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A recently developed high-order implicit shock tracking method is novelly applied to a benchmark problem in two-

dimensional compressible reactive flow, and results of remarkably high accuracy are achieved relative to competing

shock capturing schemes. High-order implicit shock tracking is a discontinuousGalerkin discretization of conservation

laws that simultaneously computes an approximate flow solution and aligns faces of the computational mesh with

discontinuities in the flow to provide nonlinear stabilization and an improved approximation to the solution. Themodel

problem is chosen such that its exact solution is available in analytic form to facilitate a detailed study of the truncation

error of the trackingmethodrelative toanominally fifth-orderweighted essentially nonoscillatorymethod.Weshow the

implicit tracking method is able to robustly align the mesh with the shock and, particularly for polynomial bases of

degreegreater than1, provide ahigh-quality approximation to the exact solutiononmeshes far coarser thanrequiredby

standardmethods. Finally,wedemonstrate the trackingmethodobtains nearoptimal convergence rates in several error

metrics for the problem under consideration.

Nomenclature

A = Jacobian matrix of flux function evaluated at
Roe state

a1, a2, a3, a4 = intermediate constants
B = Jacobian matrix of flux function
c = frozen sound speed
d = number of spatial dimensions
ds = differential surface element
dV = differential volume element
E = total energy
Eh;q = mesh

e = specific internal energy

eH L2�Ω� = error in total enthalpy

eλ L
1�Ω� = error in reaction progress

eρ L
1�Ω� = error in density

e�1� = first canonical unit vector in R2: e�1� � �1; 0�
F = flux function of conservation law
F = numerical flux function
f = general function to be minimized
H = total enthalpy
H = Heaviside function
h = mesh size parameter
k = smoothness parameter for smoothed absolute

value function
κ = mesh regularization parameter
L = Lagrangian of constrained optimization problem
M = Mach number
m�⋅� = achieved order of convergence of error metric
n = outward normal to physical domain
P = pressure
p = polynomial degree for solution approximation
Q = rotation matrix
q = polynomial degree of geometry approximation
q̂ = heat release per unit mass

R = gas constant
R = discontinuous Galerkin residual, enriched trial

space
Rmsh = mesh quality residual
r = discontinuous Galerkin residual
s = entropy
T = temperature

Tig = ignition temperature

U = conservation law solution
u = discontinuous Galerkin approximation to con-

servation law
V = right eigenvectors of flux Jacobian
Vh;p = approximation space for solution U
V1, V2 = velocity in rotated coordinate system
vi = velocity in xi direction
X1, X2 = rotated coordinates
X2;w = wall streamline in rotated coordinates

x = nodal coordinates of mesh
x1; : : : ; xd = coordinate directions
α = reaction kinetic rate constant
β = shock angle

ΓD, U
∂
D = supersonic inflow boundary and state

ΓN , U
∂
N = supersonic outflow boundary and state

Γw, U
∂
w = wall boundary and state

γ = ratio of specific heats
δij = Kronecker delta

Λ = eigenvalue matrix of flux Jacobian
λ = reaction progress
λ = Lagrange multipliers
ρ = density
ψ = test function
Ω, ∂Ω = physical domain and boundary
ω3 = vorticity

Subscript

∞ = freestream quantity

Superscript

� = interior trace of quantity

I. Introduction

S HOCK-INDUCED combustion and detonation is a pervasive
feature in high Mach number aeropropulsion, for example,
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scramjets, rotating detonation engines, and others. It is necessary to
capture the details of the reaction zone to understand ignition, stability,
unstart, and many other important physical phenomena. For realistic
hydrogen systems, the smallest reaction zone thickness is at themicron
scale [1] and must be resolved to capture proper dynamics, especially
near stability boundaries [2]. Numerical viscosity introduced by coarse
grids, or intentionally introduced for stabilization, can interfere with
detonation dynamics, for example, introducing artificial dissipative
heating that can falsely trigger reaction [3,4]. For these problems, it is
essential to have numerical methods that capture shocks while intro-
ducing minimal dissipation; however, many of the most widely used
numerical methods to approximate high Mach flows either explicitly
introduce viscosity for stabilization or inherently add dissipation at the
shock front where the solution is underresolved.
The standard approaches for nonlinear stabilization of numerical

methods for flows with discontinuous solutions or sharp gradients are
shock capturing methods such as artificial viscosity [5–8], weighted
essentially nonoscillatory (WENO)methods [9–13], limiting [14–18],
and low-order finite volume methods [19]. These methods use the
resolution in the numerical scheme, usually a piecewise polynomial
basis, to capture the discontinuity, or a smeared approximation of it.
Because polynomials are inherently ill suited to represent discontinu-
ous functions, these techniques must be combined with extreme local
mesh refinement [20–22] in the vicinity of the shock. Inviscid shock
capturingmethods lead to numerical schemeswith significant numeri-
cal dissipation that can lead to the aforementioned issues,which places
stringent requirements on mesh adaptation. This leads to expensive
computations that requiremany degrees of freedom, even for relatively
simple problems in two dimensions. There exists a class of numerical
methods [4] that leverages the multiscale nature of wavelets as the
underlying basis and allow for a highly adapted discretizationwith few
degrees of freedom; however, they require continuity of the solution,
necessitating the resolution of thin physically viscous structures. In
contrast to the previousmethods, shock fitting offers the opportunity to
achieve high accuracy and high-order convergence rates [23–29].
However, because of the geometric complexity of generating a mesh
of an unknown discontinuity surface, fitting methods have proven
difficult to use as the foundation of a general-purpose method and
tend to find the most success for specific applications in one and two
dimensions [27,30]. While both low-order [24,28,29] and high-order/
spectral [25,27]methods have been used in the context of shock fitting,
Zahr and Persson [31] showed the benefits of shock fitting relative to a
shock capturing method with adaptive mesh refinement are modest
when used with low-order schemes and increasingly exaggerated as
the order of the underlying discretization increases. For more informa-
tion, Ref. [32] provides a comprehensive review of numericalmethods
for detonation problems.
We consider a new class of methods, high-order implicit shock

tracking, for inviscid detonation with finite-rate kinetics that over-
comes the limitations of shock capturing and traditional shock fitting
methods. Implicit shock tracking [31,33–36] is a new approach to
shock fitting that, instead of attempting to explicitly generate a mesh
that conforms to the (unknown) discontinuities in the flow, poses and
solves an optimization problem whose solution is a discontinuity-
aligned mesh and the corresponding flow solution. The implicit
tracking solver simultaneously updates the mesh and flow solution
to iteratively converge to the solution of the optimization problem; this
ensures the converged flow solution is never required on a nonaligned
mesh, thereby avoiding the nonlinear stability issues that would other-
wise arise. The advantage of the implicit tracking approach over
traditional shock fitting methods is that the geometric complexity of
generating a mesh that conforms to an unknown surface has been
replaced with a nonlinear optimization problem, which can be solved
using techniques fromnumerical optimization [37]. This enables high-
order accurate solutions with more complicated geometrical features
including multiple embedded discontinuity surfaces [33,34].
Combining this implicit tracking approach with high-order meth-

ods, in particular, a discontinuous Galerkin (DG) discretization, leads
to a scheme that is nonlinearly stable and extremely accurate per degree
of freedom and introduces minimal numerical dissipation. It is inher-
ently an r-adaptive method that achieves high-order convergence to

the exact solution for inert flows [31,35] and reactive flows as we
demonstrate in this paper. Furthermore, because we used a high-order
finite element method as the underlying discretization, it naturally
workswith high-order unstructuredmeshes and is capable of handling
complex geometries.
This paper is the first to apply high-order implicit shock tracking to

reacting flow. The method is verified against an exact solution for
planar two-dimensional inviscid irrotational detonation with finite-
rate, one-step kinetics with a simple reactant depletion model [38].
We use this well-understood benchmark to perform a detailed
numerical investigation into the tracking method and demonstrate
the method is remarkably accurate compared to a fifth-order WENO
method [38], a competing shock capturing scheme. In particular, we
show that the error associated with the implicit tracking method is
two orders of magnitude smaller and uses nearly three orders of
magnitude fewer degrees of freedom than the WENO method. We
also show the implicit tracking method converges at near-optimal
rates under h refinement, in other words, O�hp�1�, where h is the
mesh size parameter and p is the polynomial degree of the basis,
while theWENOmethod is limited to sub-first-order convergence as
reported in Ref. [38]. Even on an extremely coarse mesh with 100
elements, the implicit tracking method produces a solution that, to
high accuracy, preserves structure of inviscid flow, for example, close
agreement with the exact solution field, near constant total enthalpy,
and near zero vorticity.
The remainder of the paper is organized as follows. Section II

introduces the two-dimensional benchmark problem, the governing
equations (reactive Euler equations), and a brief review of the exact
solution. Section III reviews the discontinuous Galerkin discretiza-
tion and implicit shock tracking formulation; a complete descrip-
tion of the tracking method and the corresponding solvers can be
found in Ref. [34]. Section IV presents an extensive numerical
investigation into the robustness, accuracy, and convergence of
the high-order implicit shock tracking method applied to the model
problem and compares its performance to the fifth-order WENO
scheme in Ref. [38]. Finally, Sec. V offers conclusions and an
outlook for future work.

II. Analytical Modeling

A. Geometry and Flow Configuration

We model the flow configuration shown in Fig. 1. Here, a curved
two-dimensionalwedgehas its apex at the origin �x1; x2� � �0; 0�. The
wedge is immersed in a supersonic flowfield in which an inviscid
unreacted fluid flows from the left boundary.When the fluid encounters

Fig. 1 Schematic of straight wall, curved shock flow setup.
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the wedge, a straight oblique shock, inclined at angle β to the
horizontal, is induced. The shock triggers one-step irreversible exo-
thermic chemical reaction through a finite length reaction zone. The
reaction induces streamline curvature, and the wedge curvature is
selected so that it is parallel to flow streamlines. The freestream
conditions prescribe the density ρ∞, temperature T∞, and pressure
P∞; the freestream velocity is aligned with the x1 axis

v∞ �
�
v1∞
0

�
(1)

and no reaction has occurred at the inlet, λ∞ � 0.

B. Reactive Euler Equations

Following Powers andAslam [38], the reactive Euler equations are
chosen to model the steady flow of an inviscid, compressible fluid
through a domain Ω ⊂ Rd and the evolution of chemical kinetics:

�ρvj�;j � 0;

�ρvivj � Pδij�;j � 0;�
ρvj

�
e� vivi

2
� P

ρ

��
;j

� 0;
in Ω

�ρvjλ�;j � αρ�1 − λ�H�T − Tig� (2)

where ρ:Ω → R� is the density of the fluid, vi:Ω → R for
i � 1; : : : ; d is the velocity of the fluid in the ith coordinate direction
and v � �v1; : : : ; vd�, e:Ω → R� is the specific internal energy of
the fluid, P:Ω → R� is the pressure, T:Ω → R is the temperature,
λ:Ω → �0; 1� is the reaction progress, and H:R → f0; 1g is the
Heaviside function. The term d is the number of spatial dimensions,
which can be 1, 2, or 3. Here, we will be restricted to d � 2. The
source term in the reaction equation models a single irreversible
reaction with simple reactant depletion kinetics and no Arrhenius
term. The reactant and product are both taken to be calorically perfect
ideal gases with identical gas constantsR and ratio of specific heats γ.
For the mixture, the thermal and caloric state equations are

P � ρRT; e � 1

γ − 1

P

ρ
− λq̂ (3)

with the frozen speed of sound c:Ω → R� and Mach number
M:Ω → R�,

c2 � ∂P
∂ρ

����
s;λ

� γ
P

ρ
; M �

��������
vivi

p
c

(4)

where s:Ω → R is the entropy. The relevant constants are the reaction
kinetic rate constant α, ratio of specific heats γ, heat release per unit
mass q̂, gas constant R, and ignition temperature Tig.
For convenience, we introduce the total energy E:Ω → R� and

total enthalpy H:Ω → R� of the flow

E � e� vivi
2

; H � E� P

ρ
(5)

that allows us to succinctly rewrite the energy equation as

�ρvjH�;j � 0; in Ω (6)

Expanding the energy equation and using mass conservation allows
us to deduce that the total enthalpy of a fluid particle remains constant
on a streamline,

dH

dt
� 0 (7)

where d∕dt is thematerial derivative, where thematerial derivative of

H for the steady flow has the standard definition dH∕dt � vjH;j.

Moreover, standard Rankine–Hugoniot jump analysis shows that H
remains constant across a shock. Because the freestream has a

spatially homogeneous value of H � H∞, and H must remain con-

stant even during chemical reaction, it can be concluded that through-

out the entire flowfield

H � γ

γ − 1

P∞

ρ∞
� 1

2
v∞ ⋅ v∞ (8)

The vorticity has its standard definition (d � 2):

ω3 �
∂v2
∂x1

−
∂v1
∂x2

(9)

As discussed by Powers and Stewart [39], the relevant Helmholtz

vorticity transport equation for continuous regions of the flow is

dω3

dt
� 0 (10)

showing that vorticity does not change along streamlines. Also

discussed in Ref. [39], shock curvature can generate vorticity at a

discontinuity. Because we consider straight shocks only, there are no

vorticity-generating mechanisms. Thus, a fluid particle that is ini-

tially irrotational will always be irrotational, and we have

ω3 � 0 (11)

throughout the domain Ω.

C. Exact Solution

The exact solution of the problem in Sec. II.A was derived ana-

lytically in Ref. [38]; in this section, we summarize the solution with

full details found in Ref. [38]. One first considers the rotation

sketched in Fig. 1. The rotation transformation is

X1 � x1 sin β − x2 cos β (12)

X2 � x1 cos β� x2 sin β (13)

V1 � v1 sin β − v2 cos β (14)

V2 � v1 cos β� v2 sin β (15)

Here,X1 andX2 are the distance components in the rotated coordinate

system, and V1 and V2 are the corresponding velocity components.
One can do a detailed analysis examining solutions that vary in X1

only. A set of Rankine–Hugoniot jump equations can be enforced to

give postshock conditions. Consistent with classical inert oblique

shock theory, attention is restricted to solutions where the velocity

tangent to the shock V2 is the same constant both before and after the

shock. Additionally, it is required to be the same constant throughout

the reaction zone. Detailed algebraic analysis then allows one to

determine explicit algebraic expressions for ρ�λ�, V1�λ�, and P�λ�.
For example, one gets for the shocked branch

ρ�λ� � ρ∞�γ � 1�M2
∞sin

2β

1� γM2
∞sin

2β −
�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������
�1� γM2

∞sin
2β�2 − �γ � 1�M2

∞sin
2β�2� ��γ − 1�∕γ��2λq̂∕RT∞� � �γ − 1�M2

∞sin
2β�

p (16)
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The remaining ordinary differential equation for the reaction kinetics

can be rewritten as

dλ

dX1

� α

ρ∞v1∞ sin β
ρ�λ��1 − λ�; λ�0� � 0 (17)

Equation (17) can be integrated exactly via separation of variables to

yield X1�λ�:

X1�λ� � a1

�
2a3�

����������������
1 − a4λ

p
− 1� � ln

��
1

1 − λ

�
a2
��1 − ����������������������������������������1 − a4λ�∕�1 − a4�

p ��1� ����������������������
1∕�1 − a4�

p �
�1� ����������������������������������������1 − a4λ�∕�1 − a4�

p ��1 − ����������������������
1∕�1 − a4�

p �

�
a3

��������
1−a4

p ��
(18)

Here, parameters a1; : : : ; a4 are defined as

a1 �
1

�γ � 1�M∞ sin β

�������������
γRT∞

p
α

(19)

a2 � 1� γM2
∞sin

2β (20)

a3 � M2
∞ sin2 β − 1 (21)

a4 � 2
M2

∞sin
2β

�M2
∞sin

2β − 1�2
γ2 − 1

γ

q̂

RT∞
(22)

We see that a1 has units of length and that a2, a3, and a4 are
dimensionless. Thus, one has X1 as an explicit function of λ. The
inverse λ�X1� may be obtained via numerical iteration. It is easily
shown that the wall shape is given by

X2;w�X1� �
v1∞ cos β

α
ln
�

1

1 − λ�X1�
�

(23)

III. High-Order Implicit Shock Tracking for Inviscid
Conservation Laws

In this section, we write the reactive Euler equations (2) as a
general system of nonlinear conservation laws and introduce the
high-order implicit shock tracking method based on a discontinuous
Galerkin discretization [31,34].

A. Conservation Law

The density, velocity, total energy, and reaction are combined into
a vector of conservative variables U:Ω → Rd�3, and the reactive
Euler equations take the form of an inviscid conservation law,

∇ ⋅ F�U� � S�U� in Ω ⇔ Fij;j � Si in Ω (24)

where the state vector U:Ω → Rd�3, flux function F:Rd�3 →
R�d�3�×d, and source term S:Rd�3 → Rd�3 are

U �

2
666664

ρ

ρv

ρE

ρλ

3
777775; F�U� �

2
666664

ρvT

ρvvT � PId×d

ρHvT

ρλvT

3
777775;

S�U� �

2
666664

0

0d

0

αρ�1 − λ�H�T − Tig�

3
777775 (25)

where Id×d ∈ Rd×d is the identity matrix and 0d ∈ Rd is the zero
vector. Equations (24) and (25) use a form commonly found in the
computational literature, and its meaning is generally well understood
to be consistent with Eqs. (2) and (6). However, in that the operator∇
here is the spatial divergence operator, ∇ � �∂∕∂x1; ∂∕∂x2�T , it does
not formally operate on the d� 3 rows of F. Instead, it operates on
each of the column elements ofF. Consequently, care must be used in
extending notions from vector calculus and differential geometry
to Eq. (24).

The exact solution for the problem introduced in Sec. II.C was
derived for flow in a semi-infinite domain. To reproduce this problem
in a computational setting, we truncate the domain a finite distance
from the wall and introduce suitable boundary conditions. We con-
sider three types of boundary conditions: slip wall Γw, supersonic
inflow ΓD, and supersonic outflow ΓN. The supersonic inflow is
also known as a far-field or Dirichlet condition, and the supersonic
outflow is a Neumann condition. For a slip wall (v ⋅ n � 0), the
boundary state is defined as

U∂
w�U;n� ≔

2
664

ρ
ρv−�v;n�

ρE
ρλ;

3
775 (26)

where v−�v;n� � �v − 2v ⋅ n�n is the velocity reflected about the
normal. For a supersonic inflow, all characteristics are coming into
the domain, and the boundary state depends solely on the prescribed
density ρ∞, velocity v∞, pressure P∞, and reaction λ∞,

U∂
D�U� ≔

2
6664

ρ∞
ρ∞v∞

P∞
γ−1 � ρ∞

2
v∞ ⋅ v∞

ρ∞λ∞

3
7775 (27)

Finally, at a supersonic outflow, all characteristics are leaving the
domain, and the boundary state is taken from the interior,

U∂
N�U� ≔ U (28)

Then, the boundary condition on ∂Ω ≔ �Γw ∪ �ΓD ∪ �ΓN is

U∂�U;n� �

8>><
>>:
U∂

w�U;n� on Γw

U∂
D�U� on ΓD

U∂
N�U� on ΓN

(29)

where Γw, ΓD, ΓN ⊂ ∂Ω are the surfaces on the domain boundary
where the wall, supersonic inflow, and supersonic outflow condi-
tions, respectively, are applied.

B. Discontinuous Galerkin Discretization

We use a standard nodal DG method [40,41] to discretize the
conservation law (24). Let Eh;q be a collection of nonoverlapping,
potentially curved, computational elements that discretize the
domain Ω; h is a mesh element size parameter, q is the polynomial
order associatedwith the curved elements, andwe use jEh;qj to denote
the number of elements in themesh. TheDGconstruction beginswith
the elementwise weak form of the conservation law (24) that results
frommultiplying each equation by a test function ψ , integrating over
a single element K ∈ Eh;q, and applying the divergence theorem
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Z
∂K

ψ� ⋅ F�U�n ds −
Z
K
F�U�:∇ψ dV �

Z
K
ψ ⋅ S�U� dV (30)

where n:Ω → Rd is the outward normal to the surface ∂K and ψ�
denotes the trace of ψ interior to element K. To ensure the face
integrals are single valued, we replace F�U�n in the first term with

a numerical flux function F �U�; U−;n�,Z
∂K

ψ� ⋅ F �U�; U−;n� ds −
Z
K
F�U�:∇ψ dV �

Z
K
ψ ⋅ S�U� dV

(31)

whereU� denotes the interior trace ofU andU− denotes the exterior
trace of U if ∂K is an interior face, in other words, ∂K ∩ ∂Ω � ∅.

Otherwise, U− is a boundary state U∂�U;n� constructed to enforce
the appropriate boundary condition defined in the previous section.
In this paper, we use a smoothed version of the Roe flux [42]
(Appendix A).
Define the finite element space of piecewise polynomial functions

associated with the mesh Eh;q,

Vh;p �
n
v ∈ �L2�Ω0��d�3jvjK � wK ∘ T −1

K ;wK ∈ �Pp�K0��d�3;

∀K ∈ Eh;q

o

wherePp�K0� is the space of polynomial functions of degree at most

p ≥ 1 on themaster elementK0 andK � T K�K0� defines amapping
from the master element to element K ∈ Eh;q. For simplicity, we

assume all elements map from a single master element. The finite-
dimensional residual of the weak form in (31) corresponding to the
trial space Vh;p and test space Vh 0;p 0 is

rKh 0;p 0 �Uh;p� ≔
Z
∂K

ψ�
h 0;p 0 ⋅ F �U�

h;p; U
−
h;p;n� ds

−
Z
K
F�Uh;p�:∇ψh 0 ;p 0 dV −

Z
K
ψh 0 ;p 0 ⋅ S�Uh;p� dV

(32)

After summing over all elements K ∈ Eh;q, the finite-dimensional

Galerkin weak form is as follows: find Uh;p ∈ Vh;p such that

X
K∈Eh;q

rKh;p�Uh;p� � 0 (33)

for all ψh;p ∈ Vh;p.

To establish the discrete (algebraic) form of Eq. (33), we introduce
a (nodal) basis over each element and expand the finite-dimensional
test functions ψh;p and solutionUh;p in terms of these basis functions
and coefficients. Assembling the algebraic system corresponding to
Eq. (33), we have

r�u; x� � 0 (34)

where u ∈ RNu are the (assembled) coefficients of the solution

Uh;p ∈ Vh;p and x ∈ RNx are the nodal coordinates of the mesh

Eh;q, including high-order nodes for q > 1. It is convenient to trans-

form the conservation law to a fixed reference domain as it leads to
transformed fluxes that depend on the mapping from the reference to
physical domain. As a result, the dependence of the residual on the
state u and mesh coordinates x is similar, which facilitates imple-
mentation of required partial derivatives. We omit the details for
brevity; see Refs. [31,34] for details.
Finally, define the enriched discrete residual R�u; x� as the alge-

braic version of X
K∈Eh;q

rKh;p�1�Uh;p� (35)

which will be used to define the implicit tracking objective function.
The enriched residual is defined by the same trial space Vh;p as the

residual in Eq. (34) but uses an enriched test space Vh;p�1.

C. Implicit Shock Tracking

The main idea behind implicit shock tracking is that we do not
explicitly generate a mesh of the discontinuity surface; rather, we
pose an optimization problem over the discretized solution vector u
and nodal mesh coordinates x such that its solution is a mesh aligned

with the discontinuity surface x⋆ and the corresponding discretized

solution u⋆, in other words, r�u⋆; x⋆� � 0,

minimize
u∈RNu ;x∈RNx

f�u; x�
subject to r�u; x� � 0

(36)

The objective function is constructed such that the solution of the
optimization problem is a high-quality mesh that aligns with dis-
continuities in the solution

f�u; x� � 1

2
kR�u; x�k22 �

κ2

2
kRmsh�x�k22 (37)

where κ ∈ R� is a parameter that weights the contribution of the

two terms and Rmsh:R
Nx → RjEh;qj is an elementwise mesh distor-

tion metric; see Ref. [34] for details. The first term penalizes a
measure of the DG solution error and promotes alignment of the
mesh with discontinuities because a piecewise polynomial solution
on an aligned meshwill havemuch lower error than on a nonaligned
one. The second term actively promotes mesh smoothing and is a
safeguard that prevents the mesh from entangling or becoming
unacceptably skewed. Furthermore, the implicit tracking method
directly inherits the benefits of standard DG methods, in other
words, high-order accuracy and conservation, due to the constraint
that exactly enforces the DG discretization.
The Lagrangian of the optimization problem in Eq. (36),

L:RNu × RNx × RNu → R, takes the form

L�u; x; λ� � f�u; x� − λTr�u; x� (38)

where λ ∈ RNu is a vector of Lagrangemultipliers associatedwith the
DG constraint in Eq. (36). The first-order optimality, or Karush–

Kuhn–Tucker, conditions state that �u⋆; x⋆� is a first-order solution
of the optimization problem if there exists λ⋆ such that

∂f
∂u

�u⋆; x⋆�T −
∂r
∂u

�u⋆; x⋆�Tλ⋆ � 0;

∂f
∂x

�u⋆; x⋆�T −
∂r
∂x

�u⋆; x⋆�Tλ⋆ � 0;

r�u⋆; x⋆� � 0 (39)

Following Ref. [34], we define the estimate of the optimal Lagrange

multiplier λ̂:RNu × RNx → RNu that guarantees the first condition in
Eq. (39) is always satisfied,

λ̂�u; x� � ∂r
∂u

�u; x�−T ∂f
∂u

�u; x�T (40)

which reduces the optimality criteria to

c�u⋆;x⋆�≔ ∂f
∂x

�u⋆;x⋆�T − ∂r
∂x

�u⋆;x⋆�T ∂r
∂u

�u⋆;x⋆�−T ∂f
∂u

�u⋆;x⋆�T

� 0;

r�u⋆;x⋆� � 0 (41)

In this paper, we use the sequential quadratic programming (SQP)
method proposed inRef. [34]. A pair �u; x� is considered a solution of
Eq. (36) if kc�u; x�k < ϵ1 and kr�u; x�k < ϵ2 for ϵ1, ϵ2 > 0.
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IV. Numerical Experiment

For a one-to-one comparison, we consider the exact problem from

Ref. [38], albeit nondimensionalized (Table 1).We use ~� ⋅ � to denote
the dimensional version of the nondimensional quantity �⋅� and

nondimensionalize following the procedure in Ref. [43]:

t � ~α ~t; xi �
~α ~xi

M∞

����������������
~P∞∕ ~ρ∞

q ; vi �
~vi

M∞

����������������
~P∞∕ ~ρ∞

q ;

ρ � ~ρ

~ρ∞
; P �

~P

M2
∞ ~P∞

; T �
~T

M2
∞ ~T∞

(42)

This leads to the nondimensional constants

α � 1; R � 1; q̂ �
~̂qρ∞

M2
∞ ~P∞

(43)

and far-field conditions

ρ∞ � 1; v∞ � � ���
γ

p
; 0�; P∞ � 1

M2
∞
; T∞ � 1

M2
∞
; λ∞ � 0

(44)

where we assume ~v aligned with the x1 direction and used c ������������
γP∕ρ

p
.We adopt the nonstandard approach of nondimensionalizing

constants aswell as flowquantities to ensure the equations introduced

in Sec. II maintain their current form in the nondimensional setting,

for example, without requiring each equation to be reformulated once

the constants cancel due to nondimensionalization. This also pro-

vides a direct connection to our implementation.
We use three error metrics to quantify the approximation error

associated with the implicit tracking method applied to the reacting

Euler equations. The first error metric we consider is the L2 norm of

the total enthalpy (8):

eH�Uh;p�
���������������������������������������Z
Ω
jH�Uh;p� −Hj2

s
(45)

Because this problem has an exact solution [38], we will also use the

L1 error of the numerical flow density ρ�Uh;p� and reaction progress
λ�Uh;p�,

eρ�Uh;p� ≔
Z
Ω
jρ�Uh;p� − ρ⋆j dV;

eλ�Uh;p� ≔
Z
Ω
jλ�Uh;p� − λ⋆j dV (46)

where ρ⋆ and λ⋆ are the exact solutions for the density and reaction
progress, respectively. Because of the nondimensionalization here

relative to Ref. [38], we must scale the L1 error in Ref. [38] by the
square of the domain scaling (because we are in d � 2 dimensions),
in other words, �

~α

M∞

����������������
~P∞∕ ~ρ∞

q �
2

≈ 1.29 (47)

for a one-to-one quantitative comparison between the errors. Because
this scaling is O�1�, it has little impact.
To begin, we use DistMesh [44] to create a mesh of the rectangular

domain with a curved wall (Fig. 1, Sec. II.C) consisting of 109
straight-sided (q � 1) triangular elements that do not conform to
the discontinuity surface. Then, we include high-order nodes to
create q � 2; 3 meshes; all nodes on the (faceted) wall boundary
were projected onto the true (curved) wall to provide high-order
approximations to the wall boundary.

A. Initialization with Low-Order Implicit Shock Tracking

To initialize the high-order tracking method, we apply the implicit
trackingmethod to theq � 1meshwith ap � 0 (piecewise constant)
solution space due to the inherent robustness of low-order discretiza-
tions. The nodal coordinates of the unstructuredmesh (no knowledge
of the shock location) are used to initialize x in the implicit tracking
problem (36). The DG solution u is initialized from the p � 0 DG
solution on the nonaligned mesh. We allow the tracking algorithm to
take 100 SQP iterations (Fig. 2), which results in nine element
collapses and ultimately converges to a mesh that aligns closely with
the true shock position (straight shock of angle β � 45 deg that
intersects the origin); however, the solution is underresolved due to
the coarse, first-order approximation.

B. High-Order Implicit Shock Tracking

To improve the approximation, use the first-order tracking solution
to initialize high-order (p � q � 1; 2; 3) implicit tracking simula-
tions (keeping the number of elements fixed) (Fig. 3 for ρ and Fig. 4
for λ). In all cases, the tracking procedure successfully tracks the
shock; the high-order approximations (p � q > 1) yield accurate
approximations to the flow on the coarse mesh with O�100� ele-
ments, while the low-order (p � q � 1) solution is underresolved.
Table 2 shows the three error metrics for the p � q � 1; 2; 3 implicit
tracking simulations along with the number of DG and mesh degrees
of freedom. Even on this coarse mesh with 109 triangular elements,
the implicit tracking solutions have small errors.
The nominally fifth-order finite difference WENO scheme with

Lax–Friedrichs scheme used in Ref. [38] was unable to drive the L1

error of the density (after scaling) below 10−2 even on their finest grid

of 1024 × 1024, which corresponds to 5.24 × 106 degrees of freedom
(DOF). Implicit tracking offers a substantial improvement because

errors below 10−2 are achieved with less than 4000 total DOF
(including mesh and DG DOF), a reduction in three orders of
magnitude.
The vorticity and enthalpy error jH�Uh;p� −H∞j of the flow for

the p � q � 1; 2; 3 implicit tracking simulations are provided in
Figs. 5 and 6, respectively. These fields provide insight into the
spatial distribution of the error because the true flow is irrotational
and constant total enthalpy. As expected, the largest error occurs in
the vicinity of the discontinuity and domain boundaries (the wall and
outflow in particular). Even though the implicit tracking algorithm is
intended to align with the discontinuity, in practice, it will always be
slightly misaligned due to the truncation error in the solution, which
prevents the flow from being perfectly irrotational and constant

Table 1 Dimensional and corresponding nondimensional quantities
used for the oblique detonation simulation, consistent with Ref. [38]

Quantity Dimensional Nondimensional

Freestream Mach —— M∞ � 3

Shock angle —— β � 45 deg

Ratio of specific heats —— γ � 6∕5
Gas constant ~R � 287 J∕�kg ⋅ K−1� R � 1

Heat release ~̂q � 3.0 × 105 J∕kg q̂ � 0.387

Reaction kinetic rate ~α � 1000 Hz α � 1

Ignition temperature ~Tig � 361.58 K Tig � 0.134

Freestream density ~ρ∞ � 1 kg∕m3 ρ∞ � 1

Freestream temperature ~T∞ � 300 K T∞ � 0.111

Freestream velocity ~v∞ � �18 �����������
2870

p
; 0� m∕s v∞ � �1.095; 0�

Freestream pressure ~P∞ � 8.61 × 104 Pa P∞ � 0.111

Freestream reaction —— λ∞ � 0

Domain x1 limits �−0.25; 0.75� m �−0.284; 1.99�
Domain x2 limits (0, 2) m (0, 2.27)
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Fig. 2 Iterations of implicit tracking algorithm (colored by density) using a p � 0 basis for the solution and q � 1 basis for the mesh.

Fig. 3 Solution (density ρ) of Eq. (2) using implicit tracking with a p � q � 1 (left), p � q � 2 (middle), and p � q � 3 (right) basis for the solution and
mesh with (top) and without (bottom) element boundaries.
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Fig. 4 Solution (reaction λ) of Eq. (2) using implicit trackingwith ap � q � 1 (left),p � q � 2 (middle), andp � q � 3 (right) basis for the solution and
mesh with (top) and without (bottom) element boundaries.

Table 2 Degrees of freedom and error metrics for high-order implicit tracking simulations applied to the
reacting flow problem with a straight shock. Small (sub-1%) errors are achieved on coarse, high-order

discretizations withO�103�DOF using implicit tracking, while theWENO scheme [38] requires farmore DOF and

results in larger errors

Quantity p � q � 1 p � q � 2 p � q � 3 WENO (1024 × 1024) [38]

Mesh DOF 142 500 1076 0
Solution DOF 1635 3270 5450 5,242,880

eH 1.50 × 10−3 2.24 × 10−5 2.63 × 10−6 — —

eρ 5.07 × 10−2 1.38 × 10−3 1.97 × 10−4 3.0 × 10−2

eλ 3.44 × 10−2 1.51 × 10−3 5.54 × 10−5 — —

Fig. 5 Vorticitymagnitude of Eq. (2) using implicit trackingwith ap � q � 1 (left),p � q � 2 (middle), andp � q � 3 (right) basis for the solution and
mesh.
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enthalpy. Another source of error comes from the fact that the wall in

the numerical simulation is only a piecewise polynomial approxima-
tion to the truewall that induces a straight shock (the condition under
which the exact solution was derived). Despite these two sources and

the inherent truncation error associated with using piecewise poly-
nomial functions to approximate the solution, the deviation from
irrotational and constant enthalpy is small, particularly for the p �
q � 3 simulation. It is interesting to note that, despite the supersonic
inlet flow, there are small errors upstream of the oblique shock, which
we attribute to the globally coupled nature of the implicit shock

tracking solver and smoothed numerical flux function. That is, the
solver modifies all DG degrees of freedom to minimize the enriched
residual, and because of the smoothed numerical flux, even degrees

of freedom upstream of the shock can impact the residual in the
elements adjacent to the shock surface.
To further emphasize the improved accuracy of implicit shock

tracking, for both the exact and implicit tracking solutions, we extract
a slice (orthogonal to the shock) of the density ρ and reaction progress
λ (Fig. 7) and plot the location of the discontinuity along with
contours of the density (Fig. 8). These plots confirm that the p �
q � 1 tracking simulation is underresolved, but the p � q > 1
simulations nearly perfectly capture the exact solution and do not
exhibit any nonphysical oscillations (Gibbs’ phenomena). Figure 8
exactly mimics Fig. 3 of Ref. [38] for a one-to-one comparison. The
finite difference WENO method in Ref. [38] on a 256 × 256 grid

(3.27 × 105 DOF) provided an acceptable approximation to the

Fig. 6 Magnitude of enthalpy error (jH −H∞j) ofEq. (2) using implicit trackingwith ap � q � 1 (left),p � q � 2 (middle), andp � q � 3 (right) basis
for the solution and mesh.

Fig. 7 Slices of density and reaction progress of the implicit tracking solutions along the line Γ ≔ f�1.988 − t; 0.7898� t�jt ∈ �0; 0.988�g (t is a dummy

variable that facilitates the parametrization of Γ): exact solution ( ), p � q � 1 ( ), p � q � 2 ( ), and p � q � 3 ( ). The bottom row
is a zoom of the top row at the shock location. Thep � q � 1 solution is underresolved, while thep � q > 1 solutions provide accurate approximations of
the solution. The p � q � 2 and p � q � 3 solutions nearly lie on top one another.
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density contours; however, it was far from exact, while the implicit

tracking method for p � q > 1 matches the true density contours

almost perfectly.

C. Solver Performance

The convergence of the tracking method to a solution of the

optimization problem in Eq. (36) is provided in Fig. 9. The DG

residual kr�u; x�k converges to tighter tolerances as the polynomial

degree is increased; however, it proves difficult to converge the

optimality condition kc�u; x�k to a tight tolerance. This difficulty,

as discussed in Ref. [34], comes from the fact that traditional numeri-
cal flux functions are not smooth with respect to mesh deformations
on shock-aligned meshes, and therefore the first-order optimality
conditions are not defined. The smoothed numerical flux function
improves solver performance by restoring smoothness but is not
sufficient to lead to deep convergence of the optimality conditions.
As the polynomial degree is increased, the enriched residual con-
verges to a smaller value, suggestingwe are approaching a solution of
the weak form. The mesh distortion also improves as the polynomial
degree is increased, which is expected because there aremoreDOF to
manipulate to simultaneously track the discontinuity and smooth
the mesh.

D. Grid Convergence

Finally, we investigate the convergence of the method to the exact
solutionunderh refinement,whereh is the length of the longest edge in
the mesh (usually proportional to jEh;pj−1∕2 in d � 2 dimensions).

This is a rigorous test for the implicit shock tracking method because
evenminute error, for example in the boundary conditions or numerical
flux, will hinder convergence. Furthermore, it is critical that the
computational setup precisely reproduces the assumptions under
which the exact solution was derived [38]. The two critical assump-
tions used in the derivation of the exact solution were as follows:
1) The wall is curved in such a way that the shock surface is a

straight line.
2) The domain is semi-infinitewith prescribed far field conditions.
We easily reproduce the first condition by generating q � 3

(cubic) meshes that provide fourth-order-accurate approximations
to the curved wall boundary derived in Ref. [38]. The semi-infinite
domain cannot be reproduced in a computational setting, so we
restrict the domain to the box �−0.284; 1.99� × �0; 2.27� (nondimen-
sionalization of the domain used in Ref. [38]) and apply suitable
boundary conditions on the artificial boundaries that have been
introduced. Unfortunately, characteristic boundary conditions as
introduced in Sec. II are most suitable when the domain boundaries
are far from the region of interest. In the present setting, we consider

Fig. 8 Location of the discontinuity and contours of the density: exact
solution ( ), p � q � 1 ( ), p � q � 2 ( ), and p �
q � 3 ( ).

Fig. 9 Convergence of the DG residual kr�u; x�k ( ), enriched DG residual kR�u; x�k ( ), optimality condition kc�u; x�k ( ), and mesh
distortion kκRmsh�x�k ( ) for the implicit tracking method with p � q � 1 (top), p � q � 2 (middle), and p � q � 3 (bottom).
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the error over the entire computational domain so this will never be

the case. To completely avoid this issue, we use the exact solution to

prescribe a Dirichlet boundary condition on all boundaries; in other

words, all boundaries are supersonic inflow boundaries with the

inflow state coming from the exact solution.

To efficiently use computing resources, the sequences of meshes

used in the convergence study were not generated through uniform

refinement of an initial mesh. Rather, each mesh in the sequence (four

in total) was generated using DistMeshwith refinement targeted in the

postshock region. Furthermore, since we have already demonstrated

the tracking abilities of the implicit trackingmethod, we use DistMesh

to ensure each mesh in our sequence perfectly conforms to the shock

surface in the exact solution (Fig. 10). Themeshes shown in Fig. 10 are

the original meshes used as the initial guess for the implicit tracking

method, which moves the nodes of the mesh to minimize the enriched

residual. The optimizedmeshes arevisually indistinguishable from the

original meshes and therefore not shown.Under this setup, the implicit

tracking method is applied on the sequence of meshes (Fig. 10) for

solution bases of degree p � 1; 2; 3. For means of comparison, we

also compute the L2 projection of the exact solution on each mesh in

Fig. 10 Sequence of meshes used for h-refinement study. The meshes have been aligned with the exact shock surface during the mesh generation phase
and refinement is targeted in the postshock region.

Fig. 11 Convergence of the implicit shock tracking method in the three error metrics considered under h refinement using a q � 3 polynomial

approximation for themesh andp � 1 ( ),p � 2 ( ), andp � 3 ( ) solution approximation. For reference, theL2 projection error is included

using the q � 3mesh approximation and p � 1 ( ), p � 2 ( ), p � 3 ( ) solution approximation. The horizontal gray line corresponds to the
error obtained in Ref. [38] using the fifth-order WENO scheme on a 1024 × 1024 grid.

Table 3 Summary of h-refinement convergence results for the implicit tracking method using sequence of

meshes in Fig. 10

p q jEh;pj h eH m�eH� eρ m�eρ� eλ m�eλ�
1 3 34 3.37e-01 3.91e-03 — — 6.96e-02 —— 2.65e-02 ——

1 3 62 2.48e-01 2.92e-03 0.95 1.89e-02 4.28 9.64e-03 3.31
1 3 119 1.79e-01 1.49e-03 2.07 1.12e-02 1.60 6.93e-03 1.01
1 3 263 1.21e-01 6.70e-04 2.04 7.87e-03 0.90 3.23e-03 1.94

2 3 34 3.37e-01 7.83e-04 — — 5.27e-03 —— 2.98e-03 ——

2 3 62 2.48e-01 6.27e-04 0.72 3.03e-03 1.82 1.47e-03 2.30
2 3 119 1.79e-01 1.16e-04 5.21 9.48e-04 3.58 3.87e-04 4.12
2 3 263 1.21e-01 4.61e-05 2.34 3.42e-04 2.59 1.07e-04 3.27

3 3 34 3.37e-01 1.65e-04 — — 1.11e-03 —— 5.77e-04 ——

3 3 62 2.48e-01 1.54e-04 0.24 5.70e-04 2.17 3.74e-04 1.42
3 3 119 1.79e-01 1.45e-05 7.26 9.14e-05 5.64 6.65e-05 5.32
3 3 263 1.21e-01 3.44e-06 3.67 2.56e-05 3.24 1.05e-05 4.70

The slope of the curves [m�⋅�] as a function of resolution is included and trends near the optimal rate O�hp�1�.
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the sequence and the associated error metrics. The L2 projection is

includedbecause it is, in theL2 sense, the bestwe candowith the given
solution basis and gives us a means to assess the additional error
introduced by the DG tracking framework. The convergence results
are shown in Fig. 11 for each error metric and tabulated in Table 3

(implicit tracking) and Table 4 (L2 projection). From the figure, we see

the enthalpy error of the L2 projection of the exact solution is several
orders of magnitude lower than for the implicit tracking solution;
however, for the other error metrics, the two approximations are very
similar with the implicit tracking solution being more accurate in

several cases (p > 1). From Table 4, we see the L2 projection of the

exact solution obtains optimal convergence ratesO�hp�1� for all three
error metrics. For the implicit trackingmethod, the convergence is less
clean, but we observe near-optimal rates (within half an order)
(Table 3). The density error reported in Ref. [38] from the fifth-order
WENO scheme on the 1024 × 1024 grid (5242880 DOF) is also
included in Fig. 11; the implicit tracking framework provides a more
accurate approximation on much coarser grids.

V. Conclusions

This is the first work that uses recently developed high-order
implicit tracking methods [31,33,34] to solve chemically reacting
flows and among the first methods to demonstrate high-order con-
vergence for multidimensional shocked reacting flow problems. The
optimization-based method is able to to robustly approximate the
solution and track the discontinuity while maintaining a high-quality
mesh by using a continuation strategy that initializes the high-order
method with a low-order approximation. This paper shows that a
mesh with only 100 elements (after collapse) is sufficient to accu-
rately capture the simple reaction zone structure as well as accurately
portray the topology of the shock wave using the tracking method;
this translates to fewer than 104 degrees of freedom, even for the
fourth-order method (cubic elements, p � q � 3). Furthermore, the

implicit tracking method converges at near optimal rates O�hp�1�
under mesh refinement. Therefore, in addition to being accurate on
coarse meshes, the error decreases rapidly, particularly for polyno-
mial degrees greater than 1.
The results represent a significant advantage over those obtained

by popular WENO methods. Direct comparison of this paper’s
method on the same problem studied in Ref. [38] reveals the tracking
method required less than 7000 total degrees of freedom to obtain an

L1 error of 10−4 in the density field near, while the error of theWENO

method exceeded 10−2 using 5.2 × 106 DOF, for example, the p �
q � 3 tracking method vs WENO in Table 2, and converges slower
than first-order under h refinement.
Having demonstrated the potential of the high-order implicit shock

tracking in this paper for compressible, reactive flows using the
simple two-dimensional benchmark problemwith an analytical exact
solution, futureworkwill turn to solving relevant problems in two and

three dimensions with richer kinetic and diffusion models. Introduc-
tion of Arrhenius temperature dependencywith one-step kinetics will
introduce a new thin zone that must be captured. Simple two- and
three-step kinetic models can better display induction and explosion
zone dynamics at the expense of additional thin zones. And ulti-
mately, the authorswould like to extend to detailed chemical kinetics,
which introduces challenges of simultaneously capturing thin and
thick zones spanning at least four orders of magnitude. Additionally,
the authors would like to introduce mass, momentum, and energy
diffusion, which will require the capture of additional thin boundary
layers and diffusion zones. The authors believe implicit shock trac-
king is very well suited for these problems. Given the generality of
the implicit tracking formulation, the extension to steady, viscous
problems with more complicated kinetics will be straightforward
by extending the DG method. Other critically important avenues
of research are extension of the trackingmethod to be time dependent
and improvement of the underlying optimization solver. The exten-
sion to time-dependent problems will be essential to capture ignition
and extinction events as well as instabilities in a hypersonic en-
vironment. To this point, time-dependent problems havemostly been
considered in a monolithic space-time setting [33,34] and slab-based
space-timesetting [45]; however, significant improvementswith regard
to iterative linear solvers and convergence strategies are required for
these methods to be practical. Another promising strategy to extend to
time-dependent problems that directly leverages the infrastructure of
the trackingmethod is amethod of lines approach that would lead to an
implicit tracking problem at each time step.

Appendix A: Smoothed Roe Flux for Reactive Euler
Equations

For completeness, we detail the derivation of the Roe flux for the
reactive Euler equations and introduce a smoothed version that is
continuously differentiablewith respect to the normaln. First, define
the Jacobian of the flux function F�U� in Eq. (25) in the normal

direction n, B�U;n� ∈ R�d�3�×�d�3�,

B�U;n� ≔ ∂�F�U�n�
∂U

(A1)

The Roe flux uses the eigenvalue decomposition of the Jacobian
B�U;n� to upwind based on characteristics. Even in two spatial
dimensions, the eigenvalue decomposition of B�U;n� for a general
normal direction is complicated, even with symbolic tools. To sim-
plify derivation of the decomposition, we transform to a coordinate
system aligned with the normal direction; for example, the first
transformed coordinate direction is aligned with the normal
n � Q�n�e1. The the velocity in the standard coordinate system vi,
i � 1; 2, transforms to the velocity in the rotated coordinate system
~vi, i � 1; 2, as v � Q�n� ~v, where

Table 4 Summary of h-refinement convergence results for theL2 projection of the exact solution onto the DG
basis associated with each mesh in Fig. 10

p q jEh;pj h eH m�eH� eρ m�eρ� eλ m�eλ�
1 3 34 3.37e-01 6.70e-05 — — 4.70e-02 —— 4.04e-02 ——

1 3 62 2.48e-01 2.26e-05 3.56 1.95e-02 2.88 1.59e-02 3.04
1 3 119 1.79e-01 1.06e-05 2.34 1.03e-02 1.97 8.17e-03 2.06
1 3 263 1.21e-01 4.87e-06 1.97 5.14e-03 1.77 4.00e-03 1.82

2 3 34 3.37e-01 2.18e-05 — — 1.22e-02 —— 1.18e-02 ——

2 3 62 2.48e-01 5.80e-06 4.34 3.48e-03 4.10 3.14e-03 4.33
2 3 119 1.79e-01 2.17e-06 3.03 1.39e-03 2.84 1.20e-03 2.97
2 3 263 1.21e-01 7.43e-07 2.73 5.01e-04 2.59 4.19e-04 2.67

3 3 34 3.37e-01 7.99e-06 — — 3.40e-03 —— 3.48e-03 ——

3 3 62 2.48e-01 1.46e-06 5.57 6.84e-04 5.25 6.38e-04 5.56
3 3 119 1.79e-01 4.17e-07 3.85 2.08e-04 3.66 1.84e-04 3.82
3 3 263 1.21e-01 1.04e-07 3.53 5.49e-05 3.39 4.66e-05 3.50

The slope of the curves [m�⋅�] as a function of resolution is included and tends to the optimal rate O�hp�1�.
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n �
"
n1

n2

#
; e�1� �

"
1

0

#
; v �

"
v1

v2

#
; ~v �

"
~v1

~v2

#
;

Q�θ� �
"
n1 −n2
n2 n1

#
(A2)

Because the density, energy, and reaction progress are scalars, they

are invariant with respect to coordinate transformations. Therefore,

the reactive Euler state transforms asU � Q̂ ~U, whereU is defined in

Eq. (25), ~U is the representation of U in the transformed coordinate

system, and Q̂�n� ∈ R5×5 is the matrix that transforms the reactive

Euler state into the new coordinate system

Q̂�n� ≔

2
6664
1

Q�n�
1

1

3
7775 (A3)

From these definitions, we have

F�U�n � F�U�Qe�1� � Q̂F� ~U�e�1� � Q̂F�Q̂TU�e�1� (A4)

where the first and last equalities follow from the coordinate trans-

formation and the second equality is derived as

F�U�Q �

2
666664

ρvT

ρvvT � PId×d

ρHvT

ρλvT

3
777775Q �

2
666664

ρ�QTv�T
ρv�QTv�T � PQ

ρH�QTv�T
ρλ�Qv�T

3
777775

�

2
666664

ρ ~vT

ρQ ~v ~vT � PQ

ρH ~v

ρλ ~v

3
777775 � Q̂F� ~U� (A5)

From the flux transformation in Eq. (A4), the Jacobian transforms as

B�U;n� � Q̂ ~B�Q̂TU�Q̂T
(A6)

where ~B� ~U� ≔ B� ~U; e�1��. Let

~B� ~U� � ~V� ~U� ~Λ� ~U�� ~V� ~U��−1 (A7)

be the eigenvalue decomposition of ~B� ~U�; then, Eq. (A6) implies

B�U;n� � V�U;n�Λ�U;n��V�U;n��−1 (A8)

is the eigenvalue decomposition of B�U;n�, where

V�U;n� � Q̂�n� ~V�Q̂�n�TU�; Λ�U;n� � ~Λ�Q̂�n�TU�;
�V�U;n��−1 �

h
~V�Q̂�n�TU�

i−1
Q̂�n�T (A9)

By examining these equations, it is clear the we need only derive the

eigenvalue decomposition of ~B� ~U� to completely specify the eigen-

value decomposition of B�U;n�.
The transformed Jacobian matrix is

~B� ~v; ~H; ~λ� ≔

2
6666666664

0 1 0 0 0

�γ−1�
2

~s2 − ~v21 �3 − γ� ~v1 0 �γ − 1� �γ − 1�q̂
− ~v1 ~v2 ~v2 ~v1 0 0h

�γ−1�
2

~s2 − ~H
i
~v1 ~H − �γ − 1� ~v21 −�γ − 1� ~v1 ~v2 γ ~v1 �γ − 1�q̂ ~v1

−~λ ~v1 ~λ 0 0 ~v1

3
7777777775

(A10)

where ~s ≔
��������
~vi ~vi

p
and we have used the fact that it can be written

solely in terms of the velocity, enthalpy, and reaction progress to
reparameterize the terms. Using the symbolic software MAPLE, we

found the eigenvalue decomposition of ~B� ~v; ~H; ~λ� to be

~V� ~v; ~H; ~λ� �

2
666666664

1 1 0 0 1

~v1 − ~c ~v1 0 0 ~v1 � ~c

~v2 ~v2 1 0 ~v2

~H − ~v1 ~c
~s2

2
~v2 q̂ ~H � ~v1 ~c

~λ 0 0 −1 ~λ

3
777777775
;

~Λ� ~v; ~H; ~λ� �

2
666666664

~v1 − ~c

~v1

~v1

~v1

~v1 � ~c

3
777777775

(A11)

where the left eigenvectors are

h
~V� ~v; ~H; ~λ�

i−1

� γ − 1

2 ~c2

2
66666666664

~s2

2
� ~v1 ~c

γ−1 − ~v1 − ~c
γ−1 − ~v2 1 q̂

− ~s2 � 2 ~c2

γ−1 2 ~v1 2 ~v2 −2 −2q̂

− 2 ~c2 ~v2
γ−1 0 2 ~c2

γ−1 0 0

~λ ~s2 −2~λ ~v1 −2~λ ~v2 2~λ 2q̂ ~λ− 2 ~c2

γ−1

~s2

2
− ~v1 ~c

γ−1 − ~v1 � ~c
γ−1 − ~v2 1 q̂

3
77777777775

(A12)

and the speed of sound is given by

~c ≔
��������������������������������������������������
�γ − 1�� ~H − ~s2∕2� ~λ q̂�

q
(A13)

Straightforwardmanipulation recovers the classical result for an ideal

gas ~c2 � γ ~P∕ ~ρ, where ~ρ and ~P are the corresponding density and
pressure, respectively. This leads to the final form of that decom-
position that expresses the eigenvectors and eigenvalues of B�U;n�
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in terms of the velocity, enthalpy, and reaction progress in the

physical coordinates

V�v; H; λ;n� � Q̂�n� ~V�Q�n�Tv; H; λ�;
Λ�v; H; λ;n� � ~Λ�Q�n�Tv; H; λ�;

�V�v; H; λ;n��−1 �
h
~V�Q�n�Tv; H; λ�

i−1
Q̂�n�T (A14)

Finally, the Roe flux is

F roe�U�; U−;n� ≔ 1

2
�F�U��n� F�U−�n�

� 1

2
jA�U�; U−;n�j�U� −U−� (A15)

where the matrix

A�U�; U−;n� ≔ B�v⋆�U�; U−�; H⋆�U�; U−�; λ⋆�U�; U−�;n�
(A16)

and the Roe averages are defined as

v⋆�U�; U−� ≔
������
ρ�

p
v� � ������

ρ−
p

v−������
ρ�

p
� ������

ρ−
p ;

H⋆�U�; U−� ≔
������
ρ�

p
H� � ������

ρ−
p

H−������
ρ�

p
� ������

ρ−
p ;

λ⋆�U�; U−� ≔
������
ρ�

p
λ� � ������

ρ−
p

λ−������
ρ�

p
� ������

ρ−
p

(A17)

where v�, H�, and λ� are the velocity, enthalpy, and reaction

progress computed from the U� state, respectively. The matrix

absolute value is defined in terms of the eigenvalue decomposition

of the matrix as

jA�U�; U−;n�j � V�v⋆; H⋆; λ⋆;n�jΛ�v⋆; H⋆; λ⋆;n�j
× �V�v⋆; H⋆; λ⋆;n��−1 (A18)

where the absolute value is applied entrywise to a diagonal matrix.

Finally, we define the smoothed Roe flux as

F roe;sm�U�; U−;n� ≔ 1

2
�F�U��n� F�U−�n�

� 1

2
jA�U�; U−;n�js�U� −U−� (A19)

where

jA�U�; U−;n�js � V�v⋆; H⋆; λ⋆;n�jΛ�v⋆; H⋆; λ⋆;n�js
× �V�v⋆; H⋆; λ⋆;n��−1 (A20)

and j · js:R → R is a smooth approximation to the absolute value
given by

jxjs ≔ x tanh�kx� (A21)

where k � 100 is a smoothness parameter (Fig. A1), applied entry-
wise to a diagonal matrix.
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