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DEVELOPMENTS OF THE INTRINSIC LOW DIMENSIONAL MANIFOLD

METHOD AND APPLICATION OF THE METHOD TO A MODEL OF THE

GLUCOSE REGULATORY SYSTEM

Abstract

by

Rafael E. Petrosyan

This thesis addresses two major topics: theoretical and numerical development of

the Intrinsic Low Dimensional Manifold (ILDM) Method for systems of Ordinary

Differential Equations (ODEs) and application of ILDM method to the analysis of

the glucose regulatory system. A large spectral gap in the eigenvalue spectrum is

found to provide a sufficient condition of the applicability of the ILDM method in

a small neighborhood of the equilibrium point. A simple adaptive parameterization

technique is developed to implement the ILDM method numerically. The ILDM

method is used to analyze a coupled glucose-insulin-β-cells model of the glucose

regulatory system. The ILDM models well the late-time dynamics of the system.

Through stability analysis the pathways to diabetes were formally verified.
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CHAPTER 1

INTRODUCTION

1.1 Overview

The primary motivation for the current work is to demonstrate usefulness of the

ILDM method in analysis of the dynamical systems which arise in biology. The

method was introduced in 1992 by Maas and Pope [15] as a dimension reduction

technique for stiff chemically reactive systems. A chemically reactive system is called

stiff if the ratio of the most negative eigenvalue to the least negative eigenvalue is

a large number. The method uses the fact that provided the difference in time

scales is large, a system, once fast processes are equilibrated, comes to the slow

manifold of a dimension lower than that of the original system and stays on that

manifold all the way down to the equilibrium point. A priori equilibration of the

fast processes allows one not only to reduce the dimension of a problem, but more

importantly to considerably reduce the computational time, because it is the fast

processes that require small time steps. The technique uses local equilibration that

gives better accuracy compared with classical approaches such as the steady state

approximation [7]. These features made the ILDM method a useful tool for solving

large and stiff systems of nonlinear differential equations which arise in combustion

problems. The method provides an algorithm for a priori computation of the slow

low dimensional manifolds. The algorithm consists of solving an algebraic system

of equations in a subspace of the full phase space. Finding the slow manifold is

important for understanding of the global behavior of a stiff dynamical system,
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because, no matter what the initial conditions are, such a system evolves on the

manifold for most of the time. Since dynamical systems in biology often result from

the application of a mass action law and have stable sink type equilibrium points, the

situation similar to Arrenius kinetics, it seems natural to apply the method to that

type of biological problems. At this point, using the method to understand the global

behavior of the dynamical systems in biology seems to be a primary application,

because modeling of the biological processes is still in the developmental stage for

most of the problems, however, with time, as more complicated and detailed models

will appear, the ILDM method promises to become useful as a tool for practical

solution of the systems of ordinary differential equations in that field.

A large part of the current thesis concerns theoretical development of the ILDM

method from the point of mathematical justification. The motivation for this part

of the study is the fact that despite a rather large number of works on the ILDM

method, there is a lack of theoretical studies involving a rigorous derivation of the

formulas constituting the technique. To the knowledge of the author, the only

work done in that direction up to this time is that of Wiggins and co-workers [19].

In the current work, the ILDM theory for an arbitrary nonlinear system with a

stable sink type point is built based upon the only assumption of a large gap in

the eigenvalue spectrum computed at the equilibrium point. It is shown that if

the quantity inverse to the spectral gap is used as a small parameter, the Maas-

Pope formula is derived as a first approximation to the solution of the resulting

singular perturbation problem. The result proved provides a sufficient condition

for the applicability of the ILDM approximation in a small neighborhood of the

equilibrium point and gives the order(s) of the ILDM(s) that correctly approximate

the solution of the original system. This development represents an important result

of the current work.
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The Maas-Pope formula defines the ILDM locally and hence needs to be linked

with a continuation algorithm. In their original paper [15], Maas and Pope offered

to use a rather complicated arc length continuation method (see for example [8]).

Here, we develop an alternative technique, which has the advantage of a simple

programming realization in the case of a one-dimensional ILDM. This represents

the second result of the current work.

To demonstrate the ILDM method, we analyze a coupled glucose-insulin-β-cells

model of the glucose regulatory system. The model, introduced by Topp, et al.

[24], was chosen, because it has all its three time scales separated, and hence both

one- and two-dimensional ILDMs can be used to approximate the solution. The

main result here is that the two-dimensional manifold obtained with the use of the

ILDM method provided better understanding of the dynamics compared to classical

approaches used by the authors of the original paper [24].

1.2 The Intrinsic Low Dimensional Manifold (ILDM) method

The ILDM method is a technique of finding an approximation of the slow man-

ifold(s) of a stiff system of nonlinear ODEs and using the manifold(s) to obtain

an approximate solution of that system. The approximation of the slow manifold

obtained with the method is also called the ILDM.

The slow manifold can be roughly defined as the subset of the phase space that

all the solutions of the system come to and stay on after fast time scale events are

equilibrated. This definition implies that the slow manifold must be a solution itself

(in the case of a first order manifold) or be formed by a continuum set of solutions

(in the case of the manifolds of higher order). This immediately follows from the fact

that if we chose initial conditions to be on the slow manifold, the solution should

stay on it all the way to the equilibrium point. This simple fact can be used to

obtain a functional equation for the slow manifold. This equation was obtained by
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Fraser [12] and studied by Roussel and Fraser [20] and Davis and Skodje [7]. It

was solved in a few simple cases, however poor convergence properties make this

approach difficult to use for solving real problems.

Maas and Pope [15] introduced an approximate formula for computing the slow

manifold. They called the technique the ILDM method, the approximation was

called the ILDM as well. The formula locally defines the slow manifold through

the fast part of the inverse eigenvector matrix. The method proved to be useful for

solving real problems; however, no proof of the formula was offered. In this work,

we build the theory upon the only assumption of a gap in the eigenvalue spectrum

at the equilibrium point. We prove the Maas-Pope formula and give a sufficient

condition of using the ILDM of an arbitrary order to approximate the solution of

the original system.

Since the time the technique was introduced, a rather large number of works,

concerning developments and applications of the Maas-Pope algorithm, have been

published. (see for example [25], [17], [21]). Finally, we would like to mention that

attempts have been made to extend the method to reaction-diffusion equations [22].

1.3 Glucose regulatory system

Blood glucose levels are regulated by two negative feedback loops. In the short term

hyperglycemia stimulates a rapid increase in insulin release from the pancreatic

β cells. The associated increase in blood insulin levels causes increased glucose

uptake and decreased glucose production leading to a reduction in blood glucose

[2]. Chronic hyperglycemia may contribute to a second negative feedback loop by

increasing the mass of insulin secreting β cells, through changes in β cells’ replication

[13] and death [9] rates. An increased β cell mass represents an increased capacity

for insulin secretion which, in turn, would lead to a decrease in blood glucose.

Diabetes mellitus is a disease of the glucose regulatory system characterized by
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fasting and/or postprandial hyperglycemia. There are two types of diabetes. Type

1 diabetes (insulin dependent diabetes) is due to autoimmune attack on the insulin

secreting β-cells. It is accompanied by 80-90 % loss in β-cell mass [14]. Type 2

diabetes (noninsulin dependent diabetes) is associated with a deficit in the mass

of β cells, reduced insulin secretion and resistance to the action of insulin. It is

accompanied by 40-50 % loss of β-cell mass when compared with weight-matched

non-diabetic subjects [14]. The experimental data suggests that multiple defects are

required for onset of type 2 diabetes (see for example the discussion in [24]).

Mathematical modeling of diabetes has focused predominantly on the dynam-

ics of a single variable, usually glucose or insulin level [3], [23]. Those models

were usually used for measuring either rates (glucose, insulin production/uptake)

or sensitivities (insulin sensitivity, glucose effectiveness). There were also studies

that analyzed coupled glucose-insulin dynamics. In the current work we consider a

first model that incorporates β-cell mass dynamics. This model was introduced by

Topp, et al. [24]. The model uses a simple experimentally based formula for β-cell

dynamics and correctly describes some of the experimentally established effects.

1.4 Thesis outline

The current thesis consists of four chapters. The introductory chapter contains a

brief description of the work done and gives a brief description of the ILDM method

and the biological problem considered in the thesis.

The ILDM method is considered in detail in the second chapter of the thesis. The

ILDM theory is built consequently for three cases: linear systems, nonlinear systems

with a single spectral gap and, finally, for nonlinear systems with an arbitrary

number of spectral gaps. The rest of the chapter concerns the development of the

adaptive parameterization technique for computing the slow manifolds of the first

and the second orders.
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In the third chapter, the ILDM method is used to analyze a coupled glucose-

insulin-β-cells model of the glucose regulatory system. The chapter starts from the

description of the model introduced by Topp, et al. [24]. Further, the results for one-

and two-dimensional manifolds obtained with the use of the algorithm, considered

in the second chapter, are presented, and a discussion of the results predicted by

the model is given. Finally, stability analysis is performed, and the defects in the

functioning of the glucose regulatory system that result in diabetes mellitus disease

are considered.

The last chapter contains a brief discussion of the results and outlines possible

directions for future research.
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CHAPTER 2

THE ILDM METHOD

2.1 Theoretical basis of the ILDM method for a system of Ordinary Differential
Equations (ODEs)

Let us consider an autonomous system of ODEs:

dy

dt
= f(y), y(0) = y0, y ∈ Rn (2.1)

Such systems can result from the law of mass action and model many processes

studied in chemistry and biology. Physically, y usually represents concentrations

of the elements, n represents the number of elements, t represents time, and f(y)

is the source term which gives the rates of change of those concentrations due to

interactions and other processes constituting a model. In many real situations these

processes occur at widely different time scales. Such a difference induces stiffness into

the system (2.1) and makes it computationally expensive to solve. We suppose that

the system (2.1) has a stable sink type equilibrium point; that is, all the eigenvalues

are distinct, real, and negative. Without loss of generality the equilibrium point can

be transferred to the origin by a linear transformation. In general, the system (2.1)

may have any number of sink type equilibrium points, but for the sake of simplicity,

we restrict our consideration to systems which have only one such point, which is the

case in many practical applications. It should be noted, however, that the analysis

can be extended to the systems with an arbitrary number of sink type equilibrium

points, with the difference, that the basins of attraction of all such points must be

considered separately.
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2.1.1 Linear systems

The idea of the method can be demonstrated on the example of a linear system. In

the linear case we have:

dy

dt
= Jy, (2.2)

where J = ∂f/∂y is a constant Jacobian matrix. The Jordan decomposition of the

matrix is given by:

J = VΛṼ, Ṽ ≡ V−1 (2.3)

V =


| | | |

v1 · · · vm vm+1 · · · vn

| | | |

 =

(
Vs Vf

)
(2.4)

Λ =



λ(1) 0

. . . 0

0 λ(m)

λ(m+1) 0

0
. . .

0 λ(n)


=

 Λ(s) 0

0 Λ(f)

 (2.5)

Ṽ =



− ṽ1 −
...

− ṽm −

− ṽm+1 −
...

− ṽn −


=

 Ṽs

Ṽf

 (2.6)

The notation in the equations above is taken from [22]. Here, V is the right eigen-

vector matrix, which contains the right eigenvectors of J, v1,. . . ,vn in its columns;

Λ is the diagonal matrix, which contains eigenvalues λ(1),. . . ,λ(n) of J along its main
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diagonal, and Ṽ is the inverse right eigenvector matrix, with rows formed by the

ṽ1,. . . , ṽn, reciprocal to the right eigenvectors. It is important for the following

discussion that the eigenvalues are ordered from the least negative to the most neg-

ative. Multiplying both sides of (2.2) on Ṽ from the left and defining a new set of

variables by z = Ṽy we obtain:

dz

dt
= Λz, (2.7)

which, in the Einstein notation, can be rewritten in the following form:

1

λ(i)

dzi

dt
= zi, i = 1, . . . , n. (2.8)

The system (2.8) has a simple analytical solution; however, numerical integration

even in such a simple case may be quite time consuming when the stiffness is high.

A general way of handling stiff systems, which should be employed when the eigen-

values are located close to each other, consists in the using of an implicit difference

scheme; however, if the eigenvalue’s spectrum has a significant gap, then a more

efficient technique can used. Without loss of generality, let us suppose, that there is

a spectral gap between |λ(m)| and |λ(m+1)|, that is ε = |λ(m)|/|λ(m+1)| � 1. Further,

we rescale the time variable by τ = t|λ(m)|. It will be seen from what follows that

the scaling factor corresponds to the fastest time scale to be resolved. Now, recalling

that all the eigenvalues are negative numbers, one can rewrite the system (2.8) as

follows:

|λ(m)|
|λ(1)|

dz1

dτ
= −z1

...

|λ(m)|
|λ(m−1)|

dzm−1

dτ
= −zm−1

dzm

dτ
= −zm (2.9)

ε
dzm+1

dτ
= −zm+1
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ε
dzm+2

dτ
= −

|λ(m+2)|
|λ(m+1)|

zm+2

...

ε
dzn

dτ
= −

|λ(n)|
|λ(m+1)|

zn

The system (2.9) constitutes a singular perturbation problem, with

ε = |λ(m)|/|λ(m+1)| � 1 as a small parameter. For τ & 1, the dynamics of the system

(2.9) can be approximated by neglecting the terms which are of the order of ε, and

hence, for τ & 1, the system (2.9) can be approximated by:

|λ(m)|
|λ(1)|

dz1

dτ
= −z1

...

|λ(m)|
|λ(m−1)|

dzm−1

dτ
= −zm−1

dzm

dτ
= −zm (2.10)

zm+1 = 0

...

zn = 0

The differential algebraic system (2.10) has reduced stiffness and the lesser number

of differential equations compared to the original system. Geometrically, the sys-

tem (2.10) evolves on an m-dimensional manifold instead of Rn and, therefore, the

dimension of the problem has been reduced from n to m. A solution of the original

system started at any point of the phase space comes down to the manifold during

a time interval 4τ . 1 or in terms of the original time variable 4t . 1/|λ(m)| and

stays on it all the way down to the equilibrium point. The manifold is defined by

the last (n−m) equations of the system (2.10)

zi = 0, i = m + 1, . . . , n (2.11)
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and is referred to as the ILDM. The technique, which involves solution of the reduced

system (2.10) instead of the original system, is referred to as the ILDM method. It

should be emphasized that the method approximates the dynamics of the original

problem for t & 1/|λ(m)| only, and hence, if one is interested in the dynamics for

t . 1/|λ(m)| then the reduction must be done by rescaling the time variable τ̃ =

τ |λ(n)|/|λ(m)| and taking the limit |λ(m)|/|λ(m+1)| → 0 or alternatively the full system

can be considered. Since the exact solution is known, one can estimate the error,

which comes from the approximation of the original system with the reduced system

(2.10). The error of approximating zi by the system (2.10) is given by:

Ei =


0 i = 1, . . . ,m

z0i
e
−

|λ(i)|
|λ(m+1)|

τ
ε i = m + 1, . . . , n,

(2.12)

where z0i
are the initial values of corresponding zi. Therefore, the maximum error

coming from the approximation is given by

E(m+1) = z0(m+1)
e−

τ
ε (2.13)

and exponentially goes to 0 as the spectral gap increases. The other error associated

with the method is the error of approximation of the slow manifold (SM) by the

ILDM:

ESM = SM − ILDM (2.14)

Direct substitution shows that the ILDM (2.11) represents a solution of the original

system (in the case of m = 1) and consists of a continuum number of the solutions

(in the case of m > 1). Moreover, at every point of those solutions the fast time

scales are equilibrated, and hence the ILDM coincides with the slow manifold. In

this sense, the ILDM method is said to be exact for the linear systems.
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2.1.2 Nonlinear systems with the only spectral gap

In the general case of nonlinear f(y), one can formally make use of a similar proce-

dure. First, we define a new function g(y):

g = f − J(y)y, (2.15)

and hence, the system (2.1) can be rewritten as follows:

dy

dt
= J(y)y + g. (2.16)

Further, we perform the symbolic Jordan decomposition J = VΛṼ and as in the

linear case define a new set of variables z = Ṽy, so that the system (2.16) can be

rewritten in the following way:

dz

dt
+ Ṽ

dV

dt
z = Λz + Ṽg, (2.17)

or, equivalently, in the Einstein notation:

1

λ(i)

(
dzi

dt
+ ṽi

n∑
j=1

dvj

dt
zj

)
= zi +

1

λ(i)

(ṽig), i = 1, . . . , n. (2.18)

Equation 2.18 was also used in [22]. Compared to the linear case, the system (2.18)

has two extra terms caused by nonlinearity. Moreover, the eigenvalues are no longer

constants, but instead are functions defined on the phase space. However, sufficiently

close to the equilibrium point analysis similar to that of in the linear case can be

performed. First of all, we rescale λ(i), i = 1, . . . , n, using the eigenvalues at the

equilibrium as scaling factors, that is:

λ(i) = −|λ(i)0|λ̃(i), i = 1, . . . , n, (2.19)

where λ̃(i) are positive functions of the order of 1. Further, like in the linear case,

supposing that there exists a spectral gap between |λ(m)0
| and |λ(m+1)0

|, so that
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ε = |λ(m)0
|/|λ(m+1)0

| � 1, we rescale the time variable τ = t|λ(m)0|, and rewrite

(2.18) as follows:

|λ(m)0|
|λ(1)0 |

(
dz1

dτ
+ ṽ1

n∑
j=1

dvj

dτ
zj

)
= −λ̃(1)z1 +

1

|λ(1)0|
(ṽ1g),

...

|λ(m)0|
|λ(m−1)0|

(
dzm−1

dτ
+ ṽm−1

n∑
j=1

dvj

dτ
zj

)
= −λ̃(m−1)zm−1 +

1

|λ(m−1)0|
(ṽm−1g),

dzm

dτ
+ ṽm

n∑
j=1

dvj

dτ
zj = −λ̃(m)zm +

1

|λ(m)0|
(ṽmg), (2.20)

ε

(
dzm+1

dτ
+ ṽm+1

n∑
j=1

dvj

dτ
zj

)
= −λ̃(m+1)zm+1 +

1

|λ(m+1)0|
(ṽm+1g),

ε

(
dzm+2

dτ
+ ṽm+2

n∑
j=1

dvj

dτ
zj

)
=

|λ(m+2)0|
|λ(m+1)0|

(
− λ̃(m+2)zm+2 +

1

|λ(m+2)0|
(ṽm+1g)

)
,

...

ε

(
dzn

dτ
+ ṽn

n∑
j=1

dvj

dτ
zj

)
=

|λ(n)0|
|λ(m+1)0|

(
− λ̃(n)zn +

1

|λ(n)0|
(ṽng)

)
,

Once again, the system (2.20) constitutes a singular perturbation problem, with ε as

a small parameter. It should be noted that it is the ratio ε = |λ(m)0
|/|λ(m+1)0

| � 1

that represents the small parameter, while |λ(m)0
| and |λ(m+1)0

| may be of any order.

Now, taking the limit ε → 0, τ & 1, one can write:

|λ(m)0|
|λ(1)0|

(
dz1

dτ
+ ṽ1

n∑
j=1

dvj

dτ
zj

)
= −λ̃(1)z1 +

1

|λ(1)0|
(ṽ1g),

...

|λ(m)0|
|λ(m−1)0|

(
dzm−1

dτ
+ ṽm−1

n∑
j=1

dvj

dτ
zj

)
= −λ̃(m−1)zm−1 +

1

|λ(m−1)0|
(ṽm−1g),

dzm

dτ
+ ṽm

n∑
j=1

dvj

dτ
zj = −λ̃(m)zm +

1

|λ(m)0|
(ṽmg), (2.21)

0 = −λ̃(m+1)zm+1 +
1

|λ(m+1)0|
(ṽm+1g),

13



0 =
|λ(m+2)0|
|λ(m+1)0|

(
− λ̃(m+2)zm+2 +

1

|λ(m+2)0|
(ṽm+1g)

)
,

...

0 =
|λ(n)0|
|λ(m+1)0|

(
− λ̃(n)zn +

1

|λ(n)0|
(ṽng)

)
,

or in terms of the original variables one can rewrite (2.21) as:

ṽs
dy

dt
= ṽsf , (2.22)

0 = ṽf f ,

which coincides with the result obtained by Maas and Pope [15]. Therefore, it

is proved that there exists a neighborhood of the equilibrium point where the

system (2.1) can be replaced with the reduced system (2.22) for t & 1/|λm0| if

ε = |λ(m)0
|/|λ(m+1)0

| � 1. Moreover, since the the solution of the second equa-

tion of the system (2.22) does not depend on the initial conditions, it represents an

attracting manifold. It should be noted that the requirement of the small neigh-

borhood of the equilibrium point is due to restriction on λ̃(i) to be of the order of

1, hence if λ̃(i) are weak functions of y, the requirement of a small neighborhood

can be taken away, and so the reduced system (2.22) can be used far from the

equilibrium point. As it was mentioned while considering the linear case, there are

two errors associated with the technique: solution approximation error and error of

approximation of the slow manifold by the ILDM. The important distinction with

the linear case is that for general form of f , the ILDM does not represent a solution

of the original system and hence we have nonzero error of approximating the SM by

the ILDM.
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2.1.3 Nonlinear systems with k spectral gaps

Here, we generalize the results of the previous section to consider systems with an

arbitrary number of gaps in the eigenvalue spectrum; that is, we suppose:

εm1 =
|λ(0)

(m1)|

|λ(0)
(m1+1)|

� 1,

... (2.23)

εmk
=

|λ(0)
(mk)|

|λ(0)
(mk+1)|

� 1, k < n.

Now, repeating the steps from the previous section we obtain:

1

|λ(0)
(i) |

(
dzi

dt
+ ṽi

n∑
j=1

dvj

dt
zj

)
= −λ̃(i)z1 +

1

|λ(0)
(i) |

(ṽig), i = 1, . . . , n. (2.24)

Further, following the development of the previous section, we consider the system

above separately on the following time intervals:

40 =

{
t : 0 ≤ t .

1

|λ(0)
(mk)|

}
,

41 =

{
t :

1

|λ(0)
(mk)|

. t .
1

|λ(0)
(mk−1)|

}
,

... (2.25)

4k−1 =

{
t :

1

|λ(0)
(m2)|

. t .
1

|λ(0)
(m1)|

}
,

4k =

{
t : t &

1

|λ(0)
(m1)|

}
.

On 40 we rescale time variable τ = tλ
(0)
(mk)/ε(mk) to obtain:

|λ(m)0|
|λ(1)0|

(
dz1

dτ
+ ṽ1

n∑
j=1

dvj

dτ
zj

)
= εmk

(
− λ̃(1)z1 +

1

|λ(1)0|
(ṽ1g)

)
,

...

|λ(m)0|
|λ(m−1)0|

(
dzm−1

dτ
+ ṽm−1

n∑
j=1

dvj

dτ
zj

)
= εmk

(
− λ̃(m−1)zm−1 +

1

|λ(m−1)0|
(ṽm−1g)

)
,
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dzm

dτ
+ ṽm

n∑
j=1

dvj

dτ
zj = εmk

(
− λ̃(m)zm +

1

|λ(m)0|

)
(ṽmg), (2.26)

dzm+1

dτ
+ ṽm+1

n∑
j=1

dvj

dτ
zj = −λ̃(m+1)zm+1 +

1

|λ(m+1)0 |
(ṽm+1g),

dzm+2

dτ
+ ṽm+2

n∑
j=1

dvj

dτ
zj =

|λ(m+2)0 |
|λ(m+1)0 |

− λ̃(m+2)zm+2 +

1

|λ(m+2)0 |
(ṽm+1g),

...

dzn

dτ
+ ṽn

n∑
j=1

dvj

dτ
zj

)
=

|λ(n)0|
|λ(m+1)0 |

− λ̃(n)zn +
1

|λ(n)0|
(ṽng),

or after neglecting the terms of the order of εmk
and returning to the original vari-

ables:

ṽ(mk)
s

dy

dt
= 0, (2.27)

ṽ
(mk)
f

dy

dt
= ṽ

(mk)
f f .

On 4l, l = 1, . . . , k, we rescale time variable τ = tλ(mk)(0) to obtain:

|λ(m)0|
|λ(1)0|

(
dz1

dτ
+ ṽ1

n∑
j=1

dvj

dτ
zj

)
= −λ̃(1)z1 +

1

|λ(1)0|
(ṽ1g),

...

|λ(m)0|
|λ(m−1)0|

(
dzm−1

dτ
+ ṽm−1

n∑
j=1

dvj

dτ
zj

)
= −λ̃(m−1)zm−1 +

1

|λ(m−1)0|
(ṽm−1g),

dzm

dτ
+ ṽm

n∑
j=1

dvj

dτ
zj = −λ̃(m)zm +

1

|λ(m)0|
(ṽmg), (2.28)

εmk

(
dzm+1

dτ
+ ṽm+1

n∑
j=1

dvj

dτ
zj

)
= −λ̃(m+1)zm+1 +

1

|λ(m+1)0|
(ṽm+1g),

εmk

(
dzm+2

dτ
+ ṽm+2

n∑
j=1

dvj

dτ
zj

)
=

|λ(m+2)0|
|λ(m+1)0|

(
− λ̃(m+2)zm+2 +

1

|λ(m+2)0|
(ṽm+1g)

)
,

...
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εmk

(
dzn

dτ
+ ṽn

n∑
j=1

dvj

dτ
zj

)
=

|λ(n)0 |
|λ(m+1)0|

(
− λ̃(n)zn +

1

|λ(n)0|
(ṽng)

)
,

and after neglecting the terms of the order of εmk
:

|λ(m)0|
|λ(1)0|

(
dz1

dτ
+ ṽ1

n∑
j=1

dvj

dτ
zj

)
= −λ̃(1)z1 +

1

|λ(1)0|
(ṽ1g),

...

|λ(m)0|
|λ(m−1)0|

(
dzm−1

dτ
+ ṽm−1

n∑
j=1

dvj

dτ
zj

)
= −λ̃(m−1)zm−1 +

1

|λ(m−1)0|
(ṽm−1g),

dzm

dτ
+ ṽm

n∑
j=1

dvj

dτ
zj = −λ̃(m)zm +

1

|λ(m)0|
(ṽmg), (2.29)

0 = −λ̃(m+1)zm+1 +
1

|λ(m+1)0|
(ṽm+1g),

0 =
|λ(m+2)0|
|λ(m+1)0|

(
− λ̃(m+2)zm+2 +

1

|λ(m+2)0|
(ṽm+1g)

)
,

...

0 =
|λ(n)0|
|λ(m+1)0|

(
− λ̃(n)zn +

1

|λ(n)0|
(ṽng)

)
,

or in terms of the original variables one can rewrite (2.21) as:

ṽ(mk)
s

dy

dt
= ṽ(mk)

s f (2.30)

0 = ṽ
(mk)
f f ,

Therefore, on each time interval 4l, l = 1, . . . , k, a system can be approximated

by the ILDMs of the orders of k, . . . , k − (l − 1); that is, it consequently goes

through ILDMs of progressively lower dimension. Obviously, this hierarchy can be

incomplete in a sense that the solution can be approximated by the ILDMs of orders

of i1 and i2, while cannot be approximated by the ILDM of the order of i, where

i1 < i < i2. Presence of a spectral gap for some i provides a sufficient condition for

the approximation by the ILDM of the order of i to be possible.
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Now, let us consider two ILDMs of different dimensions:

ṽ
(m1)
f f = 0, (2.31)

ṽ
(m2)
f f = 0, (2.32)

where m2 > m1. The system (2.31) coincides with the system (2.32), but has (m2−

m1) additional equations. Therefore, any solution of the system (2.31) represents

a solution of the system (2.32) as well. Geometrically, it means that each ILDM

contains all the ILDMs of lower dimensions.

2.1.4 Notions on the error for the nonlinear systems

In the nonlinear case it seems impossible to derive a general formula giving the

error of the approximation of the original system (2.1) with an arbitrary source

function f(y) by the reduced system (2.22). Indeed, some features can be seen on

the following example, introduced by Davis and Skodje [7]:

dx

dt
= −x, (2.33)

dy

dt
= −γy +

(γ − 1)x + γx2

(1 + x)2
, (2.34)

where γ > 1. The system (2.33) has a stable source type equilibrium point at the

origin. The exact solution is given by:

x(t) = x0e
−t, (2.35)

y(t) =

(
y0 −

x0

1 + x0

)
e−γt +

x0e
−t

1 + x0e−t
, (2.36)

where x0 and y0 are the initial conditions. In the phase plane this is:

y(x) =

(
y0 −

x0

1 + x0

)(
x

x0

)γ

+
x

1 + x
. (2.37)

A solution of the system (2.33) starts from (x0, y0) and moves toward the equilibrium

point first approaching the slow manifold:

ysm =
x

1 + x
. (2.38)

18



To find the ILDM approximation, we first find the Jacobian matrix:

J =

 −1 0

γ−1+(γ+1)x
(1+x)3

−γ

 . (2.39)

The Jordan decomposition of (2.39) is given by:

VΛṼ =

 1 0

γ−1+(γ+1)y1

(γ−1)(1+y1)3
1


 −1 0

0 −γ


 1 0

−γ−1+(γ+1)y1

(γ−1)(1+y1)3
1

 . (2.40)

The ILDM approximation here is obtained from equation (2.22) by setting to 0 the

dot product of the inverse eigenvector corresponding to the most negative eigenvalue

and the vector representing the right hand side of the system (2.33). Here, it can

be written in a closed form:

yildm(x) =
x

1 + x
+

2x2

γ(γ − 1)(1 + x2)
. (2.41)

The error of the approximation of the slow manifold by the ILDM is given by:

Esm = |ysm − yildm| =
2x2

γ(γ − 1)(1 + x2)
. (2.42)

The ILDM method neglects terms o(γ0), and in this example the error is O(1/γ2).

According to the theory developed in the previous sections, the ILDM (2.41) can be

used to approximate the solution of the original system (2.33) for t & 1, in which

case we have:

x̃ = x0e
−t, (2.43)

ỹ =
x0e

−t

1 + x0e−t
+

2x2
0e
−2t

γ(γ − 1)(1 + x0e−t)3
. (2.44)

Here the ILDM method approximation does not depend on the initial condition for

y, the result which could be expected from the form of the exact solution (2.35). The

solution for x coincides with the exact solution, which is, of course, the consequence
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of the first equation being decoupled and is not true in general. The error of the

approximation of y is given by:

Ey = |y − ỹ|

=

∣∣∣∣(y0 −
x0

1 + x0

)
e−γt − 2x2

0e
−2t

γ(γ − 1)(1 + x0e−t)3

∣∣∣∣
≤

∣∣∣∣y0 −
x0

1 + x0

∣∣∣∣e−γ +
2x2

0e
−2

γ(γ − 1)
. (2.45)

The first term in the (2.45) accounts for the error of approximation of the exact

solution by the slow manifold, and goes to 0 exponentially as the stiffness increases.

The second term accounts for the error of the approximation of the slow manifold by

the ILDM and goes to 0 as 1/γ2. Therefore, in this example the biggest error comes

from the approximation of the slow manifold by the ILDM. We expect this situation

to be true in general, and hence the total error of the method can be significantly

decreased by improving the approximation of the slow manifold. One can use the

ILDM as an initial guess in the iteration kind of methods like those developed by

Roussel and Fraser [20]. The idea of using the ILDM as an intial guess was originally

offered by Davis and Skodje [7].

2.1.5 Using the Schur decomposition instead of the Jordan decomposition

In their original paper Maas and Pope [15] offered to use the Schur decomposition

instead of the Jordan decomposition to avoid numerical difficulties, which may arise

due to poor conditioning. The Schur formulation has the advantage of orthogo-

nality of the basis vectors. In this section we will prove the equivalence of both

formulations.

The Schur decomposition is expressed by the following formula:

J = QTQT , (2.46)
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where

Q =


| | | |

q1 · · · qm qm+1 · · · qn

| | | |

 =

(
Qs Qf

)
(2.47)

T =



λ(1) t12 . . . t1n

0 λ(1) . . . t2n

0 . . .
. . .

...

0 . . . 0 λ(n)


(2.48)

QT =



− qT
1 −
...

− qT
m −

− qT
m+1 −
...

− qT
n −


=

 QT
s

QT
f

 (2.49)

Here, Q is an orthogonal matrix with Schur vectors in its columns, T is an upper

triangular matrix with the eigenvalues of J along its main diagonal. Again it is

important that the eigenvalues are ordered from the least negative to the most

negative, and QT is a transposed Schur vector matrix with Schur vectors in its

rows.

Here, we prove that the reduced system (2.22) expressed in terms of eigenvectors

is equivalent to the following system expressed in terms of Schur vectors:

QT
s

dy

dt
= QT

s f (2.50)

0 = QT
f f . (2.51)

Proof:

JQ = QT ⇔ Jqi = Qti = qiλi +
i−1∑
k=1

qktki ⇒
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i = 1 : Jq1 = q1λ1 ⇒ q1 = C1v1

i = 2 : Jq2 = q2λ2 + q1t12 ⇒ q2 = C2v2 +
t12

(λ1 − λ2)
q1

i = 3 : Jq3 = q3λ3 + q1t13 + q2t23 ⇒

q3 = C3v2 +
t13

(λ1 − λ3)
q1 +

t23
(λ2 − λ3)

q2, etc.

Here Ci are constants, ti are the columns of T. Continuing this process till i = m

one can see that qi, i = 1, . . . ,m, are the linear combinations of vi, i = 1, . . . ,m,

and hence they span the same m-dimensional subspace. Further, since

ṽi · vj = δij,

then ṽi, i = 1, . . . ,m, belongs to the same subspace. The same is true for qT
i ,

i = 1, . . . ,m, which follows from the definition of the orthogonal matrix. Therefore,

Ṽs and QT
s consist of the vectors, which span the same m-dimensional subspace,

and hence there exists a nontrivial m× n matrix L such that:

LṼs = QT
s , (2.52)

which proves the proposition.
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2.2 Numerical solution

The second of the Maas-Pope equations (2.22)

Ṽf f = 0 (2.53)

represents an algebraic system of (n −m) equations with n unknowns and defines

an m-dimensional surface in the n-dimensional phase space. The surface defined by

that equation is referred to by Maas and Pope [15] as the ILDM. Equation (2.53)

is solved in some predetermined domain of the n- dimensional phase space. The

solution is stored in a table parameterized by m chosen variables, and is used to

integrate the system (2.22). This section concerns a numerical procedure that can

be used to solve the equation (2.53).

2.2.1 One-dimensional ILDM

In the case of a one-dimensional ILDM we have m = 1. That physically means that

the equilibrium point of the original system (2.1) has one distinctive slow time scale.

Equation (2.53) becomes an algebraic system of n − 1 equations with n unknowns

and hence defines a curve in the n- dimensional phase space.

To compute the curve, one can chose one of the state variables yi as a parameter,

which makes the system closed, and solve the equation (2.53) for some range of the

chosen parameter. This choice is somewhat arbitrary; however, given an improper

choice of the parameter, numerical difficulties due to the shape of the curve may

arise. We will discuss those difficulties later, and for now suppose that we have made

a proper choice of the parameter and closed the system (2.53). Now, one can start

from a known point on the ILDM, give an increment to the parameter and compute

next point using the values of the other state variables at the known point as an

initial guess for Newton’s method. The only point on the ILDM which is known

a priori is the equilibrium point, and so for the first computed point we have the
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following:

0 = Ṽf (y)f(y),

yp = ypeq +4yp = fixed, (2.54)

yiin = yieq , i 6= p.

Here, yp is a variable chosen as the parameter, ypeq is the value of the parameter

at the equilibrium point, 4yp is the parameter change, yiin , i = 1, · · · , n, i 6= p

are initial guesses for the variables other than the parameter, and yieq are the val-

ues of those variables at the equilibrium point. Use of an adjacent point as an

initial guess virtually guarantees quick convergence; however, direct application of

Newton’s method requires recomputing of the Ṽf (y) at each iteration and makes so-

lution computationally expensive. To avoid recomputation of the Ṽf (y) and hence

to reduce computational time, the system (2.54) is often replaced with the following

one:

0 = Ṽf (yin)f(y)

yp = ypeq +4yp = fixed (2.55)

yiin = yieq , i 6= p.

This system is solved using a standard Newton’s method, and the solution is used

as an initial guess to compute next point on the ILDM. Replacement of the system

(2.54) with the system (2.55) gives rise to the error of approximation of the ILDM

by simplified system (2.55). This error of such approximation can be estimated by

the following formula:

EILDM = max
i
|Ṽfi,j

fj|. (2.56)

In their original paper, Maas and Pope [15] demonstrated the importance of

proper parametrization on a simple example shown on the Fig. 2.1. It shows an

24



Figure 2.1. Parameterization failure example

arbitrary example of a one-dimensional manifold in the two-dimensional space. Here,

if x is chosen as a parameter, the method fails near the turning point; however, if y

is chosen as a parameter, the problem can be easily solved. Generally, the problem

arises not only near turning points, but every time when the derivatives with respect

to chosen parameter are high. Maas and Pope offered to use arc length continuation

method to avoid this problem. Here, we consider a different technique, which uses

optimal choice of a parameter at each point. First, we rewrite the first equation of

the system (2.55) as follows:

Ṽf (yin)f(y) = G(y) = 0 ⇔


g1(y1, . . . , yn) = 0

...

gn−1(y1, . . . , yn) = 0

(2.57)

Further, we note that each of the equations of the system (2.57) represents a surface

in the n-dimensional space, and the one-dimensional ILDM can be locally obtained

as the crossing of those surfaces. It immediately follows that the local tangent to the

ILDM is locally given as the crossing of the tangent planes to the surfaces defined

by the system (2.57). Further, we linearize (2.57) to obtain:

A11y1 + . . . + A1nyn + A10 = 0
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... (2.58)

A(n−1)1y1 + . . . + A(n−1)nyn + A(n−1)0 = 0

Equations (2.58) give tangent planes to the surfaces defined by the system (2.57).

(Ai1, . . . , Ain) are known from linear algebra to give the normal vectors to the i-th

plane defined by (2.58). Since a local tangent to the ILDM is a line which belongs to

all those planes, it is orthogonal to all the vectors (Ai1, . . . , Ain), i = 1, . . . , n− 1.

This result can be expressed as follows:
A11 . . . A1n

. . . . . . . . .

A(n−1)1 . . . A(n−1)n




T1

. . .

Tn

 = 0, (2.59)

where Ti are the components of the tangent vector. The solution of the system

(2.59) is given by the following determinant:

T =

∣∣∣∣∣∣∣∣∣∣∣∣∣

e1 . . . en

A11 . . . A1n

. . . . . . . . .

A(n−1)1 . . . A(n−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (2.60)

where e1, . . . , en are orthogonal unit vectors associated with coordinate axes. The

last result is a simple generalization of that in the three-dimensional space and is

easily proven by direct substitution. One can compute the components of the vector

tangent to the ILDM from the formula (2.60) and use the state variable yp that

corresponds to the component of tangent vector having maximum absolute value.

This choice of the parameter automatically solves the problem with the turning

points and moreover gives smaller error of approximation of the ILDM by (2.55) in

comparison with the other choices of the parameter, because a computed point is

located as close to the starting point as it allowed by the choice of the increment

4yp.
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Figure 2.2. Parameterization of a two-dimensional ILDM

2.2.2 Two-dimensional ILDM

In section 2.1.3 it was shown that there exists a hierarchy of ILDMs of different

orders; that is, one-dimensional ILDMs belong to two-dimensional ILDMs and so

on. This fact can be used to compute the ILDM of the second order. To do so,

one can subdivide the one-dimensional ILDM into small intervals and at each point

of that subdivision advance in both directions following the procedure outlined in

Fig. 2.2. Here, Ỹ0 is a point of subdivision of the three-dimensional projection of

one-dimensional ILDM, T represents a unit vector tangent to the one-dimensional

ILDM, N gives a unit vector normal to the two-dimensional ILDM, dL is a distance

of advancement from the starting point and is directed along the line of intersection

of the planes normal to one-dimensional and two-dimensional ILDMs, Ỹ∗ is given
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by the following formula:

Ỹ∗ = Ỹ0 + dL[N×T], (2.61)

and Ỹ is a point on the three dimensional projection of the two-dimensional ILDM to

be computed. Ỹ is linked to Ỹ∗ through the unknown parameter p by the formula:

Ỹ = Ỹ∗ + Np (2.62)

Further, one can substitute (2.62) into the Maas-Pope formula to obtain a closed

system. We use p = 0 as an initial guess for the variables constituting Ỹ, while the

values at the starting point are used as initial guesses for the other state variables.

The most tricky part of this technique is computing of the normal vector to the

two-dimensional ILDM. In the case of just three equations, the procedure is trivial

and obtained by linearization of the only equation for two-dimensional ILDM. In

the case of more than three dimensions, one needs to solve the linearized system to

obtain the normal vector.
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CHAPTER 3

GLUCOSE REGULATORY SYSTEM

In this chapter we apply the ILDM method to a model of the glucose regulatory

system. The model introduced by Topp, et al. [24] incorporates β-cell mass, insulin

and glucose dynamics, and gives rises to a stiff system of ODEs. The resulting

system has two stable sink type equilibrium points and a saddle point. Both stable

equilibria have two spectral gaps, and hence according to the theoretical results of

the previous chapter, there exist both one- and two-dimensional slow manifolds.

These manifolds are computed using numerical techniques developed above. In this

chapter, we first describe the model, further present numerical results and finally

give a stability analysis and consider defects in the regulatory system that give rise

to diabetes.

3.1 Model

The description of the model presented in this section follows the original paper of

Topp and co-workers [24].

3.1.1 Glucose dynamics

Glucose is released into the blood by the liver and kidneys, removed from the in-

terstitial fluid by all the cells of the body, and distributed into many physiological

compartments (e.g. arterial blood, venous blood, interstitial fluid). Experimental

studies showed [1], [3] that despite such a complex distribution, slow glucose dynam-
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ics (on a time scale of hours and larger) can be modeled using a one-compartment

approximation. If one is concerned with the evolution of fasting blood glucose levels

over a time scale of days to years, than glucose dynamics can be modeled by a single-

compartment mass balance equation:

dG

dt
= Production− Uptake, (3.1)

where G is the concentration of glucose in the blood (measured in mg dl−1), t is the

time (measured in days), and Production and Uptake are the corresponding rates

normalized by the volume of glucose distribution.

The rates of glucose production and uptake depend on blood glucose and insulin

levels. These relationships were found experimentally [2] and can be written in the

following form:

Production = P0 − (EG0P + SIP I)G, (3.2)

Uptake = U0 + (EG0U + SIUI)G. (3.3)

Here, P0 and U0 are the rates of glucose production and uptake at zero glucose,

EG0P +SIP I and EG0U +SIUI are linear functions of insulin level and referred to as

the glucose effectiveness parameters, EG0P and EG0U are glucose effectiveness at zero

insulin, SIP and SIU are insulin sensitivity for production and uptake respectively,

and I represents blood insulin concentration (measured in µU ml−1)1.

Using equations (3.2) and (3.3), one can rewrite (3.1) as follows:

dG

dt
= R0 − (EG0 + SII)G, (3.4)

where R0 = P0−U0 is the net rate of production at zero glucose, EG0 = EG0P +EG0U

is the total glucose effectiveness at zero insulin, and SI = SIP + SIU is the total

insulin sensitivity.

1Insulin is measured in units (U) (24 U=1 mg of pure insulin)
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3.1.2 Insulin dynamics

Insulin is secreted by pancreatic β cells, cleared by the liver, kidneys, and insulin

receptors, and distributed into several compartments (e.g. portal vein, peripheral

blood, and interstitial fluid). Again, if one is concerned with the long-time evolution

of fasting insulin levels in peripheral blood, then insulin dynamics is slow and can

be approximated by a single-compartment equation:

dI

dt
= Secretion− Clearance. (3.5)

Here, Secretion and Clearance are rates normalized by insulin’s volume of distribu-

tion (µU ml−1 d−1).

The rate of insulin clearance is assumed to be proportional to blood insulin levels,

that is:

Clearance = kI, (3.6)

where k is a clearance constant which represents the combined insulin uptake at the

liver, kidneys, and insulin receptors. This formula is exact when the system is near

steady state; however, several studies showed that it also can be used to model more

complex and relatively fast insulin dynamics (see for example [5]).

Experimantal [16] and analytical [6] studies showed that the net insulin secretion

rate can be modeled as a sigmoidal function of glucose level, that is:

Secretion =
βσG2

α + G2
, (3.7)

where β is the mass of pancreatic β cells (measured in mg). All β cells are assumed

to secrete insulin at the same maximal rate σ (measured in (µU ml−1 d−1), and

G2/(α+G2) is a Hill function with coefficient 2 that describes a sigmoid ranging from

0 to 1 which reaches half its maximum at G = α1/2. Substituting equations (3.6)

and (3.7) into equation (3.5), one obtains the equation governing insulin kinetics:

dI

dt
=

βσG2

α + G2
− kI (3.8)

31



3.1.3 β-cell mass dynamics

Despite a complex distribution of pancreatic β cells throughout the pancreas, β-cell

mass dynamics can be approximated with a single- compartment model:

dβ

dt
= Formation− Loss, (3.9)

where Formation and Loss represent the rates at which β-cell mass is added to or

removed from the population, respectively.

New β cells can be formed by the replication of existing β cells, neogenesis (repli-

cation and differentiation) from stem cells, and transdifferentiation of other cells. In

this model neogenesis and transdifferentiation are neglected, and hence Formation is

assumed to be equal to Replication. This assumption is supported by several studies

(see for example [11]), which indicate that neogenesis and transdifferentiation make

a negligible contribution to β-cells mass dynamics except some special cases (such

as a response to extreme physiological or chemically induced trauma).

Experimental studies show that the percentage of β cells undergoing replication

varies as a nonlinear function of glucose level in the medium (see for example [13]).

Replication rates for β cells increase with increasing glucose levels; however, at

extreme hyperglycemia, β cell replication may be reduced. In the current model

this behavior is modeled with a second-degree polynomial:

Replication = (r1rG− r2rG
2)β, (3.10)

where r1r (measured in mg−1 dl d−1) and r2r (measured in mg−2 dl2 d−1)) are rate

constants.

Cells can be lost from the β-cell mass by apostosis (regulated cell death), necrosis

(unregulated cell death), or possibly transdifferentiation into othe types of endocrine

cells. In the current model the rate of transdifferentiation is assumed to be negligible.

Experimental studies show that death varies nonlinearly with glucose level (see for
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example [9]. Increasing the glucose level reduces the rate of β-cell death, however

starting from some value the rate either increases or remains unchanged. In the

current model this behavior is modeled with a second-degree polynomial:

Death = (d0 − r1aG + r2aG
2)β, (3.11)

where d0 is the death rate at zero glucose and r1a (measured in mg−1 dl d−1) and r2a

(measured in mg−2 dl2 d−1) are constants. Substituting equations (3.10) and (3.11)

into (3.9), one obtains the equation for β-cell mass dynamics:

dβ

dt
= (−d0 + r1G− r2G

2)β, (3.12)

where r1 = r1r + r1a and r2 = r2r + r2a are constants.

3.1.4 The system

Together, Equations (3.12), (3.8) and (3.4) constitute the glucose regulation model:

dG

dt
= R0 − (EG0 + SII)G

dI

dt
=

βσG2

α + G2
− kI (3.13)

dβ

dt
= (−d0 + r1G− r2G

2)β

Values of the parameters corresponding to the normal human physiological state are

presented in the table 3.1 [24]. For normal physiological values of the parameters

the system (3.13) has three fixed points: (G = 100 mg dl−1, I = 10 µU ml−1, β =

300 mg); (G = 250 mg dl−1, I = 2.8 µU ml−1, β = 37 mg) and (G = 600 mg dl−1, I =

0 µU ml−1, β = 0 mg) . The first and the third points have all their eigenvalues neg-

ative and hence are stable equilibrium points. The second point has two negative

and one positive eigenvalue and hence is a saddle point. Topp, et al. referred

the states associated with these points as physiological, unstable and pathological

states respectively [24]. The solution comes either to a physiological or to patho-

logical steady state depending on the initial condition for β. It was found that the
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Table 3.1. Normal parameter values [24]

Parameter Value Units Reference

SI 0.72 ml µU−1d−1 Finegood (1997)
EG0 1.44 d−1 Bergman et al. (1981)

Finegood (1997)
R0 864 mg dl−1d−1 Bergman et al. (1981)

Finegood (1997)
σ 43.2 µU ml−1 d−1 Bergman et al. (1981)

Malaisse et al. (1967)
Toffolo et al. (1980)

α 20000 mg2 dl−2 Malaisse et al. (1967)
k 432 d−1 Toffolo et al. (1980)
d0 0.06 d−1 Bergman et al. (1981)

Imamura et al. (1988)
Finegood et al. (1995)

r1 0.84× 10−3 mg−1 dl d−1 Bergman et al. (1981)
Imamura et al. (1988)
Finegood et al. (1995)

r2 0.24× 10−5 mg−2 dl2 d−1 Bergman et al. (1981)
Imamura et al. (1988)
Finegood et al. (1995)

global separatrix is perpendicular to the β-cell axis and passes through the saddle

point [24]; that is, for initial values of β higher than 37 the system always comes

to the physiological steady state, while for values less than 37 it always comes to

pathological state.
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3.2 Numerical results

In this section we present numerical results for the system (3.13). At both stable

points there are significant spectral gaps between all eigenvalues, and hence one can

use the ILDM method. Moreover, all the time scales can be separated, and hence

the system (3.13) has both one- and two-dimensional slow manifolds. Both one-

and two-dimensional manifolds were found using the ILDM method and plotted

along with solutions for three special cases. Figures 3.1, 3.2, 3.3, 3.4, 3.5 and 3.6

show the solutions computed for those special cases as well as the projections of one

dimensional ILDM on Glucose- β cell and Glucose-Insulin planes. On these plots

the solutions are shown as bold lines. Figure (3.7) shows two dimensional ILDM,

one dimensional ILDM, which is shown as a line of markers and few solutions of the

system, which are shown as bold lines.

Figures (3.1) and (3.2) concern the effect studied by Bergman, et al. They found

that increased plasma glucose, via an intravenous glucose injection, causes a rapid

increase in plasma insulin followed by damped oscillations of both variables towards

the preinjection steady state [3]. This observation is qualitatively consistent with

Figure 3.1. The current model does not predict oscillations, which is an expected

result, since the model was built under an assumption that fast insuline processes

can be neglected. The way the system moves back to the equilibrium point becomes

more clear if one looks at the three- dimensional Figure 3.7. After a very fast process

of insulin increase the system comes to two-dimensional manifold and stays on it all

the way back to the equilibrium point.

Figures 3.3 and 3.4 concern the effect of the β-cell mass reduction via adminis-

tration of the β-cell toxin STZ on the system studied by Ferrand, et al. They found

that the reduction generates transient hyperglycemia while the β-cell mass adapts

[10]. This effect can be seen on figure 3.3. Figure (3.4) shows a quick fall in insulin
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level caused by by decrease in insulin production rate due to reduction in β-cell

mass. Again the three-dimensional Figure 3.7 shows that after a very quick fall in

the insulin level the system comes on two dimensional manifold and stays on it all

the way to one dimensional manifold where it stays until reaching the equilibrium

point.

Figures 3.5 and 3.6 concern the case of the pathological solution. From figure 3.5

it can be seen that given low initial value of β, the system goes to the pathological

hyperglycemia steady state even if an initial value of glucose is low. Here again,

we have a very fast insulin process, which drives the system to the two-dimensional

slow manifold where it goes until it reaches the one dimensional slow manifold

where it stays all the way up to the pathological equilibrium point. This behavior

is only partially consistent with the experimental data. Bernard, et al. showed

that rats made hyperglycemic by STZ have β cells capable of increasing replication

and decreasing death rates in response to glucose infusion; yet in the absense of

glucose infusion, the rats remained hyperglycemic [4]. This implies that despite the

prediction of the model there is no stable equilibrium point in the hyperglycemic

region.

In summary, we can say that the model correctly describes some of the effects

that are corroborated by the experiment; however, existence of two stable equilibria

in the physiological region looks suspicious. We will return to this problem in the

next section when analyzing the stability properties of the pathological fixed point.

The other thing we would like to emphasize is a very fast insulin dynamics (on time

scale of minutes) described by the model. This contradicts the initial assumption of

slow dynamics, which were done when making a single-compartment approximation.

Indeed, the model gives a good qualitative description of the glucose regulatory

system.
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Figure 3.1. Glucose injection solution (G-β plane). One-dimensional ILDM is shown
as a dashed line, solutions are shown as bold lines.

Figure 3.2. Glucose injection solution (G-I plane). One-dimensional ILDM is shown
as a dashed line, solutions are shown as bold lines

.
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Figure 3.3. β-toxin injection solution (G-β plane). One-dimensional ILDM is shown
as a dashed line, solutions are shown as bold lines.

Figure 3.4. β-toxin injection solution (G-I plane). One-dimensional ILDM is shown
as a dashed line, solutions are shown as bold lines.
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Figure 3.5. Pathological solution (G-β plane). One-dimensional ILDM is shown as
a dashed line, solutions are shown as bold lines.

Figure 3.6. Pathological solution (G-I plane). One-dimensional ILDM is shown as
a dashed line, solutions are shown as bold lines.
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Figure 3.7. Three-dimensional picture (Two-dimensional ILDM, one-dimensional
ILDM and solutions in special cases). Solutions are shown as bold lines.
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3.3 Stability analysis and pathways to diabetes

In this section we perform stability analysis of the fixed points of the system (3.13)

for different values of the parameters, study effects of parameter changes on behavior

of the system, and consider special cases that give rise to diabetes.

3.3.1 Stability analysis

In general case the system (3.13) has three fixed points:

G1 =
1

2

(
r1

r2

−
√(r1

r2

)2

− 4
d0

r2

)
I1 =

R0 − EG0G1

SIG1

(3.14)

β1 =
kI1(α + G2

1)

σG2
1

,

G2 =
1

2

(
r1

r2

+

√(r1

r2

)2

− 4
d0

r2

)
I2 =

R0 − EG0G2

SIG2

(3.15)

β2 =
kI2(α + G2

2)

σG2
2

,

G3 =
R0

EG0

I3 = 0 (3.16)

β3 = 0,

which for normal values of the parameters correspond to physiological, unstable and

pathological steady states respectively.

First, we analyze the stability of the physiological steady point, assuming that

it exists, that is: (r1

r2

)2

− 4
d0

r2

> 0. (3.17)
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The eigenvalues of all three fixed points are the roots of the following equation:∣∣∣∣∣∣∣∣∣∣
−(EG0 + SII)− λ −SIG 0

2ασgβ

(α+G2)2
−k − λ σG2

α+G2

(r1 − 2r2G)β 0 (−d0 + r1G− r2G
2)− λ

∣∣∣∣∣∣∣∣∣∣
= 0. (3.18)

For the physiological point we have:

−d0 + r1G− r2G
2 = 0, (3.19)

and hence the equation (3.18) reduces to:

(−(EG0 + SII)− λ)(−k − λ)(−λ)−

(−SIG)

[
2ασGβ

(α + G2)2 (−λ)− σG2

α + G2
(r1 − 2r2G)β

]
= 0. (3.20)

After simplifications one obtains

λ3 + λ2

[
k + (EG0 + SII)

]
+

λ

[
k(EG0 + SII) + SI

2ασGβ

(α + G2)2

]
+

SIG
2ασGβ

(α + G2)2 (r1 − 2r2G)β = 0. (3.21)

Now, we note that for the physiological fixed point:

G <
1

2

r1

r2

, (3.22)

and hence all the coefficients in the equation (3.21) are greater than zero. It im-

mediately follows that the equation (3.21) has no positive roots, and therefore the

physiological fixed point, if exists, is always stable. This fact is important for the

consideration of the pathways to diabetes.

Next, we analyze the stability of the pathological fixed point. It exists for all the

values of the parameters and has its eigenvalues defined by the following equation:

(EG0 + λ)(k + λ)

[
λ− (−d0 + r1G− r2G

2)

]
= 0. (3.23)
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The equation (3.23) has two always negative roots and one either negative or positive

root depending on the values of the parameters. Recalling that for the pathological

fixed point

G =
R0

EG0

, (3.24)

one can obtain:

λ3 = −d0 + r1
R0

EG0

− r2

(
R0

EG0

)2

. (3.25)

Therefore, stability of the pathological fixed point depends on parameters deter-

mining glucose dynamics as well as the parameters determining β-cell dynamics.

In terms of the current model, the normal values of the parameters give rise to a

negative λ3 and hence to a stable pathological point. However, we expect that more

precise model of β-cells dynamics may change this situation, so that there will be

only one stable fixed point (either physiological or pathological, depending on the

values of the parameters) in the physiological region.

3.3.2 Pathways to diabetes

Analysis in the previous subsection showed that the physiological fixed point, if

exists, is always stable; therefore, one obvious pathway to diabetes is the change in

the parameters of the system that eliminates the physiological and the saddle fixed

points. It occurs when (r1

r2

)2

− 4
d0

r2

< 0. (3.26)

Equation (3.26) is solely determined by the parameters of the β-cell dynamics, and

hence this pathway results from defects in β-cell mass dynamics. In terms of current

model, this situation takes place when the death rates exceed the replication rates

for all values of glucose. It leaves only pathological point with zero β-mass and

insulin. This pathway was referred by Topp, et al. as a bifurcation pathway [24].

It resembles type 1 diabetes mellitus (insulin dependent diabetes). An autoimmune
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attack on the pancreatic β-cells increases death rates above the replication rates,

and the β-cell mass falls towards zero [18].

The other possible pathway contained in the model takes place when a change in

the parameters shifts the physiological fixed point towards the hyperglycemic level,

causing persistent hyperglycemia. The equation (3.14) shows that it can result

from changes in the parameters of the β-cell dynamics. The other way implicitly

contained in the model is to couple a loss of β-cell mass regulation to deffects in

glucose and/or insulin dynamics. Setting each of the β-cell mass parameters to zero

yields equal replication and death rates at all glucose levels, and hence the β-cell

mass becomes nonresponsive. In that case the model reduces to just two equations,

and defects in any of the glucose or insulin parameters can generate hyperglycemia.

Topp, et al. proposed that this pathway may fit the human autopsy data. Pancreas

from obese nondiabetic subjects have a larger than normal β-cell mass, while obese

people with diabetes have normal β-cell mass levels. In the later subjects, a coupling

of insulin resistance due to obesity, to a non-adaptive β-cell mass may be a cause of

their diabetes. If this idea is correct, than this pathway fits type 2 diabetes mellitus

(non-insulin dependent diabetes).
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CHAPTER 4

SUMMARY AND DISCUSSION

In this thesis two major topics have been considered: theoretical development of the

ILDM method and dynamics of the glucose regulatory system. Here we give a brief

summary of the results obtained and outline the directions for future research.

In the ILDM section, the justification of the method was given. A general case

of the nonlinear dynamical system with a stable sink type equilibrium point was

considered. The only assumption made about the system was the assumption of a

significant gap in the eigenvalue spectrum computed at the equilibrium point. It was

shown that under the assumption made, the system reduces to a singular perturba-

tion problem with a small parameter equal to the quantity inverse to the wideness

of the gap. It was shown that Maas-Pope formula gives a first approximation of the

solution with respect to the small parameter. The derivation was consequently done

for the linear systems, when the formula is exact in the sense explained, nonlinear

system with the only spectral gap, and finally for the general case of a nonlinear

system with any number of spectral gaps. In the nonlinear case the formula was

rigorously proved for a small vicinity of the equilibrium point, extending the formula

required an additional assumption about the behavior of the eigenvalues far from

the equilibrium point. Such an assumption cannot be checked directly, which des-

ignates the first direction of future research. This problem is that of linear algebra,

and the point here is to find a way to make an estimate of the eigenvalues far from

the equilibrium point based only on the Jacobian matrix. The other direction comes
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from the fact that the spectral gap gives only a sufficient condition for existence of

the slow manifold, and so it would be interesting to find out if it is a necessary

condition as well.

In the part concerned with the glucose regulatory system a coupled glucose-

insulin-β-cells model introduced by Topp, et al. [24] was considered. Using the

ILDM method helped to better understand the dynamics of the system when it was

compared with experimentally established effects. Ability to obtain a two dimen-

sional ILDM was especially helpful in those considerations. Stability analysis was

also useful and confirmed some of the results presented without proof in the original

work done by Topp, et al. It was found that if the physiological steady state exists

it is always stable. This fact, supports the conclusion made by Topp, et al. that

the model (if no additional complications are done) has two possible pathways to

diabetes. The bifurcation pathway occurs when defects in β-cell mass dynamics

drive death rate of the β-cells higher than the replication rate for all level of glucose

and the physiological and the saddle state states stop to exist. This pathway corre-

sponds to the first type of diabetes. The other pathway supposedly corresponds to

the second type of diabetes. It is caused by shifting the physiological point towards

hyperglycemic levels. It can be caused either by defects in β-cell mass dynamics

or by making β-cell mass nonresponsive to the changes in glucose level, that is by

decoupling the β-cell dynamics from the model, in addition to an abnormality in

glucose and or insulin dynamics.

The weakest point in the model is the presence of two stable equilibrium points

simultaneously. The stability analysis of the pathological steady point showed that

this situation may be changed if β-cell dynamics is modeled more thoroughly. For

example, incorporating into the model additional processes such as neogenesis can

make the pathological point unstable for the range of the parameters for which
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physiological steady point exists. We see this as a possible direction for future

research.

The other weak point in the model is fast insulin processes which were found to

take place. This contradicts the basic assumption of the slow dynamics that were

made to justify the single-compartment approximation. We see building multicom-

partment models as a very intresting direction for future research.
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