic problems that may have chaotic nature.

ASME V&V 2020 20 May 2020 37



Nonlinear Dynamics and Verification

R et 29, 12w | “Bug whorls have little whorls,
' ol Which feed on their velocity;
And little whorls have lesser whorls,

And so on to viscosity.”

Lewis Fry Richardson, 1922,
Weather Prediction by Numerical Processes.

® Big can affect small.

® Small can affect big.

N & wwsiobiie, SO ® Predictions of “big” and “small”
should not be machine-dependent.

s i ’A‘J .

https://www.weather.gov/mob/katrina

® Difficult to guarantee!

J. M. Powers ASME V&V 2020 20 May 2020 33



Nonlinear Dynamics and Verification

® Nonlinear models reflect that nature can be

® well-behaved and mainly stable,

® jll-behaved with intermittent catastrophic events.

® Predictive science needs to predict repeatable phenomena repeatably.
® We can learn about nature by careful charting of unknown territory.
® Caretul charting takes time and cannot address all important problems!

® | will show verified results for a nonlinear problem that undergoes a
transition to chaos.

® The “verification” lies in taking care that the persistent modes are
resolved: the “signal” has been captured.

J. M. Powers ASME V&V 2020 20 May 2020 39



Local Linear Behavior May be Stable or Unstable

41 9t

f(x,t) =aje 'sinz + ase *'sin2x + aze ' sin 3z + ase” ' sindx + . ..

® All modes stable.
® High frequency modes decay rapidly and can be neglected.

41 9t

f(x,t) =aje 'sinz + aze” *'sin 2z + aze”’’ sin 3z 4+ ase” ' sindx + . ..

® Push the same system into a different regime.
® Nonlinearity can induce growth of some modes.

® Must be resolved for verified solution.

J. M. Powers ASME V&V 2020 20 May 2020 40



Viscous 1D Detonation

resornanrce

D(t) ~chamber™ 7
, p

® Piston at speed U, drives a detonation at speed D(t).

® Large U, yields stability, though with some thin zones.

® As U, is lessened, chemical energy plays a larger role and destablizes.

® Acoustic resonances induce high frequency stable limit cycles.

® “Signal” scales: viscous shock zone, reaction zone, small wavelength resonances.
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Continuum Model Equations

Conservation and Evolution Laws Constitutive Models
op 2, P = pRT
— - P b
%% T o2 (pu) =0, )
9, | o 9 o € — QYB,
a(pu).ax(pu +P—’r)—0, p(vy—1) )
2 2 £
Ot 2 ox 2
O oYe)+ 2 (puYs + 7 = B = PP
8t(p B) Py (Pu B+JB)—PT' Y
"= 3Pz
. . - 4
® 1D, compressible, reactive Navier-Stokes.
9 9 q orT oY B
)m =k ox - pPq Ox

® ] step, irreversible Arrhenius kinetics.
® ldeal gas, Newtonian fluid, Fourier’s Law, Fick’s Law.
® Solved with adaptive wavelet algorithm for tull verification.

® Activation energy varied to study stability behavior.
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Stable, Viscous, 1D Detonation

Global View Fine Scale Structure
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Rastigejev, Singh, Bowman, Paolucci, Powers, 2000

® The wavelet method resolves the viscous shock, induction,
and reaction zone. Signal verification!
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Stable, Viscous, 1D Detonation

(@) | | ® Low activation energy results

55| induce stability.

® Peak pressure at viscous shock
49 ‘ front evolves with time.
e

P, (atm)

35| _ ® Relaxes to a steady state value.

® In the inviscid limit, grid
refinement is sufficient to
capture the linear stability
Romick, 2015 boundary.

t (us)

J. M. Powers ASME V&V 2020 20 May 2020 44



Viscous, 1D Detonation: Period 1 Instability

(b)

55 |
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Romick, 2015

® Raising activation energy induces
an unstable mode.

® Peak pressure at viscous shock
front evolves with time.

® Relaxes to a long-time limit cycle.
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Viscous, 1D Detonation: Various Instabilities
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Romick, 2015

J. M. Powers

® Raising activation energy induces
more and more instabilities.

® Can induce chaos c).

® Raising activation energy further
can induce low frequency limit

cycles, d).

ASME V&V 2020
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Viscous, 1D Detonation: Transition to Chaos

100+ (b) ® With activation energy as a
bifurcation parameter, a
4 transition to chaos is
predicted.

80

p__ (atm)

® Feigenbaum constant
predicted as 4.67.

60

40" n ,

Romick, 2015
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(a)

Spectral Analysis of the Signal for Verification
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Romick, 2015; results for detailed Hs-air kinetics.

J. M. Powers

10

® a postertor: spectral analysis of the
signal via Discrete Fourier

Transform (DFT).

® F'undamental modes and harmonic
overtones revealed.

® Sideband instabilities revealed.

® They persist under grid resolution:
verification!

® Refine until stability results do not
change (Reed, et al., 2015).
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Spectral Analysis of the Signal for Verification
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Romick, 2015

J. M. Powers

26

27

ASME V&V 2020

® DEF'I' at various
activation energies.

® Reveals the discrete,
ordered, verified set
of active Fourier
modes.
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Computational Science can Learn from
Material Science

Ni-Al
Foil

Transmitte

Incident
X-Ray
Beam

® Iixperimental colleagues in material science
use spectral analysis in X-Ray Diffraction
(XRD) as a precision tool for material

oo . characterization.
? | :: e ® Here, spectral peaks associated with Ni, Al,
o e L 2 and NiAl shown.
i ® Fffective tool for segregating signal from noise.
iz A '
f’és . ® This tool should be used more in verification

" of computational predictions of unsteady

16

—
A
[
o
—
On

8§ 9 10 11 12
20 (*)

Mukasyan, et al., 2018; data obtained from ANL
with time-resolved XRD, 13 us/frame, 10 x 50 pm.

phenomena.
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Model Reduction: The Signal May Be Lost!
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Mengers, 2012

® Gray-Scott reaction-diffusion model.

® Reduction to analytically filter fast kinetics falsely suppresses limit cycle.

J. M. Powers ASME V&V 2020 20 May 2020 51



Conclusions

® Computational science requires the essence of prediction of deterministic
continuum systems to be machine- and algorithm-independent.

® What constitutes “essence” always requires user-choices; hopetully the
neglected terms are not influential!

® Capturing the “essence” must be informed by the underlying physics.

® Pristine verification is a useful exercise to give the user confidence that
the results are scientific, but unrealistic for many problems.

® Practical verification is important for the integrity of science.

® Perimeter-extending verification, e.g. verifying spectral amplitudes, is
ongoing and highly challenging!

® Segregating “signal”’ and “noise” will never be easy!
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