Shock-Fitted Numerical Solutions for Two-Dimensional Detonations with Periodic Boundary Conditions

Andrew Henrick, Tariq D. Aslam, Joseph M. Powers

$11^{\text {th }}$ SIAM International Conference on Numerical Combustion
Granada, Spain

Los Alamos National Laboratory
University of Notre Dame
April 23, 2006

Presentation Outline

- Introduction
- Motivation \& Background
- General Formulation
- Shock-Fitted

Transformation

- Numerical Method
- 1-D Limiting Case
- Comparison with

Linear Stability Theory

- Pulsating Detonation
- 2-D Results

Background

- 2-D shock geometry
- 2-D Euler equations with reaction
- 2 species chemical kinetics
- Calorically perfect ideal gas mixture
- High-order convergence

Background

- 2-D shock geometry
- 2-D Euler equations with reaction
- 2 species chemical kinetics
- Calorically perfect ideal gas mixture
- High-order convergence

Background

- 2-D shock geometry
- 2-D Euler equations with reaction
- 2 species chemical kinetics
- Calorically perfect ideal gas mixture
- High-order convergence

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}+\frac{\partial}{\partial x}(\rho u)+\frac{\partial}{\partial y}(\rho v)=0 \\
& \frac{\partial}{\partial t}(\rho u)+\frac{\partial}{\partial x}\left(\rho u^{2}+p\right)+\frac{\partial}{\partial y}(\rho u v)=0 \\
& \frac{\partial}{\partial t}(\rho v)+\frac{\partial}{\partial x}(\rho v u)+\frac{\partial}{\partial y}\left(\rho v^{2}+p\right)=0 \\
& \frac{\partial}{\partial t}\left(\rho\left(e+\frac{1}{2}\left(u^{2}+v^{2}\right)\right)\right)+ \\
& \frac{\partial}{\partial x}\left(\rho u\left(e+\frac{1}{2}\left(u^{2}+v^{2}\right)+\frac{p}{\rho}\right)\right)+ \\
& \frac{\partial}{\partial y}\left(\rho v\left(e+\frac{1}{2}\left(u^{2}+v^{2}\right)+\frac{p}{\rho}\right)\right)=0 .
\end{aligned}
$$

Background

- 2-D shock geometry
- 2-D Euler equations with reaction
- 2 species chemical kinetics
- Calorically perfect ideal gas mixture
- High-order convergence

Background

- 2-D shock geometry
- 2-D Euler equations with reaction
- 2 species chemical kinetics
- Calorically perfect ideal gas mixture
- High-order convergence

Background

- 2-D shock geometry
- 2-D Euler equations with reaction
- 2 species chemical kinetics
- Calorically perfect ideal gas mixture
- High-order convergence

Motivation

What are the state-of-the-art numerical techniques used for discontinuous problems?

- Shock capturing
. Robust
. Numerical viscosity reduces convergence to $O(\Delta x)$
- Shock tracking
. Robust
- Description of discontinuous motion varies
- Converges at $O(\Delta x)$

Motivation

Accuracy loss due to differentiation across discontinuities. High order convergence can be achieved through shock-fitting

- Governing equations are posed in fitted coordinates
- Solution is smooth within each domain
- Analytic jump conditions used to compute shock speed
- Restricted to embedded shocks

Motivation

Accuracy loss due to differentiation across discontinuities. High order convergence can be achieved through shock-fitting

- Governing equations are posed in fitted coordinates
- Shock location is fixed
- Solution is smooth within each domain
- Analytic jump conditions used to compute shock speed
- Restricted to embedded shocks

Motivation

Accuracy loss due to differentiation across discontinuities. High order convergence can be achieved through shock-fitting

- Governing equations are posed in fitted coordinates
- Shock location is fixed
- Solution is smooth within each domain
. Regular finite differencing is adequate
- Analytic jump conditions used to compute shock speed
- Restricted to embedded shocks

Shock-Fit Transformation

Consider transform

Shock-Fit Transformation

Consider transform

$$
\xi=\xi(x, y, t), \quad \eta=\eta(x, y, t), \quad \tau=t
$$

applied to

$$
\frac{\partial F}{\partial t}+\frac{\partial f^{i}}{\partial y^{i}}=B \quad D_{n}=\frac{\llbracket f^{i} \rrbracket}{\llbracket F \rrbracket} \nu_{i}
$$

where only derivatives are $F_{(2)}$ transformed.

Shock-Fit Transformation

Consider transform

$$
\xi=\xi(x, y, t), \quad \eta=\eta(x, y, t), \quad \tau=t
$$

applied to

$$
\frac{\partial F}{\partial t}+\frac{\partial f^{i}}{\partial y^{i}}=B \quad D_{n}=\frac{\llbracket f^{i} \rrbracket}{\llbracket F \rrbracket} \nu_{i}
$$

where only derivatives are $F_{(2)}$ transformed.

Shock-Fit Transformation

Consider transform

$$
\xi=\xi(x, y, t), \quad \eta=\eta(x, y, t), \quad \tau=t
$$

applied to

$$
\frac{\partial F}{\partial t}+\frac{\partial f^{i}}{\partial y^{i}}=B \quad D_{n}=\frac{\llbracket f^{i} \rrbracket}{\llbracket F \rrbracket} \nu_{i}
$$

where only derivatives are transformed.

- x and y momentum are still solved

Transformed Equations

The resulting fitted equations are

$$
\frac{\partial}{\partial \tau}(\sqrt{g} F)+\frac{\partial}{\partial \eta^{j}}\left(\sqrt{g} F \frac{\partial \eta^{j}}{\partial t}+\sqrt{g} f^{i} \frac{\partial \eta^{j}}{\partial y^{i}}\right)=\sqrt{g} B
$$

- Conservation form with proper shock speed

$$
\bar{D}_{n}=\frac{\llbracket \sqrt{g} F \frac{\partial \eta^{j}}{\partial t}+\sqrt{g} f^{i} \frac{\partial \eta^{j}}{\partial y^{i}} \rrbracket}{\llbracket \sqrt{g} F \rrbracket} \bar{\nu}_{j}
$$

- $\sqrt{g}=\left\|\frac{\partial y}{\partial \eta}\right\|$ is the determinant of the metric tensor
- $-\frac{\partial \eta^{i}}{\partial t}=\frac{\partial \eta^{i}}{\partial y^{j}} \frac{\partial y^{j}}{\partial \tau} \rightarrow \bar{U}^{i}=\frac{\partial \eta^{i}}{\partial y^{j}} U^{j}$

Formulation: Conserved Quantities

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}+\frac{\partial}{\partial x}(\rho u)+\frac{\partial}{\partial y}(\rho v)=0 \\
& \frac{\partial}{\partial t}(\rho u)+\frac{\partial}{\partial x}\left(\rho u^{2}+p\right)+\frac{\partial}{\partial y}(\rho u v)=0 \\
& \frac{\partial}{\partial t}(\rho v)+\frac{\partial}{\partial x}(\rho v u)+\frac{\partial}{\partial y}\left(\rho v^{2}+p\right)=0 \\
& \frac{\partial}{\partial t}\left(\rho\left(e+\frac{1}{2}\left(u^{2}+v^{2}\right)\right)\right)+ \\
& \quad \frac{\partial}{\partial x}\left(\rho u\left(e+\frac{1}{2}\left(u^{2}+v^{2}\right)+\frac{p}{\rho}\right)\right)+ \\
& \quad \frac{\partial}{\partial y}\left(\rho v\left(e+\frac{1}{2}\left(u^{2}+v^{2}\right)+\frac{p}{\rho}\right)\right)=0 \\
& \frac{\partial}{\partial t}(\rho \lambda)+\frac{\partial}{\partial x}(\rho u \lambda)=a \rho(1-\lambda) \exp \left(\frac{-E \rho}{p}\right) \\
& e=\frac{1}{\gamma-1} \frac{p}{\rho}-q \lambda .
\end{aligned}
$$

$\left(\begin{array}{c}F_{1} \\ F_{2} \\ F_{3} \\ F_{4} \\ F_{5}\end{array}\right)=\left(\begin{array}{c}\rho \\ \rho u \\ \rho v \\ \rho\left(e+\frac{1}{2}\left(u^{2}+v^{2}\right)\right) \\ \rho \lambda\end{array}\right)$

Formulation: Shock-Fitted Eqns.

$$
\begin{aligned}
& \frac{\partial}{\partial \tau}\left[\begin{array}{l}
F_{1}^{\prime} \\
F_{2}^{\prime} \\
F_{3}^{\prime} \\
F_{4}^{\prime} \\
F_{5}^{\prime}
\end{array}\right]+\frac{\partial}{\partial \xi}\left[\frac{\partial \xi}{\partial t}\left[\begin{array}{l}
F_{1}^{\prime} \\
F_{2}^{\prime} \\
F_{3}^{\prime} \\
F_{4}^{\prime} \\
F_{5}^{\prime}
\end{array}\right]+\frac{1}{\sqrt{g}} \frac{\partial y}{\partial \eta}\left[\begin{array}{c}
F_{2}^{\prime} \\
\frac{F_{2}^{\prime 2}}{F_{1}^{\prime}}+\sqrt{g} p \\
\frac{F_{2}^{\prime} F_{3}^{\prime}}{F_{1}^{\prime}} \\
\frac{F_{2}^{\prime} F_{4}^{\prime}}{F_{1}^{\prime}}+\sqrt{g} \frac{F_{2}^{\prime}}{F_{1}^{\prime}} p \\
\frac{F_{2}^{\prime} F_{5}^{\prime}}{F_{1}^{\prime}}
\end{array}\right]-\frac{1}{\sqrt{g}} \frac{\partial x}{\partial \eta}\left[\begin{array}{c}
F_{3}^{\prime} \\
\frac{F_{2}^{\prime} F_{3}^{\prime}}{F_{1}^{\prime}} \\
\frac{F_{3}^{\prime 2}}{F_{1}^{\prime}}+\sqrt{g} p \\
\frac{F_{3}^{\prime} F_{4}^{\prime}}{F_{1}^{\prime}}+\sqrt{g} \frac{F_{3}^{\prime}}{F_{1}^{\prime}} p \\
\frac{F_{3}^{\prime} F_{5}^{\prime}}{F_{1}^{\prime}}
\end{array}\right]\right) \\
&+\frac{\partial}{\partial \eta}\left[\frac{\partial \eta}{\partial t}\left[\begin{array}{c}
F_{2}^{\prime} \\
F_{2}^{\prime} \\
F_{3}^{\prime} \\
F_{4}^{\prime} \\
F_{5}^{\prime}
\end{array}\right]-\frac{1}{\sqrt{g}} \frac{\partial y}{\partial \xi}\left[\begin{array}{c}
F_{3}^{\prime} \\
\frac{F_{2}^{\prime 2}}{F_{1}^{\prime}}+\sqrt{g} p \\
\frac{F_{2}^{\prime} F_{3}^{\prime}}{F_{1}^{\prime}} \\
\frac{F_{2}^{\prime} F_{4}^{\prime}}{F_{1}^{\prime}}+\sqrt{g} \frac{F_{2}^{\prime}}{F_{1}^{\prime}} p \\
\frac{F_{2}^{\prime} F_{5}^{\prime}}{F_{1}^{\prime}}
\end{array}\right]+\frac{1}{\sqrt{g}} \frac{\partial x}{\partial \xi}\left[\begin{array}{c}
\frac{F_{3}^{\prime 2}}{F_{1}^{\prime}} \\
\frac{F_{3}^{\prime} F_{1}^{\prime}}{F_{1}^{\prime}}+\sqrt{g} p \\
\frac{F_{3}^{\prime} F_{5}^{\prime}}{F_{1}^{\prime}} \frac{F_{3}^{\prime}}{F_{1}^{\prime}} p
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
\zeta
\end{array}\right] \\
& p=\frac{(\gamma-1)}{\sqrt{g}\left(F_{4}^{\prime}-\frac{\left(F_{2}^{\prime}\right)^{2}+\left(F_{3}^{\prime}\right)^{2}}{2 F_{1}^{\prime}}+q F_{5}^{\prime}\right), \quad \zeta=\frac{a}{\sqrt{g}}\left(F_{1}^{\prime}-F_{5}^{\prime}\right) \exp \left(\frac{-E F_{1}^{\prime}}{\sqrt{g} p}\right)}
\end{aligned}
$$

Formulation: Shock Change Eqn.

At the shock, $E=\rho\left(e+\frac{1}{2}\left(u^{2}+v^{2}\right)\right)=f\left(D_{n}\right)$.

$$
\frac{\partial D_{n}}{\partial \tau}=\left.\left(\left.\frac{\partial E}{\partial D_{n}}\right|_{\mathcal{S}}\right)^{-1} \frac{\partial E}{\partial \tau}\right|_{\mathcal{S}}
$$

Formulation: Shock Change Eqn.

At the shock, $E=\rho\left(e+\frac{1}{2}\left(u^{2}+v^{2}\right)\right)=f\left(D_{n}\right)$.

- $|\mathbf{v}|=v^{i} v_{j}=u^{2}+v^{2}$ is invariant.

$$
\frac{\partial D_{n}}{\partial \tau}=\left.\left(\left.\frac{\partial E}{\partial D_{n}}\right|_{\mathcal{S}}\right)^{-1} \frac{\partial E}{\partial \tau}\right|_{\mathcal{S}}
$$

- $\left.\frac{\partial E}{\partial \tau}\right|_{\mathcal{S}}$ is already calculated in the flow field.

Thus system is closed.

Shock-Fitted Geometry

Since $\mathcal{S}: \eta^{2}=0$

- $\mathrm{g}_{(1)}$ is embedded in the shock
- $\mathrm{g}^{(2)} \| \nu$

Note that η^{1} in general contributes artificial tangential shock velocity.

Thus, $D_{n}=\cos (\alpha) \omega(2) \leq|\omega|$, in general.

Shock-Fitted Geometry: $x \equiv \xi$

Quiescent HE
$\eta^{1}=y^{1}=$ constant

$$
\begin{aligned}
& \mathbf{g}_{(1)}=\binom{1}{\frac{\partial y_{\mathcal{S}}}{\partial \eta^{1}}}, \quad \mathbf{g}_{(2)}=\binom{0}{1} \\
& \mathbf{g}^{(1)}=\binom{1}{0}, \quad \mathbf{g}^{(2)}=\binom{-\frac{\partial y_{\mathcal{S}}}{\partial y^{1}}}{1}
\end{aligned}
$$

$$
\mathcal{S}: \eta^{2}=y^{2}-y_{\mathcal{S}}(x, t)=0
$$

Shocked HE

$$
\frac{\partial \xi}{\partial t}=0 \quad \frac{\partial \eta}{\partial t}=-\frac{\partial y_{\mathcal{S}}}{\partial t}
$$

Shock-Fitted Geometry: $x \equiv \xi$

Quiescent HE

[^0]In this case

- $\sqrt{g}=1$
- $\alpha=\phi$, the shock angle
- $D_{o}=\frac{\partial y_{\mathcal{S}}}{\partial t}=D_{n} \sqrt{1+\left(\frac{\partial y_{\mathcal{S}}}{\partial y^{1}}\right)^{2}}$
relating the phase speed, the shock surface, the normal shock speed, and the shock slope.

Numerical Method

The method of lines is used to separate spatial and temporal integration

- $O\left(\Delta t^{5}\right)$ Runge-Kutta integration in time
- $O\left(\Delta x^{5}\right)$ or $O\left(\Delta y^{5}\right)$ WENO5M with Lax-Friedrich's flux splitting to differentiate in space
- At the shock
. Rankine-Hugoniot jump conditions used directly
- One-sided finite differencing used
- Shock-change equation gives evolution of D_{n}

1-D Results: Pulsating Detonations

2-D Results: $E=0, q=15$

2-D Results: Detonation Cells

2-D Results: Detonation Cells

2-D Results: Linear Stability

Conclusions

- Need for highly resolved solutions to sandwich test
- Shock-fitting is a viable high order solution technique for problems involving a single embedded shock
- Conservative 2-D shock-fitted equations derived and implemented
- WENO5M combined with LLF splitting
- allows for high order convergence
- gives discrete conservation away from the shock
- correctly captures shocks (degrade to $\approx O(\Delta x)$)
- Areas of current research
- Validation from linear stability theory in progress
- Extension to more complicated geometries

WENO5M

Weighted Essentially Non-Oscillatory (WENO) Schemes

Ideal weights:

$$
\bar{\omega}_{0}=1 / 10, \quad \bar{\omega}_{1}=6 / 10, \quad \bar{\omega}_{2}=3 / 10
$$

WENO5M

WENO5 Modified (Mapped)

$\omega_{k}^{(M)}=\frac{\alpha_{k}^{*}}{\sum_{i=0}^{2} \alpha_{i}^{*}} \quad$ where $\quad \alpha_{k}^{*}=g_{k}\left(\omega_{k}^{(J S)}\right)$
$g_{k}(\omega)=\frac{\omega\left(\bar{\omega}_{k}+\bar{\omega}_{k}^{2}-3 \bar{\omega}_{k} \omega+\omega^{2}\right)}{\bar{\omega}_{k}^{2}+\left(1-2 \bar{\omega}_{k}\right) \omega}, \quad \omega \in[0,1]$
where $\omega_{k}^{(J S)}$ are those used by Jiang and Shu (1996)

[^0]: $\eta^{1}=y^{1}=$ constant

