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ON THE EFFECT OF DIFFUSION ON GASEOUS DETONATION

Abstract

by

Christopher M. Romick

The development and propagation of detonations is examined in the presence

of diffusive processes. The difference between the inviscid and viscous models is

quantitatively evaluated for one-dimensional propagating detonations. First, an in-

vestigation of viscous effects is performed on one-dimensional pulsating unsupported

Chapman-Jouguet detonations using a simplified one step kinetics model for vari-

ous activation energies. The inclusion of viscosity in the model, delays instability

to a higher activation energy and enlarges the activation energy range of the bifur-

cation process that leads to chaotic detonation. Then using detailed kinetics and

full multi-component diffusion, a set of one-dimensional piston-driven hydrogen-air

detonations is evaluated. The diffusive processes alter the behavior near the stability

point, but as the intrinsic instability grows in strength, the viscous effects diminish.

Harmonic analysis is used to illustrate how the frequency spectra of the pulsations

evolve. Lastly, a study of the acceleration of several symmetric laminar flames in

narrow two-dimensional channels is performed. Adiabatic no-slip walls contribute

to the acceleration of the flame towards detonation by trapping the thermal energy

that the boundary layer has converted from the mechanical energy of the propagat-

ing acoustic waves emanating from the flame. Below a threshold in channel width,

viscous resistance becomes dominant and can significantly extend the time to the

exponential pressure growth and acceleration of the flame. Increasing the percentage
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of diluent in the flame reduces the rate at which the flame accelerates and alters the

width at which viscous resistance dominates. Ambient temperature isothermal walls

retard the propagation of the flame in comparison to adiabatic walls at early times

with the risk of extinction.
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Grenga.

For the unending support and dedication at all times of night and day, I thank

my parents and my wife. I am extraordinarily lucky to be your son and husband.

xviii



CHAPTER 1

INTRODUCTION

1.1 Motivation and Background

A critical concern of science is to develop a better explanation of the universe.

The observable universe has many phenomena that span a wide set of scales. Such

multiscale phenomena are encountered in a number of fields of practical interest such

as astrophysics, biochemistry, material science, meteorology, and combustion. In the

case of combustion, this broad range of scales is caused by a complex interaction

between reactive, advective, and diffusive processes.

The modeling of these phenomena presents a formidable task, even with mod-

ern computational capabilities. As an example, in combustion, complex chemically

reactive flows can be represented in the continuum limit by the reactive, compress-

ible, Navier-Stokes (NS) equations. The Navier-Stokes equations are a set of coupled

partial differential equations (PDEs) governing the conservation of mass, linear mo-

menta, energy, and evolution of species mass fractions. Even with the assumption of

a continuum, there can exist a vast range of temporal and spatial scales. For atmo-

spheric pressures, the temporal scales can range from the macroscale, O(s), down to

those of the finest reaction scales, O (10−9 s) ; the spatial scales can range from near

the mean-free path length scale, O (10−6 m) , up to the laboratory scale, O (m) [108].

These fine reaction scales are a manifestation of an averaged representation of the

molecular collision model in which the fundamental length scale is the mean free

path [1]. In order to achieve a mathematically verified prediction, this wide range
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of scales must be resolved, which poses a daunting task. According to Manley et al.

[79] there is “a single, overarching grand challenge for 21st-century combustion sci-

ence: the development of a validated, predictive, multiscale combustion modeling

capability.”

A specific reactive flow of interest today is a supersonic combustion wave in which

exothermic energy release contributes a driving shock, more commonly known as a

detonation wave. A detonation is a shock-induced combustion wave in which the

exothermic energy release contributes to driving the shock. This phenomenon is of

particular interest due to industrial safety [16, 95, 131, 141], and more recently, the

emerging interest in detonation engines [82, 112, 122, 148]. Currently, the main pro-

jected application of supersonic combustion is flight, with the possibility to make

any location on Earth reachable within two hours [75]. With supersonic/hypersonic

combustion, there is a possibility for a lower cost per mass to send a payload into

space; for these purposes as well as other purposes, there are air-breathing technolo-

gies under development. As an example, the X-51A Waverider successfully flew for

almost 200 seconds, reaching approximately Mach 5 [96]. Even though its main ap-

plication is flight, supersonic combustion also has potential in other areas e.g. pow-

der coating [94], removal of build-up of slag [53], and power production. More-

over, entrepreneurs are already filing for patents for detonation-driven power genera-

tors [76]. Furthermore according to industry leaders, there is a potential to increase

in the fuel-efficiency using pulsating detonations over current power production tech-

niques [64, 81].

Detonations which are self-sustained show a nearly universal instability [69].

There are several types of instabilities that have been observed, e.g. longitudinal,

rectangular, diagonal, and spinning. The rectangular and diagonal instabilities have

been detected in rectangular cross-sectional shock tubes. The rectangular instability

is characterized by the triple points moving parallel to the tube walls and two sets
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of orthogonal “slapping” waves. The diagonal instability is characterized by a three-

dimensional structure in which the triple points propagate diagonally with respect

to the tube’s cross section. The key criterion in determining which instability forms

is the way the detonation is initiated [44]. If a diaphragm in a reactive shock tube

is pre-cut along the diagonal of the cross section, the rectangular instability results;

when the pre-cut is along the median of the cross-section, the diagonal instability

manifests itself. A spinning instability can develop in a multitude of geometric cross-

sections, including circular, square, and triangular, and consists of one or more shocks

traveling around the long axis of the shock-tube in the azimuthal direction. It has

also been observed that the pitch of spinning is proportional to the cross-section’s

diameter ratio, and that the instability normally occurs in mixtures near the limits of

detonation [25, 30]. The longitudinal instability only exists in small diameter tubes

where the development of the multi-dimensional instabilities are hindered. These gal-

loping instabilities occur along the direction of propagation of the detonation wave;

the front can be seen periodically or irregularly speeding up or slowing down [142].

Evidence of these many instabilities have been observed experimentally in soot-

tracks [69]. These soot-tracks are records of where these transverse waves intersect

with each other and the leading shock, or triple points [97]. These triple points

trace cellular patterns on soot-coated foil placed in the shock tube. These cellular

patterns are dependent on the composition of the gaseous mixture as well as the initial

(upstream) pressure [143]. These patterns can both be regular, with a consistent cell-

size for weakly unstable mixtures like highly diluted hydrogen-oxygen mixtures, and

very irregular, for a more complex fuel-air mixture like methane [5]. Figure 1.1 shows

examples of these patterns on smoke foils produced by Austin [5]. A zoomed profile,

of the detonation front illustrates some of the basic multi-dimensional features of an

instability for a propagating detonation in a highly-dilute hydrogen-oxygen mixture,
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(b)

(a)

Figure 1.1. Smoke foil patterns from Austin [5] of detonations in mixtures
of (a) 2H2 −O2 − 12Ar and (b) C3H8 − 5O2 − 9N2.

is shown in Figure 1.2.

The underlying mechanisms driving detonation instabilities are not particularly

well understood; thus the process of detonation formation is also of great interest.

One of the earliest studies into the formation of detonation was done by Chapman

and Wheeler [13], who studied the speed at which a flame propagated in a methane-

air mixture. Oppenheim et al. [98] were the first to suggest an “explosion within a

explosion” for a theory that lead to a detonation from a subsonic flame (deflagration).

Oppenheim et al. [99] first reported the recording of compression waves from a laminar

flame which eventually coalesced to form a shock wave and thus perturbed the trailing

laminar flame, leading to detonation, or in other words the deflagration-to-detonation

transition (DDT).

The simplest model of a detonation treats the detonation as a discontinuity

between the ambient upstream state and the downstream thermochemical equilib-

rium state. The minimum velocity at which the detonation can propagate was first

predicted by Chapman [11] and Jouguet [57], using only the inviscid steady one-
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Figure 1.2. A schlieren image from Austin [5] of a detonation in a mixture
of 2H2 −O2 − 17Ar at ambient pressure of po = 20 kPa. The basic
structure of the instabilities in the detonation has been highlighted.

dimensional jump conditions. The corresponding state to this minimum velocity is

often referred to as the Chapman-Jouguet (CJ) state for this reason and is a sonic

point. It is noteworthy, that while it was largely unknown outside of Russia at the

time, Mikhelson [88] did much of the same work as Chapman and Jouguet. This

idea was an extension of the earlier work of Rankine [114] and Hugoniot [51], who

formulated inviscid jump conditions for an inert shock wave.

This understanding was furthered by the work of Zel’dovich [178], von Neumann

[160], and Döring [24], who accounted for the fact that the detonation wave has finite

thickness due to the finite time of chemical reaction. In this model the leading shock,

which is still described as discontinuity, raises the temperature and the pressure peaks

initiating the chemical reactions. This is usually followed by an induction zone in

which primarily dissociation reactions occur. The induction zone is followed by a

recombination zone where most of the energy is released due to exothermic reactions.

This energy release raises the temperature, ultimately causing an expansion to the
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sonic CJ state in the unsupported case [33]. This one-dimensional, steady model that

utilizes a leading inviscid shock followed by a finite-rate energy release is known as the

ZND model. This model added insight to the propagation of the detonation; there is

adiabatic heating by the leading shock which is then supported by the expansion of

the burnt fuel.

In addition to the previously mentioned CJ case, it is also possible to have a

detonation that has a piston at the back of the burnt expanded gases that prescribes

a velocity higher than the minimal CJ final state velocity. These piston-supported

detonations are typically referred to overdriven detonations, where the overdrive of

the detonation, f = (D/DCJ)
2, in which D is the wave speed of the leading shock and

DCJ the wave speed of the leading shock in the CJ case. This imposed rear boundary

state is connected to the final reaction state via a constant state for a steady model,

and thus, this enforces the wave speed of the detonation to realize this prescribed

reaction zone final state. Therefore, the only way to achieve this overdriven state in

the steady case is through an external force, like a supporting piston.

The models described thus far are strictly steady-state approximations. However

as previously mentioned, there is much experimental evidence that many detonations

are intrinsically unstable; though both the CJ and ZND theories have been successful

in predicting the detonation velocity in an average sense [33]. With the mechanisms

driving detonation instabilities not fully understood, no theory exists to predict the

behavior of a specific detonation. This has led to many numerical studies, to gain

greater insight into the hydrodynamics of detonations.

The intricate coupling between the fluid mechanics and chemistry, however, results

in difficultly in accurately modeling detonations. This is due to the fact that there

is a large breadth of scales that must be captured. Devices of interest, i.e. pulse

detonation engines or shock-tubes, are on the order of meters. Additionally, Powers

and Paolucci [108] demonstrated, using an spatial eigenvalue analysis for a steady,
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CJ detonation propagating into a stoichiometric mixture hydrogen-air at an ambient

state of 1 atm and 298.15 K, the smallest chemical reaction length scales to be

O (10−7 m) . This estimation is on the same order of the mean-free path, and these

fine length scales are a manifestation of the averaged continuum representation of the

collisions that occur between molecules, which have an underlying principal length

scale of the mean free path [1]. Furthermore, diffusive effects occur on similar scales,

and thus, need a comparable resolution to be captured correctly.

In order to reduce the computational resources necessary to simulate the devel-

opment and propagation of detonations, several assumptions can be made. The first

assumption that is usually made is to neglect diffusive processes, as their effects are

thought to be small in comparison to advection and reaction, cf. Fedkiw et al. [31],

Walter and da Silva [162], and He and Karagozian [46]. Secondly, as mentioned

by Shepherd [132], it is a common practice to use a reduced kinetics or simpli-

fied model. Additionally, the model can be reduced to a single spatial dimension.

Although many of the intrinsic instabilities of detonations are multi-dimensional,

valuable information about how the structure of detonations evolve, how instabili-

ties develop, and how detonation velocities change in time can all be gained through

one-dimensional studies.

There are indications that the first assumption, of neglecting diffusion, may be

problematic. Singh et al. [138] and Powers [107], in a two-dimensional study of

detonation patterns using a one step kinetics model, demonstrated that for the

reactive Euler equations detonation patterns were grid-dependent. Moreover, the

patterns using the reactive Navier-Stokes equations reduce to a grid-independent

dissipative structure. Furthermore, while using grid sizes around 10−6 m for their

three-dimensional simulations of unsteady hydrogen-air detonations, Tsuboi et al.

[156] report wave dynamics that show strong sensitivity to the grid. While appar-

ent convergence of some structures was reported, they also note with regard to some
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particulars of the detonation structure “The present results cannot resolve such cross-

hatchings in the ribbon because of a lack of grid resolution.” Likewise, Deiterding

[22] also reports that the interactions between chemistry and hydrodynamic flow in

inviscid detonations “in general exhibit a strong dependency on the mesh spacing.”

Additionally, in regions that require high resolution for a one step detonation in a

channel, diffusion plays an important role [85]. Al-Khateeb et al. [2] suggests that

hydrogen-air mixtures have reaction length scales present which have time scales as-

sociated with them over which both chemistry and diffusion can be important. The

presence of reaction dynamics and steep gradients at micron length scales suggests

that in fact physical diffusion has an important role to play. These results suggest that

numerical diffusion could play a significant role in the inviscid calculations. Thus,

the introduction of grid-independent physical diffusion should be considered, and the

overall effect on detonations needs to be quantified.

Before relaxing either of the other assumptions of using simplified kinetics or

one-dimensional flow, it is useful to examine the interaction between chemistry and

advective processes and transport phenomena in the simplest model. The simplest

kinetic model is one that is composed of a single reaction. This introduces a single

chemical reaction length scale, in contrast to the multiple reaction scales of detailed

kinetic models; thus, allows the interplay between chemistry and transport phenom-

ena be more easily studied. Additionally, restricting the model to one dimension

permits more resolution to be used at a lower computational cost [124]. Moreover, in

two dimensions Watt and Sharpe [166] conclude, that “resolved and accurate calcula-

tions of the cellular dynamics are currently computationally prohibitive, even with a

dynamically adaptive numerical scheme.” Furthermore, in two-dimensions Radulescu

et al. [113] found that the correct average chemical thickness observed in experiments

cannot be realized using artificial diffusive terms alone.

Such a model has been studied extensively in the inviscid limit. The stability
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and non-linear dynamics of this “one step” model are well understood. The following

review is meant as a broad overview of work done in one dimension, but is not

all-inclusive.

Erpenbeck [28, 29] began the study into the stability of the ZND profile of the

standard one step irreversible kinetic model. Lee and Stewart [68] furthered the early

work of Erpenbeck by developing a normal-mode approach to the linear stability of

the idealized detonation to one-dimensional perturbations using a shooting method

to find the unstable modes. Bourlioux et al. [10] studied the nonlinear development

of instability in this one step model. The investigation into the stability of the one

step kinetic model was continued by He and Lee [45] using the Euler equations in

one dimension. They found two critical activation energies; the first critical acti-

vation energy separated the stable and unstable regimes, and the second separated

the unstable regime from a regime where the period of oscillations became infinite.

Using a newer normal mode approach, Sharpe [127] found results in good agreement

with Lee and Stewart [68]; however, using asymptotics it was also found that the over-

driven detonations did not tend to the CJ detonation as the overdrive approached

unity. Montgomery et al. [90] used the one step model in the inviscid limit to study

the critical length for DDT in a initially perturbed linear temperature gradient and

found that the perturbations can increase the critical length an order of magnitude

versus the unperturbed case. Eckett et al. [27] studied the one step model in context

of direct initiation of a detonation using a blast wave in spherical coordinates in one

dimension. In the inviscid limit, Sharpe and Falle [128] found that a minimum of

100 points was required in the half-reaction length to achieve a converged solution.

Short and Wang [135] studied the dynamics of pulsating detonations enforcing at

most two linearly unstable modes and found that the lower frequency dominated in

all cases studied except one. In this exception, the amplitude of the lower frequency

still dominates. Kapila et al. [58] studied how the initial temperature gradient af-
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fects the development and evolution of detonations, while using a one step kinetics

model in the inviscid limit. It was found that weak detonations can form if the ini-

tial gradient was weak, but then decayed to CJ conditions given a sufficiently long

computational domain. Daimon and Matsuo [19] performed simulations for various

overdriven detonations and predicted a bifurcation process as the overdrive was low-

ered. A normal mode approach was applied by Kasimov and Stewart [59] to the

linear stability problem of the ZND profile; they performed a numerical analysis us-

ing a first order shock-fitting technique. Ng et al. [93] developed a coarse bifurcation

diagram showing how the oscillatory behavior became progressively more complex as

activation energy increased. Henrick et al. [47] developed a more detailed bifurcation

diagram using a true fifth order shock-fitting method. Kassoy [60], Kassoy et al.

[61], and Regele et al. [118] studied the development of DDT using a local thermal

power deposition function as a novel way to initialize the flame and simulate a spark,

realizing detonation waves on the microsecond time scale.

Several one-dimensional studies of detonations have included transport processes

in the one step limit. The earliest works focused on finding a strictly steady diffu-

sive detonation. Friedrichs [35] included both viscous and thermal dissipation, but

neglected mass diffusion as the reaction was treated as a discontinuity, from unre-

acted to fully reacted as in CJ Theory. Hirschfelder and Curtiss [48] expanded ZND

theory by including mass, momentum, and energy diffusion while studying a one

step irreversible model. In addition to restricting the Lewis and Prandtl numbers,

it was necessary to treat the shock and reaction separately, only including viscous

and thermal dissipation in the shock zone. Wood [171, 172] tested several activation

energies as well as several ratios of specific heats. For the values tested under certain

conditions, a “strictly” steady solution was possible in the overdriven state. Using

the one step kinetics model, Clarke et al. [17, 18], examined the effects of diffusion on

the development of a detonation from a small energy release. Wagner [161] showed
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the existence of a steady planar viscous detonation wave under a special condition on

the Prandtl number. The work of Clarke et al. [17, 18] was continued by Sileem et al.

[137], who used a power deposition function that acted only over a prescribed time

and is then suppressed, to initialize a DDT. Using the Navier-Stokes equations, Chen

[14] demonstrated solutions of the one step model in Euler and Lagrange coordinates

are equivalent. Gasser and Szmolyan [39] were able to show the existence of steady

diffusive strong detonations in the limit of weak diffusion. The nonlinear stability

of a strongly overdriven detonation was examined by Tan and Tesei [147] using the

one step model in the Navier-Stokes equations. Lyng and Zumbrun [78] studied the

stability of a one step detonation in the weak diffusion limit. Texier and Zumbrun

[152], expanding on the earlier work of [78], demonstrated that in the weak diffusion

limit, a one step detonation will undergo a transition through a Hopf bifurcation as

the overdrive is lowered. Through the use of Evans functions, Humpherys et al. [52]

demonstrated for the Majda’s scalar model of detonation an unstable mode in the

inviscid limit can revert to a stable mode when diffusive effects are accounted for in

the model. As the development of an analytical solution for a viscous detonation is

not the main focus of this work, the reader is referred to the references in Humpherys

et al. [52] for further developments in this area.

Expanding the kinetics model adds more reaction length scales and likely stiff-

ness; additionally, the chemical reaction mechanism can have greater fidelity with

experiment and thus, more closely mimics the physical world. Several studies in the

inviscid limit have examined the behavior of extended simplified kinetics models in

one dimension [84, 92, 123, 126, 129, 136, 140]. However, many studies with larger

kinetics models in fact use detailed kinetic models of a full reaction model which has

been developed for the particular gaseous mixture of interest. This allows individual

components of the mixture to have their own intrinsic properties and the mixture’s

properties to be composed of a combination of the individual components’ properties.
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The following is meant to highlight some important works done with detailed

kinetic mechanisms in the one-dimensional limit. One of the first to model shock-

induced combustion with detailed kinetics was Sussman [145], who used the same

hydrogen-air mixture and ambient pressure and temperature as used by Lehr [70] in

experiments of flow around spherical projectiles. The computations were performed

with only twenty points in the induction zone; however, the predicted behavior grew

more complex as the overdrive was lowered, similar to the results found in various

one step studies. Eckett [26] performed numerical simulations of pulsating hydrogen-

oxygen detonations in the inviscid limit and found that as the overdrive of the deto-

nation was decreased, more complex behavior in the pulsations occurred. In order to

achieve a converged solution, a minimum of 150 cells were necessary in the induction

zone. Singh et al. [139] calculated the development of an argon–diluted hydrogen–

oxygen viscous detonation in one dimension after a reflected shock passes through

the mixture. While studying both hydrogen-carbon dioxide-air and hydrogen-air

mixtures using the spherical Navier-Stokes equations in one dimension, Gu et al.

[42] predicted upper and lower bounds on the initial temperature gradient needed to

develop a detonation from a hotspot. Yungster and Radhakrishan [175] studied the

stability of hydrogen-air mixtures in the inviscid limit for various equivalence ratios

and overdrives using a strong shock wave to directly initiate the detonation. From

a grid-convergence study, it was found that a resolution on the order of a micron

was needed for a converged solution for a detonation propagating into a pressure

of 0.2 bar. Using the one-dimensional Euler equations in one dimension, Yungster

and Radhakrishan [176] then studied ethylene-air mixtures and predicted that as the

equivalence ratio is increased, the amplitude of the pulsating detonations grows and

the periodicity increases, similar to that seen in the simpler hydrogen-air model. Us-

ing the one-dimensional cylindrical Navier-Stokes equations, Wang et al. [163] studied

a mixture of hydrogen-oxygen mixture diluted by argon in the context of a implo-
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sion and found that a secondary implosion caused by the interaction of the reflected

shock and the imploding contact discontinuity caused the system to reach a much

higher temperature and pressure than that of the reflected shock alone. Daimon and

Matsuo [20] examined various equivalence ratios and overdrives using a hydrogen-air

mechanism in the inviscid limit and reported similar results found by [26, 145, 175]

who studied other hydrogen-based fuel mixtures.

The necessary resolution in modeling detonations has limited the number of multi-

dimensional studies performed. Much of the early work of detonation modeling in

multiple dimensions made use of simplified kinetics [56, 104, 134, 168]. Additionally,

to reduce the computational cost, most studies were performed in the inviscid limit

as well [3, 71, 72].

Some of the earliest work in multiple dimensions was performed by Oran et al.

[102], using the one step model with a fitted induction zone to hydrogen-air and

methane-air mixtures, and Taki and Fujiwara [146], using a two step model. Using

the one step irreversible Arrhenius kinetics model, Bourlioux and Majda [9] performed

both analytic and numerical studies for several values of activation energy and heat

release and noted that artificial numerical viscosity is grid dependent; therefore, the

range of wavelengths that can be unstable is limited by the mesh chosen. Gamezo

et al. [37, 38] examined cellular detonations in the inviscid limit with the one step

model using a shock to directly initiate the detonation. It was reported that as ac-

tivation energy increased, the cellular structures became more irregular and that in

two dimensions the average reaction zone length was longer than in a single dimen-

sion. Gavrikov et al. [40] performed both two- and three-dimensional simulations

in the inviscid limit using the one step model to find the cell width and to create a

correlation between it and the one-dimensional characteristic reaction zone thickness.

A resolution study was performed by Sharpe [125] on the detonation structure with

strong transverse waves in the inviscid limit, and it was found that to ensure the
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transverse wave structure was properly captured, more than fifty points were needed

in the half-reaction length of the one step model. Moreover, it was noted that the

results of using the Euler equations will not converge quantitatively, because artifi-

cial numerical viscosity is grid dependent. Sharpe and Quirk [130] used a parallel

adaptive mesh in two dimensions with the one step model in the inviscid limit to

study a wide channel in a hope to find the intrinsic cell size. It was found even in

the weakly unstable case there was not a unique final cell size; however, it was also

shown that the average cell length-to-width ratio was well predicted by linear anal-

ysis. In the inviscid limit using the one step model, Teng et al. [151] examined how

the half-reaction length evolved in oblique detonations.

Though detailed kinetic mechanisms add stiffness to the reaction model, several

studies have been performed in the inviscid limit. One of the earliest was done by

Oran et al. [103], who examined the development of detonations in a highly diluted

hydrogen-oxygen mixture diluted by argon at low pressure. Tsuboi et al. [155] per-

formed a three-dimensional simulation of a 2 mm long, 0.5 mm square channel with a

5 µm resolution using a hydrogen-air mixture and predicted the appearance of both

rectangular and diagonal instabilities. While studying a mixture of hydrogen and

oxygen diluted by argon in the inviscid limit, Hu et al. [49, 50] calculated the cellular

structure and found that at an ambient pressure of 6.67 kPa, a resolution on the

order of 25 µm was needed and reported that the results matched closely those of

[103]. Deiterding [21] studied this same problem as [49, 50, 103] with his parallel

adaptive scheme and was able to go onto a three-dimensional simulation like that

of [155], using maximum resolution 16.8 points in the induction zone. Additionally,

the behavior of the detonation through a 60 degree bend in two dimensions was pre-

dicted in the inviscid limit. Taylor et al. [149] made a comparison of the intrinsic

cell-sizes from a directly initiated detonation between those from the one step model

and detailed kinetics for two hydrogen-based fuel mixtures.
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The extension of detonation modeling to multi-dimensional studies introduces the

geometric effects; thus, allowing more of the physics to be captured than in a one-

dimensional model. There are several studies examining multi-dimensional behavior

of detonations with both simplified and detailed kinetics in the presence of physical

diffusion. One of the first was performed by Khokhlov et al. [65], who examined

the shock-flame interaction that lead to a detonation with the one step model in

the Navier-Stokes equations. Tegnér and Sjögreen [150], using the one step model

examined the development of the DDT phenomenon from a small region initialized

at higher state. A pre-heating shock eventually forms and when it reaches suffi-

cient strength, a dramatic increase in pressure occurs followed by a decay to the

self-supporting CJ detonation, in agreement with other DDT studies. Both two- and

three-dimensional studies were performed by Oran and Gamezo [101] of the shock-

flame interaction leading to detonation for the one step model fitted to acetylene-air

and ethylene-air mixtures. Using a simplified kinetics model starting from an already

initiated detonation, Kivotides [66] demonstrated that in a micro-channel, the trans-

verse wave behavior of a detonation can be altered by diffusive processes. Yuan and

Tang [174] studied shock-induced combustion around a blunt body using the Navier-

Stokes equations and an adaptive mesh redistribution method. While studying both

detailed kinetic mixtures of hydrogen-oxygen and hydrogen-air, it was found that

at high Mach numbers, if a very fine mesh was used or consecutive steps had grid

redistribution, that false combustion instabilities occurred. Wang and Xu [164, 165]

used the two-dimensional Navier-Stokes equations with detailed kinetics to simulate

diffraction and re-initiation of a detonation in a low pressure hydrogen-oxygen-argon

mixture. While studying flame acceleration to a detonation in a channel, it has been

shown that there is qualitative agreement between experiments and computations

for a pure hydrogen-oxygen mixture [54, 55, 73, 74]. Ziegler et al. [179] used de-

tailed kinetics and reported that for a viscous double Mach reflection detonation of
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hydrogen-air a near micron grid-size was not quite sufficient to resolve all the strong

shocks present. While studying several activation energies in the context of the one

step model, Mazaheri et al. [85] reports that in regions that require high resolution,

diffusion plays an important role. Chinnayya et al. [15] examined the viscous behav-

ior of an already initiated one step detonation in a narrow channel at low pressure

and showed in narrower channels the addition of viscosity can completely damp the

transverse wave behavior. Recently, Lv and Ihme [77] studied several test problems

for a discontinuous Galerkin method including several detailed kinetics deflagrations

with the inclusion of diffusion.

1.2 Structure of Dissertation

The remainder of this dissertation is organized as follows. In Chapter 2, the math-

ematical representation used in the continuum approximation for unsteady, gaseous,

reactive compressible flows is developed. This development includes detailed mass-

action kinetics and multicomponent transport phenomena. In addition to this de-

tailed model, a reduction of this description is presented for a simplified model that

consists of a single reaction and a single specie each for the combined reactants and

products.

Chapter 3 presents a one-dimensional study [120] of the reduced model for CJ

detonations while varying the activation energy of the reaction. In fact, it is the

diffusive analog of the inviscid study by Henrick et al. [47]. The aim of this work

is to highlight the effect of diffusive processes on pulsating detonations. The use

of the one step model introduces a single reaction length scale, and thus, allows

the interplay between chemistry and transport phenomena be more easily studied.

Additionally, a new harmonic analysis of the temporal behavior of the detonation

pressure is presented followed by an examination of the evolution of the half-reaction

zone length.
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In Chapter 4, the work examining the effect of diffusive processes on pulsating

detonations is extended to include detailed kinetics [121]. A one-dimensional study of

piston-driven flows of a stoichiometric hydrogen-air mixture is presented. This study

examines how the long time behavior of the detonation evolves as the supporting pis-

ton velocity is varied. The behavior is examined in both the temporal and frequency

domains and a comparison is made between the inviscid and viscous analogs.

Chapter 5 consists of a DDT study for several hydrogen-based fuel mixtures in

narrow channels. Here, the effects of channel width and percent of diluent on the time

to transition is presented. Additionally, the effect of ambient temperature isothermal

boundaries is explored and compared with the acceleration process with adiabatic

boundaries. Finally, Chapter 6 summarizes the overall work and suggestions for

future directions in research.

The evaluation of detonation cell sizes, like those found experimentally and shown

in Figure 1.1, is computationally expensive when all spatial and temporal scales asso-

ciated with reactive, advective, and diffusive processes are resolved. The instabilities

helping these detonations propagate have very fine features demonstrated in Fig-

ure 1.2. The finest spatial scales that must be resolved at the high pressures present

in detonations propagating in ambient atmospheric pressure are on the O (10−7 m) or

smaller. This means that with an explicit temporal integration scheme, the required

time step required is on the O (10−12 s) or smaller in magnitude. Typical wave speeds

in detonations are O (103 m/s) ; thus for a 10−3 m wide channel, the time for trans-

verse wave to propagate across the channel is O (10−6 s) . A single half cycle of the

propagation of a transverse wave requires O (106) time steps. Moreover, numerous

cycles of these transverse waves are necessary to quantify the cell sizes predicted.

Additionally, the detonation front is propagating within the channel, giving a mini-

mum ratio of spatial scales of O (104) that needs to be resolved in multiple directions.

Thus, performing a comprehensive study for various channel widths and mixtures is
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computationally intractable without reducing the ratio of either the spatial or tem-

poral scales or both. This dissertation will focus on resolving all relevant scales of

the model, and thus, an examination of detonation cell sizes was not considered.
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CHAPTER 2

MATHEMATICAL MODEL

In this chapter the general mathematical model is presented. The gaseous, com-

pressible, reactive flows can be described by partial differential equations (PDEs)

in the continuum limit. Modeling these flows, additionally, involves the initial and

boundary conditions corresponding to the flow variables. The specific initial and

boundary conditions for the specific problems examined in this work will be included

in the following chapters for the individual problems. Likewise, the numerical meth-

ods used in numerical modeling of the individual problems will be presented in sub-

sequent chapters.

The governing partial differential equations for a gaseous reactive mixture con-

sisting of N species are the unsteady, compressible, reactive Navier–Stokes equations.

Equations (2.1)-(2.4) represent the conservation of mass, linear momenta, energy and

the evolution of species, respectively. In conservative form they are expressed as

∂ρ

∂t
+∇ · (ρu) = 0, (2.1)

∂

∂t
(ρu) +∇ ·

(

ρuuT + pI− τ

)

= 0, (2.2)

∂

∂t

(

ρ
(

e+
u · u
2

))

+∇ ·
(

ρu
(

e+
u · u
2

)

+ (pI− τ ) · u+ q
)

= 0, (2.3)

∂

∂t
(ρYi) +∇ · (ρuYi + ji) = M iω̇i, i = 1, . . . , N − 1, (2.4)

where ∇ ≡ ∂/∂x is the spatial gradient operator, and the independent variables

are t, the temporal coordinate, and x the spatial coordinate vector. The dependent

variables are the mixture mass density, ρ, the mixture velocity vector, u, the mixture

19



pressure, p, the viscous stress tensor, τ , the specific internal energy of the mixture,

e, the total heat flux vector, q, the mass fraction, Yi, the diffusive mass flux, ji,

the molecular mass, M i, and the molar production rate per unit volume, ω̇i, for

the ith specie. The I symbol is the identity tensor. Equations (2.1) and (2.3) are

scalar equations. Equations (2.2) and (2.4) are vector equations of lengths d and

N − 1, respectively, where d is the dimension of the problem. To close the system,

constitutive relations must be specified.

2.1 Reactive Gaseous Mixture Properties

This work is restricted to ideal mixtures of calorically imperfect gases adhering

to Dalton’s model. This leads to a thermal equation of state of

p = ρ
R
M

T, (2.5)

where R = 8.314 × 107 erg/(mole K) is the universal gas constant, M the mixture

molecular mass, and T the mixture temperature [110]. The mixture molecular mass

is given by

M =

(

N
∑

i=1

Yi

M i

)−1

. (2.6)

Additionally, as the mass fraction of ith specie, Yi, is defined as

Yi =
mi

m
, i = 1, . . . , N, (2.7)

where mi is the mass of ith specie and m the total mass in the system; logically it

follows that
N
∑

i=1

Yi = 1. (2.8)
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Furthermore, the mole fraction of the ith specie can be defined as

yi =
M

M i

Yi. i = 1, . . . , N, (2.9)

Therefore,
N
∑

i=1

yi = 1, (2.10)

and it also follows that Equation 2.6 can be written in terms of mole fractions as

M =
N
∑

i=1

yiM i. (2.11)

For a mixture consisting of N species composed of L elements, and interacting

in J chemical reactions, the number of moles of lth element in the jth reaction is

conserved. This molar balance can be expressed as

N
∑

i=1

φliνij = 0, (2.12)

for all elements, l = 1 . . . L, and all reactions, j = 1 . . . J, where νij is the net stoi-

chiometric coefficient of the ith specie in the jth reaction and φli the number of atoms

of lth element in the ith species. Here νij = ν
′′

ij − ν
′

ij, where ν
′

ij and ν
′′

ij are the

stoichiometric coefficients in the reactants and products of the ith specie in the jth

reaction, respectively. Additionally, the molar production rate per unit volume of

the ith specie, ω̇i, can be expressed in terms of the J reaction rates as

ω̇i =
J
∑

j=1

νijrj, (2.13)

where rj is the reaction rate of the jth reaction. By applying Equations (2.12) and

(2.13) to the sum of Equation (2.4) from i = 1 to N and comparing to Equation (2.1)
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demands that
N
∑

i=1

ji = 0, (2.14)

thus indicating that the species mass flux are defined with respect to the mean flow.

The attention of this work is focused on two classes of models. One makes use of a

realistic detailed kinetics model, and the other will employ several simplifications and

use a single reaction. In the subsequent sections, the remaining constitutive relations

used for the equation of state and reaction rates are defined. Additionally, the mass,

momentum, and energy diffusion transport relations adopted will be detailed.

2.2 Detailed Model

In the realistic detailed kinetics model, the specific enthalpy of the ith specie, hi,

is given by

hi = hf
i +

∫ T

T o

cpi

(

T̂
)

dT̂ , (2.15)

where hf
i is the the specific enthalpy of formation of the ith specie evaluated at the

reference state, which is given by the reference pressure, po = 1 atm = 1.01325 ×

106 dyne/cm2, and the reference temperature, T o = 298 K, and cpi the specific heat at

constant pressure of the ith specie. As all of the species are considered calorically im-

perfect ideal gases, the specific heats at constant pressure are independent of pressure

but are a function of temperature. The specific heat at constant pressure of the ith

specie is evaluated from a polynomial fit in temperature that utilizes thermodynamic

data as

cpi = R
c
∑

k=0

akiT
k, (2.16)

where aki are the coefficients of the c-order polynomial provided by the CHEMKIN [63]

database. Note that this polynomial fit could be easily cast into a form using (T/To)
k

such that the coefficients could be dimensionless. Additionally, the specific entropy

22



at reference pressure, soi , of the ith specie is given by

soi = sfi +

∫ T

T o

cpi

(

T̂
)

T̂
dT̂ , (2.17)

where sfi is the entropy of formation of the ith specie. The specific enthalpy can be

used to calculate the specific internal energy, ei, of the ith specie as

ei = hi −
RT

M i

. (2.18)

The molar-based thermodynamic properties can be obtained by multiplying the

species molecular mass,

ei = M iei, (2.19)

hi = M ihi, (2.20)

soi = M is
o
i . (2.21)

Furthermore, using these molar-based quantities, the species chemical potential at

reference pressure for the ith specie, goi , is given by

goi = hi − Tsoi . (2.22)

The mixture specific internal energy, e, and enthalpy, h, are calculated using the

specific internal energies or enthalpies of the species,

e =
N
∑

i=1

Yiei =
N
∑

i=1

(Yihi)−
p

ρ
, (2.23)

h =
N
∑

i=1

Yihi. (2.24)
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In order to obtain the mixture temperature from either the mixture specific internal

energy or enthalpy, an iterative procedure utilizing a Newton root-finding technique

adapted from Press et al. [109] is used.

As briefly alluded to in Section 2.1, a chemical reaction interaction consisting of

J reactions and N species can be represented in a general form as

N
∑

i=1

ν
′

ijχi ⇋

N
∑

i=1

ν
′′

ijχi, (2.25)

where χi is the chemical symbol of ith species and ⇋ represents the possibility of

reversible reactions. Each of these reactions can be expressed as two parts; the first

being a forward reaction and the other a reverse reaction. The overall reaction rate

of the jth reaction adopted is one of the law of mass action [4, 6, 41, 67, 110] and is

given by

rj = kj

(

N
∏

i=1

(

ρ
Yi

M i

)ν
′

ij

− 1

Kc
j

N
∏

i=1

(

ρ
Yi

M i

)ν
′′

ij

)

, (2.26)

where kj is the Arrhenius kinetic rate and Kc
j the equilibrium constant for the jth

reaction. The Arrhenius kinetic rate of the jth reaction is given by

kj = ajT
βj exp

(−Ej

RT

)

. (2.27)

In Equation (2.27), aj, βj, and Ej are the collision frequency factor, the temperature-

dependency exponent, and activation energy of the jth reaction, respectively. More-

over, the equilibrium constant for the jth reaction is calculated as

Kc
j =

(

po

RT

)

∑N
i=1

νij

exp

(

−∑N
i=1 g

o
iνij

RT

)

. (2.28)

In the certain reactions, a third body, M, is needed for the reaction to proceed. In

this case, the concentration of the third body must be included in the reaction rate;
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thus, Equation (2.26) is modified for the jth reaction as

rj =

(

N
∑

i=1

αij

(

ρ
Yi

M i

)

)(

kj

(

N
∏

i=1

(

ρ
Yi

M i

)ν
′

ij

− 1

Kc
j

N
∏

i=1

(

ρ
Yi

M i

)ν
′′

ij

))

, (2.29)

where αij is the third body collision efficiency coefficient of the ith specie for the jth

reaction. If all species have the same efficiency as third bodies, then αij equals unity

for all species. However, some species may contribute more and thus, αij may differ

from unity and vary from specie to specie in the jth reaction.

In order to complete the system for the realistic detailed model, the diffusive

transport relations adopted in this work were chosen following Bird et al. [8]. The

diffusive mass, momentum, and energy transport relations are given as

ji = −DT
i ∇T

T
+ ρ

N
∑

k=1
k 6=i

M iDikYk

M

(∇yk
yk

+

(

1− Mk

M

) ∇p

p

)

, (2.30)

τ = µ

(

∇u+ (∇u)T − 2

3
(∇ · u) I

)

, (2.31)

q = −k∇T +
N
∑

i=1

jihi −RT

N
∑

i=1

DT
i

M i

(∇yi
yi

+

(

1− M i

M

) ∇p

p

)

, (2.32)

where DT
i is the thermal diffusion coefficient for the ith specie, Dik the multi–

component diffusion coefficient between the ith and kth species, µ the dynamic vis-

cosity of the mixture, and k the isotropic thermal conductivity of the mixture. The

mixture dynamic viscosity is function of the temperature and molecular composition

and is evaluated using the Wilke formula [167]

µ =
N
∑

i=1

yiµi
∑N

k=1 ykΦik

, (2.33)

Φik =
1√
8

(

1 +
M i

Mk

)

1

2

(

1 +

(

µi

µk

) 1

2

(

Mk

M i

)

1

4

)2

, (2.34)
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where µi is the dynamic viscosity for the ith specie. The species dynamic viscosi-

ties are evaluated using a p order polynomial fit of the logarithm of the mixture

temperature

lnµi =

p
∑

k=0

bki (lnT )
k, (2.35)

where bki are the polynomial coefficients for the ith specie provided by the TRANSPORT

database [62]. Note that this polynomial fit could be easily cast into a form using

(ln (T/To))
k and ln (µi/µio) such that the coefficients could be dimensionless. The

remaining three diffusion coefficients, DT
i , Dik, and k are functions of the molecular

composition and thermodynamic state and are obtained from the solution of a linear

system defined by the block L−matrix system [23, 62, 86]. For more details about the

calculation of these transport coefficients and the L−matrix system, see Appendix A.

Equation (2.30) is an extended Fick’s law which consists of driving influences:

1) the temperature diffusion, commonly referred to as the Soret effect, 2) the mate-

rial diffusion, and 3) the pressure diffusion. The viscous stress tensor, τ , in Equa-

tion (2.31) obeys a Newtonian stress-strain rate relation under Stokes’ hypothesis.

Therefore, from now on the dynamic viscosity will be referred to as viscosity. Addi-

tionally, Equation (2.32) is an extended Fourier’s law. This extended Fourier’s law

consists of the heat flux due to heat diffusion, mass diffusion, and the DuFour effect

due to the pressure and material gradients. The forms of both Fourier’s and Fick’s

laws are appropriate for a mixture of ideal gases, as detailed in a derivation by Merk

[86] and summarized by Kee et al. [62], where additional references can be found.

In the detailed kinetics model chosen here, the diffusive transport coefficients are

evaluated using the TRANSPORT package [62] and the mixture and reaction properties

are evaluated with the CHEMKIN package [63].

It can be argued that for polyatomic gases, e.g. N2, H2O, and H2O2, other more

complex diffusive relations may be more representative. An example of such a model
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is one that does not satisfy Stokes’ hypothesis. There are indications that in some

pure polyatomic gases that the second coefficient of viscosity becomes important

[153, 154]. As indicated by Chapman and Cowling [12] and more recently by Gad-

el-Hak [36], there is considerable amount of scatter in the experimental data for

such coefficients. Moreover, there could be non-equilibrium effects that may in fact

become important inside shock and detonation waves. However, the models for these

effects can have drastically more complicated forms as demonstrated in Müller and

Ruggeri [91]. As such the inclusion of such effects would make the early examination

of diffusive processes on detonations exceedingly more complex and are thus left for

future investigations.

2.3 Simplified Model

Now, a simplified version of the detailed model is derived by adopting several

assumptions. The first assumption is to consider only a single reaction in the model

that is irreversible, such that the reactant goes to product, R → P, where R and

P are the reactant and product, respectively. Secondly, the reactant and product

have identical molecular masses, MR = MP. Therefore, the mixture molecular mass

remains constant, M = MR = MP, and thus, the mole and mass fractions are the

identical, yR = YR and yP = YP. Thirdly, the Soret effects is neglected so thermal

diffusion coefficients are set to zero, DT
R = DT

P = 0. Additionally, both the reactant

and product are calorically perfect ideal gases and have identical specific heats, cpR =

cpP = cp = c, where cp is the mixture specific heat at constant pressure and c a

constant.

Under these assumptions, the model reduces significantly. From here, the mass

fraction of the reactant and product will be given by 1− λ and λ, respectively. The
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mass diffusion transport relations, Equation (2.30), reduce to

jλ = −ρDλ∇λ, (2.36)

where Dλ is the mass diffusion coefficient of the mixture. Likewise, the energy diffu-

sion transport relation reduces to

q = −k∇T + ρDλqr∇λ, (2.37)

where qr = hf
R − hf

P is the heat release of the reaction. Furthermore, the mixture

specific internal energy, Equation (2.23), becomes

e =
p

ρ (γ − 1)
− qrλ, (2.38)

by assuming that hf
R = cpRT

o. In Equation (2.38) γ is the ratio of specific heats, and

as the specific heats are constant, the ratio remains constant. Lastly, as the single

reaction is irreversible, the molar production rate per unit volume of λ can written

as

ω̇λ =
ρ

M
(1− λ) aT β exp

(−E

RT

)

. (2.39)
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CHAPTER 3

PULSATING DETONATIONS WITH ONE STEP KINETICS

3.1 Introduction

In this chapter, a one-dimensional investigation of the long time dynamics of a

detonation described by the standard one step model, first studied in the inviscid

limit [28, 29] is performed. Much of this chapter is drawn from Romick et al. [120].

The aim is to obtain a better understanding of the effects of diffusive processes on

pulsating detonations. The detonation pressure traces are examined in both temporal

and frequency domains. Additionally, a study comparing shock-capturing and shock-

fitting techniques in the inviscid limit is presented.

The chapter is organized as follows. In Section 3.2, the mathematical model is

presented, followed by a description of the computational method. The convergence

of the period-doubling bifurcation points is shown to be in agreement with the general

theory of Feigenbaum [32], and diffusion is seen to have a generally stabilizing effect

on detonation dynamics. This is followed in Section 3.3.3 by a discussion of the

evolution of the frequency decomposition of the long time detonation pressure trace

as activation energy is varied. Likewise, Section 3.3.4 discusses how the half-reaction

length varies temporally versus activation energy. Lastly, the rate of convergence of

the solutions for the computational method utilized and their independence from the

computational method is presented.
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3.2 Formulation

In order to reduce the computational cost, a reference frame moving at a constant

velocity, D, was chosen. It was selected to be the CJ wave speed which is the average

wave speed of the detonations.

3.2.1 Mathematical Model

The model equations adopted in this chapter are the one-dimensional version

of Equations (2.1)-(2.4). The diffusive transport relations taken here are Equa-

tions (2.36), (2.31), and (2.37) for mass, momentum, and energy diffusion, respec-

tively. Additionally, the equations of state are given by Equations (2.5) and (2.38).

Lastly, to make a direct comparison with the previous work the molar production

rate, Equation (2.39), is modified by a Heaviside function. This forces the down-

stream ambient conditions to remain constant at all times, rather than having the

reaction progress variable minutely increasing over time. Therefore, the governing

equations are taken as:

∂ρ

∂t
+

∂

∂x
(ρ (u−D)) = 0, (3.1)

∂

∂t
(ρu) +

∂

∂x

(

ρu (u−D) + p− 4

3
µ
∂u

∂x

)

= 0, (3.2)

∂

∂t

(

ρ

(

e+
u2

2

))

+
∂

∂x

(

ρ

(

e+
u2

2

)

(u−D) + pu

−k
∂T

∂x
+ ρDλqr

∂λ

∂x
− 4

3
µ
∂u

∂x
u

)

= 0, (3.3)

∂

∂t
(ρλ) +

∂

∂x

(

ρλ (u−D)− ρDλ
∂λ

∂x

)

= ρ (1− λ) aT β exp

(−E

RT

)

H (p− ps) ,

(3.4)

where H (p− ps) is the Heaviside function which suppresses the reaction when p < ps

where ps is a selected pressure.
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3.2.2 Computational Methods

The unsteady dynamics of the one-dimensional detonation are predicted using

a temporally explicit point-wise method of lines approach. The majority of the

calculations presented here use the following method. The spatial discretization of

the advective terms was accomplished using a combination of a standard fifth order

Weighted Essentially Non-Oscillatory (WENO) and Lax-Friedrichs schemes in the

manner of Xu et al. [173]; the diffusive terms were evaluated using sixth order central

differences. Temporal integration is accomplished using a third order Runge-Kutta

method.

In addition to the previously listed computational method used for viscous shock–

capturing, in Section 3.3.1, the method of [47] for shock-fitting is used. Likewise, in

Section 3.3.4, an Runge-Kutta-Legendre technique developed by Meyer et al. [87] is

used. It makes use of a second-order operator split, but allows for larger explicit time

steps.

A standard technique of code verification, the method of manufactured solu-

tions [119], was performed, and a fifth order convergence rate was predicted as the

grid was refined demonstrating that the code correctly solves the governing equations.

In Section 3.3.6, the predictions of this scheme are compared to those from a simple

sixth order central difference of the advective terms. It will be seen that ordinary cen-

tral differencing suffices to describe detonation dynamics. Additionally, convergence

in the presence of the Heaviside function is also discussed in Section 3.3.7.

All calculations in Sections 3.3.1 and 3.3.2 were performed in a single processor

environment on an AMD 2.4 GHz processor with 512 kB cache. For a typical viscous

calculation of 2.0 µs, the computational time required was two days. Some calcu-

lations presented in Section 3.3.2 took as long as eight days for full relaxation. A

discussion of other computational times will be presented in Section 3.3.4.
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3.2.3 Problem Parameters

As discussed in [47] in the inviscid limit, the activation energy plays a large role

in determining the stability of the system. Moreover, the rate constant, a, merely

introduces a length scale, the half-reaction length, L1/2, (the distance between the

inviscid shock and the location at which λ = 1/2). By fixing L1/2 and thus allowing

a to vary, the effect of diffusion on the system can be explored.

Here, the ambient state is given by the ambient density, ρo = 1 kg/m3, and

the ambient pressure, po = 1 atm, and the reaction progress variable, λo = 0. The

following parameters will be used in this study, qr = 5066250 m2/s2, γ = 6/5, β =

0, cp = γR/
(

M (γ − 1)
)

= 1000 J/ (kg K) meaning M = 49.9 g/mole, and ps =

1.97 atm. The selection of ps is arbitrary, because there is minimal effect on the

system over the range of 1.01 atm to 9.97 atm. With this heat release, ratio of

specific heats, and ambient state, the CJ detonation velocity, DCJ , for the inviscid

problem is

DCJ =

√

γ
po
ρo

+
qr (γ2 − 1)

2
+

√

qr (γ2 − 1)

2
= 2167.56 m/s. (3.5)

A range of activation energies is explored for the long term behavior, E ∈

[2431800, 4053000] m2/s2. The values for γ and qr were chosen to compare directly

with the previous work of [47] in the inviscid limit. The energy release of the reaction

scaled by the ambient pressure and density, qn = 50, identical to that used in the

previous study. Likewise, the activation energies will be presented in dimensionless

form; thus, E ∈ [24, 40].

Selecting the diffusion coefficient, Dλ = 10−4 m2/s, thermal conductivity, k =

10−1 W/ (m K) , and viscosity, µ = 10−4 N s/m2 yields the Lewis, Le = k/ (ρocpDλ) ,

Prandtl, Pr = (cpµ) /k, and Schmidt, Sc = µ/ (ρoDλ) , numbers to have a value of

unity when evaluated at the ambient density. These diffusion parameters are within
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an order of magnitude of those of a slightly elevated temperature gas. Now by using

simple dimensional analysis of advection and diffusion parameters (U = 1000 m/s

is chosen as a typical velocity scale) gives rise to an approximate length scale of

mass diffusion, Dλ/U = 10−7 m, and likewise, for momentum and energy diffusion

µ/ρo/U = 10−7 m, and k/ρo/cp/U = 10−7 m. Therefore, because all the diffusion

length scales are the same, this scale will be denoted as Lµ = 10−7 m. Using these

parameters allows for the interaction of diffusion and reaction effects to be studied

and induces a set of scales similar to those given in reactive Navier-Stokes models

with detailed chemical kinetics. Unless otherwise stated, the calculations presented

are for a ratio of Lµ/L1/2 = 1/10, such that L1/2 = 10−6 m, which is similar to the

finest reaction length scale of hydrogen-air detonations.

The coarsest scales in hydrogen-air detonations are much larger than the cho-

sen L1/2; as shown by [108], a mixture of hydrogen-air at ambient conditions of

atmospheric pressure has an induction zone of approximately 2 × 10−4 m. In the

more realistic detailed kinetics systems, the main heat release occurs over the coarse

length scales. Thus, it is recognized that the chosen length scale on which the heat

is released is much finer than expected in a realistic physical system; the main rea-

son for this choice is to lessen the stiffness of the system so as to enable a tractable

computation of a fully resolved multiscale detonation. In Chapter 4, results will be

presented where no such compromise is used for fully resolved viscous hydrogen-air

detonations.

Unless otherwise stated, the simulations were initialized with the inviscid ZND

solution in a reference frame traveling at the CJ speed. This choice of reference frame

speed was made to reduce the length of the computational domain and thus, further

reduce the computational cost of the simulations. Simulations are integrated in time

to determine the long time behavior.
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Figure 3.1. Peak inviscid detonation pressures versus N1/2 for
(a) E = 26.64, (b) E = 27.82. Shock-capturing predictions are given by the
filled circles and the shock-fitting

(

N1/2 = 20
)

prediction is represented by
open circles and dashed lines.

3.3 Results and Discussion

In this section, the reactive Euler equations are first considered, and detrimental

effects of shock-capturing on predicting the convergence of unstable inviscid detona-

tions are examined. These defects are remedied by the addition of physical diffusion.

In addition to examining the temporal behavior of the detonation, the frequency do-

main is also investigated. Furthermore, the way the half-reaction zone length zone

varies in time is examined. Lastly, the unsteady solutions to the reactive Navier-

Stokes equations are shown to converge, and it is demonstrated that ordinary central

difference schemes can perform as well as more complex schemes such as WENO.

3.3.1 Inviscid Shock-Capturing versus Shock-Fitting

In addition to using the Euler equations for modeling detonations, the use of

shock-capturing techniques and moving reference frames is also common. Quirk [111]

reports that when using the Euler equations with any shock-capturing technique, a

shock moving slowly relative to the numerical grid will have low frequency numerical

perturbations. These low frequency perturbations can be lessened by refining the
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grid. To avoid this issue completely, [47] used a high accuracy shock-fitting technique

to predict the behavior of the one step detonation. This method limits the artificial

viscosity to negligible levels and thus, enables an accurate prediction with the number

of points within the so called half-reaction zone width, N1/2 = 20. For an activation

energy of E = 26.64, a simple period-1 limit cycle detonation is predicted using

shock-fitting; using shock-capturing with the same resolution, the predicted behavior

of a period-1 detonation is in agreement with that of shock-fitting with a relative

difference of the peak pressure of 2.1%. Increasing the resolution lessens this relative

difference as shown in Figure 3.1(a). At E = 27.82, shock-fitting predicts a period-8

limit cycle detonation, whereas shock-capturing, using the higher resolution of 40

points in the half-reaction length, predicts a period-4 detonation. This difference

can be reconciled by increasing the resolution, demonstrated in Figure 3.1(b). The

present study, in good agreement with [128], found that N1/2 > 80 was needed in

this regime. The resolution requirement to accurately predict the correct dominant

behavior including the correct number of local maxima may be even more stringent

for detonations with more local maxima, as seen in [93]. This suggests that numerical

diffusion is playing an important role in determining the behavior of the system at

lower resolutions. A more in-depth analysis of the resolutions needed to capture the

proper dynamics of the lead shock and trailing reaction wave is given in Section 3.3.4.

3.3.2 Effect of Physical Diffusion

The plausible yet erroneous predictions due to the inherent numerical diffusion in

the model can be remedied by increasing the resolution of the scheme. However, for

instabilities with many local maxima, the necessary resolution tends towards infinity

for the inviscid model. A preferable approach is to include explicit physical diffusion

and so introduce a cutoff length scale below which physical diffusion properly serves

to dampen oscillations.
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Figure 3.2. Detonation pressure versus time, Lµ/L1/2 = 1/10,
(a) E = 26.64, stable diffusive detonation, (b) E = 29.00, period-1 diffusive

detonation.

3.3.2.1 Stability Limit

In the inviscid case, linear stability analysis by [68] revealed that for E < 25.26,

the steady ZND wave is linearly stable and is otherwise linearly unstable. The acti-

vation energy at this stability boundary is labeled E0. Henrick et al. [47] numerically

found the stability limit, for the inviscid case, at Ei
0 = 25.265± 0.005. Here, a diffu-

sive case well above the inviscid stability limit was examined, E = 26.64, which [47]

found to relax to a period-1 limit cycle for an inviscid simulation. In the diffusive

simulation, it can be seen in Figure 3.2(a) that there is no limit cycle behavior, and

the detonation predicted by diffusive theory is in fact a stable steadily propagating

wave. The stability boundary for the diffusive case was found at Ed
0 ≈ 27.14. A

period-1 limit cycle may be realized in the diffusive case by increasing the activation

energy above Ed
0 ; an example is shown in Figure 3.2(b) with an activation energy of

E = 29.00.

It is expected that the onset of instability would be delayed more as the scale of

diffusion approaches that of reaction. Figure 3.3 shows precisely this behavior. Fur-

thermore, as the two scales approach one another, the onset of instability is delayed

significantly in comparison with the inviscid case.
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3.3.2.2 Period Doubling and Transition to Chaos

As the activation energy increases, more complicated dynamics occur at long

times. A period-doubling behavior and transition to chaos for unstable detonations

are found to be remarkably similar to that predicted by the simple logistic map

studied by May [83]. The activation energy at which the behavior switches from

a period-2n−1 to a period-2n solution is denoted as En, for n ≥ 1. As predicted

by [47, 93, 128], transition to a period-2 oscillation occurs at Ei
1 ≈ 27.2 for the

inviscid case. In the diffusive case, it was found instead at Ed
1 ≈ 29.32. Figure 3.4(a)

shows the time history of the detonation pressure for a slightly higher activation

energy, E = 29.50. In the long time limit, there are two distinct relative maxima,

p ≈ 60.370 atm and p ≈ 52.879 atm. Increasing further to E = 29.98, another

period-doubling is realized, and a period-4 oscillating detonation is achieved as seen

in Figure 3.4(b). The bifurcation points for both models are listed in Table 3.1
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Figure 3.4. Detonation pressure versus time, Lµ/L1/2 = 1/10:
(a) E = 29.50, period-2, (b) E = 29.98, period-4, (c) E = 30.74, chaotic,

(d) E = 30.86, period-3.
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TABLE 3.1

BIFURCATION POINTS AND APPROXIMATION TO FEIGENBAUM’S

CONSTANT

Inviscid Inviscid Diffusive Diffusive

n Ei
n δin Ed

n δdn

0 25.2650 - 27.14 -

1 27.1875 3.86 29.32 3.89

2 27.6850 4.26 29.88 4.67

3 27.8017 4.66 30.00 -

4 27.82675 - - -

Numerically determined for both inviscid and diffusive detonations.

along with approximations for Feigenbaum’s constant, δ∞ :

δ∞ = lim
n→∞

δn = lim
n→∞

En − En−1

En+1 − En

. (3.6)

Feigenbaum predicted δ∞ ≈ 4.669201. Diffusive and inviscid models predict δ∞ well.

3.3.2.3 Chaos and Order

Figure 3.5(a) gives the bifurcation diagram for the case studied by [47] in the

inviscid limit using a shock-fitting algorithm with negligible numerical diffusion. Fig-

ure 3.5(b) gives the diffusive analog. It was constructed by sampling 351 points with

E ∈ [25, 32], with a spacing of ∆E = 0.02. Simulations were integrated to t = 10 µs,

and relative maxima in detonation pressure were recorded for t ≥ 7.5 µs. In the dif-

fusive case, the period-doubling bifurcations occur up to Ed
∞ ≈ 30.03. Beyond this

point, there exists a region that is densely populated in relative maxima which is

most likely a chaotic regime. Increasing the activation energy yet further, one comes

39



26 28

E

40

80

100

p
m

a
x

(a
tm

)

60

(a)

40

80

100

p
m

a
x

(a
tm

)

26 28 30 32

E

(b)

60

Figure 3.5. Comparison of numerical bifurcation diagrams: (a) inviscid
detonation with shock-fitting, (b) diffusive detonation with Lµ/L1/2 = 1/10.

to regions with a small number of oscillatory modes with periods of 3, 5, and 6. A

chaotic detonation is shown in Figure 3.4(c). Yet, at a higher activation energy, a

solution with period-3 is found, which is shown in Figure 3.4(d).

3.3.3 Harmonic Analysis

It can be useful to understand how the energy of the pulsation cycle is distributed.

This is difficult to discern from the detonation pressure versus time plots. Further-

more, it can be difficult to discern if artificial viscosity or physical viscosity affects

the frequency from these type of plots. To elucidate some of these ideas, harmonic

analysis was used to examine the detonation pressure-time series away from initial-

ization. This type of analysis can reveal important information about an individual

signal, such as in which frequency is the majority of the energy being transmitted. It

is also a powerful tool to analyze the differences and similarities between two signals.

To further clarify this issue, the power spectral density (PSD) is used. The PSD

of a signal describes how the variance (or power) is distributed in frequency, and it
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is real-valued for any real signal. It can be used to reveal possible periodicities in a

complex signal. The variation between two signals can also be studied using PSD

by making a comparison between the two spectra. The PSD is simply defined as

the Fourier Transform of the auto-correlation of a signal [7, 43]. Moreover, it can be

written as the magnitude squared of the Fourier transform of the signal by using the

Wiener-Khinchin theorem. For the work here, the discrete one-sided mean-squared

amplitude PSD is used. The single-sided PSD is chosen so that the aliasing effect

at high frequencies could be bypassed. This normalization is chosen such that, as

Parseval’s theorem states [100], the sum of Φd to equal the mean-squared amplitude

of the discrete detonation pressure signal, where Φd(νk) is the discrete PSD of the

detonation pressure-time signal at frequency, νk. For more details on how the PSD is

calculated see Appendix B.

The PSDs presented are the power-frequency spectrum for the detonation pressure

time signal in decibels. The steady ZND detonation pressure has been used to non-

dimensionalize pressure. All results presented for the inviscid model were calculated

using shock-fitting with 40 points in the half-reaction length.

In order to better understand the use of harmonic analysis, a brief review of the

well-known results from linear stability of the inviscid model is given. From Lee and

Stewart [68] and Sharpe [127], as well as others, it is known that the first unstable

mode for a CJ detonation in one step kinetics, for the parameters studied here, occurs

at an activation energy of E ≈ 25.265. At any activation energy above this critical

point, the steady-state detonation profile is unstable at long times. For example, at an

activation energy of E = 26.0, linear stability theory predicts an unstable mode at the

non-dimensional fundamental frequency of νo ≈ 0.0879 [47]. The frequency has been

non-dimesionalized by

√

po/
(

ρoL2
1/2

)

. At early times, the linear stability frequency

and growth rates were matched well by [47]. Furthermore at this activation energy

in the inviscid limit, a period-1 detonation is in fact predicted at long times [47, 93].
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Figure 3.6. The PSD spectra in decibels of the long time behavior for (a)
E = 26.0, (b) E = 27.5, (c) E = 27.7. The inviscid case is indicated by the
black line and if present, the viscous case is indicated by the gray line.
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Now, looking at the long time behavior at this activation energy in the frequency

domain, it is clear from Figure 3.6(a) that nearly all of the energy is contained at a

fundamental frequency, νo = 0.0849. This fundamental frequency is also known as the

first harmonic of the system. This is a relative difference of 3.41% versus the linear

stability frequency. This difference is attributed to the saturation of nonlinear effects

at long times. Additionally, the harmonics of the fundamental mode also contain

energy of the detonation, though they show a power law decrease in energy carried.

Both [93] and [47] report a sub-harmonic bifurcation process in the inviscid limit;

additionally Romick et al. [120] reports a similar behavior in the viscous case. This

sub-harmonic bifurcation process is indicated by the appearance of lower frequencies

developing as the activation energy is increased. As an example, for an activation

energy of E = 27.5, a pulsating detonation with two distinct peaks in the detonation

pressure-time signal is predicted. The inviscid PSD for this activation energy, which is

shown in Figure 3.6(b), demonstrates the appearance of this sub-harmonic frequency.

In fact these sub-harmonics are indicated by spikes at the odd multiples of νo/2.

The predicted fundamental frequency of νo = 0.0842, is 6.23% larger relative to

that predicted by linear stability of 0.0793. The nonlinear effect on the frequency

has increased from the strictly period-1 detonation. Furthermore, it is manifested

in the multi-mode nature of the detonation. As a brief aside, it should be noted

that Massa et al. [80], who used an eigenvalue decomposition of perturbations to a

multi-dimensional detonation wave in the one step model, found that the least stable

perturbations occurred near this first sub-harmonic suggesting that even in multiple

dimensions the dominant mechanism is similar to that seen in galloping case of one

dimension.

At a slightly higher activation, E = 27.7, a period-4 detonation is predicted in the

inviscid limit. This transition is indicated in the PSD spectrum by the appearance

of a second sub-harmonic group as shown in Figure 3.6(c). This second set of sub-
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harmonics occur at the odd multiples of νo/4. Furthermore, the first set of sub-

harmonics now carries a more appreciable ratio of the energy.

As indicated earlier in Section 3.3.2, the addition of physical viscosity alters the

long time behavior at a given activation energy. In addition to the changes in the

time domain, there can be significant modifications of the behavior in frequency

domain. At this activation energy of E = 27.7, the viscous PSD does not indicate

any of the sub-harmonics predicted in the inviscid limit. Additionally, there is a

shift in the fundamental frequency from 0.0839 in the inviscid case to 0.0787 in

the viscous analog as shown in Figure 3.6(c). The addition of viscosity shifts the

dominant frequency much closer to the prediction from linear stability theory of

0.0786. Moreover, there has also been a significant reduction in the amplitude of the

peak in the spectrum. Note that here instead of the traditional definition of decibels

[10× log10(PSD/max(PSD))] , both spectra shown in Figure 3.6(c) have been scaled

by the maximum of the inviscid spectrum so the magnitude of the different spectra

would not be lost.

Figure 3.7 shows how the non-dimensional frequency spectra evolve versus the

activation energy for the viscous case studied for Lµ/L1/2 = 1/10. For detonation

pressure time signals with deviations larger than 0.04 atm from the mean, the mean

detonation pressure is subtracted for calculation of the PSDs. The strength of peaks

are indicated by the shade of gray; the stronger the peak the darker the shade of gray

is. The transition from a stable to an unstable detonation is indicated by the jump

in the main frequency from 0 to approximately 0.0801. Within the region where the

detonation pressure time signal has a single local maxima, the fundamental frequency

shifts from 0.801 to 0.0771, which is the same trend that is predicted by linear stability

theory. Moreover, as the activation energy increases, so does the energy ratio of the

pulsations that higher harmonics of the fundamental frequency carry; this is indicated

by the appearance of lines at 2νo, 3νo, and higher multiples.
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Figure 3.7. The bifurcation diagram of the non-dimensional frequency
spectra for diffusive detonation with Lµ/L1/2 = 1/10.

As mentioned previously, the second bifurcation is indicated by the appearance

of sub-harmonic frequencies, which occurs at E = 29.32 in the viscous case studied

here. In fact, the sub-harmonic frequency appears at νo/2 = 0.0382. Furthermore,

at the further bifurcations additional sub-harmonic frequencies begin to appear, at

νo/4 and νo/8. Additionally, the fundamental frequency continues to shift to slightly

lower frequencies; thus at E = 30.00, νo = 0.0756.

After these sub-harmonic bifurcations, the behavior undergoes a transition to a

detonation with many active frequencies, indicating most likely a chaotic detonation.

Within likely chaotic domain, there are regions of order where only several frequencies

are active; this is consistent with the local maxima in the detonation pressure bifur-

cation plot, shown in Figure 3.5(b). Even though there are many active modes, the

fundamental frequency before this transition continues to carry a significant energy

ratio.
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Within in this region of likely chaotically propagating pulsating detonation, there

are pockets of order. The largest of these ordered regions are for period-3 detonations,

one pocket of order occurs near E = 30.42, and a second is near E = 30.86. These

regions are indicated in the frequency spectra by the peaks at multiples of νo/3 and

2νo/3. At the highest activation energies, there are many active modes though the

strongest mode is near the zero frequency which is indicative of a detonation failing.

This suggests that eventually the detonation becomes an uncoupled lead shock and a

trailing reaction wave. This relationship between the lead shock and trailing reaction

wave is discussed further for a range of activation energy in Section 3.3.4.

3.3.4 Variation in Half-Reaction Length

In this simple model of one step kinetics, the number of points in the steady

L1/2 is used as a standard reference for the resolution. However as briefly mentioned

previously in Sections 3.3.1 and 3.3.3, there is a coupling between the lead shock and

the reaction wave in a time-dependent calculation. Moreover, this means that the

length from the leading shock-front to the location where the reaction progress vari-

able, λ = 1/2, can vary in a time-dependent calculation. Fixing the strictly steady

L1/2 = 10−6 m by allowing a to vary as E varies in the inviscid limit, the evolu-

tion in the reaction zone length in a time-dependent calculation can be more easily

studied. This examination gives insight why the resolution requirement to properly

capture the detonation dynamics varies with the activation energy as demonstrated

in Section 3.3.1.

At lower activation energies, the highly accurate shock-fitting technique of [47]

can be used to predict the inviscid behavior and calculate the half-reaction zone

length. The use of the shock-fitting technique also reduces the needed computational

domain. Figure 3.8(a) shows the x− t diagram in a reference frame traveling at the

CJ speed for an inviscid stable detonation at E = 25. The location of λ = 1/2 is
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Figure 3.8. The x− t diagrams of inviscid CJ detonations in a frame of
reference traveling at the CJ speed for activation energies of (a) E = 25,

(b) E = 26 (c) E = 28, (d) E = 35.
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indicated by the line behind the shock front, and clearly, it stays at a constant distance

behind the shock-front. Additionally, it is a stable steadily traveling detonation,

which is consistent with the work of [47]. Examining an activation energy above Ei
0,

a pulsating detonation is predicted, and Figure 3.8(b) show precisely this in an x− t

diagram. The half-reaction zone is also pulsating; however, it is slightly out of phase

with the lead shock. Therefore, the half-reaction zone length evolves in time, with

the minimum L1/2min
= 6.65× 10−7 m and the maximum L1/2max

= 1.355× 10−6 m.

This yields a ratio between the maximum and minimum of 2.04. Now, for a higher

activation energy, E = 28, a likely chaotic pulsating detonation is predicted. The

x− t diagram for this activation energy is shown in Figure 3.8(c). By this activation

energy, the ratio has increased to 7.29 with L1/2max
= 2.18 × 10−6 m and L1/2min

=

3.00× 10−7 m.

At even higher activation energies the shock-fitting technique can no longer be

used. At an activation energy which is more representative of detailed mechanism

for detonations [149], E = 35, the leading shock decouples from the trailing reaction

wave. Figure 3.8(d) shows the detonation failing by decomposing into a weakened

leading shock, contact discontinuity, and a rarefaction wave to the CJ state before

the eventual re-ignition of the detonation. After re-ignition, the trailing reaction

wave quickly reattaches the leading shock wave, leading to a strongly overdriven

detonation and L1/2min
= 3.15× 10−8 m. At this high activation energy, the ratio of

the maximum to minimum reaction zone lengths is 1524.

For greater comprehension of this process, several spatial profiles are shown in Fig-

ure 3.9. Figure 3.9(a) shows the initial ZND profile for pressure non-dimensionalized

by the ZND shock pressure in black and the reaction progress variable in gray, zoomed

at the shock front. After only 0.240 µs, the detonation has failed. The separation

between the leading shock and the trailing reaction wave after this decoupling is

shown Figure 3.9(b). Figure 3.9(c) shows the spatial profile after re-ignition, where
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Figure 3.9. Spatial profiles for pressure non-dimensionalized by the ZND
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inviscid CJ detonation in reference frame traveling at the CJ speed for
activation energy of E = 35 at (a) t = 0 µs, (b) t = 0.240 µs, and (c)

t = 0.415 µs.
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the half-reaction zone length is near its minimum at t = 0.415 µs.

The maximum half-reaction zone length grows longer as the activation energy

increases; likewise, the minimum half-reaction zone length becomes shorter. This

means that as the activation energy increases, not only does the domain length of

the calculation need to increase, but the resolution also must increase. Thus, the

computational expense of the calculation does not increase linearly as activation

energy increases.

An a priori bound for the longest half-reaction zone length can be obtained in this

simple one step model by solving a Riemann problem between the ambient and CJ

conditions. If inertial confinement is assumed, then it becomes an adiabatic, isochoric

thermal auto-ignition problem behind the weakened leading shock and the governing

equations reduce to

∂λ

∂t
= (1− λ) a exp

( −E

(p/ρ)

)

, (3.7)

p

(γ − 1) ρ
− qλ = c. (3.8)

These can then be manipulated to get a time to auto-ignition,

tign =

∫ 1/2

0

1

a (1− λ) exp
(

−E
(pS/ρS+(γ−1)qλ)

)dλ, (3.9)

where ρS, and pS are the post-shock density and pressure, respectively. After the

auto-ignition time is calculated it can be used in combination with the shock-speed,

DS, and the post-shock velocity, uS, to calculate the length to auto-ignition,

Lign = (DS − uS)tign, (3.10)

which can be used as an approximation to the longest half-reaction zone length.
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Figure 3.10. (a) Minimum half-reaction zone length and (b) maximum
half-reaction zone length versus activation energy for inviscid calculations
with the steady L1/2 = 10−6 m (gray curve) and theoretical estimate (black

curve).

Likewise, an a priori bound for the shortest half-reaction zone length can be

obtained. As mentioned previously, after re-ignition the detonation becomes strongly

overdriven, and at sufficiently high overdrives, the shocked temperature dominates

the activation energy in the chemical reaction term. This causes the exponential in

the Arrhenius kinetics to become approximately unity. Therefore, there is a specific

overdrive at which the interaction between the rate of chemical reaction and the

post-shock velocity yields a minimum L1/2. Thus this overdrive and half-reaction

zone length can be solved for numerically.

These theoretical bounds are compared with the values predicted directly from

the inviscid calculations with the steady L1/2 = 10−6 m in Figure 3.10. At acti-

vation energies where the predicted detonation behavior is unstable, the maximum

half-reaction zone length begins to grow longer and eventually begins to approach the

upper bound at sufficiently high activation energies as shown in Figure 3.10(a). Like-

wise, as shown in Figure 3.10(b), the minimum half-reaction zone length begins to

follow the slope shown by the minimum bound. Additionally, as seen in Figure 3.11,

the ratio of the maximum to minimum lengths begins to approach the ratio of the
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versus activation energy for inviscid calculations with the steady

L1/2 = 10−6 m (dark gray curve), viscous calculations with Lµ/L1/2 = 1/10,
(light gray curve) and theoretical estimate (black curve).

bounds at higher activation energies in the inviscid limit. Furthermore, a study was

performed with Lµ/L1/2 = 1/10 for the diffusive case, and it is clear that the addition

of viscosity reduces the ratio of the reaction length scales at a particular activation

energy. Moreover, the addition of viscosity essentially shifts the curve to right in

activation energy. Thus at sufficiently high activation energies, the finest reaction

length scale becomes the scale which dictates the resolution necessary.

As a brief aside, the computational cost of two representative calculations are

shown in Table 3.2. In addition to the two calculations listed, an approximation of

the computational cost of a similar calculation to E = 46.37, which was suggested by

[149] and references therein as more representative of a detailed hydrogen-air mixture.

In Table 3.2, LdD is the length of the domain needed if the frame of reference moves at

the CJ speed, Ldf the length of the domain needed if distance from the leading shock

to the end of the domain remains fixed, tf the time at the end of integration, ∆xi

the spatial resolution needed for the inviscid case, ∆xv the spatial resolution needed

for the viscous case, Nti the number time steps needed in the inviscid case, NtRK

the number time steps needed in the viscous case using the Runge-Kutta integration
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TABLE 3.2

COMPUTATIONAL COST OF ONE-DIMENSIONAL ONE STEP CJ

DETONATIONS

E = 32 E = 35 E = 46.37

LdD
(m) 4.5× 10−4 6.5× 10−4 7.5× 10−3

Ldf
(m) 6× 10−5 1× 10−4 7.5× 10−4

∆xi (m) 2.5× 10−9 1.67× 10−9 1.67× 10−10

∆xv (m) 5× 10−9 2.5× 10−9 3.125× 10−10

tf (µs) 2.5 2.5 5

Nti/RK/RKL
(3.2/25.1/0.7)× 106 (5/100/1.5)× 106 (10/10000/50)× 106

CPUhrs (15/2.55/0.15)× 102 (30/34/0.96)× 102 (75/510/4.4)× 105

AMR CPUhrs - - 1.1× 105

scheme, NtRKL
the number time steps needed in the viscous case using the Runge-

Kutta-Legendre integration scheme, and the CPUhrs. listed are for the inviscid case

for the steadily traveling frame of reference, the viscous case for the Runge-Kutta

scheme for the fixed distance from the front boundary, and the viscous case for

the Runge-Kutta-Legendre scheme for the fixed distance from the front boundary.

Additionally, the adaptive mesh refinement (AMR) reduction factor is assumed to be

40 and the AMR CPUhrs estimate is based on the viscous case for the Runge-Kutta-

Legendre scheme for the fixed distance from the front boundary. There is a dramatic

increase in the computational cost as the activation energy increases. Furthermore,

even in a single dimension with a simple one step model at sufficiently high activation

energies, the computations become extremely expensive.
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Figure 3.12. (a) Diffusive detonation pressure versus time for both the
central differencing and WENO schemes for E = 30.02 and (b) the relative

difference between the schemes.

3.3.5 Method Independence and Convergence

In this section, firstly, the predictions of the method that makes use of the WENO

scheme for advective derivative calculations are compared to a method that use cen-

tral differences to calculate the advective derivatives. Secondly, the convergence rate

of WENO computational method is then discussed in the presence of the Heaviside

function.

3.3.6 WENO versus Central Differences

For resolved diffusive detonations, the use of the ubiquitous WENO scheme is un-

necessary. The simpler central difference of the advective derivative terms is sufficient.

Even with complex behaviors, as in the period-8 behavior predicted for E = 30.02,

which is shown in Figure 3.12(a), the use of a central difference for the advective terms

yields results which agree with those of the WENO scheme. The relative difference

between predictions of the two methods is shown in Figure 3.12(b). The values of

the detonation pressure match up to a time-shift which originates at initialization.
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TABLE 3.3

CONVERGENCE FOR DIFFUSIVE ONE STEP DETONATIONS

∆x p29.0
rc29.0

T29.0
rc29.0

p29.5
rc29.5

T29.5
rc29.5

(m) (atm) (µs) (atm) (µs)

2.50× 10−8 38.14 − 4.071× 10−2 − 53.77 − 8.205× 10−2 −

1.25× 10−8 36.88 2.07 4.062× 10−2 3.17 46.95 2.10 8.189× 10−2 3.00

6.25× 10−9 36.58 − 4.061× 10−2 − 45.36 − 8.187× 10−2 −

Rates of pressure and frequency for two activation energies.

3.3.7 Convergence Rate

The presence of the Heaviside function in the reaction source precludes the ex-

pected fifth order accuracy. The state variables do in fact converge at a lower or-

der than that of the theoretical value. At a representative point in space/time,

x = 1.477 × 10−4 m at t = 1 µs, the pressure converges at a rate of 2.07 and 2.10

for detonations with activation energies of E = 29.0 and E = 29.5, respectively.

However, the state variables converge at rates larger than unity suggesting that the

Heaviside function plays a small role. In addition to the state variables, the periods

of oscillation, T, of the oscillation was examined for both cases and are listed in

Table 3.3. The period of oscillation was taken starting at 1 µs, as the period-1 and

period-2 detonations are within the limit cycle behavior, and going until 3.5 µs; the

convergence rates for the periods are higher, 3.17 and 3.00, respectively.
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CHAPTER 4

PISTON-DRIVEN HYDROGEN-AIR DETONATIONS

4.1 Introduction

As briefly alluded to in Chapter 1, there are indications that neglecting diffu-

sion in modeling detonations may be problematic. Work done by Singh et al. [138]

and Powers [107], demonstrated that the two-dimensional one step detonation pat-

terns relaxed to a grid-independent structure while using the Navier-Stokes equations;

however, these patterns remained grid-dependent when using the reactive Euler equa-

tions. Likewise, Mazaheri et al. [85] demonstrated that in regions of high resolution

in a one step detonation in a channel, diffusion plays an important role. Moreover,

it was demonstrated, in Chapter 3 and in [120], that for the one step kinetics model,

the long time behavior of the detonation is affected by the addition of viscosity; these

viscous effects delay the transition to instability, and in the regime where multiple

frequency oscillations exist, viscosity can play a dramatic role. However, the coarsest

scales in hydrogen-air detonations are much larger than the chosen L1/2; as shown

by [108], a mixture of hydrogen-air at ambient conditions of atmospheric pressure has

an induction zone of approximately 2 × 10−4 m. It is at these coarser length scales

that the main heat release occurs. Al-Khateeb et al. [2] suggest that hydrogen-air

mixtures have reaction length scales present which have time scales associated with

them over which both chemistry and diffusion can be important. This suggests that

viscosity may have a role to play in the dynamics of hydrogen-air detonations; how-

ever, the role of viscosity in pulsating detonations of a detailed kinetics model has

not been quantified in a detailed manner.
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In this chapter, an extension to the results presented in Chapter 3 is presented and

has been adapted from Romick et al. [121]. The detailed kinetics model examined in

this work is for a hydrogen-air mixture. As opposed to the activation energy that is

varied in the one step reaction model, the long time behavior of the detonation for

the detailed kinetics model is examined as the overdrive is varied. The overdrive is

defined as f = (D/DCJ)
2 where D and DCJ are the detonation wave speed and the

wave speed at which the detonation terminates at the sonic point, respectively. In

this study, this is accomplished by using a supporting piston to drive the flow. The

evolution of the long time behavior is investigated in the temporal and frequency

domains as the supporting piston velocity is varied. Additionally, it will address how

the addition of physical mass, momentum and energy diffusion affects the long time

behavior in one-dimensional detonations of mixtures modeled by detailed kinetics

and multicomponent transport.

The chapter is organized as follows. In Section 4.2, the mathematical model is pre-

sented followed by a description of the computational method and a brief description

of the physical problem. This is followed by a brief validation of the model and veri-

fication of the computational method is discussed in Section 4.3. Next in Section 4.4,

the model is used to predict the dynamics of a series of piston-driven hydrogen-air

flows. It will be demonstrated that as the supporting piston velocity is lowered, the

long time behavior becomes more complex in a similar manner to previous inviscid

studies of hydrogen-based overdriven detonations [20, 26, 145, 175]. Furthermore, the

addition of diffusive processes has a slightly stabilizing effect, shifting the transition

to a pulsating detonation by less than 2% with respect to the supporting piston veloc-

ity. Moreover, the long time behavior is examined using harmonic analysis and with

the use of the fine resolutions in this study, gives further insight into how the behavior

changes as the supporting piston velocity is varied. Additionally, this analysis is used

to find similarities and differences between the inviscid and viscous analogs. Lastly,
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in Section 4.5, a physics-based analysis of the detonation dynamics is discussed using

both detailed kinetics and the simpler one step model.

4.2 Formulation

4.2.1 Mathematical Model

The model equations adopted in this chapter are the one-dimensional version

of Equations (2.1)-(2.4). Additionally, the diffusive transport relations taken here

are Equations (2.30),(2.31), and (2.32) for mass, momentum, and energy diffusion,

respectively. The further constitutive equations are listed in Section 2.2. The reaction

and mixture properties are evaluated using the CHEMKIN package [63], and the diffusive

transport coefficients are evaluated TRANSPORT package [62].

To initiate a detonation in an initially quiescent fluid, an accelerating piston is

positioned on the left side of the domain. For computational purposes, it is easier to

use a domain attached to the face of the accelerating piston. Assuming the piston is

initially located at x = 0 and the velocity of the piston is a known function of time,

up(t), the accelerating frame can be related to the laboratory frame as

x̃ = x−
∫ t

0

up(t̂)dt̂, (4.1)

t̃ = t, (4.2)

where x̃ is the location in the accelerating frame, t̃ the time in the accelerating frame

of reference, and t̂ a dummy variable. Thus, the velocity in the accelerating frame,

ũ, can be related to the laboratory frame particle velocity as

ũ = u− up(t). (4.3)

Applying this transformation, the one-dimensional the governing Equations (2.1)-
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(2.4) in the accelerating frame of reference become

∂ρ

∂t̃
+

∂

∂x̃
(ρũ) = 0, (4.4)

∂

∂t̃
(ρũ) +

∂

∂x̃

(

ρũ2 + p− τ
)

= −ρ
dup

dt̃
, (4.5)

∂

∂t̃

(

ρ

(

e+
ũ2

2

))

+
∂

∂x̃

(

ρũ

(

e+
ũ2

2

)

+ (p− τ) ũ+ q

)

= −ρũ
dup

dt̃
, (4.6)

∂

∂t̃
(ρYi) +

∂

∂x̃
(ρũYi + ji) = M iω̇i. (4.7)

For a more detailed derivation, the reader is referred to Appendix C. As t̃ = t, from

here on t will be used in place of t̃.

4.2.2 Computational Methods

The viscous calculations are performed using the Wavelet Adaptive Multireso-

lution Representation (WAMR) method, first developed by Vasilyev and Paolucci

[157, 158]. This adaptive mesh refinement technique is enabled by wavelet functions.

These functions have compact support in scale and space, allowing for a large com-

pression of data. Therefore, to accurately represent flow fields with distinct features at

fine scales, fewer points are needed compared with a wide variety of other approaches.

The WAMR method is a method of lines approach at collocation points and utilizes

central finite difference schemes to calculate derivatives with special one-sided dif-

ferences near boundaries. Additionally, it utilizes a user-specified control threshold

parameter that correlates to the error tolerated in the solution, allowing unnecessary

points to be discarded. See Paolucci et al. [106] for a more detailed description of

the method in its current form. It has been applied successfully to a number of fluids

problems, cf. Singh et al. [139], Rastigejev [115], Wirasaet and Paolucci [170], Rastige-

jev and Paolucci [116], Rastigejev and Paolucci [117], Wirasaet [169], Zikoski [180],

and Paolucci et al. [105]. The temporal integration is accomplished using an error-
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controlled nominally fifth order Runge-Kutta scheme [109].

In addition, inviscid calculations are compared directly with the viscous calcula-

tions. For these inviscid calculations, all diffusion coefficients, viscosity, and thermal

conductivity are taken to be zero. A uniform finite difference grid is used for these

calculations and utilizes a combination of a nominally second order mid-mod and

Lax-Friedrichs scheme to calculate derivatives in a similar manner to that Xu et al.

[173] implemented in their WENO and Lax-Friedrichs scheme. Temporal integration

for the inviscid calculations is accomplished using a third order Runge-Kutta method.

For the viscous calculations the threshold used for the WAMR method is ǫ = 10−3

unless otherwise specified. This selection leads to a spatial resolution ofO(3×10−8 m)

to be utilized which results in a time step of O(10−12 s). After the formation of

the detonation, a typical simulation time for a viscous calculation of ∼ 1 µs took

O(300 CPUhrs) on 32 cores. For the inviscid calculations a spatial discretization of

2.5× 10−7 m is used which results in a time step of O(10−10 s).

4.2.3 Problem Parameters

In this study, a series of one-dimensional, piston-driven flows of an initially sto-

ichiometric mixture of hydrogen-air (2H2 + O2 + 3.76N2) at ambient conditions of

293.15 K and 1 atm is considered. The detailed kinetics mechanism employed is

drawn from Miller et al. [89] and is used by Powers and Paolucci [108]. It con-

tains 9 species, 3 elements and 19 reversible reactions where nitrogen is treated as a

non-reacting species and is shown in Table 4.1.

The flow is accelerated using a piston with a velocity, up(t), taking the form

up(t) =
1

2
(upo (1 + tanh (a (t− ta)))− (upo − up) (1 + tanh (b (t− tb)))) , (4.8)

where upo is the initial plateau in piston velocity, up the final piston velocity, a the

rate of acceleration to the initial plateau, ta the time at which the acceleration is
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TABLE 4.1

HYDROGEN-AIR REACTION MECHANISM

j Reaction aj βj Ej
















(mole/cm3)















1−

N
∑

i=1

ν
′

ij















K
βj s

















(

cal

mole

)

1 H2 +O2 ⇋ 2OH 1.70× 1013 0.00 47780

2 OH +H2 ⇋ H2O +H 1.17× 109 1.30 3626

3 H +O2 ⇋ OH +O 5.13× 1016 −0.816 16507

4 O +H2 ⇋ OH +H 1.80× 1010 1.00 8826

5 H +O2 +M ⇋ HO2 +Ma 2.10× 1018 −1.00 0

6 H +O2 +O2 ⇋ HO2 +O2 6.70× 1019 −1.42 0

7 H +O2 +N2 ⇋ HO2 +N2 6.70× 1019 −1.42 0

8 OH +HO2 ⇋ H2O +O2 5.00× 1013 0.00 1000

9 H +HO2 ⇋ 2OH 2.50× 1014 0.00 1900

10 O +HO2 ⇋ O2 +OH 4.80× 1013 0.00 100

11 2OH ⇋ O +H2O 6.00× 108 1.30 0

12 H2 +M ⇋ H +H +M b 2.23× 1012 0.50 92600

13 O2 +M ⇋ O +O +M 1.85× 1011 0.50 95560

14 H +OH +M ⇋ H2O +M c 7.50× 1023 −2.60 0

15 H +HO2 ⇋ H2 +O2 2.50× 1013 0.00 700

16 HO2 +HO2 ⇋ H2O2 +O2 2.00× 1012 0.00 0

17 H2O2 +M ⇋ OH +OH +M 1.30× 1017 0.00 45500

18 H2O2 +H ⇋ HO2 +H2 1.60× 1012 0.00 3800

19 H2O2 +OH ⇋ H2O +HO2 1.00× 1013 0.00 1800

Enhanced third-body efficiencies with M :

Ma: αH2O = 21.0, αH2
= 3.30, αN2

= 0.00, αO2
= 0.00

M b: αH2O = 6.00, αH = 2.00, αH2
= 3.00

M c: αH2O = 20.0
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Figure 4.1. The supporting piston velocity versus time curve for
up = 1500 m/s.

centered, b the rate of acceleration to the final supporting piston velocity, and tb the

time at which the deceleration is centered. This form has two plateaus and is chosen

to allow for a more rapid formation of the initial detonation. Figure 4.1 shows the

chosen form of the piston velocity for case A in Table 4.2 for up = 1500 m/s.

The form of the piston acceleration in the initialization of the detonation plays

a significant role in the early time behavior, also known as the DDT problem. The

compression wave pushed into the fluid by the piston causes a shock to form which

then proceeds to propagate away from the piston face. The strength of this shock

wave is dependent on the supporting piston velocity and gives rise to a reaction wave

due to pre-heating. This reaction wave eventually gives rise to a localized explosion,

which eventually develops into an overdriven detonation before relaxing at long times.

This process is similar to that described by a localized thermal power deposition used

by Kassoy et al. [61], Kassoy [60], and Regele et al. [118]. The weaker the inertial

confinement of the initial reaction wave, the longer the initial detonation takes to

form.

As this work focuses on the long time behavior of the detonation, the long time

behavior of three piston acceleration profiles is examined with the same final sup-

porting piston velocity of up = 1500 m/s to examine whether this early time effect

62



TABLE 4.2

INITIALIZATION PARAMETERS

Case upo
(m/s) up (m/s) a (1/s) ta (s) b (1/s) tb (s)

A 1650 1500 108 5× 10−8 107 1× 10−6

B 1650 1500 107 1× 10−6 107 3× 10−6

C 1500 1500 107 1× 10−6 107 3× 10−6

continues to later times. The parameters for the three different initialization profiles

are listed in Table 4.2. As shown in Figure 4.2, the inertial confinement of the initial

reaction wave plays a dramatic role in the time to detonation. Additionally, the over-

pressure is much greater for the weaker driven shock, and it also takes longer to relax

to a steady state. However, the long time behavior relaxes to a stable detonation in

all three cases, with the local maximum pressure at the front, which is the detonation

pressure, of pA = 36.75 atm, pB = 36.76 atm and pC = 36.73 atm, meaning all three

cases are within 0.1% of each other. For the remainder of the chapter, case A is used

allowing only up to vary. Final piston velocities ranging from 1200 m/s to 1500 m/s

are examined.

4.3 Validation of the Model and Verification of the Computational Method

The model has been restricted to one dimension; thus, there are limited means

of validation. However, in experiments of shock-induced combustion flow around

spherical projectiles in a hydrogen-air mixture at 0.421 atm and 293.15 K, Lehr [70]

observed longitudinal oscillations. Figure 4.3 shows these oscillations in an image

originally reported by Lehr. For an inflow condition corresponding to an overdrive

f ≈ 1.10, Lehr observed a frequency of νo = 1.04 MHz. Starting the viscous calcu-
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Figure 4.2. The detonation pressure versus time curve up = 1500 m/s.
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Figure 4.3. An image from Lehr [70] of the longitudinal oscillations in the
shock-induced combustion around a projectile in a hydrogen-air mixture at

0.421 atm and 293.15 K.

64



p
d
e
t 
(a

tm
)

(a)

36.70

36.65

36.75

36.80

10-6 10-5 10-4 10-3

ε

10-4 10-310-5

10-2

10-3

10-4

ε

9

10

R
e
la

ti
v
e
 D

if
fe

re
n
c
e

(b)

10-5

Figure 4.4. (a) Detonation pressure versus ǫ and (b) difference in
detonation pressure between ǫ = 1× 10−6 and ǫ for up = 1500 m/s.

lation with the inviscid steady state profile with a superimposed smooth transition

from the shocked state to the ambient condition over 5 × 10−6 m, a frequency of

νo = 0.97 MHz is predicted. Thus, it seems that the instability observed by Lehr in

multiple dimensions is captured well by a one-dimensional model. This is similar to

results reported by Yungster and Radhakrishan [175] of νo = 1.06 MHz for an over-

drive of f = 1.09 with an ambient temperature of 298 K and Daimon and Matsuo

[20] who do not report frequency explicitly, but visual inspection suggests that the

frequencies are in the 1 MHz range. The predicted frequency here is only 6.7% dif-

ferent from that measured by Lehr; the discrepancy is likely due the one-dimensional

assumption and uncertainty in chemical kinetic parameters. Only a minimal effect

on the frequency was predicted using several other hydrogen-based chemical mecha-

nisms.

The WAMR procedure is a self-converging method, which means that as the

error-threshold parameter, ǫ, is reduced, the overall error is reduced. To verify that

in fact the procedure is convergent regime, several values of ǫ are examined for up =

1500 m/s. The long time behavior at this supporting piston velocity is a stable,

steadily traveling detonation as shown in Figure 4.2. Figure 4.4(a) shows the long
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time detonation pressure versus ǫ. The detonation pressure is converging to 36.68 atm.

It should be noted the standard deviation on the detonation pressure is indicated by

the vertical lines. As the error-threshold parameter is reduced, the standard deviation

is reduced around the detonation pressure point indicated by the dots. In fact at the

two most accurate solutions, the standard deviation in the detonation pressure is

difficult to identify. Additionally, the difference in the long time detonation pressure

is calculated from the most accurate solution; this is shown in Figure 4.4(b). As

the error-threshold parameter is reduced the difference decreases near O (ǫ0.9) , as

indicated on the log-log plot. Furthermore, the largest percent difference is a 0.2%

giving a good indication that the WAMR method is in the convergent regime.

4.4 Results

In this section, a study of the long time behavior of the propagating detonation is

performed as the final supporting piston velocity, up, is varied. This is done first in

the time domain, and then harmonic analysis is used to examine the active frequen-

cies of the pulsating detonations in Section 4.4.5. Lastly, in Section 4.4.7, several

comparisons between the viscous and inviscid calculations are performed in both the

time and frequency domains.

4.4.1 Stable Detonations

For sufficiently high up, a steadily traveling detonation arises and persists at long

times. The detonation pressure versus time curve for a stable detonation, at up =

1500 m/s, is shown in Figure 4.1. For case A, by 10×10−6 s the detonation relaxes to

a steadily traveling piston-supported detonation traveling to the right at 2244 m/s.

Spatial pressure profiles after the detonation relaxes to the stable detonation are

shown in Figure 4.5(a) for t = 10×10−6 s, t = 35×10−6 s and t = 60×10−6 s. The later

time profiles have been shifted in space using the steady wave speed. There are only
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minuscule differences between the front locations; these differences are more clearly

shown in the insert. However, the largest difference between the front locations is still

only 2.5 × 10−6 m. Figure 4.5(b) shows the spatial mass fraction at t = 50 × 10−6 s

which is representative of the steadily traveling detonation front. As a particle passes

through the detonation, it first encounters a thin viscous shock accompanied by rapid

pressure and temperature rise. Then, its pressure and temperature remain relatively

constant as it traverses a short induction zone. In this zone radicals are generated.

When a sufficient number of radicals are present, the fluid particle enters a thin zone

in which vigorous reaction commences. Here pressure and temperature vary rapidly.

Finally, it passes into a thick relaxation zone, where all state variables equilibrate.
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4.4.2 High Frequency Pulsating Detonations

After up is lowered below a critical value, the long time behavior of the propagat-

ing detonation undergoes a transition from a steadily traveling wave to a pulsating

detonation. This transition occurs between up = 1420 m/s and up = 1410 m/s. Fig-

ure 4.6(a) shows the detonation pressure versus time curves for a supporting piston

velocity just above and just below the transition point. These pulsations are caused

by the slight detachment between the pressure wave and the reaction wave, which

in turn elongates the induction zone. The phase space plot for both the stable and

unstable case for both the stable and unstable case is shown in Figure 4.6(b). For

the stable case, the phase space plot is a black dot located at p = 34.95 atm, the dot

is enlarged by 10 times for ease of viewing. At up = 1410 m/s, it becomes clear that

detonation is pulsating; however, it is difficult to extract whether it is near cyclic

from the phase space plot. This case will be examined further in Section 4.4.5 to

extract more information about the pulsations.

In contrast to the clear periodic limit cycles predicted by Henrick et al. [47] for the

simple one step model in the CJ limit, the pulsating detonations here do not produce
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nearly as smooth limit cycles. This is likely influenced by several factors. First, the

piston-driven flows in this study are overdriven in nature; as such, the positively mov-

ing characteristic waves travel through different decaying N-waves in the negatively

moving characteristic field emanating from the detonation front. The likelihood of

these positively moving characteristic waves and decaying negatively moving char-

acteristic N-waves being synchronized is extremely low, and thus precludes precisely

periodic cycles. These positively moving characteristics in the overdriven case clearly

reach the detonation shock front. In the CJ case, there is a sonic locus that remains

a finite distance behind the front. As demonstrated by Kasimov and Stewart [59] for

the one step model, this sonic locus acts as an information barrier. It only allows

characteristics in front of it to propagate towards the front. Additionally, the one step

model has only a single length scale of reaction, whereas the detailed hydrogen-air

mechanism has reaction length scales that span several orders of magnitude. Fur-

thermore, the one step model is irreversible, while the detailed kinetics model has

reversible reactions.

The induction zone length changes in the pulsating detonations due to slight
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separation between the pressure wave and the reaction front. For up = 1410 m/s, the

minimum induction zone length is 8.06×10−5 m during the cycle which corresponds to

the point of peak detonation pressure. The maximum temperature gradient behind

the front is used as the indicator for the end of the induction zone length. The

maximum induction zone length occurs at the minimum detonation pressure in the

cycle and is 8.73× 10−5 m. As Figure 4.7 shows, the stable detonation just above the

bifurcation point, at up = 1420 m/s, has a induction zone length of 8.11 × 10−5 m.

This induction zone length is close to the minimum of that of the pulsating detonation

because the detonation pressure for the stable case is similar to the peak detonation

pressure in the pulsating case. At the minimum detonation pressure in the cycle,

it is clear that the gradient in temperature is delayed and decreased in magnitude;

likewise, at the peak detonation pressure the peak is slightly greater than that in the

stable case.

As shown in Figure 4.8(a), when up is lowered further below the bifurcation point,

the oscillations grow in amplitude. Additionally, the frequency shifts towards lower

frequencies. As the pulsations become larger in amplitude, it becomes clearer that

they are nearly periodic, as demonstrated by successive pulsations nearly coinciding

in the phase plot of Figure 4.8(b).

4.4.3 Multiple Mode Pulsating Detonations

The behavior becomes even more complex at lower supporting piston velocities

with a dual mode behavior arising below a second bifurcation point. An example of

this type of propagating detonation is shown in Figure 4.9(a) for up = 1310 m/s. It

is apparent that the dual mode behavior persists at long times. Although these dual

mode detonations do not repeat in a clean limit cycle, it is still obvious that it is

stably bounded at long times which is demonstrated by the phase plane plot shown

in Figure 4.9(b).
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4.4.4 Low Frequency Dominated Pulsating Detonations and Chaos

At yet even lower supporting piston velocities, this dual mode behavior relaxes

into a mode that is dominated by a single low frequency pulsating flow. Figure 4.10(a)

shows this relaxation to a nearly periodic limit cycle at long times. However, the phase

space plot, shown in Figure 4.10(b), indicates that even at long times there is still

some variation in the cycle. Once this low frequency mode becomes the dominant

mode, a behavior similar to period-doubling is predicted. As shown in Figure 4.10(c),

a nearly period-2 detonation is predicted at up = 1230 m/s. At this supporting piston

velocity, the relative maxima can be grouped into two distinct groups; the first at

p1 = 47.56 ± 0.68 atm and the second being p2 = 50.9 ± 0.84 atm. Figure 4.10(d)

clearly exhibits the distinct two-lobe phase space for a period-2 detonation. This

phenomenon is exhibited even more prominently at up = 1220 m/s, as shown in

Figure 4.10(e). However, the higher relative maxima is more erratic as indicated by

the wider spread in right-most lobe shown in the phase space plot of Figure 4.10(f).

This period-doubling behavior is more clearly seen in the frequency domain and

will be discussed further in Section 4.4.5. After this period-doubling regime, the

detonation pressure versus time curve exhibits many more relative maxima, which is

shown in Figure 4.10(g) for up = 1200 m/s. This is further elucidated by examining

the phase space plot, shown in Figure 4.10(h), where no consistent cycle is visible.

The system likely underwent a transition to chaos. However, to definitively categorize

the system as chaotic further analysis would be needed.

4.4.5 Harmonic Analysis

Next, the detonation pressure versus time behavior is examined using harmonic

analysis. As in Chapter 3, in this study the discrete one-sided mean-squared ampli-

tude PSD, Φd(νk), is used to extract the dominant frequency and a ratio of energy

carried at various frequencies. The PSD of a signal reveals periodicities that can be
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hidden in a complex signal, in particular the dual mode pulsating behavior. Further-

more, it can be helpful to discern how the frequency of the pulsations is affected by

changing the supporting piston velocity. The detonation pressure time series curves

are analyzed after the initialization period. In this work, signals with deviations

larger than 0.04 atm from the mean have the mean detonation pressure subtracted

out for the calculation of PSD. For more details on how the PSD is calculated see

Appendix B.

As discussed previously in Section 4.4.1, when the supporting piston velocity is
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sufficiently high, the long time behavior is a steadily traveling detonation wave. As

depicted in the frequency domain as shown in Figure 4.11(a), the PSD spectrum

demonstrates all the energy is concentrated near the zero frequency. Lowering up

below the first bifurcation point, gives rise to a pulsation at νo = 3.41 MHz at

up = 1410 m/s. In Figure 4.11(b) it is clear that the majority of the pulsation energy

is carried at a single frequency. However, the second harmonic frequency also carries

energy; this results in slight differences in the relative maxima in detonation pressure

in cycle. As the supporting piston velocity is lowered, the frequency spectrum blue

shifts. At up = 1.340 m/s, shown in Figure 4.11(c), the fundamental frequency is now

located at νo = 2.85 MHz, and the harmonics have shifted as well. In fact the ratio of

the amount of energy being concentrated at higher harmonics has increased, which

is demonstrated by the appearance of the third harmonic in the plot. Examining

a up further below the neutral stability boundary, it becomes clear there is a low

frequency mode that is now playing an important role in the long time behavior

of the pulsations as shown for up = 1310 m/s in Figure 4.11(d). At this up, the

low frequency mode occurs at νl = 0.44 MHz and carries a significant amount of

energy. However, the high frequency mode, which occurs at νh = 2.65 MHz, is still

the dominant mode. These modes remain stationary at a smaller error-threshold

parameter, once again confirming the WAMR is capturing the long time behavior.

Furthermore in this regime where there are two dominant modes; the modes interact

giving rise to many more modes that carry energy.

This interaction of the two dominant modes gives rise to a modulation instability.

This modulation instability phenomenon occurs in many other physical systems due

to the inherent nonlinearity of the physical world [177]. In these pulsating detonations

it manifests itself as active modes, called sidebands, at multiples of the low frequency

around the high frequency and its harmonics. These active modes surrounding the

high frequency mode and its harmonics form envelope waves that persist at long
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Figure 4.12. PSD viscous spectra at (a) up = 1290 m/s, (b) up = 1260 m/s,
(c) up = 1230 m/s and (d) up = 1220 m/s.

times.

After the appearance of the dual mode behavior, the ratio of the energy present in

the pulsation carried at the high fundamental frequency continues to decrease as up is

lowered further. Figure 4.12(a) shows the PSD for a up = 1290 m/s and demonstrates

that a much more dominant low fundamental frequency at 0.41 MHz exists compared

with that of Figure 4.10(d). However, the high frequency mode, which is located at

2.64 MHz, still carries energy. In fact, the lower side bands around the high frequency

mode carries a similar order of magnitude of energy as the second harmonic of the
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low frequency mode. However, it is also clear the side bands have also been reduced,

indicating further that the high frequency modes have weakened. Even as more energy

is shifting to the lower frequency, the spectrum continues to blue shift towards lower

frequencies as the supporting piston velocity is lowered, but at a slower rate than

predicted in the high frequency mode. Eventually the low frequencies become so

dominant that the high frequency mode and side bands carry less energy than the

fourth harmonic of the low frequency mode, as shown Figure 4.12(b) by the PSD at

up = 1260 m/s, where νo = 0.38 MHz. Nonetheless, there is a side band frequency

mode that still persists at long times, but at a lower energy state. This is likely a

manifestation of the multiple reaction length scales interacting with each other as

well as the diffusion length scales.

As briefly mentioned in Section 4.4.4, after the low frequency mode has become

dominant, the long time behavior goes through a phenomenon similar to period-

doubling. This is more clearly illustrated in the frequency domain shown in the two

PSD spectra in Figure 4.12(c) and (d) for up = 1230 m/s and up = 1220 m/s, respec-

tively. This near period-doubling is illustrated by the appearance of sub-harmonics

of the fundamental frequency. As an example, in Figure 10(c) the fundamental fre-

quency is located at 0.34 MHz, but there are peaks in the PSD spectrum at 0.17 MHz

and 0.49 MHz, which 1/2 and 3/2 the fundamental frequency, respectively. These

are sub-harmonic frequencies, which indicates that the long time behavior of the

pulsations is near a limit cycle with two distinct relative maxima in the detonation

pressure time curve. Figure 4.12(d) shows that the first set of sub-harmonics have

grown in amplitude indicating the strength of the period-2 detonation has grown.

4.4.6 Bifurcation Diagram

A bifurcation diagram is constructed showing the various propagation modes.

It has been created with 31 supporting piston velocities spaced at 10 m/s and as
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such is a coarse approximation of the full diagram. Figure 4.13(a) shows how the

maximum detonation pressure evolves versus the supporting piston velocity. Note the

peak detonation pressure has been scaled by the average detonation pressure. As the

peak detonation pressure varies from cycle to cycle, the standard deviation of peaks

in the stable, high frequency dominated, and low frequency dominated modes are

indicated by vertical lines. In both the stable and high frequency dominated modes,

the standard deviations are difficult to distinguish from the peak detonation pressure.

The region in which there are two active modes is indicated by the dense number of

points near up = 1300 m/s; likewise, the dense region near up = 1200 m/s is indicative

of a detonation with many active modes, which is likely chaotic. This is more clearly

understood by looking at the bifurcation plot of the active frequencies, shown in

Figure 4.13(b), in which the shade of the points indicates the magnitude with the

darkest being the most dominant mode and the lightest being the weakest. In the high

frequency mode, there are three active frequencies: the fundamental frequency, the

second harmonic, and the third harmonic. The blue shift of the frequency spectrum

is most clearly seen in the third harmonic. In the dual mode region, it is apparent

that side banding occurs near the high frequency mode and its harmonics; however,

there are still just two dominant modes. The side banding continues in the low

frequency mode, but at weaker strengths than that of the dual mode. Additionally,

sub-harmonics appear at 1/2 and 3/2 at both up = 1230 m/s and up = 1220 m/s.

At this lower supporting piston velocity, further sub-harmonics appear at the half

intervals as well as the previously mentioned sub-harmonics grow in strength. In the

lowest supporting piston velocities studied, many frequencies are active indicating

that it is likely that the detonation is in a chaotic regime.
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4.4.7 Comparison to Inviscid Analog

Several supporting piston velocities are examined in the inviscid limit to elucidate

the effects of physical diffusion on a one-dimensional detonation of detailed kinetics

mechanism where instabilities are manifested as pulsations. As in the viscous case,

when the supporting piston velocity is sufficiently high, a stable steadily traveling

detonation is formed and persists at long times. Figure 4.14(a) shows both the vis-

cous and inviscid detonation pressure versus time curves at up = 1500 m/s. The

inviscid case relaxes to a detonation pressure of 36.68 atm which is less than 0.1%

different from the viscous analog at this piston velocity. However, at up = 1430 m/s

the inviscid detonation begins to pulsate with an oscillation amplitude of ∼ 1 atm

whereas the viscous analog remains stable as shown in Figure 4.14(b). This pulsa-

tion amplitude is larger than that of the viscous case at up = 1410 m/s. Thus, the

addition of diffusion to the model has added a slightly stabilizing effect, shifting the

transition to a pulsating detonation by greater than 1.5%, but less than 2% with re-

spect to the supporting piston velocity. Figure 4.14(c) shows the long time behavior

at up = 1400 m/s for both the inviscid and viscous cases. The relative maxima in

detonation pressure are p = 35.66 ± 0.10 atm and p = 36.62 ± 0.005 atm, for the

viscous and inviscid cases, respectively. In addition to the reduction of the maximum

detonation pressure, the amplitude of oscillations has also been reduced by 40% by

the addition of viscosity. However, as the pulsations become stronger, the effect of

viscosity is reduced as demonstrated in Figure 4.14(d) for up = 1320 m/s. The pul-

sation amplitude reduction due to diffusion is weakened to less than 0.1% near the

transition point to the dual mode behavior. Figure 4.14(e) shows the detonation

pressure versus time curve for both the inviscid and viscous cases at up = 1310 m/s,

which is in the dual mode pulsating behavior in both cases. It is difficult to identify

differences in the time domain due to the interacting modes; the frequency domain

will be discussed later. The average detonation pressure and the average maximum
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detonation for the viscous case are p = 34.32 atm and p = 36.2±0.7 atm. Likewise for

the inviscid case, the average detonation pressure and the average maximum detona-

tion are p = 34.33 atm and p = 36.1±0.7 atm. In the low frequency dominated mode

the effect of viscosity is nearly negligible, which is demonstrated in Figure 4.14(f) for

up = 1250 m/s. The local maxima are p = 46.5 ± 0.4 atm and p = 46.6 ± 0.5 atm,

for the viscous and inviscid cases; respectively. This is a relative difference of 0.2%,

and it is clear that the maxima overlap.

The PSD spectra are calculated and compared using the average inviscid detona-

tion pressure to scale both the inviscid and viscous detonation pressures; furthermore,

the PSD is calculated in decibels using the maximum value of either case. Supporting

piston velocities ranging from 1250 m/s to 1500 m/s are shown in Figure 4.15. At

up = 1500 m/s, both of the PSD spectra are concentrated around the zero frequency,

as shown in Figure 4.15(a), indicating that the detonation is stable at long times.

Figure 4.15(b) shows the PSD spectra at up = 1430 m/s; it is clear the inviscid case

is pulsating at νo = 3.60 MHz, but the viscous PSD is still concentrated around the

zero frequency indicating a stable detonation. At up = 1400 m/s, the fundamental

frequency in the inviscid case is νo = 3.36 MHz, whereas in the viscous case it is min-

imally shifted to a lower frequency by 1%. The shift is more apparent in the second

harmonic, which is shifted by 0.06 MHz. Figure 4.15(c) shows that the magnitude

of fundamental frequency is larger in the inviscid case indicating the reduction in

pulsation amplitude. The addition of viscosity affects more the size of the pulsation

than the frequency of pulsations. Near the transition point to the dual mode behav-

ior, at up = 1320 m/s, the frequency shift is reduced to 0.01 MHz. Figure 4.15(d)

indicates that the fundamental frequency peaks in the inviscid and viscous case are

closer in magnitude than at the higher supporting piston velocities, giving another

indication that the pulsation amplitude is nearly identical. In the dual mode, as

shown in Figure 4.15(e) the active modes are only barely distinguishable from each
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Figure 4.14. Detonation pressure versus time for both viscous (black lines)
and inviscid (gray lines) cases at (a) up = 1500 m/s, (b) up = 1430 m/s, (c)
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other; however, the strength of the low frequency mode is stronger in the inviscid

case, and the high frequency mode is weaker. This indicates that, though small, the

addition of physical viscosity to the model is still playing a role and slightly delays

the transition to the dual mode behavior. Additionally, the high frequency mode is

shifted, but only by 0.3%. When a low-frequency dominated mode (up = 1250 m/s)

is examined, it is seen that the PSD spectra, shown in Figure 4.15(f), are nearly

indistinguishable from each other. The fundamental frequencies are identical, and

as the magnitude of the pulsations are the same, the magnitude of the PSD at this

frequency are also identical. However, the PSD for the viscous case is missing the

fifth harmonic and has minimally more energy carried at the higher frequencies.

The amplitude reduction present in the high frequency mode is weakened as the

supporting piston velocity is lowered. At lower piston velocities the intrinsic instabil-

ity grows stronger, and thus, the effect of physical viscosity is weaker. The addition

of physical viscosity to the model has an overall stabilizing effect, delaying the initial

transition to instability and reducing the amplitude of oscillations in the pulsating

mode dominated by high frequency oscillations. This suggests that in multiple dimen-

sions, that diffusion can play an important role in the formation and propagation in

detonations in narrow channels, where the transverse waves can possibly be damped.

The formation of the detonation will be examined with detailed kinetics in Chap-

ter 5. However, the further away from this transition, physical viscosity plays a less

important role in determining the long time behavior at least in one dimension.

4.5 Discussion

It is useful to consider a physics-based interpretation of these detailed unsteady

detonation dynamics. This interpretation is supported either directly by the current

results or plausible hypotheses that could guide future studies. The discussion will

be mainly cast in the framework of the current one-dimensional piston-supported
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detonations in a viscous hydrogen-air mixture; to quantitatively illustrate these im-

portant points for viscous limit cycle detonations, an appeal is made to a simpler

model of one step kinetics where the CJ limit cycle is well quantified [120]. It is

well understood that the compressible reactive Navier-Stokes equations admit steady

traveling wave solutions in response to a driving piston. The steady wave is driven by

a combination of mechanical energy input from the driving piston and chemical en-

ergy input from the exothermic heat release in the subsonic region following the thin

lead shock. For sufficiently high piston speeds such that the kinetic energy imparted

by the piston is much greater than the chemical energy, the wave behaves similarly

to an inert shock wave. As the piston velocity is lowered, the chemical energy makes

an ever-increasing relative contribution to driving the wave. At a critical CJ piston

velocity, all of the energy to drive the wave is available from the chemical energy, and

the wave becomes self-propagating.

These steady waves can respond differently to small perturbations in the various

regimes of supporting piston velocity. The key question is whether such perturba-

tions grow or decay, and if they initially grow, what physical mechanisms prevent

unbounded growth. In general terms, there are two physical mechanisms present

which induce dissipation of structured mechanical and chemical energy into unstruc-

tured thermal energy: diffusion and the irreversible part of chemical reaction. Si-

multaneously, there are physical mechanisms present which induce the growth and

resonance of various oscillatory structures predicted in some cases: amplification of

selected modes by exothermic reaction combined with the effects of advection and

diffusion. Ultimately, nonlinearity has a role. It is often the case that modes which

grow linearly away from equilibrium can move into a region where nonlinear effects

become important and serve to either suppress further growth or induce some variety

of catastrophic growth. The action of these various physical mechanisms is a strong

function of the various length and time scales in play as the driving piston velocity
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is varied.

For sufficiently high piston velocity, the effect of exothermic chemistry is minimal.

One might imagine that a small sinusoidal disturbance near the shock front would

segregate into one entropic and two acoustic modes, traveling near the local particle

and acoustic speeds, respectively. Diffusion would act to reduce the amplitude of the

disturbance. High frequency modes would dissipate more rapidly than low frequency

modes, but ultimately all would stabilize, and the system would relax to a steady

propagating wave. Such is what is predicted for up > 1.420× 103 m/s.

For lower piston velocities, e.g. 1.400× 103 m/s, it is obvious that limit cycle-like

behavior is predicted. Thus, at this piston velocity, nature favors a partition of the

chemical and kinetic energy of the fluid into a pattern in which some of the energy

resides in the two modes displayed in figure 4.15(c). Under these conditions, there

is little difference between the viscous and inviscid predictions, so it is inferred that

the physics are best understood in the context of a reactive Euler model. This pis-

ton velocity is likely favorable for the establishment of an organ-pipe type resonance

influenced by a balance between reaction and advection. The relevant length is the

induction zone, that is, the region between the lead shock and the point where signif-

icant chemical reaction commences. Good estimates for a similar mixture are given

by Powers and Paolucci [108]. The reaction kinetics are such that the induction zone

length ℓind ≃ 10−4 m. The material properties are such that the post-shock acoustic

speed c ≃ 103 m/s. A rough estimate of the fundamental resonant frequency is thus

ν ≃ c/ℓind = 10 MHz. This is of the same order of magnitude as that predicted.

This scaling argument is consistent with the results of Short [133], who showed that

perturbations within the induction zone were linearly unstable while examining one

step square wave detonations at high activation energy. Moreover for this case, fig-

ure 4.15(c) reveals that diffusion induces a small amplitude reduction in the resonant

modes, as well as a small shift in the resonant frequencies. This is consistent with
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what is found in ordinary nonlinear mass-spring-damper systems [144]. Again, simi-

lar to what is found in a nonlinear mass-spring-damper system, it is most likely that

nonlinear effects serve a much stronger role in suppressing the growth of the resonant

modes. For higher frequency modes, it is likely that diffusion plays the dominant

role in amplitude suppression. With the finest length scale of reaction given by Pow-

ers and Paolucci [108] for this mixture ℓfinest ≃ 10−6 m, and the diffusivity of the

mixture Dmix ≃ 10−3 m2/s, one can estimate the frequency of the disturbance for

which diffusion clearly dominates as ν ≃ Dmix/ℓ
2
finest = 1 GHz. Useful insights on the

relative importance of advection, reaction, and diffusion in hydrogen-air chemistry is

given by Al-Khateeb et al. [2] in the context of a laminar flame. There, it is shown

that diffusion clearly influences the various reaction time scales on length scales given

by a classical Maxwellian model, ℓi ≃
√
Dmixτi, where ℓi is the reaction length scale

associated with the chemical time scale τi.

As the piston velocity is lowered further, nonlinearity plays a more prominent

role, especially as seen in figures 4.11(d) and 4.12(a-d). As the oscillatory modes

are dominated here by ever-lower frequencies as the piston velocity is lowered, it is

likely that diffusion is playing even less of a role in the dominant low frequency dy-

namics, with its main effect being confined to much higher frequency modes. Even

then, the presence of diffusion is important in providing a physically based cutoff

mechanism for high frequency modes. As documented by Powers [107], lack of such a

cutoff mechanism can then admit approximations which do not converge as the grid

discretization scale is reduced, thus rendering the results to be potentially strongly

influenced by the size of the discretization and the selected numerical method. More-

over, Mazaheri et al. [85] demonstrated that, in regions that have large gradients in

the flow, diffusion plays an influential role.

As it is prohibitively expensive to fully relax detonations with detailed kinetics

to limit cycles, these notions of piston-driven detonations are verified using a one
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Figure 4.16. Fraction of total energy within the integration domain for (a)
thermal, (b) chemical, and (c) kinetic energies in the one step model with

Ea = 29.98 for several piston velocities.
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step viscous detonation model previously examined by Romick et al. [120] in the

CJ limit. Here, a simple study was performed at several piston velocities, for a

fixed non-dimensional activation energy of Ea = 29.98 which predicted a period-4

detonation in the CJ case. As the focus of this examination is the energy composition

driving the detonation at late times, only a domain near the front traveling at an

average detonation velocity is considered. The domain is taken to be sufficiently large

to encompass several half-reaction zone lengths. This domain has chemical energy

entering from the unreacted ambient upstream conditions. Energy leaves the domain

behind the front due mainly to thermal energy released from the reaction, as well

as a small contribution from energy associated with viscous stresses. Additionally,

depending on the magnitude of the piston velocity, kinetic energy either propagates

out of the domain or enters the domain emanating from the energy inputted from

the piston. However, only the composition of energy within this domain is of interest

in this case; thus, by integrating the individual amounts of these three (thermal,

chemical, and kinetic) energies as well as the sum over this domain at each time, the

evolution of the energy composition driving the detonation at the different piston

velocities can be obtained. The sum of the energies in the domain can be written as:

E(t) =

∫ x1+Ld

x1

(

ρcvT + ρ (1− λ) qr + ρ
u2

2

)

dx, (4.9)

where E(t) is the total energy per unit area in the domain, x1 the position of the left

end of the domain, Ld the fixed length of the domain, cv the specific heat at constant

volume for the mixture in this one step model, λ the reaction progress variable, and

qr the heat release per unit mass of the reaction. The total domain length chosen for

integration is 50 steady half-reaction zone lengths with 35 steady half-reaction zone

lengths behind the front at the peak detonation velocity in the late time behavior.

This choice allows for an almost complete reaction to occur within the domain at any
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period of the cycles predicted.

Figure 4.16 shows the fraction of the total energy each component carries for

piston velocities of up = 0.0, 0.5, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5 × 103 m/s in the late

time behavior of the propagating detonation. In the ZND profile for this activation

energy, the CJ particle velocity is ∼ 960× 105 m/s; therefore, it is anticipated piston

velocities above this velocity would have an effect on the late time behavior. The

majority of the energy is carried in the thermal mode due to the energy released by

the reaction, depicted in figure 4.16(a), with all piston velocities predicting a mean

contribution near 75.5% of the total energy. At sufficiently high piston velocities,

a stable detonation is formed. This can be most easily seen in figure 4.16(b) and

(c), where the chemical and kinetic modes are shown, respectively. In figure 4.16

the light gray dashed horizontal lines are for the highest piston velocities. For these

stable detonations, the kinetic mode carries more energy than the chemical mode due

the high piston velocities. However, as the final piston velocity is lowered, a period-1

detonation propagates at late times as seen in figure 4.16 by the thick dark gray

curve for up = 1.3 × 103 m/s and the solid light gray curve for up = 1.2 × 103 m/s.

Furthermore, at the higher piston velocity up = 1.3×103 m/s, the kinetic and chemical

modes are nearly identical in magnitude.

At an even slower piston speed, a period-2 detonation is predicted, depicted by

the thinner dark gray curve. In this case, up = 1.1× 103 m/s, the chemical mode is

now dominant over the kinetic mode. Moreover, the ratio between the chemical and

kinetic modes at its maximum is 2.24. The lowest three piston velocities examined,

up = 0.0, 0.5, 1.0× 103 m/s, exhibit period-4 CJ behavior. The separations between

these CJ detonations are almost exclusively temporal offsets, and the curves would

nearly be coincident if these offsets were removed. As the up = 1.0 × 103 m/s case

is minutely above the CJ particle velocity for the ZND profile, there is only a weak

contribution from the piston affecting the energy composition. These piston velocities
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are shown in figure 4.16 by the solid, dashed, and dashed-dotted curves, respectively.

For the CJ case, which is present for the up = 0.0, 0.5×103 m/s cases, the maximum

ratio between chemical and kinetic modes grows to 2.95 which is the maximum for

this particular activation energy.

As discussed earlier, identifying the beginning and end of the limit cycle is chal-

lenging for multistep kinetics. However, given sufficiently long computation time it

is presumed that fully relaxed limit cycles would be predicted. Therefore, it is hy-

pothesized that these explanations which hold for one step kinetics also extend to

multistep kinetics.
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CHAPTER 5

ACCELERATION OF HYDROGEN-OXYGEN FLAMES IN NARROW

CHANNELS

5.1 Introduction

In this chapter, a two-dimensional investigation into flame acceleration in a chan-

nel with smooth no-slip walls is performed for premixed H2 − O2 − N2 mixtures.

The aim is to gain a greater understanding into the acceleration of hydrogen-oxygen

flames in channels and the possible DDT. This study will give insight into the effects

of channel width and amount of diluent in the mixture on the rate of acceleration of

the flame. These type of flows are relevant for safety issues due to the high laminar

flame speeds, the relatively low ignition energy, and the amount of destruction a det-

onation can cause. Moreover, the diffusive processes can play a crucial role in flame

acceleration. This work aims to broaden the knowledge of the hydrogen-oxygen flame

acceleration in channels in several ways: 1) examining narrow channels, 2) the effect

of varying diluent, and 3) to try to provide bounds on the formation and propagation

by studying both adiabatic and ambient temperature isothermal no-slip walls.

The chapter is organized as follows. In Section 5.2, the mathematical model is

presented along with a brief description of the computational method and physical

problem. Next in Section 5.3, an examination of flame accelerations in channels with

no-slip walls is performed. First, the effect of varying the channel width is explored;

this is followed by a study on the effect of the amount of diluent in the mixture.

Lastly, a brief investigation into the formation of a flame in the presence of adiabatic

and isothermal walls is presented.
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5.2 Formulation

5.2.1 Mathematical Model

The model equations taken here are the two-dimensional version of Equations

(2.1)-(2.4). The diffusive transport relations adopted in this chapter are Equations

(2.30), (2.31), and (2.32) for mass, momentum, and energy diffusion, respectively. To

initialize a flame in the initially cool quiescent fluid, a transient thermal power depo-

sition pulse, which weakly approximates a spark, Q, is used. The specific form used

will be discussed further in Section 5.2.3. Thus with the addition of the initialization

energy source, the governing energy equation becomes

∂

∂t

(

ρ
(

e+
u · u
2

))

+∇ ·
(

ρu
(

e+
u · u
2

)

+ (pI− τ ) · u+ q
)

= Q. (5.1)

Additionally, the constitutive equations are listed in Section 2.2. The reaction and

mixture properties are evaluated using the CHEMKIN package [63], and the diffusive

transport coefficients are evaluated using the TRANSPORT package [62].

5.2.2 Computational Method

The Wavelet Adaptive Multiresolution Representation (WAMR) method in com-

bination with an error-controlled nominally fifth order Runge-Kutta scheme for tem-

poral integration was used to perform the flame acceleration calculations. The calcu-

lations were performed using a threshold of ǫ = 10−3. Several mixtures and channel

widths are investigated in this study. Thus to illustrate the computational require-

ments for these type of calculations an example for a mixture of 0.6H2+0.3O2+0.1N2

will be presented. The selection of ǫ = 10−3 leads to a necessary spatial resolution

of O(2× 10−7 m) during the flame propagation stage which results in a time step of

O(8×10−11 s). Moreover, the total number of collocation points utilized during early

flame propagation depends on the channel width examined. The number of points
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generally ranged between O(2×105) to O(5×105). During the later flame acceleration

stage as the pressure builds, the necessary spatial resolution shifts to O(1× 10−8 m)

which results in a time step of O(1 × 10−12 s). Likewise, the total number of points

also increases, with a range of O(4× 105) to O(2× 106). This results in a simulation

time of ∼ 1 µs between O(3.5×103 CPUhrs) and O(2.25×105 CPUhrs) on 512 Intel

Xeon 2.6 GHz cores with 16 cores per node and an Infiniband connection between

the nodes.

5.2.3 Problem Parameters

In this study, a series of two-dimensional flame acceleration flows in initially quies-

cent premixed hydrogen-oxygen-nitrogen mixtures at ambient conditions of 298.15 K

and 1 atm is considered. The detailed kinetics mechanism employed is the same used

by Powers and Paolucci [108], in Chapter 4, and is drawn from Miller et al. [89]. It

contains 9 species, 3 elements and 19 reversible reactions where nitrogen is treated

as a non-reacting diluent species and is shown in Table 4.1.

The computational domain is a rectangular channel with no-slip walls at the

bottom and top surfaces, and a symmetry condition is applied at the left surface.

The right boundary surface is a no-slip surface, but the domain length is chosen such

that the acoustic waves do not reach the right end of the domain. The left symmetric

boundary condition was chosen instead of a no-slip wall, as a corner created from

two perpendicular no-slip walls creates a singularity in density in compressible flow;

this leads to computational difficulties for the WAMR method. Furthermore as the

reflections off the top and bottom boundaries have minimal effect on the formation,

propagation, and acceleration of the flame, it is likely that the possible reflection

would have little to no effect. Both adiabatic and isothermal walls are examined.

These boundary conditions are detailed further next and are shown in Figure 5.1.

The no-slip wall boundary condition consists of a mixture particle velocity equal
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ux = uy = 0

qy = 0

jiy = 0

ux = uy = 0

T = Tw
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ux = uy = 0

qy = 0
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w
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x
0

0

Figure 5.1. The channel’s boundary conditions for the flame acceleration
cases examined.
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to the wall velocity, for this work the wall velocity is zero, ut = un = 0, where ut

and un are the velocities in tangential and normal directions. Additionally in this

work, the walls are taken to be impermeable and solid, thus no normal mass flux is

allowed through, jin = 0. Finally, a condition on energy is necessary, and therefore, a

normal heat flux or a wall temperature can be specified. In the case of an adiabatic

wall there is null normal heat flux qn = 0, and in the case of isothermal wall, the

fluid temperature is equal to the constant wall temperature, Tf = Tw. As there are

no-slip walls parallel to each other along the x-horizon, the tangential and normal

direction for these walls are the x- and y-directions, respectively. However for the

no-slip wall at the right boundary, the tangential and normal directions are the y-

and x-directions, respectively. These tangential and normal directions are shown in

Figure 5.1.

All of the conditions but the last can be directly applied to the governing equations

except for the isothermal condition. The mixture temperature does not explicitly

appear in the governing equations and must be found through an iterative process

using internal energy as mentioned in Section 2.2. As such the isothermal condition

must be applied using the energy equation. Utilizing the no-slip solid wall velocity

conditions (ux = uy = 0), the time dependency term of the energy equation can be

reduced

∂

∂t

(

ρ
(

e+
uiui

2

))

=
∂

∂t
(ρe) , (5.2)

and by using the definition of the mixture internal energy, Equation (2.23), this

becomes

∂

∂t

(

ρ
(

e+
uiui

2

))

=
∂

∂t

(

ρ

(

N
∑

i=1

Yiei

))

. (5.3)

The internal energy of the ith specie is only a function of temperature, which is
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constant at the wall; therefore,

∂

∂t

(

ρ
(

e+
uiui

2

))

=
N
∑

i=1

(

ei
∂

∂t
(ρYi)

)

. (5.4)

This means the time evolution of the energy equation along the isothermal no-slip

wall can be evaluated using the evolution of the species.

At a symmetry surface, all of the normal gradients of flow variables vanish. Thus,

both the normal velocity, un = 0, and the shear stress in the normal direction,

∂ (ut) /∂xn = 0, vanish; by utilizing the symmetry of the viscous stress tensor, the

shear stress in the tangential direction, ∂ (un) /∂xt = 0, vanishes. Moreover, both the

normal mass flux, jin = 0, and normal heat flux, qn = 0, also vanish. As the symmetry

boundary in along the vertical direction, the tangential and normal directions are the

y- and x-directions, respectively. These tangential and normal directions are also

shown in Figure 5.1.

These flows are initiated using a transient thermal power deposition pulse situated

at the left boundary in the form of

Q =
ρoa

2
o

8ta

[

tanh

(

5

2ta
(2t− ta)

)

− tanh

(

5

2ta
(2t− 2tmta)

)]

×

sin

(

π

8

{[

tanh

(

4

(

(x− xc)

Lx

+ 2

))

− tanh

(

4

(

(x− xc)

Lx

− 2

))]

× (5.5)

[

tanh

(

4

(

(y − yc)

Ly

+ 2

))

− tanh

(

4

(

(y − yc)

Ly

− 2

))]})

,

where ao is the ambient sound speed, ρo the ambient density, Lx the characteristic

length scale of the deposition in the x-direction, Ly the characteristic length scale of

the deposition in the y-direction, xc the center of the deposition in the x-direction, yc

the center of the deposition in the y-direction, ta the acoustic time scale associated

with Lx, and tm the number of acoustic time scales over which deposition is applied.

This form is similar to that used by [60, 61, 118] in their one-dimensional DDT studies
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using the one step model. The chosen form weakly approximates a spark and gives

rise to mild inertial confinement, leading to a moderately localized pressure increase

in spite of simultaneous expansion. This is due to the time scale of heat addition

being of a similar magnitude to the local ambient acoustic time scale. Eventually,

behind this pressure pulse, a reaction wave begins to form. This initial pressure

pulse spreads to fill the full channel width and decays as it propagates down the

channel away from the source. The trailing reaction wave either develops into a

flame front trailing the weak leading pressure wave or given insufficient initialization

energy decays to extinction.

In this work, the center of the deposition is positioned on the symmetry boundary

at the center of the channel (xc = 0, yc = w/2) . The characteristic lengths for this

work were Lx = 5 µm and Ly = w/5; this yields a 80% filling of the channel width

no matter the width. Therefore, the percentage of energy deposited into the sys-

tem remains the same across all widths examined enabling easier comparison. The

total number of acoustic time scales over which the energy is deposited was 100.

These choices allow for the enough energy to be deposited for the establishment of

a symmetric flame in both the narrowest and widest cases examined with adiabatic

walls.

The investigation into the effect of channel width was performed using an initial

mixture of 0.6H2+0.3O2+0.1N2. For this mixture, the ambient acoustic speed is ao =

505.15 m/s and thus, the acoustic time scale is ta ≈ 10−2 µs. This initial channel study

includes widths of w = [100, 200, 400, 800] µm. This will be later expanded to include

channel widths of w = [150, 160, 170, 180, 190, 250, 300, 1600] µm. The examination

into the effect of varying the amount of diluent was performed in a 800 µm wide

channel. In this study, all of the mixtures examined combined hydrogen and oxygen

in the molar stoichiometric ratio of 2 : 1 with the molar percentage of nitrogen

varying from [1%, 10%, 25%, 40%, 55.6%]; this last case is a stoichiometric mixture of
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Figure 5.2. The maximum pressure in a 200 µm wide channel versus time
during and shortly after the energy deposition for initializing the flame for

an initial mixture of 0.6H2 + 0.3O2 + 0.1N2.

hydrogen and air. In the limited study using ambient temperature isothermal walls

of the initialization stage of the flame the original channel widths and initial mixture

were again used.

5.3 Results and Discussion

As mentioned previously in Section 5.2.3, the energy deposition creates an initial

small pressure pulse which then begins to decrease, as demonstrated in Figure 5.2

for a 200 µm wide channel for a mixture of 0.6H2 + 0.3O2 + 0.1N2. The maximum

pressure within the domain during the deposition and initialization of the flame is

1.28 atm. There are oscillations due to the initial reflections of the initial pressure

wave propagating out from the region of energy deposition. These are then signifi-

cantly attenuated by viscous effects, for this particular case by t = 2 µs. This initial

pressure pulse continues to decrease until ∼ 10 µs. After this decaying stage, the

maximum pressure shifts from the leading front of the pressure pulse to the flame

front.

This shift is demonstrated in Figure 5.3, which shows three snapshots in time at
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(a) t = 8 µs, (b) t = 10 µs, and (c) t = 12 µs of pressure and YOH on the top and

bottom halves of the channel, respectively. Due to the symmetry of the problem,

the flow variables would be mirrored across the centerline; thus, to reduce the space

taken by figures, only half of the full channel will be presented. The mass fraction of

OH was chosen as its maximum gives a good indication of the end of the induction

zone. The leading pressure pulse decays due to both the spreading of the energy and

viscous dissipation from the front interacting with the no-slip walls as it propagates

along the channel; whereas the pressure grows at the flame front due to compression

of the fluid as the flame begins to accelerate slowly.

The pressure at the flame front grows in a initially slow manner up until t ≈ 40 µs,

as seen in Figure 5.4(a). This growing pressure pulse sends acoustic waves towards the

leading pressure front. As the pressure builds at flame front, stronger and stronger

acoustic waves are sent towards the leading front. These acoustic waves coalesce

and form a weak leading shock ahead of the flame front. After the pressure pulse

has grown slowly to a substantial size, there is a transition in behavior and the

pulse begins to grow exponentially. As this flame’s pressure grows exponentially,

the maximum particle velocity also increases accelerating the flame and increasing

the strength of the leading shock. The maximum particle velocity of the domain

shifts to the centerline of the flame front at t ≈ 8 µs, which is similar to when

the pressure shifts; from t ≈ 40 µs to t ≈ 70 µs, the nonlinear interaction between

reactive, advective, and diffusive processes manifests itself in nearly linear growth of

the maximum particle velocity, as demonstrated by the Mach number (Ma) versus

time curve shown in Figure 5.4(b).

Even though the flame front is stretched near the boundaries due the reduction

in the mixture particle velocity in the boundary layer, as indicated by the YOH plots

in the lower halves of Figure 5.5, the pressure pulse at the flame front remains nearly

constant across the channel. Additionally during the buildup, the pressure at front
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Figure 5.3. The pressure (upper half of channel) and YOH (lower half of
channel) flow fields at (a) t = 8 µs, (b) t = 10 µs, and (c) t = 12 µs for an

initial mixture of 0.6H2 + 0.3O2 + 0.1N2 in a 200 µm wide channel
(continued on page 102).

101



(c)
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Figure 5.3. The pressure (upper half of channel) and YOH (lower half of channel)
flow fields at (a) t = 8 µs, (b) t = 10 µs, and (c) t = 12 µs for an initial mixture of

0.6H2 + 0.3O2 + 0.1N2 in a 200 µm wide channel (continued from page 101).
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Figure 5.4. (a) The maximum pressure and (b) the maximum Mach
number in a 200 µm wide channel versus time for an initial mixture of

0.6H2 + 0.3O2 + 0.1N2.
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weak shock also remains nearly constant across the channel, as shown in the upper

halves at the channels in Figure 5.5 at (a) t = 52 µs, (b) t = 62 µs, (c) t = 72 µs,

and (d) t = 82 µs.

This stretching of the flame near the boundaries due to velocity boundary layer

is further elucidated by examining the temperature and x-velocity profiles, which

are shown in Figure 5.6 at (a) t = 62 µs and (b) t = 82 µs. The high temperature

contours curve towards the back of the channel as edges are dragged along by the

bulk flow in the center of the channel until the second shock is formed. Moreover

from the velocity field, it is clear that a second shock front has been created behind

the weak leading pressure wave near the flame front. Once this second shock forms, a

heating along the adiabatic no-slip walls begins helping the flame to accelerate faster;

these two-dimensional effects will be discussed further in Section 5.3.1 and eventually

compared to an infinitely wide channel.

5.3.1 Effect of Channel Width

The 0.6H2+0.3O2+0.1N2 mixture was examined further in several channel widths.

Figure 5.7 shows the maximum pressure versus time curves for channel widths of

w = [100, 200, 400, 800] µm. As the channel width decreases from 800 µm (indicated

by the thin, dashed, black line) to 200 µm (indicated by the thick, light gray line),

the time for the pressure pulse to build to 3.5 atm is dramatically reduced from

t = 417.2 µs to t = 62.6 µs. This growth in the pressure coincides with an increase

in the mixture particle velocity and thus, an acceleration of the flame front. This

trend is in agreement with the work in a pure hydrogen oxygen mixture studied by

Ivanov et al. [54]. The increase in the rate of pressure buildup, which is exponential

in nature, is likely caused by the conversion of the mechanical energy of the leading

pressure pulse and forward moving acoustic waves emanating from the flame front

to thermal energy being trapped in a narrower channel by the adiabatic walls. This
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(a)

Pressure

YOH

Pressure

YOH

Figure 5.5. The pressure (upper half of channel) and YOH (lower half of
channel) flow fields at (a) t = 52 µs, (b) t = 62 µs, (c) t = 72 µs, and (d)
t = 82 µs for an initial mixture of 0.6H2 + 0.3O2 + 0.1N2 in a 200 µm wide

channel (continued on page 105).
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(c)

(d)

Pressure

YOH

Pressure

YOH

Figure 5.5. The pressure (upper half of channel) and YOH (lower half of channel)
flow fields at (a) t = 52 µs, (b) t = 62 µs, (c) t = 72 µs, and (d) t = 82 µs for an

initial mixture of 0.6H2 + 0.3O2 + 0.1N2 in a 200 µm wide channel (continued from
page 104).
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Figure 5.6. The temperature (upper half of channel) and x-velocity (lower
half of channel) flow fields at (a) t = 62 µs and (b) t = 82 µs for an initial

mixture of 0.6H2 + 0.3O2 + 0.1N2 in a 200 µm wide channel.
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Figure 5.7. The maximum pressure versus time for an initial mixture of
0.6H2 + 0.3O2 + 0.1N2 in channels with widths of 100 µm (solid, black
line), 200 µm (light gray line), 400 µm(dark gray line), and 800 µm

(dashed, black line).

idea will be examined further with a simulation with isothermal walls at early time

in Section 5.3.3.

However, in the narrowest case shown in Figure 5.7, w = 100 µm, there is a sig-

nificant delay in the pressure pulse growth. This indicates that below some threshold

in channel width, the capillary effects of viscosity become more important. In this

capillary channel, there are two distinct phases. The first is a very slow growth

phase followed by an exponential phase. The delay of the flame acceleration when

compared with wider channels, is due to more of the channel being affected by the

no-slip wall boundaries. This adds a significant percentage of viscous resistance to

the acceleration of the flame.

This slowing of the pressure buildup is more clearly seen in Figure 5.8, which

shows the maximum pressure versus time for w = [100, 150, 160, 170, 180, 190, 200,

250, 300] µm channels. The transition between the flows dominated by viscous re-

sistance (narrow channels) and the flows with a mainly slow exponential growth of

the flame’s pressure pulse occurs between the w = 200 µm (indicated by solid, light

gray curve) case and w = 250 µm (indicated by thin, medium gray curve) case for
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Figure 5.8. The maximum pressure versus time for an initial mixture of
0.6H2 + 0.3O2 + 0.1N2 in channels with widths of 100 µm (medium thick,
black curve), 150 µm (thick, dark gray curve), 160 µm (thick, light gray
curve), 170 µm (thick, black curve), 180 µm (dot-dashed black curve),
190 µm (thin, dashed black curve), 200 µm (solid, light gray curve),
250 µm (thin, medium gray curve), and 300 µm (thin, black curve).

a 0.6H2 + 0.3O2 + 0.1N2 mixture. The initial growth rate of the pressure pulse is

clearly reduced below a channel width of 200 µm; however, due to the much stronger

exponential second stage of the w = 200 µm case, the maximum pressure traces of

w = 200 µm and w = 250 µm cases cross. As the channel width is reduced, the

time of the transition between the two stages is delayed further still. In fact, in a

w = 100 µm channel, the pressure of the flow builds to 3.5 atm only by t = 518 µm,

which is within this second phase of exponential growth. This is 8.3 times longer

than it takes the pressure pulse to build to this same pressure in the w = 200 µm

case; moreover, this is still longer than the time for the much weaker exponential

growth of the pressure pulse exhibited in the w = 800 µm channel.

The cusps in the w = 250 µm and w = 300 µm (indicated by the thin, black

curve) channels pressure traces are due to the pressure pulse separating from the

flame front and propagating forward towards the now stronger leading front. This
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stage slows the flame acceleration as the shock that has formed at the leading front

grows in strength, as shown in Figure 5.9 for a w = 250 µm channel at (a) t = 101 µs,

(b) t = 106 µs, (c) t = 111 µs, and (d) t = 116 µs.

In contrast to the behavior seen in the narrower channels, like that demonstrated

in Figure 5.6 for the w = 200 µm case, the temperature profile forms a tulip like shape

during the acceleration stage without a second shock formation, as seen in Figure 5.10.

This is due to the adiabatic walls trapping the thermal energy, which is generated

by converting the mechanical energy in the boundary layer. Here, the acoustic waves

emanating from the flame front are attenuated only near the boundary. In contrast, in

the narrower channels, the acoustic waves are more uniformly attenuated throughout

the channel width before the exponential growth of the pressure pulse. This strong

exponential growth leads to the creation of the second shock. Moreover, in the

w = 250 µm case as the pressure pulse propagates from the flame front towards the

leading shock front, the magnitude of the tulip shape the temperature field intensifies

which is shown in the top halves of the channels in Figure 5.10 at (a) t = 106 µs and

(b) t = 116 µs. Additionally, this is accompanied by the magnitude of the x-velocity

increasing in front the flame front as well, which is shown in the bottom halves of

the channels in Figure 5.10. It is probable that this stage is followed by a slower

acceleration of the flame front while the pressure rebuilds, and eventually, a final

acceleration to detonation.

Another indication that the dominant processes during the acceleration in nar-

rower channels (w ≤ 200 µm) is different from that of wider channels is exemplified

by examining the pressure and the OH specie field in a w = 100 µm channel. In

Figure 5.11 the pressure pulse at the flame front grows exponentially fast, as demon-

strated by the flow fields at (a) t = 520 µs, (b) t = 525 µs, (c) t = 530 µs, and (d)

t = 535 µs. This yields the second shock formation in front of the flame yet trailing

well behind the weak initial pressure wave.
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Figure 5.9. The pressure (upper half of channel) and YOH (lower half of
channel) flow fields at (a) t = 101 µs, (b) t = 106 µs, (c) t = 111 µs, and
(d) t = 116 µs for an initial mixture of 0.6H2 + 0.3O2 + 0.1N2 in a 250 µm

wide channel (continued on page 111).

110



(c)

(d)

Pressure

YOH

Pressure

YOH

Figure 5.9. The pressure (upper half of channel) and YOH (lower half of channel)
flow fields at (a) t = 101 µs, (b) t = 106 µs, (c) t = 111 µs, and (d) t = 116 µs for
an initial mixture of 0.6H2 + 0.3O2 + 0.1N2 in a 250 µm wide channel (continued

from page 110).
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Figure 5.10. The temperature (upper half of channel) and x-velocity (lower
half of channel) flow fields at (a) t = 106 µs and (b) t = 116 µs for an
initial mixture of 0.6H2 + 0.3O2 + 0.1N2 in a 250 µm wide channel.

112



(b)
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Figure 5.11. The pressure (upper half of channel) and YOH (lower half of
channel) flow fields at (a) t = 520 µs, (b) t = 525 µs, (c) t = 530 µs, and
(d) t = 535 µs for an initial mixture of 0.6H2 + 0.3O2 + 0.1N2 in a 100 µm

wide channel (continued on page 114).
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Figure 5.11. The pressure (upper half of channel) and YOH (lower half of channel)
flow fields at (a) t = 520 µs, (b) t = 525 µs, (c) t = 530 µs, and (d) t = 535 µs for
an initial mixture of 0.6H2 + 0.3O2 + 0.1N2 in a 100 µm wide channel (continued

from page 113).
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In the wider channels examined, the dominant process is one in which the me-

chanical energy of the weak leading pressure front and acoustic waves propagating

forward from the flame front is converted to thermal energy due the no-slip walls

which subsequently trap this energy inside the channel by their adiabatic nature. In

the narrower channels this process is counter-acted by the capillary effect of viscosity

which is eventually overcome and exponential pressure growth is realized. This tran-

sition can be seen more easily in Figure 5.12, which shows (a) the time for the pressure

to build to pressures of p = [1.25, 1.5, 1.75, 2.0, 2.5, 3.0, 4.0, 6.0, 8.0] atm and (b) the

growth rates of the exponential pressure increase phase as well as the growth phase for

the maximum flow velocity are shown versus inverse channel width. The transition

between the two distinct propagation and acceleration regimes is clear in both the

exponential growth rates of pressure (black curve with open squares) and the growth

rates of the the Mach number, which is approximated by a line, of the flows (light

gray curve with open circles), as seen Figure 5.12(b). Near the w = 250 µm case,

there is shift from the power law rate at which the growth rates change. Additionally,

there is a dramatic slowing of the rate of change of the growth rates.

By fitting the growth rate curves for both the exponential pressure growth (black,

dashed line) and the buildup of the maximum flow velocity (light gray, dashed line) in

the wider channels (w ≤ 250 µm), an estimate can be obtained for how long it would

take to reach the various levels in progressively wider channels. These estimates

are shown in Table 5.1. The curve fits and estimates give insight into the effects of

adiabatic no-slip wall in progressively wider channels. Based on these estimates, a

true infinitely wide channel would take equally long to accelerate the flame towards

detonation. This means that the adiabatic walls play a dramatic effect in determining

the behavior of the flame, as without their presence the detonation would never form.

To test these estimates, both a w = 1600 µm channel and infinite channel test
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Figure 5.12. (a) The time it takes for the maximum pressure to build to
1.25 atm (dashed, thin, dark gray curve with open squares), 1.5 atm

(dashed, light gray curve with open squares), 1.75 atm (thin, black line),
2.0 atm (dashed, dark gray curve with filled circles), 2.5 atm (light gray
curve with X’s), 3.0 atm (thin, dashed black curve with open up-facing

triangles), 4.0 atm (thick, dot-dashed light gray curve with open downward
triangles), 6.0 atm (thin, dot-dashed dark gray curve with right-facing open
triangles), and 8.0 atm (thick black curve with open left-facing triangles)

and (b) the exponential growth rate of the pressure pulse (black curve with
open squares) and the growth rate of maximum Mach number (light gray
curve with open circles) as well as the curve fit (dashed lines) versus inverse

channel width for an initial mixture of 0.6H2 + 0.3O2 + 0.1N2.
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TABLE 5.1

ESTIMATE OF THE BUILDUP TIME

Channel Width
p

Ma = 1
1.25 atm 1.50 atm 1.75 atm 2.00 atm 4.00 atm

1600 µm = 1.6 mm 31.4 µs 233 µs 404 µs 552 µs 1.32 ms 1.14 ms

3200 µm = 3.2 mm 214 µs 1.08 ms 1.82 ms 2.45 ms 5.75 ms 5.08 ms

104 µm = 10 mm= 1 cm 2.02 ms 9.49 ms 15.8 ms 21.3 ms 49.7 ms 48.9 ms

105 µm = 10 cm 168 ms 744 ms 1.23 s 1.65 s 3.84 s 4.54 s

106 µm = 100 cm= 1 m 14.1 s 58.5 s 96.1 s 129 s 298 s 420 s

cases were examined. In order to reduce the computational cost, the w = 1600 µm

case was run only to 350 µs. An approximation for an infinite channel was obtained

by performing a one-dimensional study. As the estimated time for the pressure to

build in the w = 1 m estimate is excessively long and the fact that the simulation time

for the w = 1600 µm case was truncated at 350 µs, the infinitely wide case was only

simulated until 450 µs. The maximum pressure traces for the w = 800 µm (indicated

by black curve), w = 1600 µm (indicated by dark gray curve), and infinite (indicated

by light gray curve) cases are shown in Figure 5.13. The estimates are indicated by

filled circles if they occur within the simulation time. The pressure pulse produced

by the energy deposition function are nearly identical except for the increases due to

reflections from the walls. By extrapolating using the growth rate from the infinite

case, the time to get to even 2 atm is 2.1 s which is on the similar order of the

estimate for the 10 cm case’s estimate. This again indicates the importance of the

adiabatic wall in accelerating the flame towards a detonation. However, due to the

small amount growth, it difficult to get an accurate growth rate for this infinite case.

Similarly, for the w = 1600 µm channel case the estimate for the pressure to build to
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Figure 5.13. The maximum pressure versus time for an initial mixture of
0.6H2 + 0.3O2 + 0.1N2 in channels with widths of 800 µm (black curve) and
1600 µm (dark gray curve) and infinitely wide channel (light gray curve).

1.75 atm is 404 µs, and the simulation yields an estimate based on the growth rate

of t = 396 µs. Moreover, both estimates shown in Table 5.1 for 1.25, 1.5 atm agree

well with the simulation times of ∼ 32.5, 2.25× 102 µs, respectively.

Figure 5.14 shows comparison of the pressure along the centerline of the widest

two channels studied, w = 800 µm (indicated by thin black curves) and w = 1600 µm

(indicated by thick dark gray curves) to that of the infinite channel (indicated by thick

light gray curves) at (a) t = 5 µs, (b) t = 25 µs, (c) t = 50 µs, (d) t = 150 µs, (e)

t = 250 µs, and (f) t = 350 µs. Initially, the front pulse decays and nearly becomes

separated from the trailing flame as seen in Figure 5.14(a). The oscillations present

in the two two-dimensional cases are absent from the infinitely wide case as there

are no reflections of the pressure pulse from side walls. The location of the flame

front, which is indicated by a flat zone at the left part of the domain remains at

the similar pressures and locations for all three cases up t ∼ 5 µs. Later in time,

Figure 5.14(b) and (c), the oscillations present indicate acoustic waves propagating

forward towards the front pressure pulse; additionally, there begins to be a separation

between the three different cases with the flame’s pressure pulse becoming apparent in
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the 800 µm wide channel. By t = 150 µs, nearly all of the oscillations are negligible

with the front pulse being connected directly to the flame’s ever growing pressure

pulse. After this point, the fact the pressure pulse grows faster in w = 800 µm and

w = 1600 µm than in infinite channel case becomes even more apparent. Moreover,

the flame fronts which are clearly discernible in both cases begin to separate further

in both magnitude and location indicating a significant difference in flame speed and

accelerations. However, the front pressure wave propagates at nearly the same rate

for the first 350 µs; as it propagates at nearly the ambient speed of sound. At this

last point, the front pressure pulse in the 800 µm wide case is finally being driven at a

slightly higher rate than the other cases. Additionally, the pressure wave is beginning

to separate from the flame front in the 1600 µm wide channel case, representing the

slight anomaly in the pressure trace from Figure 5.13.

5.3.2 Effect of the Varying Amount of Diluent

Next, a study was performed in which the percentage of nitrogen (diluent) was

varied with the goal of determining how the addition of diluent alters the rate of

growth of the pressure pulse. As one would expect by increasing the percent of

diluent, the rate of growth of the pressure pulse at the flame front is decreased;

additionally, the flame acceleration is also slower. This is demonstrated in Figure 5.15,

which shows (a) the maximum pressure and (b) the maximum Mach number of the

flow versus time in a w = 800 µm channel for mixtures with a molar ratio of H2 : O2

of 2 : 1 and consist of a molar percentage of [1%, 10%, 25%, 40%, 55.6%] N2. The

exponential growth rate of the pressure pulse at the flame front at this channel

width decreases from 2.78× 10−3 1/µs for the nearly pure hydrogen-oxygen mixture

to 4.85 × 10−4 1/µs for the hydrogen-air mixture. This causes the time to reach

a pressure of only 3.5 atm to change from 345.2 µs to an estimate of greater than

2515 µs (an estimate based on extrapolation of the rate for the hydrogen-air mixture).
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Figure 5.14. The pressure field along the center line for channel widths of
800 µm (thin black curves) and 1600 µm (thick dark gray curves) and the

infinitely wide channel (thick light gray curves) at (a) t = 5 µs, (b)
t = 25 µs, (c) t = 50 µs, (d) t = 150 µs, (e) t = 250 µs, and (f) t = 350 µs

for an initial mixture of 0.6H2 + 0.3O2 + 0.1N2.
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Figure 5.15. (a) The maximum pressure and (b) the maximum Mach
number in a 800 µm wide channel versus time for initial mixtures with a

hydrogen-oxygen ratio of 2 : 1 and 1% (solid, black curve), 10% (solid, light
gray curve), 25% (solid, dark gray curve), 40% (dashed, light gray curve),

and 55.6% (dashed, dark gray curve) of N2.

Similarly, the time it takes for the flow to become supersonic (Ma = 1) changes from

309.4 µs to more than 2451 µs (an estimate based on extrapolation of the rate for

the hydrogen-air mixture).

The cause of this delay in the buildup of pressure or the reduction in the rate

the flame accelerates towards detonation is most probably dependent on two factors.

The first is the reduction in overall energy released from reaction due to adding a

larger percentage of non-reacting species N2, and thus, reducing the overall moles of

2H2 + O2 in the initial mixture. The second is due to the decrease in the unreacted

thermal conductivity and the slight increase in unreacted viscosity. The small increase

in viscosity helps slow the flow and coincidently converts a minor amount more of

mechanical energy to thermal energy along the wall boundaries. However, the thermal

conductivity decreases by nearly half between the pure hydrogen-oxygen mixture and

the hydrogen-air mixture. Thus, the fluid behind the weak initial pressure pulse does

a less efficient job of using this thermal energy along the no-slip walls as the feedback

loop between pressure, temperature, and reaction rate is weakened.
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Figure 5.16. The maximum pressure versus time for an initial mixture of
0.296H2 + 0.148O2 + 0.556N2 in channels with widths of 200 µm (black

curve), 400 µm (dark gray curve), and 800 µm (light gray curve).

In addition to reducing the growth rate of the flame front’s pressure pulse, in-

creasing the percentage of diluent can also shift the width at which the viscous

resistance due to the capillary effects becomes dominant. Recall that for the 0.6H2+

0.3O2+0.1N2 mixture, this crossover point was shown to be at a channel width of ap-

proximately 250 µm. For a mixture of hydrogen-air (0.296H2 + 0.148O2 + 0.556N2),

this crossover point occurs above the channel width of 400 µm. This can be de-

duced from Figure 5.16, which shows pressure traces for a hydrogen-air mixture at

w = [200, 400, 800] µm. Unless the capillary effects have become dominant, as the

channel width is reduced, the early growth rate of the pressure pulse increases. Thus,

as the early growth rate of the pressure pulse is smaller in the w = 400 µm channel

(indicated by dark gray curve) than that of the w = 800 µm channel (indicated by

light gray curve), it can be implied that the crossover point must be at a channel

with greater than 400 µm. It is conjectured that the crossover point is in fact between

400 µm and 800 µm, but in order to verify this, a larger channel would need to be

simulated.
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5.3.3 Adiabatic versus Isothermal No-Slip Walls

It is clear that adiabatic walls trap thermal energy in the system allowing the flame

to accelerate and the pressure pulse to grow at a faster rate as the channel width

is decreased until the viscous resistance of very narrow capillary channels becomes

the dominant process. However, in these thin channels the heat losses could play a

dramatic role in the flame propagation and acceleration. The use of an isothermal

wall at the ambient temperature gives an upper bound on the heat losses to the

environment during the flame acceleration to detonation. Additionally, an isothermal

wall introduces a thermal boundary layer into the flow; this boundary layer transitions

from the hot reacted gases to the ambient temperature. Due to the formation of

this fine thermal boundary layer the necessary spatial resolution of O(5 × 10−8 m)

during the flame propagation stage which results in a time step of O(1 × 10−11 s);

similarly, the total number of points also increases to O(5 × 105). Therefore, an

investigation of the early time (≤ 25 µs) behavior was performed for a initial mixture

of 0.6H2+0.3O2+0.1N2 for channel widths of 100 µm, 200 µm, 400 µm, and 800 µm.

Figure 5.17 shows the pressure traces over the first 25 µs for (a) the 100 µm

wide channel, (b) the 200 µm wide channel, (c) the 400 µm wide channel, and (d)

the 800 µm wide channel for both adiabatic (indicated by black curves) and isother-

mal (indicated by dashed gray curves) walls. In the two narrowest cases which are

both below the crossover point, the introduction of the isothermal walls dramatically

changes the behavior, causing an extinction of the flame. Moreover, in the two wider

cases examined, there is a delay in the time at which the maximum pressure shifts

from the initial front to the flame front.

The temperature contours, shown in Figure 5.18 for an initial mixture of 0.6H2+

0.3O2 + 0.1N2 in a 800 µm wide channel for adiabatic (top half of channel) and

isothermal (bottom half of channel) wall conditions, suggest that in addition to this

delay there is also an initial slowing of the flame and ever so slight slowing of the
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Figure 5.17. The maximum pressure versus time for an initial mixture of
0.6H2 + 0.3O2 + 0.1N2 in channels with widths of (a) 100 µm, (b) 200 µm,
(c) 400 µm, and (d) 800 µm for adiabatic (black curve) and isothermal

(dashed gray curve) wall conditions.
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front pressure pulse. At t = 5 µs, which is shown in Figure 5.18(a), the initial flame

profile (indicated by the edge of the red feature) is altered near the wall boundary.

The adiabatic case has a flatter edge cross the full domain; whereas; in the isothermal

case there is a strong curvature of the flame near the boundary. Figure 5.18(b) shows

the difference in the flame propagation in the temperature profiles at t = 15 µs.

The flame front is retarded in the isothermal case from the equivalent front location

in the adiabatic case. By t = 25 µs, the isothermal flame front as well as the front

pressure pulse location are both discernibly hindered by the presence of the isothermal

walls, as shown in Figure 5.18(c). However, it is difficult to distinguish the thermal

boundary layer at this point. To more clearly visualize the boundary layer, a zoomed

in profile at t = 25 µs is shown in Figure 5.18(d). Now, even though the thermal

boundary layer is thin, the isothermal walls have macroscale effects on flame position

and front pressure pulse location at early times. The later effect of isothermal walls

on the propagation and acceleration at this channel remains unquantified at this time;

however, the present study suggests that longer time behavior should continued to

be examined to understand how dramatic the effect these isothermal walls have on

the overall acceleration of the flame.
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Isothermal

Adiabatic

Isothermal

Adiabatic

Figure 5.18. The temperature flow field for adiabatic (upper half of
channel) and isothermal (lower half of channel) wall conditions at (a)

t = 5 µs, (b) t = 15 µs, and (c) t = 25 µs and (d) a zoomed in profile at
t = 25 µs near the isothermal boundary for an initial mixture of

0.6H2 + 0.3O2 + 0.1N2 in a 800 µm wide channel (continued on page 127).
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Isothermal

Adiabatic

Isotherma

The temperature flow field for adiabatic (upper half of channel) and isothermal
(lower half of channel) wall conditions at (a) t = 5 µs, (b) t = 15 µs, and (c)

t = 25 µs and (d) a zoomed in profile at t = 25 µs near the isothermal boundary for
an initial mixture of 0.6H2 + 0.3O2 + 0.1N2 in a 800 µm wide channel (continued

from page 126).
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CHAPTER 6

DISCUSSION AND FUTURE WORK

The current work has quantified the effects of diffusive processes on propagating

gaseous detonations as well as flame propagation and acceleration towards detonation

in narrow channel flow by resolving all of the relevant scales. The models presented

built upon previous work done in the inviscid limit. Much of the work in detonation

dynamics has neglected diffusive processes; however, the finest reaction length scales

occur on scales similar to those on which diffusion acts.

First, a simplified one step kinetics model in one-dimension was examined with the

inclusion of only constant diffusive coefficients. The temporal and harmonic analysis

of this model suggests that the dynamics of one-dimensional pulsating detonations

can be dramatically altered by the introduction of mass, momentum, and energy

diffusion. The introduction of diffusion delays the onset of instability and enlarges

the activation energy range of the bifurcation process that leads to chaotic detona-

tion in comparison with the inviscid analog. However, the qualitative behavior of

the one step model remains unchanged going through period-doubling bifurcations

and a transition to what is most likely chaotic behavior. It was necessary to use a

fine resolution to capture the dynamics accurately. Employing coarse spatial resolu-

tion results in seemingly plausible but dramatically different predicted dynamics in

some cases, suggesting that the use of filtering or sub-grid models maybe problem-

atic. Moreover, for this model an a priori estimate has been made of the necessary

resolution to properly capture the dynamics based on the activation energy of the

reaction. This model, however, lacked some more physically based properties such as
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multi-component mass diffusion, temperature and mixture-dependent viscosity and

thermal conductivity, multiple reaction length scales and lastly, a heat release on a

longer scale.

The second model examined a series of piston-driven detonations utilizing a

hydrogen-oxygen-nitrogen detailed kinetics model and extended the previous model

by including multi-component diffusion, as well as mixture and temperature de-

pendent fluid properties. Several distinct phases in behavior were predicted using

the WAMR method to fully resolve the necessary scales: stable propagation, high-

frequency pulsating propagation, dual-mode (high and low frequencies) pulsating

propagation, low-frequency pulsating propagation, and period-2 low frequency pul-

sation. As the scales on which diffusion and the main heat release driving the deto-

nation are more disparate than the previous case, the mass, momentum, and energy

diffusion has a much smaller effect. In fact, it delays the onset of instability by less

than 2% in the piston velocity; however, near the stability limit there is a significant

reduction oscillation amplitude. The lower the piston velocity, the more unstable

the hydrogen-air detonation becomes and the weaker effect of viscosity has on the

propagation behavior. Moreover, the fine resolutions used to predict the detona-

tion dynamics enabled detailed results to be obtained from harmonic analysis. The

harmonic analysis revealed that the fundamental frequency of the pulsations as well

as the rest of the spectrum shifts within the different propagation phases. It was

demonstrated that the energy deposited into the system by the supporting piston

effectively changes the percentage that the various modes of energy carry.

Lastly, a series of channel flows consisting of hydrogen-oxygen-nitrogen mixtures

were examined using the WAMR method to fully resolve the necessary scales while

reducing the computational cost required. Inside an adiabatic channel, there are two

distinct types of propagation and acceleration of flames. In the narrowest channels the

flow is dominated by capillary effects due to viscosity and diffusion; this yielded a long
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slow growth in the magnitude of the pressure pulse at the flame front followed by a fast

exponential growth of the pressure and the formation of a strong shock near the flame

front but behind the initial pressure wave front. In wider channels (w ≥ 250 µm)

the pressure pulse at the flame front grew exponentially, accelerating the bulk flow

downstream of the flame by sending acoustic waves forward. These acoustic waves

coalesce at the initially weak pressure wave front causing it to grow in strength and

eventually becoming a stronger shock. In these wider channels, the mechanical energy

from the acoustic waves was converted to thermal energy in the boundary layer, but

the bulk of the flow remained weakly affected. In contrast, more of the bulk flow is

attenuated by the boundary layer in the narrow channels. Moreover, the results from

the infinitely wide case indicate that without viscous effects at the boundaries the

acceleration towards detonation would take a near infinite amount of time. Increasing

the percent of diluent present in the mixture slowed the growth rate of the pressure at

the flame front and hence delayed the acceleration of the flame. Additionally, it also

shifts the point at which the viscous resistance becomes dominant. When isothermal

walls were considered, the two cases within the capillary dominated flow regime had

flame extinction. In the wider cases examined there is a significant delay in the time

at which the pressure pulse at the flame front overtakes the initial pressure pulse in

magnitude. Additionally, there is no appreciable growth to the pressure at the flame

front after it overtakes the initial pressure pulse in magnitude. Moreover, there is

a discernible slowing of the flame propagation speed and that of the front pressure

wave at early times due to the thermal energy lost through the boundary.

Neglecting diffusive processes helps reduce the necessary resolution to fully cap-

ture the relevant scales in detonation modeling. However, by introducing physical

diffusive processes, a meaningful cutoff scale is introduced. Without such a physically

relevant scale, another cutoff scale is usually introduced, as in the various sub-grid

models, e.g Large-Eddy-Simulation or turbulent mixing models. This may be prob-
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lematic, as believable but inaccurate results can be predicted. Moreover, there are

regimes in which viscous effects are important, e.g. near stability boundaries or in

channels where the walls accelerate the flame towards detonation. Furthermore, by

resolving these diffusive scales, detailed results can be given in the spatial, temporal,

and frequency domains without the loss of filtering the active high frequency modes

or fine structures.

This work suggests several extensions for possible future work. A simple exten-

sion would be to continue the simulations with the ambient temperature isothermal

walls to verify that the retardation from the early times continues at later times.

Additionally, examining more channel widths would yield a better estimate of when

the effects of the isothermal walls are important during the development and prop-

agation of the flame. Likewise, the less reactive cases such as hydrogen-air could be

simulated further in time until it reaches a sonic flow.

Another straightforward extension would be to examine the difference between

the flame acceleration in a channel versus in a tube. Symmetrical cylindrical flow

can be mathematically modeled in a similar manner to that of channel flow with

source terms added to the momenta and energy equations. Another complementary

study would be the investigation of flame formation, propagation, and acceleration

in a non-premixed mixture.

Moreover, the inclusion of more complex constitutive relations for the diffusive

processes may provide further insight, including some non-equilbrium effects. These

non-equilbrium effects may be important particularly in or near the shock especially

for dense polyatomic gases. This also likely suggests that a more complicated mixing

rule be used, as the polyatomic gases would no longer be treated as ideal gases.

If an implicit integration technique could be implemented in combination with the

WAMR method, a reduction in the number of computational time steps necessary to

simulate a flow in a channel could be realized. Therefore, a fully detonating flow with
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realistic diffusion parameters could be simulated. However, care must be taken to

ensure that a small enough time step is still used to capture the high frequency oscil-

lations present in the flow as the implicit time step could act as a low-pass filter when

compared to an explicit time step which is chosen based on the resolution employed.

Moreover, a more complex chemical mechanism and fuel could be examined if less

computational steps were necessary to calculate a solution. Correspondingly, a true

three-dimensional channel/tube flame acceleration could be pursued as well. In ad-

dition, this could also be used to evaluate the how the detonation cell size is effected

by the no-slip walls in various channel widths. As briefly mentioned in Section 5.2.2,

as the flame accelerates towards detonation, the computational expense dramatically

increases with the current computational method implemented. This is due to the

reduction in the size of the time step and the increase in the necessary resolution

(thus an increase in the number of points) which are correlated with each other in

the explicit integration scheme currently used. This increase in computational cost

nearly precludes a study of cellular structures in multi-dimensional detonations when

resolving all relevant reactive, advective, and diffusive spatial scales with the imple-

mented computational method without a very substantial amount of computational

resources.

The results here indicate that viscous effects can be important in certain regimes,

e.g. near stability boundaries or near walls where the boundary layer is on a similar

order to that of the finest reaction length scales. However, it remains intractable

with current computational resources to fully resolve all the finest scales while per-

forming an engineering sized calculation in a timely fashion. Thus, the development

of models, such as those developed by Fiorina and Lele [34], that manifest these

smaller scales onto larger ones that can be captured in engineering calculations will

continue. These models should include a smooth transition to meaningful physical

cutoff scale introduced by diffusion when all the physical scales are resolved. Meaning
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that as the smallest utilized shrinks near a large gradient in the flow, the contribution

due to the artificial part reduces towards zero. Likewise, in areas of the flow that

need less refinement and have smaller gradients, the contribution is also small [34].

This allows a single unified model to examined and compared to experiments over a

variety of physical conditions. Furthermore, this would give rise to further examina-

tions pushing the limits of the range of scales that can be resolved in an engineering

calculation.
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APPENDIX A

MULTICOMPONENT GASEOUS PHASE SPECIES TRANSPORT

PROPERTIES

As mentioned in Section 2.2, the multicomponent diffusion coefficients, Dik, the

thermal diffusion coefficients, DT
i , and the isotropic mixture thermal conductivity, k,

for a mixture of N species are obtained by solving the linear L−matrix system [23].

The L−matrix system is given by
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, (A.1)

where the nine block sub–matrices LU,U, {U,V} = 00, 10, 01 are constant N × N

matrices, cU, {U} = 00, 10, 01 theN−sized solution vectors to the L−matrix system,

and y the mole fraction vector. The components of each block sub–matrix are defined

by Dixon-Lewis [23] as

L
00,00
ij =

16 T

25 p

N
∑

k=1

yk

M i Dik

(

M j yj (1− δik)−M i yj (δij − δjk)
)

, (A.2)

L
00,10
ij =

8 T

5 p

N
∑

k=1

yj yk (δij − δik)
Mk (1.2 Cjk − 1)
(

M j +Mk

)

Djk

, (A.3)

L
00,01
ij = 0, (A.4)

L
10,00
ij = L00,10

ji , (A.5)
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L
01,00
ij = 0, (A.8)

L
01,10
ij = L10,01

ji , (A.9)
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(A.10)

where Dik is the binary diffusion coefficient between the ith and kth species, δij the

Kronecker delta, Aik, Bik, and Cik three ratios of collision integrals, cri and cii the

rotational and internal parts of the molecular specific heat capacity of the ith specie,

respectively, KB = 1.381× 10−16 erg/K the Boltzmann’s constant, ξik the relaxation

collision numbers, and Di
ik the binary diffusion coefficient of internal energy between

the ith and kth species.

For a linear molecule, cri = KB, otherwise cri = 3
2
KB. In the nomenclature used

in the Transport package [62], the internal part, which includes both the rotational

and vibrational modes, of the molecular specific heat is given by

cii =
cpi
NA

− cri , (A.11)

where NA = 6.022 × 1023/mole, is Avogadro’s constant. Following the work of [23],

it assumed that ξik = ξii. The binary diffusion coefficients for internal energy are

approximated by the ordinary binary diffusion coefficients; however, in the case for

collisions between polar molecules the following correction is necessary

Di
ik =

Dik

1 + 2895 T−3/2
. (A.12)

Additionally, the binary diffusion coefficients, Dik, and pure species viscosities, µi,
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can be related to the collision integrals, Ω, by

Dik =
3
√

2 π K3
B T 3

(

M i +Mk

)

/
(

M iMk

)

4 p π (σi + σk)
2 Ω

(1,1)
ik

, (A.13)

µi =
5
√

π M i KBT

16 π σ2
i Ω

(2,2)
ii

, (A.14)

where σi is the Leonard-Jones collision diameter of the ith specie. Furthermore, the

three ratios of collision integrals are given by [8, 86, 159]

Aik =
Ω

(2,2)
ik

2Ω
(1,1)
ik

, (A.15)

Aik =
5Ω

(1,2)
ik − Ω

(1,3)
ik

3Ω
(1,1)
ik

, (A.16)

Cik =
Ω

(1,2)
ik

3Ω
(1,1)
ik

. (A.17)

Similar to polynomial fit of Equation (2.35) to Equation (A.14) for the pure species

viscosities, µi, polynomial fits are provided by the Transport package [62] for Dik,

Aik, Bik, and Cik for evaluating the L−matrix system efficiently. Therefore the trans-

port data, the collision integrals, and the relaxation collision numbers are adopted

from the Transport package [62].

After the system has been computed, the multicomponent diffusion coefficients,

Dik, are given by

Dik =
16 T M yi

25 p Mk

(Pij − Pii) , (A.18)

where P is a N ×N matrix defined as the inverse of the first sub-matrix; P = L00,00.

From the solution to Equation (A.1), the thermal diffusion coefficients, DT
i , and the

isotropic mixture thermal conductivity, k, are given by [8, 62, 86]

DT
i =

8 M i yi
5R ci00, (A.19)
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k = −
N
∑

i=1

yi (ci10 + ci01) . (A.20)
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APPENDIX B

POWER SPECTRAL DENSITY CALCULATION

As mentioned in Chapters 3 and 4, harmonic analysis can be used to extract

information about active frequencies in time-signal. The tool used for this purpose

is the power spectral density (PSD). The PSD of a signal describes how the variance

(or power) is distributed in frequency, and it is real-valued for any real signal. It can

be used to reveal possible periodicities in a complex signal.

The continuous PSD is defined as the Fourier transform of the auto–correlation

of a signal [7, 43]. The continuous autocorrelation function, φ(t), of the signal, p(t),

is defined as

φ(t) =

∫ ∞

−∞

p(t̂+ t)p(t̂)dt̂, (B.1)

where t̂ is a dummy integration variable. Therefore the PSD, Φ(ν), is defined as

Φ(ν) =

∫ ∞

−∞

φ(t̂) exp(−2πıνt̂)dt̂, (B.2)

where ν is the frequency and ı the square-root of −1. The Fourier transform of the

continuous auto-correlation can be written as the magnitude squared of the Fourier

transform of the signal by using the Wiener-Khinchin theorem. Thus, the PSD is

written as

Φ(ν) =

∣

∣

∣

∣

∫ ∞

−∞

p(t̂) exp(−2πıνt̂)dt̂

∣

∣

∣

∣

2

= |P (ν)|2 , (B.3)

where P (ν) is the Fourier Transform of p(t).

In this work, only the discrete one-sided mean-squared amplitude PSD is used.

The single-sided PSD is chosen so that the aliasing effect at high frequencies could
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be bypassed. In order to calculate the discrete PSD for a signal, p(t), suppose that

the signal is composed of M equally spaced sample values such that

pm = p(tm), tm = m∆t, m = 0, 1 . . .M − 1, (B.4)

where ∆t is the spacing, then the standard discrete Fourier transform of p at mode

k, Pk, is calculated as

Pk =
M−1
∑

m=0

pm exp

(

−2πımk

M

)

, k = 0, 1 . . .M/2, (B.5)

where mode k is associated with frequency, νk. Frequencies are only defined for zero

and positive values by

νk =
k

M∆t
, k = 0, 1 . . .M/2. (B.6)

Therefore the one-sided mean-squared PSD, Φd, can be calculated as,

Φd(0) =
1

M2
(PoPo) =

1

M2
|Po|2,

Φd(νk) =
1

M2
(PkPk + PM−kPM−k)

=
1

M2

(

|Pk|2 + |PM−k|2
)

≈ 2

M2
|Pk|2, k = 1, 2 . . . (M/2− 1), (B.7)

Φd(M/2) =
1

M2

(

PM/2PM/2

)

=
1

M2
|PM/2|2.

This normalization is chosen to allow the sum of M/2 + 1 values of Φd to equal

the mean-squared amplitude of the discrete detonation pressure signal,
1

M

M−1
∑

m=0

|pm|2,

as shown by Parseval’s theorem [100]. Equations (B.7) are the discrete analog of

Equation (B.3).

140



APPENDIX C

NON-INERTIAL FRAME TRANSFORMATION

As mentioned in Section 4.2.1, an accelerating piston is used to initiate a deto-

nation in an initially quiescent, and the one-dimensional governing equations can be

transformed to a frame of reference attached to the accelerating piston face. There-

fore, if the piston is initially located at x = 0, and the velocity of the piston is known

function of time, up(t), the accelerating frame of can be related to the laboratory

frame as

x̃ = x−
∫ t

0

up(t̂)dt̂, (C.1)

t̃ = t, (C.2)

and thus, the velocity in the accelerating frame, ũ, can be related to the laboratory

frame particle velocity as

ũ = u− up(t). (C.3)

Therefore, the operators in the laboratory frame can be written in terms of the

operators in the accelerating frame of reference as

∂

∂x
=

∂

∂x̃

∂x̃

∂x
+

∂

∂t̃

∂t̃

∂x
, (C.4)

∂

∂t
=

∂

∂x̃

∂x̃

∂t
+

∂

∂t̃

∂t̃

∂t
, (C.5)
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but from equations (C.1-C.2), ∂x̃/∂x = 1, ∂t̃/∂x = 0, ∂x̃/∂t = −up (t) , and ∂t̃/∂t =

1. Thus, equations (C.4-C.5) can be written as

∂

∂x
=

∂

∂x̃
, (C.6)

∂

∂t
= −up (t)

∂

∂x̃
+

∂

∂t̃
. (C.7)

To examine the governing equations under this transformation, it is useful to

separate the viscous terms from conservative one-dimensional, reactive, Navier-Stokes

equations, and thus can be written as

∂ρ

∂t
+

∂

∂x
(ρu) = 0, (C.8)

∂

∂t
(ρu) +

∂

∂x

(

ρu2 + p
)

− ∂

∂x
(τ) = 0, (C.9)

∂

∂t

(

ρ

(

e+
u2

2

))

+
∂

∂x

(

ρu

(

e+
u2

2

)

+ pu

)

+
∂

∂x
(q − τu) = 0, (C.10)

∂

∂t
(ρYi) +

∂

∂x
(ρuYi) +

∂

∂x
(ji) = M iω̇i. (C.11)

Now recall, the constitutive relations chosen for mass, momentum, and energy diffu-

sion are given by Equations (2.30),(2.31), and (2.32), and in a one dimension can be

written as

ji = −DT
i

T

∂T

∂x
+ ρ

N
∑

k=1
k 6=i

M iDikYk

M

(

1

yk

∂yk
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(

1− Mk

M

)

1

p

∂p
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)

, (C.12)

τ =
4

3
µ
∂u

∂x
, (C.13)

q = −k
∂T

∂x
+

N
∑
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jihi −RT
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∑
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M i

(

1

yi

∂yi
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+

(

1− M i

M

)

1

p

∂p
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)

. (C.14)

Applying Equations (C.3), (C.6), and (C.7) to the diffusion constitutive relations and
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recognizing ∂up/∂x = 0, the following is obtained,

ji = −DT
i

T

∂T

∂x̃
+ ρ

N
∑

k=1
k 6=i

M iDikYk

M

(

1

yk

∂yk
∂x̃

+

(

1− Mk

M

)

1
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, (C.15)

τ =
4

3
µ
∂ũ

∂x̃
, (C.16)

q = −k
∂T

∂x̃
+

N
∑

i=1

jihi −RT
N
∑

i=1

DT
i

M i

(

1

yi

∂yi
∂x̃

+

(

1− M i

M

)

1

p

∂p

∂x̃

)

. (C.17)

Thus, the viscous terms from Equations (C.9)-(C.11) can be rewritten into the ac-

celerating frame as

∂

∂x
(τ) =

∂

∂x̃
(τ) , (C.18)

∂

∂x
(q − τu) =

∂

∂x̃
(q − τ ũ) , (C.19)

∂

∂x
(ji) =

∂

∂x̃
(ji) , (C.20)

where again ∂up/∂x = 0 has been used.

The remaining pieces of the governing equations are the one-dimensional, reactive,

Euler equations and can be written into the form

∂U

∂t
+

∂P
x

∂x
= Q. (C.21)

Thus, by applying the transformation given by Equations (C.6) and (C.7) the follow-

ing form is obtained:

∂U

∂t̃
+

∂

∂x̃
(P

x
− up(t)U) = Q. (C.22)

Thus, the transformed Euler equations are

∂ρ

∂t̃
+

∂

∂x̃
(ρu− ρup(t)) = 0, (C.23)

∂

∂t̃
(ρu) +

∂

∂x̃
(ρuu+ p− ρuup(t)) = 0, (C.24)
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∂

∂t̃

(

ρ

(

e+
u2

2

))

+
∂

∂x̃

(

ρu

(

e+
u2

2

)

+ pu− ρup(t)

(

e+
u2

2

))

= 0, (C.25)

∂

∂t̃
(ρYi) +

∂

∂x̃
(ρuYi − ρYiup(t)) = M iω̇i. (C.26)

Using Equation (C.3), these equations can be written as

∂ρ

∂t̃
+

∂

∂x̃
(ρũ) = 0, (C.27)

∂

∂t̃
(ρu) +

∂

∂x̃
(ρuũ+ p) = 0, (C.28)

∂

∂t̃

(

ρ

(

e+
u2

2

))

+
∂

∂x̃

(

ρũ

(

e+
u2

2

)

+ pu

)

= 0, (C.29)

∂

∂t̃
(ρYi) +

∂

∂x̃
(ρũYi) = M iω̇i. (C.30)

Now, adding and subtracting ∂/∂t̃ (ρup(t)) to Equation (C.28)

∂

∂t̃
(ρu) +

∂

∂x̃
(ρuũ+ p)− ∂

∂t̃
(ρup(t)) +

∂

∂t̃
(ρup) = 0,

∂

∂t̃
(ρu)− ∂

∂t̃
(ρup(t)) +

∂

∂x̃
(ρuũ+ p) = − ∂

∂t̃
(ρup) ,

∂

∂t̃
(ρũ) +

∂

∂x̃
(ρuũ+ p) = −ρ

∂up

∂t̃
− up

∂ρ

∂t̃
, (C.31)

then applying Equation (C.27)

∂

∂t̃
(ρũ) +

∂

∂x̃
(ρuũ+ p) = −ρ

∂up

∂t̃
+ up

∂

∂x̃
(ρũ) ,

∂

∂t̃
(ρũ) +

∂

∂x̃
(ρuũ+ p)− up

∂

∂x̃
(ρũ) = −ρ

∂up

∂t̃
, (C.32)

and finally recalling ∂up/∂x = 0 the momentum equation can be rewritten as

∂

∂t̃
(ρũ) +

∂

∂x̃
(ρũũ+ p) = −ρ

dup

dt̃
. (C.33)

Similarly, by subtracting Equation (C.33) times the piston velocity from Equation
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(C.29), the energy equation becomes

∂

∂t̃

(

ρ

(

e+
u2

2

))

+
∂

∂x̃

(

ρũ

(

e+
u2

2

)

+ pu

)

−
(

∂

∂t̃
(ρũ)− ∂

∂x̃
(ρũũ+ p)− ρ

dup

dt̃

)

up = 0,

∂

∂t̃
(ρe) +

∂

∂t̃

(

ρ
u2

2

)

+
∂

∂x̃
(ρũe+ pũ) +

∂

∂x̃

(

ρũ
u2

2

)

− ∂

∂t̃
(ρũ) up −

∂

∂x̃
(ρũũ) up − ρ

dup

dt̃
up = 0. (C.34)

By using the chain rule,
(

∂/∂t̃ (ρũup) = (up) ∂/∂t̃ (ρũ) + (ρũ) ∂/∂t̃ (up)
)

, Equa-

tion (C.34) can be rewritten as

∂

∂t̃
(ρe) +

∂

∂x̃
(ρũe+ pũ) +

∂

∂t̃

(ρ

2

[

u2 − 2ũup

]

)

+
∂

∂x̃

(

ρũ

2

[

u2 − 2ũup

]

)

+ ρũ
∂up

∂t̃
− ρup

∂up

∂t̃
= 0. (C.35)

Then by completing the square
(

u2 − 2ũup = ũ2 + u2
p

)

, expanding by ∂/∂t̃
(

ρu2
p/2
)

((

u2
p/2
)

∂ρ/∂t̃+ (ρup) ∂up/∂t̃
)

, and again utilizing ∂up/∂x = 0 this can be written

as
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(

e+
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2
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+ pũ
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= −ρũ
dup

dt̃
. (C.36)

Recombining the inviscid Equations (C.27), (C.33), (C.36), and (C.30) with the
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viscous terms from Equations (C.18)-(C.20) gives

∂ρ

∂t̃
+

∂

∂x̃
(ρũ) = 0, (C.37)

∂

∂t̃
(ρũ) +

∂

∂x̃

(

ρũ2 + p− τ
)

= −ρ
dup

dt̃
, (C.38)

∂

∂t̃

(

ρ

(

e+
ũ2

2

))

+
∂

∂x̃

(

ρũ

(

e+
ũ2

2

)

+ (p− τ) ũ+ q

)

= −ρũ
dup

dt̃
, (C.39)

∂

∂t̃
(ρYi) +

∂

∂x̃
(ρũYi + ji) = M iω̇i. (C.40)

These are the one-dimensional compressible, reactive Navier-Stokes equations in a

reference frame attached to the face of an accelerating piston.
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