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Motivation

What are the state-of-the-art numerical techniques used for
discontinuous problems?

Shock capturing
Robust
Numerical viscosity reduces convergence to O(∆x)

Shock tracking
Robust
Description of discontinuous motion varies
Converges at O(∆x)
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Motivation

Accuracy loss due to differentiation across discontinuities.
High order convergence can be achieved through
shock-fitting

Governing equations are posed in fitted coordinates
Solution is smooth within each domain
Analytic jump conditions used to compute shock speed
Restricted to embedded shocks
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Motivation

Accuracy loss due to differentiation across discontinuities.
High order convergence can be achieved through
shock-fitting

Governing equations are posed in fitted coordinates
Shock location is fixed

Solution is smooth within each domain
Regular finite differencing is adequate

Analytic jump conditions used to compute shock speed
Restricted to embedded shocks
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Shock-Fit Transformation
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Transformed Equations

The resulting fitted equations are
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Formulation: Conserved Quantities

∂ρ

∂t
+

∂

∂x
(ρu) +

∂

∂y
(ρv) = 0,

∂

∂t
(ρu) +

∂

∂x
(ρu2 + p) +

∂

∂y
(ρuv) = 0,

∂

∂t
(ρv) +

∂

∂x
(ρvu) +

∂

∂y
(ρv2 + p) = 0,

∂

∂t

„

ρ

„

e +
1

2
(u2 + v2)

««

+

∂

∂x

„

ρu

„

e +
1

2
(u2 + v2) +

p

ρ

««

+

∂

∂y

„

ρv

„

e +
1

2
(u2 + v2) +

p

ρ

««

= 0,

∂

∂t
(ρλ) +

∂

∂x
(ρuλ) = aρ(1 − λ) exp

„

−Eρ

p

«

,

e =
1

γ − 1

p

ρ
− qλ.



















F1

F2

F3

F4

F5



















=



















ρ

ρu

ρv

ρ
(

e + 1
2(u2 + v2)

)

ρλ



















Shock-Fitted Numerical Solutions for Two-Dimensional Detonations – p.8/20



Formulation: Shock-Fitted Eqns.
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Formulation: Shock Change Eqn.

At the shock, E = ρ(e + 1
2(u2 + v2)) = f(Dn).
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Formulation: Shock Change Eqn.

At the shock, E = ρ(e + 1
2(u2 + v2)) = f(Dn).

|v| = vivj = u2 + v2 is invariant.
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Thus system is closed.
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Shock-Fitted Geometry
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Note that η1 in general con-
tributes artificial tangential
shock velocity.

Thus, Dn = cos(α)ω(2) ≤ |ω|,
in general.
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Shock-Fitted Geometry: x ≡ ξ
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Numerical Method

The method of lines is used to separate spatial and temporal
integration

O(∆t5) Runge-Kutta integration in time
O(∆x5) or O(∆y5) WENO5M with Lax-Friedrich’s flux
splitting to differentiate in space
At the shock

Rankine-Hugoniot jump conditions used directly
One-sided finite differencing used
Shock-change equation gives evolution of Dn
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1-D Results: Pulsating Detonations
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2-D Results: E = 0, q = 15
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5 0.2 [20:40] 0.024362 1.10530
10 0.1 [30:45] 0.024348 1.10487
20 0.05 [40:60] 0.024210 1.10437
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2-D Results: Detonation Cells
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2-D Results: Detonation Cells
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2-D Results: Linear Stability
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Conclusions

Need for highly resolved solutions to sandwich test
Shock-fitting is a viable high order solution technique for
problems involving a single embedded shock
Conservative 2-D shock-fitted equations derived and
implemented
WENO5M combined with LLF splitting

allows for high order convergence
gives discrete conservation away from the shock
correctly captures shocks (degrade to ≈ O(∆x))

Areas of current research
Validation from linear stability theory in progress
Extension to more complicated geometries
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WENO5M

Weighted Essentially Non-Oscillatory (WENO) Schemes

Stencil 0

Stencil 1

Stencil 2

∆x
j j + 1

f̂j+1/2 Fifth order scheme overall
f̂k = h + O(∆x3)

f̂j±1/2 =
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k f̂k

j±1/2

Schemes differ through
formulation of ω

(M)
k

Ideal weights:

ω̄0 = 1/10, ω̄1 = 6/10, ω̄2 = 3/10.
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WENO5M

WENO5 Modified (Mapped)
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