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• Part II: Fundamental linear analysis of length scales of reacting flows with
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• Part III: Direct Numerical Simulation (DNS) of complex inert and reactive flows
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Part I: Preliminaries



Some Semantics

• Verification: Solving the equa-

tions right—a math exercise.

• Validation: Solving the right

equations—a physics exercise.

• DNS: a verified and validated

computation that resolves all

ranges of relevant continuum

physical scales present.
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Hypothesis

DNS of fundamental compressible reactive flow fields (thus, detailed kinetics,

viscous shocks, multi-component diffusion, etc. are represented, verified, and

validated) is on a trajectory toward realization via advances in

• adaptive refinement algorithms, and

• massively parallel architectures.



Corollary I

A variety of modeling compromises, e.g.

• shock-capturing (FCT, PPM, ENO, WENO, etc.),

• implicit chemistry with operator splitting,

• low Mach number approximations,

• turbulence modeling (RANS, k − ǫ, LES, etc.), or

• reduced/simplified kinetics, flamelet models,

need not be invoked when and if this difficult goal of DNS is realized; simple

low order explicit discretizations suffice if spatio-tempo ral grid resolution is

achieved.



Corollary II

Micro-device level DNS is feasible today; macro-device level DNS remains in the

distant future.



Corollary III

A variety of challenging fundamental unsteady multi-dimensional compressible

reacting flows are now becoming amenable to DNS, especially in the weakly

unstable regime; we would do well as a community to direct more of our

efforts towards unfiltered simulations so as to more starkly expose the

richness of unadulterated continuum scale physics.

[Example (only briefly shown today): ordinary WENO shock-capturing applied to

unstable detonations can dramatically corrupt the long time limit cycle behavior;

retention of physical viscosity allows relaxation to a unique dissipative structure in

the unstable regime.]



Part II: Fundamental Linear Analysis of Length Scales



Motivation

• To achieve DNS, the interplay between chemistry and transport needs to be

captured.

• The interplay between reaction and diffusion length and time scales is well

summarized by the classical formula

ℓ ∼
√
D τ.

• Segregation of chemical dynamics from transport dynamics is a prevalent

notion in reduced kinetics combustion modeling.

• But, can one rigorously mathematically verify an NS model without resolving

the small length scale induced by fast reaction? Answer: no.

• Do micro-scales play a role in macro-scale non-linear dynamics? Answer: in

some cases, yes, see Romick, Aslam, & Powers, 2011.



Illustrative Linear Model Problem

A linear one-species, one-dimensional unsteady model for reaction, advection, and

diffusion:
∂ψ

∂t
+ u

∂ψ

∂x
= D

∂2ψ

∂x2
− aψ,

ψ(0, t) = ψu,
∂ψ

∂x

∣

∣

∣

∣

x=L

= 0, ψ(x, 0) = ψu.

Time scale spectrum

For the spatially homogenous version: ψh(t) = ψu exp (−at) ,

reaction time constant: τ =
1

a
=⇒ ∆t≪ τ.



Length Scale Spectrum

• The steady structure:

ψs(x) = ψu

(

exp(µ1x) − exp(µ2x)

1 − µ1

µ2
exp(L(µ1 − µ2))

+ exp(µ2x)

)

,

µ1 =
u

2D

(

1 +

√

1 +
4aD

u2

)

, µ2 =
u

2D

(

1 −
√

1 +
4aD

u2

)

,

ℓi =

∣

∣

∣

∣

1

µi

∣

∣

∣

∣

.

• For fast reaction (a≫ u2/D):

ℓ1 = ℓ2 =

√

D

a
=

√
Dτ =⇒ ∆x≪

√
Dτ.



Spatio-Temporal Spectrum

ψ(x, t) = Ψ(t)eıikx ⇒ Ψ(t) = C exp

(

−a
(

1 +
ıiku

a
+
Dk2

a

)

t

)

.

• For long length scales: lim
k→0

τ = lim
λ→∞

τ =
1

a
,

• For fine length scales: lim
k→∞

τ = lim
λ→0

τ =
λ2

4π2

1

D
,



















St =

(

2π

λ

√

D

a

)2

.

• Balance between reaction and diffusion at k ≡ 2π
λ

=
√

a
D

= 1/ℓ,
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• Similar to H2 − air : τ = 1/a = 10−8 s,D = 10 cm2/s,

• ℓ =
√

D
a

=
√
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Laminar Premixed Flames

Adopted Assumptions:

• One-dimensional,

• Low Mach number,

• Neglect thermal diffusion effects and body forces.

Governing Equations:

∂ρ

∂t
+

∂

∂x
(ρu) = 0,

ρ
∂h

∂t
+ ρu

∂h

∂x
+

∂jq

∂x
= 0,

ρ
∂yl

∂t
+ ρu

∂yl

∂x
+

∂jm
l

∂x
= 0, l = 1, . . . , L − 1,

ρ
∂Yi

∂t
+ ρu

∂Yi

∂x
+

∂jm
i

∂x
= ω̇im̄i, i = 1, . . . , N − L.



• Unsteady spatially homogeneous reactive system:

dz(t)

dt
= f (z(t)) , z(t) ∈ R

N , f : R
N → R

N .

0 = (J − λI) · υ.

St =
τslowest

τfastest

, τi =
1

|Re(λi)|
, i = 1, . . . , R ≤ N − L.

• Steady spatially inhomogeneous reactive system:

B̃ (z̃(x))· dz̃(x)
dx

= f̃ (z̃(x)) , z̃(x) ∈ R
2N+2, f̃ : R

2N+2 → R
2N+2.

λ̃B̃ · υ̃ = J̃ · υ̃.

Sx =
ℓcoarsest

ℓfinest

, ℓi =
1

|Re(λ̃i)|
, i = 1, . . . , 2N − L.



Laminar Premixed Hydrogen–Air Flame

• Standard detailed mechanisma; N = 9 species, L = 3 atomic elements,

and J = 19 reversible reactions,

• stoichiometric hydrogen-air: 2H2 + (O2 + 3.76N2),

• adiabatic and isobaric: Tu = 800K, p = 1 atm,

• calorically imperfect ideal gases mixture,

• neglect Soret effect, Dufour effect, and body forces,

• CHEMKIN and IMSL are employed.

aJ. A. Miller, R. E. Mitchell, M. D. Smooke, and R. J. Kee, Proc. Combust. Ins. 19, p. 181, 1982.



• Unsteady spatially homogeneous reactive system:
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• Steady spatially inhomogeneous reactive system:a

coarsest

finest

= 2.6×10   cm
0

= 2.4×10    cm
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aA. N. Al-Khateeb, J. M. Powers, and S. Paolucci, Comm. Comp. Phys. 8(2): 304, 2010.



Spatio-Temporal Spectrum

• PDEs −→ 2N + 2 PDAEs,

A(z) · ∂z
∂t

+ B(z) · ∂z
∂x

= f(z).

• Spatially homogeneous system at chemical equilibrium subjected to a spatially

inhomogeneous perturbation, z′ = z − z
e,

A
e · ∂z

′

∂t
+ B

e · ∂z
′

∂x
= J

e · z′.
• Spatially discretized spectrum,

A
e · dZ

dt
= (J e − B

e) · Z, Z ∈ R
2N (N+1).

• The time scales of the generalized eigenvalue problem,

τi =
1

|Re (λi)|
, i = 1, . . . , (N − 1)(N − 1).



• Dmix = 1
N2

∑N

i=1

∑N

j=1 Dij ,

• ℓ1 =
√
Dmixτs = 1.1 × 10−1 cm,

• ℓ2 =
√

Dmixτf = 8.0 × 10−4 cm ≈ ℓfinest = 2.4 × 10−4 cm.
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Conclusions: Part I

• Time and length scales are coupled.

• Coarse wavelength modes have time scales dominated by reaction.

• Short wavelength modes have time scales dominated by diffusion.

• Fourier modal analysis reveals a cutoff length scale for which time scales are

dictated by a balance between transport and chemistry.

• Fine scales, temporal and spatial, are essential to resolve reacting systems;

the finest length scale is related to the finest time scale by ℓ ∼
√
Dτ .

• For a p = 1 atm,H2 + air laminar flame, the length scale where fast

reaction balances diffusion is ∼ 2 µm, the necessary scale for a DNS.



Part III: DNS of Complex Inert and Reacting Flows



Project Summary

➢ An adaptive method is applied
to the simulation of compressible
reacting flow.

➢ Model includes detailed chemical
kinetics, multi-species transport,
momentum and energy diffusion.

➢ Problems are typically multi-
dimensional and contain a wide
range of spatial and temporal
scales.

➢ Method resolves the range of scales
present, while greatly reducing
required computational effort and
automatically produces verified
solutions.

“Research needs for future internal
combustion engines,”
Physics Today, Nov. 2008, pp 47-52.
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Compressible Reactive Flow

Code solves the n-D compressible reactive Navier-Stokes equations:

∂ρ

∂t
= − ∂

∂xi
(ρui)

∂ρui

∂t
= − ∂

∂xj
(ρujui)−

∂p

∂xi
+

∂τij
∂xj

∂ρE

∂t
= − ∂

∂xj
(uj(ρE + p)) +

∂ujτji
∂xi

− ∂qi
∂xi

∂ρYk

∂t
= − ∂

∂xi
(uiρYk) +Mkω̇k −

∂ji,k
∂xi

, k = 1, . . . ,K − 1

Where ρ-density, ui-velocity vector, E-specific total energy, Yk-mass
fraction of species k, τij-viscous stress tensor, qi-heat flux, ji,k-species
mass flux, Mk-molecular weight of species k, and ω̇k-reaction rate of
species k.

3



Compressible Reactive Flow (cont.)
Where,

K�

k=1

Yk = 1

E = e+
1

2
uiui

τij = −2

3
µ
∂ul

∂xl
δij + µ

�
∂ui

∂xj
+

∂uj

∂xi

�

qi = −k
∂T

∂xi
+

K�

k=1

�
hkji,k −

RT

mkXk
DT

k di,k

�

ji,k =
ρYk

XkM

K�

j=1,j �=k

MjDjkdi,j −
DT

k

T

∂T

∂xi

di,k =
∂Xk

∂xi
+ (Xk − Yk)

1

p

∂p

∂xi

4



Wavelet Approximation in Domain [0, 1]d

Approximation of u(x) by the interpolating wavelet, a multiscale basis,
on x ∈ [0, 1]d is given by

u(x) ≈ uJ(x) =
�

k

uj0,kΦJ0,k(x) +
J−1�

j=J0

�

λ

dj,λΨj,λ(x),

where x ∈ Rd, λ = (e,k) and Ψj,λ(x) ≡ Ψe
j,k(x).

• Scaling function:
Φj,k(x) =

d�

i=1

φj,k(xi), ki ∈ κ0
j

• Wavelet function:
Ψe

j,k(x) =
d�

i=1

ψei
j,k(xi), ki ∈ κei

j

where e ∈ {0, 1}d \ 0, ψ0
j,k(x) ≡ φj,k(x) and ψ1

j,k(x) ≡ ψj,k(x), and
κ0
j = {0, · · · , 2j} and κ1

j = {0, · · · , 2j − 1}.

5



Sparse Wavelet Representation (SWR) and
Irregular Sparse grid

➢ For a given threshold parameter ε, the multiscale approximation of
a function u(x) can be written as

uJ(x) =
�

k

uj0,kΦj0,k(x) +
J−1�

j=j0

�

{λ : |dj,λ|≥ε}

dj,λΨj,λ(x)

+
J−1�

j=j0

�

{λ : |dj,λ|<ε}

dj,λΨj,λ(x)

� �� �
RJ
ε

,

and the SWR is obtained by discarding the term RJ
ε .

➢ For interpolating wavelets, each basis function is associated with one
dyadic grid point, i.e.

Φj,k(x) with xj,k = (k12
−j, . . . , kd2

−j)

Ψj,λ(x) with xj,λ = xj+1,2k+e
6



SWR and Irregular Sparse Grid (continued)

➢ For a given SWR, one has an associated grid composed of essential
points, whose wavelet amplitudes are greater than the threshold
parameter ε

Ve = {xj0,k,
�

j≥j0

xj,λ : λ ∈ Λj}, Λj = {λ : |dj,λ| ≥ ε}.

➢ To accommodate the possible advection and sharpening of solution
features, we determine the neighboring grid points:

Vb =
�

{j,λ∈Λ}

Nj,Λ,

where Nj,λ is the set of neighboring points to xj,λ.

➢ The new sparse grid, V, is then given by

V = xj0,k ∪ Ve ∪ Vb. 7



SWR and Irregular Sparse grid (continued)

➢ There exists an adaptive fast wavelet transform (AFWT), with
O(N), N = dim{V} operations, mapping the function values on
the irregular grid V to the associated wavelet coefficients and vice-
versa:

AFWT({u(x) : x ∈ V}) → D = {{uj0,k}, {dj,λ, λ ∈ Λj}j>j0}.

➢ Provided that the function u(x) is continuous, the error in the SWR
uJ
ε (x) is bounded by

�u− uJ
ε �∞ ≤ C1 ε.

➢ Furthermore, for the function that is smooth enough, the number of
basis functions N = dim{uJ

ε } required for a given ε satisfies

N ≤ C2 ε−d/p, and �u− uJ
ε �∞ ≤ C2 N−p/d.

8



Derivative Approximation of SWR

➢ Direct differentiation of wavelets is costly (with O(p(J − j0)N)
operations) because of different support sizes of wavelet basis on
different levels.

➢ Alternatively, we use the connection with Lagrange interpolating
polynomials to approximate the derivative on a grid of irregular
points. The procedure can be summarized as follows:

❶ For a given SWR of a function, perform the inverse interpolating
wavelet transform to obtain the function values at the associated
irregular points.

❷ Apply locally a finite difference scheme of order n to approximate
the derivative at each grid point.

➢ Estimate shows that the pointwise error of the derivative
approximation has the following bound:

�∂iu/∂xi −D(i)
x uJ

ε �V,∞ ≤ CN−min((p−i),n)/2, �f�G,∞ = max
x∈V

|f(x)|.

9



Dynamically Adaptive Algorithm for Solving
Time-Dependent PDEs

Given the set of PDEs

∂u

∂t
= F (t, u, ux, uxx, . . .),

with initial conditions
u(x, 0) = u0.

❶ Obtain sparse grid, Vm, based on thresholding of magnitudes of
wavelet amplitudes of the approximate solution um.

❷ Integrate in time using an explicit time integrator with error control
to obtain the new solution um+1.

❸ Assign um+1 → um and return to step ❶.

10



Parallelization

➢ Parallel algorithm uses an MPI-
based domain decomposition.

➢ Hilbert space-filling curve used
for partitioning and load-
balancing.

➢ Strong scaling up to 256 cores
with > 90% parallel efficiency.

➢ Chemkin-II and Transport
Libraries used for evaluation
of thermodynamics, transport
properties, and reaction source
terms.
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 = 500 000

Linear Speedup

Dual Quad-Core, 2.7 GHz
L5520 Intel Nehalem nodes
(8 cores/node), 12 GB RAM,

Infiniband interconnect
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2-D Viscous Detonation

Initial Conditions:

Domain: [0, 60]× [0, 6] cm
Front: x = 15.0 cm
Unreacted pocket:

[1.05× 1.43] cm
at x = 14.7 cm
P = 4.7× 105 dyne/cm2

T = 2100 K
128 cores
391 hrs runtime

2H2 : O2 : 7Ar mixture
9 species, 37 reactions

Wavelet parameters:
� = 1× 10−3

p = 6, n = 5
[Nx ×Ny]j0 = [600× 60]
J − j0 = 10

12



2-D Viscous Detonation (cont.)

100 µs 120 µs 140 µs 160 µs
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2-D Viscous Detonation (cont.)

240 µs 250 µs 260 µs 270 µs
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Shock/H2-Bubble Interaction
Initial Conditions:

Domain: [0, 3]× [0, 0.75] cm
Mach 2 shock: x = 0.5 cm
P∞ = 1.0× 106 dyne/cm2

T∞ = 1000 K
r =

�
(x− 1)2 + y2

r < 0.28 cm: 83H2 : 17N2

r > 0.28 cm: 22O2 : 78N2

64 cores
runtime

H2 : O2 : N2 mixture
9 species, 37 reactions

Wavelet parameters:
� = 1× 10−3

p = 6, n = 5
[Nx ×Ny]j0 = [30× 8]
J − j0 = 10

15



Shock/H2-Bubble Interaction (cont.)

2.0 µs 3.5 µs 5.0 µs

16



Richtmeyer-Meshkov Instability

Initial Conditions:

Domain:
[0, 20]× [0, 1.08] cm

Ambient mixture:
YN2 = 0.99, YSF6 = 0.01
P = 79.5 kPa
T = 300 K

Ms = 1.2 shock
at x = 5.0 cm

64 cores
118 hrs runtime

Varicose sheet at x = 6.3 cm
YN2 = 0.01, YSF6 = 0.99
Balakumar et al.
Phys. Fluids 20, 2008

Wavelet parameters:
� = 1× 10−4

p = 6, n = 5
[Nx ×Ny]j0 = [200× 10]
J − j0 = 10

17



Richtmeyer-Meshkov Instability (cont.)

=⇒ Shock Direction =⇒
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Richtmeyer-Meshkov Instability (cont.)

⇐ Reshock ⇐
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Richtmeyer-Meshkov Instability – Grid

t = 390 µs t = 600 µs
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Effect of Diffusion on Long-Time Detonation Dynamics
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• Standard 1D problem with one-step kinetics, see Powers, et al., 2006.

• Small physical diffusion significantly delays transition to instability.

• In the unstable regime, small diffusion has a large role in determining role for

the long time dynamics.



Inert Viscous Cylindrical Implosion

• 100 µm× 100 µm square domain,

• Pure argon,

• Initial uniform temperature, T = 300K ,

• Initial pressure ratio is 4 atm : 0.2 atm between argon on either side of an

octagonal diaphragm,

• Tmax(r = 0, t ∼ 40 ns) ∼ 2400K .



Conclusions

• Verified 2D calculations for realistic reacting gas mixtures with detailed kinetics

and multicomponent transport are realizable with modern adaptive algorithms

working within a massively parallel computing architecture.

• It is possible for 2D calculations to span over five orders of magnitude: from

near mean-free path scales (10−4 cm) to small scale device scales (10 cm).

• Micro-scale viscous shock dynamics can dramatically influence oscillatory

detonation dynamics on the macro-scale (see Romick, et al., 2011).

• Validation against unsteady calculations awaits 3D extensions.

• Realization of verified and validated DNS would remove the need for common,

but problematic, modeling assumptions (shock-capturing, turbulence model-

ing, implicit chemistry with operator splitting, reduced kinetics/flamelets).

• Such 3D V&V could be viable in an exascale environment; however, routine

desktop DNS calculations remain difficult to envision at macro-device scales.



An Advertisement:

• Workshop on Verification and Validation in Computational Science

• 17-19 October 2011

• on the ND campus

• limited NSF travel support available for young researchers

• http://vv.nd.edu




