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What are the state-of-the-art numerical techniques used for
discontinuous problems?
» Shock capturing
» Robust
» Numerical viscosity reduces convergence to O(Ax)

» Shock tracking
» Robust
s Description of discontinuous motion varies
s Converges at O(Ax)




Accuracy loss due to differentiation across discontinuities.

High order convergence can be achieved through
shock-fitting

» Governing equations are posed in fitted coordinates
» Solution is smooth within each domain

» Analytic jJump conditions used to compute shock speed
» Restricted to embedded shocks




Accuracy loss due to differentiation across discontinuities.
High order convergence can be achieved through
shock-fitting

» Governing equations are posed in fitted coordinates
» Shock location is fixed

» Solution is smooth within each domain
» Analytic jump conditions used to compute shock speed
» Restricted to embedded shocks




Accuracy loss due to differentiation across discontinuities.
High order convergence can be achieved through
shock-fitting

» Governing equations are posed in fitted coordinates
» Shock location is fixed

» Solution is smooth within each domain
s Regular finite differencing is adequate

» Analytic jJump conditions used to compute shock speed
» Restricted to embedded shocks
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The resulting fitted equations are

. On)

2 WIF) + o (VAP + Va5 ) = vaB

» Conservation form with proper shock speed
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At the shock, E = p(e + 3 (u? +v?)) = f(Dy).
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At the shock, E = p(e + 3 (u? +v?)) = f(Dy).

s |v] =vv; = u* +0? is invariant.
oD, ( 0E| \ ' 0E
S &T

-\ 0D,
s 2|, is already calculated in the flow field.

ot S

Thus system is closed.




m contravariant basis
m covariant basis

» g, lie along fitted coords.

» gl are reciprocal basis

s w = U|g Is the shock
velocity

Since S: n? =0

» g(1) Is embedded in the
shock

s g

Note that »' in general con-
tributes artificial tangential

shock velocity.

Thus, D, = cos(a)w(2) < |w],
In general.




Quiescent HE
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Quiescent HE

— constant

nl =y

S:n*=y* —ys(z,t) =0

Shocked HE

In this case

o \/§:1

» a = ¢, the shock angle

oy oy 2
» Doza—szn\/1+(a—ﬁ)

relating the phase speed, the
shock surface, the normal
shock speed, and the shock
slope.




The method of lines is used to separate spatial and temporal
integration

s O(At°) Runge-Kutta integration in time

s O(Az°) or O(Ay’) WENOS5M with Lax-Friedrich’s flux
splitting to differentiate in space

» At the shock
s Rankine-Hugoniot jump conditions used directly

» One-sided finite differencing used
s Shock-change equation gives evolution of D,
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2-D Results: Detonation Cells
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» Need for highly resolved solutions to sandwich test

» Shock-fitting is a viable high order solution technique for
problems involving a single embedded shock

» Conservative 2-D shock-fitted equations derived and
iImplemented

s WENOS5SM combined with LLF splitting
» allows for high order convergence
s gives discrete conservation away from the shock
s correctly captures shocks (degrade to ~ O(Ax))

» Areas of current research
» Validation from linear stability theory in progress
s Extension to more complicated geometries
o Srockrited Numerl SouiorsorTvoDimensina Deonatons -p 1320



Weighted Essentially Non-Oscillatory (WENO) Schemes

J; _
e » Fifth order scheme overall
Az X
i+l s fF=h+0(A2%)
° ® e ° ° . , [
T T T Stencil 0 » fji1/2 — Zk:o w]g )f]kil/z
T T b stencil 1 » Schemes differ through
formulation of w!"")
T T T Stencil 2
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gr(w) =

where w

WENO5 Modified (Mapped)
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I(CJS ) are those used by Jiang and

Shu (1996)

Identity mapping




