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This study will focus on the development of methods for rational reduction of

model equations of reactive systems and their efficient numerical simulations. The

method of Intrinsic Low-Dimensional Manifold (ILDM), which is used to obtain

reduced model equations for spatially homogeneous reactive systems modeled by a

system of stiff ordinary differential equation (ODEs), is described in detail. A less

stiff reduced system of ODEs is obtained using the ILDM method by equilibrating

the fast time scale chemical processes and resolving only the slow time scale chemical

processes. The accuracy of the standard ILDM approximation is clarified, and it

is shown that the ILDM is a good approximation of the Slow Invariant Manifold

(SIM) for stiff ODEs and small manifold curvature. Efficient construction of multi-

dimensional ILDMs in a polar parametric space is also presented. Subsequently, an

operator splitting method is used to extend the use of the ILDM method to spatially

inhomogeneous reactive systems or reactive flow systems modeled by a system of

partial differential equations (PDEs). This procedure is implemented on a one-

dimensional viscous detonation problem for a mixture of hydrogen-oxygen-argon in

a shocktube. The operator splitting method allows each spatial point to be treated

as a spatially homogeneous premixed reactor in the reaction step, so that the ILDM

method can be implemented. The Wavelet Adaptive Multilevel Representation
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(WAMR) is used in the convection diffusion step for efficient resolution of the fine

spatial structures in the flow. In this problem, the ILDM and WAMR methods,

together, allow for a numerical simulation which is three times faster than the

numerical simulation of the full model equations. The construction of slow manifolds

for PDEs modeling the reactive flow systems is also addressed. An improved

extension of the standard ILDM method to reactive flow systems is given. Reduced

model equations are obtained by equilibrating the fast dynamics of a closely coupled

reaction/convection/diffusion system and resolving only the slow dynamics of the

same in order to reduce computational costs, while maintaining a desired level of

accuracy. The improvement is realized through formulation of an elliptic system of

partial differential equations which describe the infinite-dimensional Approximate

Slow Invariant Manifold (ASIM) for the reactive flow system. This is demonstrated

on a simple reaction diffusion system, where it is shown that the error incurred when

using the ASIM is less than that incurred by use of Mass-Pope Projection (MPP)

of the diffusion effects onto the ILDM. This comparison is further done for ozone

decomposition in a premixed laminar flame where an error analysis shows a similar

trend.
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ṽi Left eigenvectors of J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(2.51) 34

W Orthogonal matrix obtained by singular value decomposition of

the matrix Γ, with columns as the eigenvectors of the

matrix ΓTΓ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.102) 58

xxi



wi 1 or 0 depending on whether or not species i is part of the reduced

reaction mechanism obtained by optimization technique . . . . . . . . . . (1.10) 8

X Solution matrix of the Sylvester equation . . . . . . . . . . . . . . . . . . . . . . . . (2.81) 51

[Xi] Molar concentration of species i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.5) 24

Xi Mole fraction of species i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3.7) 103

Y Vector of species mass fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1.4) 5
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CHAPTER 1

INTRODUCTION

1.1 Motivation and objectives

This study will focus on development of algorithms which enable efficient com-

putational simulations of combustion processes. Some applications in combustion

science are candle flames, atmospheric chemistry, internal combustion engines and

gas turbine engines. However, the algorithms developed in this work will be applied

and tested in the framework of some basic combustion processes such as detonation

and laminar flames, which are intrinsic to the more complicated applications. All

these combustion processes involve a large number of elementary chemical reactions

occurring simultaneously within a complex flow field. This reactive flow phenomenon

is modeled by a large number of partial differential equations (PDEs) representing

the evolution of numerous reactive chemical species, coupled with the full Navier-

Stokes equations. The PDEs are usually of the form

∂y

∂t
= f(y) −∇ · h(y), (1.1)

where the vector y ∈ R
n represents a set of dependent variables which typically

include the species mass fractions, thermodynamic state variables such as tempera-

ture, density and pressure, and fluid velocity vector field. The number of PDEs, n,

is usually large due to the large number of chemical species involved in combustion

processes. The reaction source term is represented by the vector function f(y),

while the convective and diffusive fluxes are represented by the tensor function
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h(y). The time variable is represented by t. Fully resolved numerical solutions

of these model equations, incorporating detailed finite rate chemical kinetics in f ,

along with the initial and boundary conditions, often require a prohibitive amount of

computational resources. Hence, there is a need to develop methods which rationally

reduce the model equations such that numerical simulations can be accomplished

in a reasonable amount of computational time, but also in a way which maintains

essential fidelity of the reduced model equations to the underlying full equations.

Combustion of a typical hydrocarbon may involve hundreds of chemical species

which may be reactants, products or intermediate species. These chemical species

may react in thousands of elementary reaction steps, which constitute a reaction

mechanism. The number of model equations for combustion processes associated

with such large reaction mechanisms is of the order of the number of reacting

chemical species. The computational expense for numerical simulations increases

with both the number of species and the number of elementary reactions involved.

The elementary chemical reactions occur over a wide range of time scales which

is manifested as stiffness in the model equations. This is a more serious problem

as it is computationally expensive to solve stiff differential equations. In order to

alleviate these problems and achieve computational efficiency, several methods have

been developed to reduce the complexity associated with large reaction mechanisms.

In this study the method of Intrinsic Low-Dimensional Manifolds (ILDM) [1] will be

employed and extended for this purpose. A code, based on an algorithm associated

with the ILDM method, with new features, was developed and used for various

reaction mechanisms. In this work the accuracy of the standard ILDM method will

also be clarified.

Some of the recent methods reduce the stiffness in the model equations by

systematically equilibrating the chemical processes which occur at fast time scales
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and by resolving only those chemical processes which occur at relevant slow time

scales. The time scales at which the reactive processes occur usually overlap the

time scales at which the flow or mixing processes occur due to convection and

diffusion effects. Hence, it is important that the reduced model equations maintain

the coupling of the flow processes with those chemical processes which occur at

similar time scales. Often reduced reaction mechanisms are developed based on

chemistry alone and then used in reactive flow scenarios, in which case this coupling

may not be maintained. In this work it will also be illustrated how the coupling of

fluid and chemical processes can be maintained such that an approximate and less

expensive numerical solution of the reduced model equations is consistent with the

more accurate and expensive numerical solution of the full model equations.

Some of the original contributions of this dissertation include a clarification of

the accuracy of the ILDM approximation of the Slow Invariant Manifold (SIM) for

a dynamical system which models a spatially homogeneous reactive system. A new

algorithm for computing the multi-dimensional ILDM in a polar parametric space

has been developed and the associated parametric equations have been derived. A

FORTRAN code based on the new algorithm was also developed. An operator

splitting method was used to extend the use of the ILDM method for efficient

numerical simulation of one-dimensional viscous detonation in a reactive mixture of

H2/O2/Ar, which is a reactive flow system. This was a first application of the ILDM

method in supersonic reactive flow. Also, a new infinite-dimensional Approximate

Slow Invariant Manifold (ASIM) was developed for reactive flow systems in which

reactive, convective and diffusive effects are closely coupled.
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1.2 Background

Over the years several strategies have been used for efficient simulation of reactive

flows. For completeness, the strategy of the frozen flow assumption, which can be

applied on an ad hoc basis to cold regions of the flow, is mentioned. The method

of frozen flow assumes that all chemical reactions are inhibited (f ∼ 0) and only

mixing of chemical species occurs due to convection and diffusion. The following

PDEs are then solved for the multicomponent system

∂y

∂t
= −∇ · h(y). (1.2)

This strategy only works well in cold regions of the flow where the temperatures

are too low to initiate any reactions and is not viable to predict reactive flows.

Another approach of equilibrium flow assumes all chemical species to be in local

chemical equilibrium, everywhere in the changing flow field. This is equivalent to

the assumption that all chemical processes equilibrate at an infinitely fast time

scale. In this approach the numerical simulation is performed in two steps. In the

first step, the thermodynamic state and the composition of the chemical species are

adjusted at each location in the flow field to a chemical equilibrium obtained by

solving the nonlinear algebraic equations

f(y) = 0. (1.3)

The local chemical equilibria vary throughout the flow field as they depend on

the thermodynamic state and the chemical composition at each location in the

flow field, just before Equation (1.3) is solved. These local chemical equilibria can

also be obtained, alternatively and more efficiently, by using a minimum potential

method of the code STANJAN [2]. In the second step, the convection and diffusion

of various chemical species are accounted for by numerically integrating the less
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stiff Equation (1.2) for a small time step. The two steps are repeated for several

time steps to predict a solution at a future time. This strategy only works well in

hot regions of the flow where the chemical species quickly relax to local chemical

equilibria, while they continue to mix due to convection and diffusion effects. The

method of equilibrium flow is also less expensive than a numerical integration of the

full model Equation (1.1). However, these approaches of frozen flow and equilibrium

flow, discussed in detail by Vincenti and Kruger [3], are not very accurate for many

flows as they do not capture any reaction time scales and hence, miss the coupling

between flow and chemical processes.

Some other strategies are based on a priori reduction of detailed chemical kinetics

associated with a reaction mechanism, before using it with a computational fluid

dynamics (CFD) code for reactive flow simulations. In order to do so, a reactive

system often studied is a spatially homogeneous premixed reactor (SHPR), which

is modeled by a system of ordinary differential equations (ODEs) in the absence of

any transport processes such as convection and diffusion (h = 0)

dy

dt
= f(y). (1.4)

These model equations depend on chemical kinetics alone and are useful for

analyzing the reaction mechanism as a dynamical system. Unlike in Equation (1.1),

the vector y in Equation (1.4) represents a vector of species mass fractions only,

with y = Y = (Y1, . . . , YN)T , where Yi is the mass fraction of species i, and n = N

is the total number of species. Due to spatial homogeneity, the thermodynamic

state of the reactive mixture in the SHPR at a certain time can be obtained

from the algebraic thermal and caloric equations of state. The behavior of

the SHPR can be described by trajectories in composition space or phase space

R
n, starting from an initial condition and relaxing to a chemical equilibrium.

Numerical integration of Equation (1.4), which represents a large number of stiff
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ODEs, is expensive. However, numerical integration of Equation (1.1), which

after discretization represents a much larger number of stiff ODEs, is much more

expensive as it is equivalent to solving stiff Equation (1.4) at every location in

an inhomogeneous flow field. The review articles by Griffiths [4] and Okino and

Mavrovouinotis [5] discuss in detail several strategies to obtain reduced model

equations for the SHPR.

One simple and often useful method, which may capture some of the reaction

time scales, consists of replacing hundreds of elementary reaction steps by explicit

one- or two-step reaction models [6, 7, 8, 9]. Typically, only the important

reactant and product species of the full reaction mechanism are retained in the

reduced reaction mechanism, while most of the intermediate species are eliminated.

This method is ad hoc and is used to obtain simplified kinetics which has some

characteristics of the detailed kinetics. It requires curve fitting of reaction rate

parameters of the reduced reaction mechanism. This is done such that the dynamics

of the SHPR, when the reduced reaction mechanism is used, is similar to some

approximation to the dynamics of the SHPR, when the original detailed reaction

mechanism is used.

Sensitivity analysis is often used to obtain a reduced reaction mechanism

by identifying the unimportant species and redundant elementary reactions in a

reaction mechanism. A species can be eliminated from a reaction mechanism, if

changes in its concentration have only a negligible effect on the dynamics of the

reactive system modeled by Equation (1.4). The relative sensitivity, Bi, of species i

with respect to the other species is given by following [10]

Bi =

N∑
j=1

(
∂ ln ω̇j

∂ ln[Xi]

)2

, (i = 1, . . . , N), (1.5)

where ω̇i = ρ
Mi
fi is the molar rate of evolution per unit volume of species i, Mi is
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the molecular mass of species i, ρ is the reactive mixture density and [Xi] = ρ
Mi
Yi is

the moles per unit volume of species i. Species i can be eliminated if Bi < B, where

B is a small parameter. Typically, eliminating a species from a reaction mechanism

means that it does not take part in the reactive process and its concentration remains

constant at its initial condition value. All the elementary reactions in which the

eliminated species take part are also removed from the original reaction mechanism.

By eliminating the unimportant species, the number of ODEs modeling the SHPR

are reduced. The molar rate of evolution per unit volume of species i is given by

ω̇i =
J∑

j=1

(ν ′′ij − ν ′ij)rj , (i = 1, . . . , N), (1.6)

where ν ′ij and ν ′′ij are the stoichiometric coefficients of species i on the reactants

and products side of elementary reaction j, respectively, rj is the rate of elementary

reaction j, and J is the number of elementary reactions in the reaction mechanism.

The rate of an elementary reaction, using law of mass action, is given by

rj = kj

N∏
i=1

[Xi]
ν′

ij , (j = 1, . . . , J), (1.7)

where kj is the rate constant of elementary reaction j. An elementary reaction can

be eliminated from a reaction mechanism via sensitivity analysis if perturbations in

its rate constant have only a negligible effect on the dynamics of the reactive system

modeled by Equation (1.4). The redundant elementary reactions can be determined

by a principal component analysis [11] of the rate sensitivity Jacobian matrix, F,

which has elements obtained by differentiating Equation (1.6)

Fij =
∂ ln ω̇i

∂ ln kj
=

(ν ′′ij − ν ′ij)rj

ω̇i
, (i = 1, . . . , N), (j = 1, . . . , J). (1.8)

An elementary reaction can be eliminated from a reaction mechanism if the

corresponding reaction vector, (ν ′′1j − ν ′1j , . . . , ν
′′
Nj − ν ′Nj)

T , has a negligible

component in the basis spanned by the eigenvectors of the matrix FFT .
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Optimization approaches [12, 13, 14] have also been used to derive a reduced

reaction mechanism from the full reaction mechanism by eliminating some species

and elementary reactions. Petzold and Zhu [12] find the optimum reduced reaction

mechanism with reduced number of elementary reactions by solving the following

discrete constrained optimization problem

er = min||Y − Y′||, (1.9a)

subject to

dYi

dt
=
Mi

ρ

J∑
j=1

(ν ′′ij − ν ′ij)rj, Yi(0) = Yi0, (i = 1, . . . , N), (1.9b)

dY ′
i

dt
=
Mi

ρ

J∑
j=1

(ν ′′ij − ν ′ij)qjrj , Y ′
i (0) = Yi0, (i = 1, . . . , N), (1.9c)

J∑
j=1

qj = kr, qj = 1 or 0, (1.9d)

where Y ′
i represents the mass fraction of species i in the reduced model equa-

tions (1.9c). The minimum er is over q1, . . . , qJ , where each qj can take the value

1 or 0 depending on whether or not elementary reaction j is part of the reduced

reaction mechanism. Equation (1.9b) is same as the original model Equation (1.4)

for the SHPR, while Equation(1.9c) is the reduced model equation. The number of

elementary reactions kr, in the reduced reaction mechanism, is user specified with

kr << J . Similarly, the optimum reduced reaction mechanism with reduced number

of species is obtained by solving the discrete constrained optimization problem in

Equation (1.9) with Equation (1.9d) replaced by the following

qj =
∏
i∈S′

j

wi, ks1 ≤
N∑

i=1

wi ≤ ks2, wi = 1 or 0, (1.10)

where the minimum er is now over w1, . . . , wN , where each wi can take the value

1 or 0 depending on whether or not species i is part of the reduced reaction

mechanism. The set of indices of those species which appear in elementary reaction
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j is represented by S ′
j. It is evident from Equations (1.9c) and (1.10) that all the

elementary reactions in which the eliminated species take part are also eliminated

from the reaction mechanism. The mass fraction of the eliminated species remains

constant at its initial condition value. The minimum number of species, ks1, and

the maximum number of species, ks2, in the reduced reaction mechanism, are user

specified with ks1 < ks2 < N . The discrete constrained optimization problem

for species reduction is highly nonlinear and more difficult to solve than that for

elementary reaction reduction. The error in the thermodynamic state of the reactive

system, when using the reduced model in Equation (1.9c), should also be included

in the error norm er. Also, the discrete optimization problem is converted to a

continuous optimization problem to reduce the computational costs.

Some methods have been developed to reduce the ODEs in Equation (1.4)

and their stiffness, instead of actually generating reduced reaction mechanisms by

eliminating some species and elementary reactions. One such method is the lumping

method [15, 16], where the mass fractions of the chemical species are lumped into

reduced number of variables using the following transformation

Ȳ = L(Y), (m algebraic equations), (1.11)

where L : R
n → R

m (m < n) is the lumping transformation function, and Ȳ

represents the transformed dependent variable. For linear lumping, L(Y) is a linear

function, while for nonlinear lumping, L(Y) is a nonlinear function. The reduced

model equations for the SHPR, using the lumping method, are given by

dȲ

dt
= f̄(Ȳ), (m ODEs). (1.12)

The main challenge of the lumping method is to identify the lumping and inverse

lumping transformation functions. Nonlinear lumping techniques [17, 18] have

been developed using singular perturbation methods, which exploit the inherent
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separation in time scales of reactive processes. In such techniques Ȳ represents the

slow variables and Equation (1.12) describes only the slow dynamics of the reactive

system. Hence, the reduced model equations are less stiff. However, this method

has been restricted to simple reactive systems where a constant small singular

perturbation parameter, which quantifies the separation in slow and fast time scales,

can be easily identified.

To reduce the model equations (1.4) and their stiffness, quasi steady state

assumptions (QSSA) are commonly applied for those chemical species which react

at fast time scales and reach a stationary state with respect to the other species in

the reactive system. The reduced model equations, which are a system of differential

algebraic equations (DAEs), are given by

dYi

dt
= fi(Y1, . . . , Yn), (i = 1, . . . , m), (1.13a)

0 = fi(Y1, . . . , Yn), (i = m+ 1, . . . , n), (1.13b)

where species m+1, . . . , n, are assumed to be in quasi steady state, resulting into the

algebraic Equations (1.13b). The concentration of these quasi steady state species

is not constant and can be obtained from the algebraic Equations (1.13b). The

DAEs obtained by the QSSA method can be further simplified by assuming partial

equilibrium for some fast elementary reactions. The algebraic equations obtained

by QSSA and partial equilibrium assumptions can sometimes be substituted into

Equation (1.13a) to simply obtain a set of reduced number of ODEs as in

Equation (1.12), but with Ȳ = (Y1, . . . , Ym)T . Often, a reduced reaction mechanism

associated with these reduced set of ODEs can be written explicitly. More details on

this procedure can be found in [19, 20]. However, this method requires substantial

amounts of fallible human intuition and human time. A knowledge of chemistry

and a careful analysis of the large number of reaction rate parameters is required
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to decide which species can be in quasi steady state and which elementary reaction

can be in partial equilibrium.

Of the reduction methods discussed thus far, the one- or two-step reduced

reaction models, the method of sensitivity analysis, and the optimization technique,

none attempt to systematically reduce the stiffness associated with the full reaction

mechanism. Instead, these methods rely on elimination, by analysis, of unimportant

species and elementary reactions to generate a reduced reaction mechanism. Even

though the lumping method, QSSA and partial equilibrium assumptions somewhat

reduce the stiffness, besides reducing the model equations, they do not do so by a

rational analysis of the time scales involved. Hence, the reduced model equations,

derived using these methods, may still be considerably stiff. Another problem with

all the approaches discussed until now is that while the resulting reduced models may

be useful for a certain range of thermodynamic states and compositions of chemical

species for which they have been calibrated, it is often easy to find scenarios where

they do not do a good job of approximating the full model. Hence, these methods

should be applied for an extensive range of operating conditions before generating

the final reduced model.

The methods of Intrinsic Low Dimensional Manifolds (ILDM) [1] and Compu-

tational Singular Perturbation (CSP) [21, 22] use a dynamical systems approach

of time scale analysis to systematically reduce the stiffness in the model equations.

Also, these methods are based on a local analysis of the slow and fast time scales

in phase space, and hence, adapt for appropriate reduced description of chemical

kinetics in different regions of phase space.

The CSP method identifies and eliminates, what have been named by Lam [22],

the local exhausted and dormant modes, while retaining only the local slow active

modes at a certain time along the phase space trajectory of the dynamical system
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in Equation (1.4), thereby reducing the stiffness. The exhausted and dormant

modes are associated with equilibrated and temporarily inactive reactive processes,

respectively. The vector f , which represents the reaction source term, is locally

partitioned into various modes, using n linearly independent basis vectors vi

f(y) =
n∑

i=1

gi(y)vi(y), (1.14)

where gi is the amplitude of the i-th mode and is given by

gi(y) = ṽi(y) · f(y), with ṽi(y) · vj(y) = δij, (1.15)

where the n vectors ṽi form the reciprocal basis of the basis formed by the n vectors

vi, and δij is the Kronecker delta (δij = 1 for i = j and δij = 0 for i 6= j). The

basis vectors vi are local and vary in phase space, and they are ordered such that

the corresponding modes gi are associated with time scales which are ordered from

the slowest to fastest. The local time scales are given by the inverse of the absolute

value of the real part of eigenvalues of the Jacobian J = ∂f
∂y

. Hence, the slowest

time scales are associated with the eigenvalues which have the least negative real

part, while the fastest time scales are associated with the eigenvalues which have

the most negative real parts. For linear dynamical systems the basis vectors are

simply the constant eigenvectors of the Jacobian. However, for nonlinear dynamical

systems the basis vectors are obtained by a two step iteration procedure [22] and

they are closely related to the local eigenvectors of the Jacobian. The less stiff

reduced model equations, which approximately describe the dynamics of the local

slow active modes, are given by

dy

dt
≈

(n−ke)∑
i=(kd+1)

gi(y)vi(y), (1.16)

with the algebraic equations

gi(y) ≈ 0, (i = 1, . . . , kd), (1.17)
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approximately describing the kd dormant modes, and the algebraic equations

gi(y) ≈ 0, (i = n− ke + 1, . . . , n), (1.18)

approximately describing the ke exhausted modes. Hence, there are (n − kd − ke)

active modes. The number of dormant, active and exhausted modes change with

time along the phase space trajectory. Computing the appropriate basis vectors

along the phase space trajectory is the computationally most expensive part of the

CSP method.

The dynamics of a three-dimensional (n = 3) dynamical system in Equa-

tion (1.4), modeling the SHPR, is depicted in Figure 1.1. The phase space

trajectories, in the three-dimensional phase space, start from an initial condition

and quickly relax to a two-dimensional subspace or manifold as the time progresses.

Then the phase space trajectories move slowly along the two-dimensional manifold

and relax to a one-dimensional subspace or manifold. Finally the phase space

trajectories move much more slowly along the one-dimensional manifold and relax

to a zero-dimensional subspace or the equilibrium point. This behavior is typical for

gas phase combustion of several species in which reactive processes occur at varying

time scales. Relaxation of the phase space trajectories from a higher dimensional

manifold to a lower dimensional manifold occurs exponentially, and is equivalent

to the equilibration of some fast chemical processes. On the other hand the slower

chemical processes evolve along the low-dimensional manifolds.

The ILDM method identifies ab initio a low-dimensional subspace, known as

the ILDM, within phase space R
n, which closely approximates the low-dimensional

manifold depicted in Figure 1.1. For an n-dimensional dynamical system in

Equation (1.4), an m-dimensional (m < n) ILDM, in the n-dimensional phase

space, is identified by a local eigenvalue-eigenvector analysis, and is described by

13



Y
1

Y
2

Y
3

Fast

Slow

Phase Space
Trajectory

2-D Manifold

1-D Manifold

Phase Space
Trajectory

Equilibrium Point
(0-D Manifold)

Figure 1.1. Phase space of a three-dimensional dynamical system modeling the
SHPR, depicting the slow manifolds and the behavior of the phase space trajectories.

the following nonlinear algebraic equations

Ṽf f(y) = 0, (n−m algebraic equations), (1.19)

where Ṽf is a matrix of dimensions (n−m)×n, with row vectors which are the n−m
left eigenvectors, of the Jacobian J = ∂f

∂y
, associated with the n−m eigenvalues with

the most negative real part. If the chemical processes associated with n −m fast

time scales are equilibrated, then the chemical processes associated with m slow time

scales occur close to the m-dimensional ILDM in phase space. On the m-dimensional

ILDM, m ODEs with reduced stiffness are required to be integrated coupled with

n −m non-linear algebraic equations describing the ILDM. The slow dynamics of

the reactive system is described by the following reduced model equations, which

are a system of DAEs

Ṽs
dy

dt
= Ṽsf(y), (m ODEs), (1.20a)

0 = Ṽf f(y), (n−m algebraic equations), (1.20b)
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where Ṽs is a matrix of dimensions m × n, with row vectors which are the m left

eigenvectors, of the Jacobian J, associated with the m eigenvalues with the least

negative real part. The reduced model equations obtained by the ILDM method

can be used after the phase space trajectories, which start from the initial condition,

have relaxed onto the ILDM. This is acceptable under the assumption that fast time

scale processes can be neglected. A proper projection is required from the initial

condition to the ILDM such that there is at most a small temporal phase error

between the solution obtained using the ILDM method and the solution of the full

system of ODEs. The m-dimensional ILDM can be computed a priori in phase space

by solving Equation (1.19) coupled with m parametric equations, and can then be

stored in a table. This table can then be used while integrating Equation (1.20a) to

obtain the slow dynamics of the system. Hence, the ILDM method has a significant

computational advantage over the CSP method, as the expensive computation of

local eigenvalues and eigenvectors is not required during the actual computations

with the reduced model equations. Another advantage of the ILDM method is

that the same table can be reused for several different computations. The reduced

model equations obtained by both, the ILDM method and the QSSA method, are

DAEs (1.20) and (1.13), respectively. However, the QSSA method, coupled with

partial equilibrium assumptions, attempts to equilibrate fast time scale processes

by an ad hoc method, while the ILDM method systematically does the same and

resolves only the slow time scale processes without requiring an extensive knowledge

of chemistry. Unlike some of the approaches discussed earlier, the reduced model

equations obtained by the ILDM method are valid for a large domain of phase space

which is also known a priori from the computation of the ILDM. A number of studies

have appeared in recent years advancing the ILDM method and some variants, such

as Blasenbrey, et al. [23], Eggels, et al. [24], Schmidt, et al. [25], Yang and Pope
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[26], Rhodes, et al. [27], Lowe and Tomlin [28], Gicquel, et al. [29], and Correa, et

al. [30].

The ILDM is only an approximation of the manifolds depicted in Figure 1.1

which are referred to as the Slow Invariant Manifolds (SIM). Slow indicates that

the SIM is associated with slow time scale processes, and invariant indicates that

if the initial condition lies on the SIM, the phase space trajectory lies completely

within the SIM for all future times. Relative to the more fundamental SIM, the

ILDM contains an intrinsic error which decreases as the spectral gap between the

slow and fast time scales increases. Consequently, it will be shown in this work that

the contention of Rhodes, et al. [27] that the Maas and Pope algorithm identifies a

SIM is in error. The SIM can be obtained analytically by perturbation analysis [31]

for simple systems, for which Equation (1.4) can be transformed to the following

dys

dt
= fs(ys,yf , ε), (m ODEs), (1.21a)

ε
dyf

dt
= ff (ys,yf , ε), (n−m ODEs), (1.21b)

where 0 < ε << 1 is a small parameter, and ys, a vector of length m, represents the

slow variables, and yf , a vector of length n−m, represents the fast variables. Each

of the slow and fast variables can be a combination of the dependent variables, in

vector y, of the original system of Equations (1.4). Using Fenichel’s theorem [32], an

asymptotic expansion of the SIM, for the system in Equation (1.21), can be written

as following

yf = hε(ys) = h0(ys) + εh(1)(ys) + ε2h(2)(ys) + . . . , (1.22)

where ff(ys,h0(ys), 0) = 0, and the coefficients h(i)(ys), (i = 1, 2, . . .), can be found

recursively using Fenichel’s theorem. It has been shown by Kaper and Kaper [31],

for systems similar to the one in Equation (1.21), that the ILDM approximation of

the SIM is O(ε) accurate. Equation (1.22) can be substituted in Equation (1.21a)
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to obtain the following less stiff reduced model equations which describe the slow

dynamics of the dynamical system

dys

dt
= fs(ys,hε(ys), ε), (m ODEs). (1.23)

Another method of inertial manifolds [33] is also used to to find an algebraic

approximation, yf = h′(ys), for the SIM. However, this method has also been

only applied for simpler systems as in Equation (1.21). It is difficult to apply the

methods of asymptotic expansion and inertial manifolds to combustion systems as

it is difficult to find a constant small parameter ε from the large number of reaction

rate parameters associated with a reaction mechanism. Also, the membership of

the slow and fast sets of variables changes in phase space and in different ranges of

thermodynamic states.

The SIM can be approximated by another method of algebraic functional

iteration [34, 35], for systems which are not amenable to a transformation to the

form in Equation (1.21). Kaper and Kaper [31] have shown for simple systems that

the order of accuracy of the SIM obtained by this method improves, by one order,

with each iteration. For more complex combustion systems, it is more suitable to

compute the SIM using a slightly variant method of numerical functional iteration

[36]. However, provided that a spectral gap condition is satisfied, the ILDM does

a good job of approximating the SIM, and in our experience, computation of high

dimensional ILDMs appears to be more tractable than that of high dimensional

SIMs.

Most of the methods discussed until now achieve computational efficiency for the

SHPR modeled by a system of ODEs in Equation (1.4). However, in more realistic

scenarios it is important to achieve similar computational efficiency for simulating

spatially inhomogeneous reactive systems or reactive flow systems which are modeled

by PDEs in Equation (1.1). Hadjinicolaou and Goussis [37] have extended the CSP
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method to reaction diffusion equations. Yannacopolous, et al. [33] illustrate, using

inertial manifolds, infinite-dimensionality of slow manifolds associated with PDEs

when compared to finite-dimensionality of slow manifolds associated with ODEs.

The algebraic approximation of these infinite-dimensional inertial manifolds is only

suitable for simpler systems where a fixed segregation of slow and fast variables can

be easily found. However, it is important to note that the slow manifolds associated

with the PDEs have infinite-dimensionality.

Maas and Pope have proposed an extension of the ILDM method for reactive

flow systems described by PDEs [38]. They assume that if flow processes occur

at time scales of the order of the m slow chemical time scales associated with the

m-dimensional reaction ILDM, then the flow processes only perturb the system

slightly off the ILDM, while the fast chemical processes rapidly relax the system back

onto the ILDM. Therefore, in the Maas and Pope Projection (MPP), convection-

diffusion terms in reactive flow PDEs are projected onto the finite-dimensional

tangent subspace of the ILDM, signifying that the reactive system never leaves

the ILDM in phase space. The reduced PDEs can then be integrated, coupled with

the m-dimensional ILDM Equation (1.19) or its tabular form, to obtain the slow

dynamics of the reactive flow system. These reduced partial differential algebraic

equations are also less stiff than the original reactive flow PDEs (1.1). The dimension

of the ILDM to be used is determined by prescribing a cutoff for the chemical time

scales, based on the fastest flow time scales. If the flow time scales are faster than

any of the chemical time scales associated with an ILDM of a certain dimension,

then a higher dimensional ILDM is required, which is essential to maintain full

coupling of the flow and chemical processes. Hence, a different dimensional ILDM is

often required at different locations in physical space as the flow time scales vary in

physical space and the chemical time scales vary in both physical and phase spaces.
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This amounts to solving a different number of reduced PDEs at different locations

in physical space. It is also difficult to determine a priori the magnitude of the flow

time scales which control the dimension of the ILDM to be used.

One way to overcome these problems is to use Strang operator splitting [39]

between the reaction source terms and the convection-diffusion terms when solving

the reactive flow model PDEs [40]. In the first step, each point in physical space

is treated as a spatially homogeneous premixed reactor with convection-diffusion

suppressed, and the resulting ODEs for the reaction part are solved using the

standard ILDM method. This allows use of the ILDMs of different dimensions

at different locations in physical space. If the chemical composition at a certain

location in the physical space does not lie near the ILDM, implicit integration of

the full equations is used in the reaction step, until the chemical composition relaxes

to the ILDM. In the second step, the reaction part of the reactive flow equations

is suppressed, and the resulting PDEs for the convection-diffusion part are solved

using standard discretization techniques for inert flows. The second step perturbs

the reactive system off the ILDM; it is then projected back onto the ILDM along

the direction, in phase space R
n, of the fast local eigenvectors of the Jacobian of

the reaction source term in the reactive flow PDEs. Even though the ILDM method

reduces the number of ODEs to be solved in the first step, the number of PDEs

to be solved in the second step is same as the number of original model equations.

Another disadvantage of this method is that errors are incurred due to operator

splitting. Strang splitting has second order accuracy in time provided both steps

have second order accuracy in time. If the chemical time scales are highly disparate

from the flow times scales, the operator splitting method will induce errors in wave

speeds. These errors can be minimized by resolving the spatial and temporal scales

in the thin reaction zones using adaptive mesh refinement methods [41].
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In this work we propose a more systematic approach to preserve the coupling

between chemistry and flow physics. The full model equations are projected onto the

fast and slow basis vectors of the Jacobian of the reactive source term in the reactive

flow PDE. A set of elliptic PDEs is obtained by equilibrating the fast dynamics. The

elliptic PDEs approximately describe the infinite-dimensional Approximate Slow

Invariant Manifold (ASIM) analogous to the algebraic equations which describe the

ILDM. The reactive flow system relaxes to the ASIM before reaching steady state.

Unlike the ILDM, the ASIM accounts for the effects of convection and diffusion in

the reactive flow system. When using the ASIM, a set of elliptic PDEs, coupled with

time-dependent less stiff reduced PDEs describing the slow dynamics, are solved in

physical space.

1.3 Organization of dissertation

This dissertation is organized as follows. In Chapter 2 the model equations for a

closed adiabatic spatially homogeneous premixed reactor (CASHPR) are described.

These model equations include ODEs which describe the evolution of species mass

fractions in time, due to reactive processes within the CASHPR, based on Arrhenius

kinetics and law of mass action. It is demonstrated that the atoms or elements,

which compose various chemical species, remain conserved within the CASHPR.

The energy conservation equations are derived for the isochoric CASHPR and the

isobaric CASHPR and are presented as an ODE for temperature evolution and

also as a nonlinear algebraic equation. The ideal gas equation of state is used

with the model equations to close the system. Next, a detailed description of

the ILDM method is given along with a derivation of the resulting reduced model

equations obtained for the dynamical system modeling the CASHPR. A geometrical

description of the nonlinear algebraic equations describing an m-dimensional ILDM
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in an n-dimensional phase space is given. Next, the ILDM is compared with the

SIM, and it is shown for a general case that there exists a small intrinsic error in

the ILDM approximation which increases as the spectral gap between the slow and

fast time scales decreases and as the curvature of the manifold increases. Finally, a

detailed description of an efficient algorithm for a priori computation of the ILDM

in phase space is given. The m parametric equations, which are required while

computing the m-dimensional ILDM using the n − m algebraic equations (1.19),

are also derived. Several examples of a priori computation of the ILDM for various

reaction mechanisms are given.

In Chapter 3 a standard ignition delay problem for a mixture of hydrogen-

oxygen-argon in a shock tube is solved using the ILDM method coupled with a

wavelet adaptive multilevel representation (WAMR) spatial discretization technique.

The governing equations, initial and boundary conditions are described for this

reactive flow problem. An operator splitting technique, which is used to split the

reaction part from the convection diffusion part, is described, such that the governing

equations can be solved in two steps. In the reaction step a system of ODEs at each

spatial point is integrated, which is computationally the most expensive part of

the numerical simulation. It is shown how the ILDM method, which is developed

for a CASHPR in Chapter 2, can be naturally used to reduce the computational

expense of solving the ODEs in the reaction step. A brief review of the WAMR

technique is given, which is used to solve the PDEs in the convection diffusion step

of the numerical simulation. The table generated for the ILDM for the H2-O2-Ar

reaction mechanism is described. Next, the projection onto the ILDM is described,

which is required after the convection diffusion step results in a perturbation of the

reactive system off the ILDM. Finally, detailed results are given for the shock tube

test problem, and conclusions are presented.
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In Chapter 4 the construction of slow manifolds for reactive flow systems is

addressed. A theoretical development of the Approximate Slow Invariant Manifold

(ASIM), associated with a spatially inhomogeneous reactive system, as an improved

extension for the standard ILDM method, is given. The improvement is realized

through formulation of an elliptic system of partial differential equations which

describe the ASIM for the reactive flow system in which reactive processes couple

with convection and diffusion processes at similar time scales. This is demonstrated

on a simple reaction diffusion system, where it is shown that the error incurred when

using the ASIM is less than the error incurred when using the Mass-Pope projection

(MPP) of the diffusion effects onto the ILDM. This comparison is also done for ozone

decomposition in a premixed laminar flame where an error analysis shows a similar

trend. The governing equations along with the initial and boundary conditions are

described for the ozone decomposition premixed laminar flame problem. Finally,

detailed results and conclusions are given for the comparisons of the use of the

ASIM and the MPP method for the laminar flame problem.

In Chapter 5 the final conclusions and suggestions for future work are given.
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CHAPTER 2

INTRINSIC LOW DIMENSIONAL MANIFOLDS FOR A CLOSED ADIABATIC
SPATIALLY HOMOGENEOUS PREMIXED REACTOR

2.1 Closed adiabatic spatially homogeneous premixed reactor

A closed adiabatic spatially homogeneous premixed reactor (CASHPR) is a

closed system consisting of a homogeneous mixture of reacting chemical species.

It is treated as a closed adiabatic system as there is no mass and heat transfer to

or from the reactor. The total mass of the reacting mixture remains constant and

is given by

m◦ =

N∑
i=1

mi, (2.1)

where m◦ is the total mass, mi is the mass of species i, and N is the total number

of species. The rate of evolution of chemical species is given by

dNi

dt
= V ω̇i, (i = 1, . . . , N), (2.2)

where Ni is the number of moles of species i, ω̇i is the molar rate of evolution per

unit volume of species i due to the reactive processes, V is the mixture volume, and

t is time.

A typical reaction mechanism consists of several elementary reaction steps

involving many chemical species. A compact notation for such a reaction mechanism

is given by
N∑

i=1

ν ′ijSi ⇒
N∑

i=1

ν ′′ijSi, (j = 1, . . . , J), (2.3)
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where Si represents the symbol for species i, J is the number of elementary reaction

steps and ν ′ij and ν ′′ij are the stoichiometric coefficients of species i, on the reactants

and products side of elementary reaction j, respectively. Each of the reversible

reactions in the reaction mechanism are treated as two irreversible reactions; first

having the forward reaction rate and second having the backward reaction rate of

the corresponding reversible reaction. The molar rate of evolution per unit volume

of species i in the multi-step reaction mechanism is given by

ω̇i =
J∑

j=1

(
ν ′′ij − ν ′ij

)
rj , (i = 1, . . . , N), (2.4)

where rj is the rate of elementary reaction j given by law of mass action

rj = kj

N∏
i=1

[Xi]
ν′

ij , (j = 1, . . . , J), (2.5)

where [Xi] = Ni

V
is the molar concentration of species i, and kj is the temperature

dependent rate constant for reaction j given by Arrhenius kinetics

kj = αjT
βj exp

(−Ej

<T
)
, (j = 1, . . . , J), (2.6)

where the constant parameters αj, βj, Ej and < represent the kinetic rate constant of

reaction j, the temperature dependence exponent of reaction j, the activation energy

of reaction j, and the universal gas constant (< = 8.31441 × 107 erg mol−1 K−1),

respectively, and T is the mixture temperature.

The species evolution Equation (2.2) can be rewritten in terms of species mass

fractions as

dYi

dt
=
ω̇iMi

ρ
, (i = 1, . . . , N), (2.7)

where Yi = NiMi

m◦ = [Xi]Mi

ρ
= mi

m◦ is the mass fraction of species i, Mi is the molecular

mass of species i, and ρ = m◦
V

is the mixture density.
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The thermal equation of state used for the mixture of chemical species in gas

phase is that of an ideal gas and is given by

p = ρ

(
N∑

i=1

Yi

Mi

)
<T, (2.8)

where p is the mixture pressure.

Each molecule of chemical species is composed of certain number of atomic

elements connected by chemical bonds. If the number of atoms of element l in

the molecule of species i is represented by ϕil, then the total number of moles of

element l in the mixture is given by

N̂l =

N∑
i=1

ϕilNi, (l = 1, . . . , L), (2.9)

where N̂l is the number of moles of element l, and L is the total number of elements.

Similarly the mass fraction of each element in the mixture is given by

Ŷl = M̂l

N∑
i=1

ϕil
Yi

Mi
, (l = 1, . . . , L), (2.10)

where Ŷl = m̂l

m◦ is the mass fraction, m̂l is the mass and M̂l is the atomic mass of

element l. The sums of both species mass fractions and element mass fractions are

unity (
∑N

i=1 Yi = 1;
∑L

l=1 Ŷl = 1), and the molecular mass of species i is also given

by Mi =
∑L

l=1 ϕilM̂l. Using Equation (2.7) with Equations (2.4) and (2.10), and

enforcing the stoichiometric balances for reaction j,
∑N

i=1 ν
′
ijϕil =

∑N
i=1 ν

′′
ijϕil for

(l = 1, . . . , L), it can be shown that for the CASHPR (see Appendix C)

dŶl

dt
= 0, (l = 1, . . . , L). (2.11)

Hence, the element mass fractions in the CASHPR remain constant constant for

all times and only N − L species evolution Equations (2.7) are required to be

integrated in conjunction with the following linear algebraic equations, representing
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the conservation of atoms in absence of nuclear reactions,

N∑
i=1

ϕil
Yi

Mi

=
N∑

i=1

ϕil
Yi0

Mi

=
Ŷl0

M̂l

, (l = 1, . . . , L), (2.12)

where Yi0 is the mass fraction of species i and Ŷl0 is the mass fraction of element l

at time t = 0.

2.1.1 Energy conservation equation for the isochoric CASHPR

e = e   (const.)
ρ = ρ   (const.)

0

0

Figure 2.1. Isochoric CASHPR

Figure 2.1 depicts the isochoric CASHPR which has a fixed mass of reacting

chemical species and has no heat exchange with the surroundings. For an adiabatic

system which has no work interaction with the surroundings, the differential form of

the first law of thermodynamics, neglecting changes in kinetic and potential energy,

is given by

de

dt
=

dq

dt︸︷︷︸
=0

− dw

dt︸︷︷︸
=0

= 0, (2.13)

where e is the internal energy per unit mass of the reactive mixture, q is the heat

transfer per unit mass, and w is the work per unit mass. The mass averaged mixture

internal energy per unit mass, e, is given by

e =
N∑

i=1

eiYi, (2.14)
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where ei is the internal energy per unit mass of species i. Differentiating

Equation (2.14) and using Equation (2.13) gives

de

dt
=

N∑
i=1

Yi
dei

dt
+

N∑
i=1

ei
dYi

dt
= 0. (2.15)

It is assumed that all chemical species are thermally perfect, so that their internal

energy and specific heat at constant volume are functions of at most temperature

only. Hence,

ei = ei(T ), cvi = cvi(T ), (2.16)

where cvi is the specific heat at constant volume for species i. In general cvi is given

by

cvi =
∂ei

∂T

∣∣∣∣
v

; (2.17)

however, for the thermally perfect species i, cvi is given by

cvi =
dei

dT
, hence,

dei

dt
= cvi

dT

dt
. (2.18)

Substituting the expression for dei

dt
from Equation (2.18) into Equation (2.15) gives

de

dt
=

N∑
i=1

cviYi
dT

dt
+

N∑
i=1

ei
dYi

dt
= 0. (2.19)

The mass averaged specific heat at constant volume, cv, for the mixture is given by

cv =

N∑
i=1

cviYi. (2.20)

Hence, Equation (2.19) can be rewritten as

de

dt
= cv

dT

dt
+

N∑
i=1

ei
dYi

dt
= 0. (2.21)

By substituting the expression for the evolution of species mass fraction, dYi

dt
,

from Equation (2.7) into Equation (2.21), the energy conservation equation for the

isochoric CASHPR can be written as

dT

dt
= − 1

ρcv

N∑
i=1

eiω̇iMi. (2.22)
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2.1.2 Energy conservation equation for the isobaric CASHPR

h = h   (const.)
p = p   (const.)

0

0

Figure 2.2. Isobaric CASHPR

Figure 2.2 depicts the isobaric CASHPR which has a fixed mass of reacting

chemical species and has no heat exchange with the surroundings. It is assumed that

there is only volumetric work due to the piston and that there is no friction between

the piston and the cylinder walls. For an adiabatic system with only volumetric

work done by the system, the differential form of the first law of thermodynamics,

neglecting changes in kinetic and potential energy, is given by

de

dt
=

dq

dt︸︷︷︸
=0

− dw

dt︸︷︷︸
=p dv

dt

, hence,
de

dt
+ p

dv

dt
= 0, (2.23)

where v = 1
ρ

= V
m◦ is the specific volume of the mixture of chemical species. The

mixture enthalpy per unit mass, h, is given by

h = e+ pv. (2.24)

Differentiating Equation (2.24) and using Equation (2.23), the following is obtained

for an isobaric closed adiabatic system

dh

dt
=
de

dt
+ p

dv

dt︸ ︷︷ ︸
=0

+ v
dp

dt︸︷︷︸
=0

= 0. (2.25)

28



The mass averaged mixture enthalpy per unit mass is given by

h =

N∑
i=1

hiYi, (2.26)

where hi is the enthalpy per unit mass of species i. Differentiating Equation (2.26)

and using Equation (2.25) gives

dh

dt
=

N∑
i=1

Yi
dhi

dt
+

N∑
i=1

hi
dYi

dt
= 0. (2.27)

Again it is assumed that all chemical species are thermally perfect, so that their

enthalpy and specific heat at constant pressure are functions of at most temperature

only. Hence,

hi = hi(T ), cpi = cpi(T ), (2.28)

where cpi is the specific heat at constant pressure of species i. In general cpi is given

by

cpi =
∂hi

∂T

∣∣∣∣
p

; (2.29)

however, for the thermally perfect species i, cpi is given by

cpi =
dhi

dT
, hence,

dhi

dt
= cpi

dT

dt
. (2.30)

Substituting the expression for dhi

dt
from Equation (2.30) into Equation (2.27) gives

dh

dt
=

N∑
i=1

cpiYi
dT

dt
+

N∑
i=1

hi
dYi

dt
= 0. (2.31)

The mass averaged specific heat at constant pressure, cp, for the mixture is given by

cp =
N∑

i=1

cpiYi. (2.32)

Hence, Equation (2.31) can be rewritten as

dh

dt
= cp

dT

dt
+

N∑
i=1

hi
dYi

dt
= 0. (2.33)
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By substituting the expression for the evolution of species mass fraction, dYi

dt
,

from Equation (2.7) into Equation (2.33), the energy conservation equation for the

isobaric CASHPR can be written as

dT

dt
= − 1

ρcp

N∑
i=1

hiω̇iMi. (2.34)

In energy conservation Equations (2.22) and (2.34) the species internal energy

per unit mass, ei, and the species enthalpy per unit mass, hi, are evaluated using

the following relations valid for an ideal gas

hi = h◦fi +

∫ T

Ts

cpi(T )dT, (2.35)

ei = hi − <
Mi

T, (2.36)

where h◦fi is the enthalpy of formation of species i at the standard temperature of

Ts = 298K. The CHEMKIN [42] package has a thermodynamic database for various

chemical species, which is used to evaluate cpi(T ) from polynomial fits of empirical

data and also to obtain h◦fi. Finally, cvi can be evaluated using the following relation

cvi = cpi − <
Mi

. (2.37)

2.1.3 Summary

The isochoric CASHPR can be modeled by the following set of equations which

include the species evolution equations

dYi

dt
=
ω̇iMi

ρ0

, (i = 1, . . . , N − L), (2.38)

the conservation equations for atoms

N∑
i=1

ϕil
Yi

Mi

=
Ŷl0

M̂l

, (l = 1, . . . , L), (2.39)
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the equation of state

p = ρ0

(
N∑

i=1

Yi

Mi

)
<T, (2.40)

and the energy conservation equation either as an ODE for temperature evolution

dT

dt
= − 1

ρ0cv

N∑
i=1

eiω̇iMi, (2.41)

or as a nonlinear algebraic conservation equation for mixture internal energy per

unit mass
N∑

i=1

ei(T )Yi = e0. (2.42)

If the algebraic form of the energy conservation equation is used, then the model

equations for the isochoric CASHPR can be represented by the following set of

autonomous, nonlinear, ordinary differential equations of the form

dY

dt
= f(Y), (2.43)

where Y = (Y1, . . . , YN−L)T and f = f(Y1, . . . , YN−L; ρ0, e0, Ŷ10, . . . , ŶL0). The

element mass fractions, Ŷ10, . . . , ŶL0, the mixture density, ρ0, and the mixture

internal energy per unit mass, e0, represent their respective values at time t = 0,

which remain constant. Similar equations are required to be solved in the reaction

step when operator splitting is used to solve the model equations for viscous

detonation in a reactive mixture of H2/O2/Ar.

The isobaric CASHPR can be modeled by the following set of equations which

include the species evolution equations

dYi

dt
=
ω̇iMi

ρ
, (i = 1, . . . , N − L). (2.44)

the linear conservation equations for atoms

N∑
i=1

ϕil
Yi

Mi
=
Ŷl0

M̂l

, (l = 1, . . . , L). (2.45)
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the equation of state

p0 = ρ

(
N∑

i=1

Yi

Mi

)
<T, (2.46)

and the energy conservation equation either as an ODE for temperature evolution

dT

dt
= − 1

ρcp

N∑
i=1

hiω̇iMi, (2.47)

or as a nonlinear algebraic conservation equation for mixture enthalpy per unit mass

N∑
i=1

hi(T )Yi = h0. (2.48)

If the nonlinear algebraic form of the energy conservation equation is used, then

the model equations for the isobaric CASHPR can be represented by the following

set of autonomous, nonlinear, ordinary differential equations of the form

dY

dt
= f(Y), (2.49)

where Y = (Y1, . . . , YN−L)T and f = f(Y1, . . . , YN−L; p0, h0, Ŷ10 , . . . , ŶL0). The

element mass fractions, Ŷ10, . . . , ŶL0, the mixture pressure, p0, and the mixture

enthalpy per unit mass, h0, represent their respective values at time t = 0, which

remain constant. Similar equations are required to be solved in the reaction step

when operator splitting is used to solve the model equations for constant pressure

adiabatic laminar premixed flames.

2.2 Intrinsic low-dimensional manifolds

The method of Intrinsic Low-Dimensional Manifolds (ILDM) by Maas and Pope

[1] is applied to the CASHPR which is modeled by a set of ordinary differential

equations of the form

dy

dt
= f(y), y(t = 0) = y0, (2.50)
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where y ∈ R
n represents a set of dependent variables or a vector of species mass

fractions for the CASHPR, f(y) is the forcing function or the reaction source term

for the CASHPR, and t is the independent time variable. Equation (2.50) is identical

to Equations (2.43) or (2.49) modeling the CASHPR with n = N −L. Without loss

of generality, the origin is translated to the chemical equilibrium point for the system

in Equation (2.50), such that f(0) = 0. The nonlinear reaction source term typically

induces severe stiffness in Equation (2.50) and makes it computationally expensive

to solve. The stiffness is due to the widely disparate time scales over which different

chemical reactions occur. The eigenvalues of the Jacobian ∂f
∂y

= J identify the local

time scales associated with the reactive system. The eigenvectors of J identify the

local directions associated with the corresponding time scales in the n-dimensional

phase space. It is ensured that there are no zero eigenvalues by eliminating all the

conserved quantities from Equation (2.50). These conserved quantities can arise, for

example, due to the conservation of atoms in the CASHPR, and can be described

by linear algebraic equations. The eigenvalues and eigenvectors can be obtained by
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the following decomposition of J, with Ṽ = V−1:

J = VΛṼ, (2.51a)

V =




| | | |
v1 · · · vm vm+1 · · · vn

| | | |


 =

(
Vs Vf

)
, (2.51b)

Λ =




λ(1) 0
. . .

0 λ(m)

0

0
λ(m+1) 0

. . .

0 λ(n)




=


 Λ(s) 0

0 Λ(f)


 , (2.51c)

Ṽ =




− ṽ1 −
...

− ṽm −
− ṽm+1 −

...

− ṽn −




=


 Ṽs

Ṽf


 . (2.51d)

Here v1, . . . ,vn represent the right eigenvectors of J and form the column vectors

of the n× n right eigenvector matrix V. The diagonal matrix Λ, also of dimension

n × n, contains the eigenvalues, λ(1), . . . , λ(n), of J along its main diagonal, with

their real parts ordered from least negative to most negative. Sufficiently close to

the chemical equilibrium point, all the eigenvalues are real and negative. Thus, for

the following discussion in this section, it will be assumed that all eigenvalues are

real and negative. The reciprocal vectors to the right eigenvectors are represented

by ṽ1, . . . , ṽn, which form the row vectors of the inverse right eigenvector matrix Ṽ.
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The local time scales in the phase space are given by the inverse of the magnitudes

of the eigenvalues, 1
|λ(1)| , . . . ,

1
|λ(n)| , and are ordered from slowest to fastest.

Defining g as

g = f − Jy, (2.52)

Equation (2.50) can be rewritten as

dy

dt
= Jy + g. (2.53)

A new set of variables defined by z = Ṽy, is used with Equation (2.53) to obtain

dz

dt
+ Ṽ

dV

dt
z = Λz + Ṽg. (2.54)

Hence, the time evolution of processes associated with the i-th time scale is

approximately given, in Einstein notation, by

1

λ(i)

(
dzi

dt
+ ṽi

n∑
j=1

dvj

dt
zj

)
= zi +

1

λ(i)

(ṽig) , (i = 1, . . . , n). (2.55)

Even though Equation (2.55) is not a decoupled set of ODEs, it represents a

decoupled set of ODEs in a local linear sense if the nonlinear terms on both sides

of the equation are neglected.

It is assumed that the dynamics of the processes which occur at time scales

of O
(

1
|λ(m+1)|

)
or faster are not important, and that there are m (m < n) slow

time scales and n−m fast time scales. The transients of fast processes equilibrate

before the transients of slow processes, and fast processes are associated with

eigenvalues which are negative and large in magnitude. Equation (2.55) represents

the dynamical system in Equation (2.50), in a form equivalent to that of a singularly

perturbed system [43], with 1
|λ(m+1)| , . . . ,

1
|λ(n)| as the small parameters multiplying

the time derivatives on the left-hand side of the equations.

If the right eigenvectors vi are normalized, then both vi and the left eigenvectors

ṽi are O(1) as ṽivj = δij , where δij is the Kronecker delta. Hence, sufficiently close

35



to the equilibrium y = 0, the left-hand side of Equation (2.55) is O
(

1
|λ(m+1)|

)
for (i = m + 1, . . . , n), while the right-hand side of Equation (2.55) is O(1). By

neglecting all the terms of O
(

1
|λ(m+1)|

)
from the left hand side of Equation (2.55),

the fast processes are effectively equilibrated, and the slow dynamics of the system

can be approximated by the following set of differential algebraic equations

1

λ(i)

(
dzi

dt
+ ṽi

n∑
j=1

dvj

dt
zj

)
= zi +

1

λ(i)

(ṽig) , (i = 1, . . . , m), (2.56a)

0 = zi +
1

λ(i)
(ṽig) , (i = m+ 1, . . . , n). (2.56b)

This is expected to be a good approximation if a significant spectral gap exists

between
∣∣λ(m)

∣∣ and
∣∣λ(m+1)

∣∣. In writing Equation (2.56b), it is assumed that ‖g‖
can be O (|λ(m+1)|

)
or greater, and hence, the second term is not neglected. A direct

substitution of Equations (2.51), (2.52), and the definition of z is used to rewrite

Equation (2.56) as

Ṽs
dy

dt
= Ṽsf , (m ODEs) (2.57a)

0 = Ṽf f , (n−m algebraic equations) (2.57b)

where the matrix Ṽs has dimensions m × n, and its row vectors contain the left

eigenvectors associated with the m slow time scales, while the matrix Ṽf has

dimensions (n−m)× n, and its row vectors contain the left eigenvectors associated

with the n−m fast time scales.

The algebraic equation for the ILDM, as obtained by Maas and Pope [1], and

derived here alternatively, is given by

Ṽf f = 0. (2.58)

The ILDM is an approximation of an m-dimensional subspace within an n-

dimensional phase space along which processes associated with slow time scales
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occur. The fast time scale processes, prior to equilibration, rapidly approach the

ILDM. Once the fast time scale processes have equilibrated, the slow dynamics for

Equation (2.50) can be approximated by Equation (2.57).

The differential algebraic equations (2.57) have reduced stiffness compared

to the original equation (2.50), and the number of ODEs to be integrated

has also been reduced to m from n. The reduction in stiffness allows for

larger time steps when integrating Equations (2.57) than when integrating the

original Equation (2.50) with explicit numerical methods, thereby reducing the

computational time. Moreover, because matrix inversions are not necessary, the

method is faster than implicit methods as well. To further reduce computational

time, the algebraic Equation (2.57b) is solved a priori in a pre-determined domain

of the n-dimensional phase space. The ILDM, obtained by the numerical solution of

the Equation (2.57b), can then be stored in a table parameterized by m variables.

The table can then be used during the integration of Equation (2.57a), instead of

solving the differential algebraic system of Equations (2.57). Another advantage

of storing the ILDM in tabular form is that the table can be reused for different

sets of computations involving the same reaction kinetics. Details of this procedure

and the computation of the ILDM in the phase space will be described later in this

chapter.

Outside the subspace of the ILDM, Equation (2.57) does not apply. In general,

initial conditions may not lie on the ILDM or satisfy Equation (2.57b), though the

trajectory starting from an arbitrary initial condition in the phase space will rapidly

approach the ILDM as the fast time scale processes equilibrate. The projection of

the initial condition onto the ILDM has to be done carefully in order to avoid a

large phase error in the time-dependent solution of the differential algebraic system

of Equations (2.57). An accurate method, although computationally expensive,
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is to use implicit integration of the full system of Equations (2.50), until the

trajectory is close to the ILDM, and then integrate the differential algebraic system

of Equations (2.57) [40]. A more efficient approach remains an outstanding problem.

Based on Equation (2.58), the ILDM can also be defined as a subspace of the

phase space where the vector f lies completely within the local linear subspace

spanned by the eigenvectors associated with the slow time scales. This is illustrated

in Figure 2.3 for a two-dimensional system. For n = 2, Vs = v1 and Vf = v2

are the eigenvectors associated with slow and fast time scales, respectively. The

corresponding reciprocal bases are given by the vectors Ṽs = ṽ1 and Ṽf = ṽ2.

Figure 2.3 gives a graphical representation of Equation (2.58) describing the ILDM.

The ILDM consists of the set of points in phase space where the vector f has the

same orientation as the slow eigenvector Vs. This does not ensure that the vector

f is tangent to the ILDM. The tangent to the ILDM (Ṽf f = 0) is denoted by Tt,

while the normal to the ILDM is given by the gradient ∇(Ṽf f) and is denoted by the

same. By definition an invariant manifold is a subspace S
′ ⊂ R

n, if for any solution

y(t), y(0) ∈ S
′, of Equation (2.50), implies that for some T ′ > 0, y(t) ∈ S

′ for all

t ∈ [0, T ′] [43]. The ILDM is an approximation for the exact slow invariant manifold

(SIM). Like all invariant manifolds the SIM is also a trajectory in the phase space,

and the vector f must be tangent to it.

It is easily shown that the ILDM is not a trajectory in the phase space; instead, it

is only an approximation of the SIM. Using Equations (2.58) and (2.51), the normal

vector space to the ILDM is given by

∇(Ṽf f) = Ṽf∇f + (∇Ṽf)f

= ṼfJ + (∇Ṽf)f

= Λ(f)Ṽf + (∇Ṽf)f , (2.59)
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Figure 2.3. Graphical representation of the ILDM for a two-dimensional dynamical
system, depicting that the ILDM is a set of points in the phase space where the
vector Vs has the same orientation as the vector f , and that f is not tangent to the
ILDM which is required for the ILDM to be a phase space trajectory and the SIM.

where ∇ =
∑n

i=1

(
∂

∂yi

)
ei, and ei, (i = 1, . . . , n), are the unit normal vectors which

form the standard basis for R
n. The row vectors of the resultant matrix ∇(Ṽf f)

of dimensions (n − m) × n, form the local (n − m)-dimensional normal space to

the ILDM. The corresponding local m-dimensional tangent space to the ILDM is

orthogonal to these row vectors. If f is linear in y, the eigenvectors in the phase

space are constant, and ∇Ṽf = 0. Then from Equation (2.59) it is evident that

the normal space to the ILDM is same as the subspace spanned by the row vectors

of the matrix Ṽf . Hence, for a linear system, the vector f lies within the tangent

space of the ILDM, making the ILDM a phase space trajectory as well as the SIM.

In two dimensions (n = 2), for a linear system, the vectors f and Tt, in Figure 2.3,

will be aligned and the vectors ∇(Ṽf f) and Vf will also be aligned. To summarize,

for a linear system, the ILDM is a linear subspace of the phase space given by

zf = Ṽfy = 0, as obtained from Equation (2.56b). For a nonlinear system, the

second term on the right hand side of Equation (2.59) is non-zero; consequently,
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the normal space to the ILDM is not same as the subspace spanned by the row

vectors of the matrix Ṽf , nor does the vector f lies within the tangent space to the

ILDM. The two-dimensional (n = 2) nonlinear case is depicted in Figure 2.3. To

summarize, for a nonlinear system, the ILDM is not a trajectory in the phase space,

but, as long as a spectral gap exists, it can be deduced from Equation (2.59) that in

the limit of large ‖Λ(f)‖, the deviation of the ILDM from the phase space trajectory

and the SIM becomes small. Similar conclusions were obtained independently by

Kaper and Kaper [31], in a more rigorous fashion, but for a simpler system in

which the segregation of slow and fast variables is fixed for all times throughout

the phase space, which is not the case for chemically reactive systems modeled by

Equation (2.50). They also showed that as the curvature of the manifold increases,

the error in the ILDM approximation of the SIM increases. This phenomenon is

also indicated by Equation (2.59), where, as the second term, which corresponds to

a local measure of the curvature of the manifold, becomes larger in magnitude, f

becomes less tangent to the ILDM.

2.3 SIM vs. ILDM

If one assumes the existence of an m-dimensional SIM in an n-dimensional phase

space, it can be described as

yi = yi(y1, . . . , ym), (i = m+ 1, . . . , n), (2.60)

where y1, . . . , ym are the independent state variables chosen to parameterize the

SIM, and ym+1, . . . , yn are the dependent state variables. The assumed form of the

SIM is then differentiated to obtain

dyi

dt
=

m∑
j=1

∂yi

∂yj

dyj

dt
, (i = m+ 1, . . . , n). (2.61)
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All trajectories in the phase space, including the SIM defined by Equation (2.60),

satisfy the following equation, which is obtained by eliminating time derivatives

from Equation (2.61) with the use of Equation (2.50),

fi(ym+1, . . . , yn; y1, . . . , ym) =

m∑
j=1

fj(ym+1, . . . , yn; y1, . . . , ym)
∂yi(y1, y2, . . . , ym)

∂yj
,

(i = m+ 1, . . . , n). (2.62)

Fraser and Roussel [34, 35] have used functional iteration to solve Equa-

tion (2.62). For each yi, (i = m + 1, . . . , n), an initial function of the form

yi = y0
i (y1, . . . , ym) is chosen. Functional iteration is then performed on the following

equations, which are obtained by re-writing Equation (2.62),

Gi

(
yk+1

m+1, . . . , y
k+1
n ,

∂yk
i

∂y1

, . . . ,
∂yk

i

∂ym

; y1, . . . , ym

)
= 0, (i = m+ 1, . . . , n), (2.63)

where the superscript indicates the iteration number starting from k = 0. One can

use computer algebra to perform functional iteration. For high dimensional systems

and for systems where Equation (2.63) is not explicit in yk+1
i , (i = m+ 1, . . . , n), it

is more convenient to use the modified method of Davis and Skodje [36], which uses

numerical functional iteration. A discrete form of initial functions y0
i (y1, . . . , ym),

(i = m+1, . . . , n), are now chosen in a domain H where the SIM is to be estimated,

such that (y1, . . . , ym) ∈ H. For numerical computations, the domain H is discretized

into a finite number of points, and partial derivatives in Equation (2.63) are

approximated by finite differences. Numerical functional iteration is then performed

on the resulting implicit algebraic equations. The choice of state variables used

for parameterization of the SIM in Equation (2.60) may be arbitrary, though it is

essential that these variables be chosen in such a way that the manifold functions

given in Equation (2.60) are single-valued. A proper choice of parametric state

variables makes numerical computations of the SIM easier. The functional iteration
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is expected to converge to the SIM if a) the initial functional guess is good, b) the

initial guess does not correspond to a phase space trajectory, and c) there exists an

attractive SIM in the phase space as assumed. Both Davis and Skodje [36], Roussel

[44], and Roussel and Fraser [45] have suggested methods to enhance the stability

of the numerical and algebraic functional iterations, respectively.

Davis and Skodje [36], using a simple example, have illustrated the difference

between the ILDM and the SIM. Their two-dimensional system is analogous to the

system of Equation (2.50) modeling the CASHPR and is given by

d

dt


 y1

y2


 =


 −y1

−γy2 +
(γ−1)y1+γy2

1

(1+y1)2


 , (2.64)

where γ > 1 gives a measure of stiffness for the system. If γ is increased, stiffness

will increase. The Jacobian of the right-hand side is

J =


 −1 0

γ−1+(γ+1)y1

(1+y1)3
−γ


 , (2.65)

and has eigenvalues (λ(1), λ(2)) = (−1,−γ). The right and left eigenvectors and are

given by

V =

(
Vs Vf

)
=

(
v1 v2

)
=


 1 0

γ−1+(γ+1)y1

(γ−1)(1+y1)3
1


 , (2.66)

Ṽ =


 Ṽs

Ṽf


 =


 ṽ1

ṽ2


 =


 1 0

−γ−1+(γ+1)y1

(γ−1)(1+y1)3
1


 . (2.67)

Note that in this case, the eigenvectors are O(1) even when the right eigenvectors

are not normalized. Equation (2.58) is used to determine the one-dimensional ILDM

for this system, which can be written in closed form:

y2 =
y1

1 + y1
+

2y2
1

γ(γ − 1)(1 + y1)3
. (2.68)
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The slow, Ṽs
dy
dt

= Ṽsf , and fast, Ṽf
dy
dt

= Ṽf f , equations for this example are

given by

dy1

dt
= −y1, (2.69a)

1

γ

(
−γ − 1 + (γ + 1)y1

(γ − 1)(1 + y1)3

dy1

dt
+
dy2

dt

)
= −y2 +

y1

1 + y1
+

2y2
1

γ(γ − 1)(1 + y1)3
, (2.69b)

respectively. In this case, g =
(
0,

((1+y1)γ−2)y2
1

(1+y1)3

)T

, hence, the second term, 1
γ
(ṽ2g),

in Equation (2.56b) cannot be neglected as it is O(1). The order of the terms on

both sides of Equation (2.69b) can be represented by

O (γ−1
)

+ O (γ−2
)

+ . . . = O(1) + O (γ−1
)

+ O (γ−2
)

+ . . . (2.70)

The standard ILDM approximation neglects all terms on the left hand side of the

fast equation while retaining all terms on the right hand side. This makes the ILDM

an inconsistent approximation to the SIM. On the other hand a systematic matching

of terms of all orders will correctly lead to the SIM. This is demonstrated by Kaper

and Kaper [31]. However, it is not clear how to implement a systematic perturbation

analysis for a system where small parameters such as γ−1 are difficult to identify

explicitly and globally in the phase space. This is the case in complex systems of

chemical kinetics. In such systems, the order of eigenvalues and their membership

in the slow and fast sets change with time.

Here Equation (2.62) is solved using an approach often used in center manifold

theory [43]. The SIM is assumed to exist and have the following polynomial form

y2 = y2(y1) =

∞∑
k=0

cky
k
1 , (2.71)

where ck are constant coefficients. Equation (2.62), in this case, is given by

−γy2 +
(γ − 1)y1 + γy2

1

(1 + y1)2
=
dy2

dy1
(−y1). (2.72)
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Substituting Equation (2.71) into Equation (2.72), the following values of the

coefficients for the SIM are obtained

c0 = 0, ck = (−1)k+1, k = 1, . . . ,∞. (2.73)

Hence, the SIM is given by

y2 = y1(1 − y1 + y2
1 − y3

1 + y4
1 + . . .) =

y1

1 + y1

. (2.74)

When the ILDM in Equation (2.68) is compared with the SIM in Equation (2.74)

for this simple system, it is obvious that 1) the ILDM is not a SIM, and 2) the

error in the ILDM approximation decreases as γ increases. Though the assumption

for the SIM to be of polynomial form, as in Equation (2.71), works well in this

example, it may not work for more complex systems. This is primarily because

such a representation of the SIM is a good approximation sufficiently close to the

equilibrium point, and in general, diverges rapidly away from it. To find the global

SIM for complex systems, numerical computations are used such as those proposed

by Davis and Skodje [36].

The inconsistency in the ILDM procedure in matching of terms of similar orders,

leads to errors as shown in this simple system. It is emphasized that the error in

the ILDM approximation is small for systems in which the spectral gap condition

|λ(m)|/|λ(m+1)| << 1 is valid. Fortunately this situation arises frequently in complex

dynamical systems associated with chemical kinetics. Also, in practice, it was found

that the numerical computation of the ILDM is more tractable in its implementation

than the numerical computation of the SIM.

2.4 ILDM computation

The algebraic equations describing the ILDM are highly nonlinear and several

difficulties may arise while numerically computing the ILDM in a certain domain of
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the phase space. In Section 2.2 the algebraic Equation (2.58) describing the ILDM

was derived for the CASHPR modeled by a system of n = N − L ODEs given in

Equations (2.43) or (2.49). The CASHPR, which consists of N chemically reactive

species, is modeled by N − L ODEs, when there are L conserved elements in the

system. The isochoric CASHPR has two other conserved quantities, namely density

and mixture internal energy per unit mass, associated with the thermodynamic

state of the system. Similarly, the isobaric CASHPR has two other conserved

quantities, namely pressure and mixture enthalpy per unit mass, associated with

the thermodynamic state of the system. In some cases, though uncommon and

hence, ignored here, there might be an additional conserved quantity associated

with the conservation of molecules in the CASHPR, if the number of molecules are

conserved within the reaction network in Equation (2.3). Hence, there are typically

L+ 2 conserved quantities associated with the CASHPR: 1)(Ŷ10, . . . , ŶL0, ρ0, e0) for

the isochoric CASHPR, 2)(Ŷ10, . . . , ŶL0, p0, h0) for the isobaric CASHPR. Associated

with each set of conserved quantities, there exists, within the physically accessible

region of the phase space, a stable physical chemical equilibrium point which is a

zero-dimensional ILDM, a one-dimensional ILDM, a two-dimensional ILDM, and

so on until (N − L)-dimensional ILDM which is the complete physically accessible

region of the phase space. Each ILDM is associated with L+ 2 additional constant

parameters. A systematic procedure to compute the ILDM for varying values of

conserved parameters will be outlined in this section.

In the following discussion the CASHPR will be modeled by n = N + 2 ODEs

without eliminating the L + 2 conserved quantities. For the isochoric CASHPR
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these N + 2 ODEs are

de

dt
= 0, e(t = 0) = e0, (2.75a)

dρ

dt
= 0, ρ(t = 0) = ρ0, (2.75b)

dYi

dt
=
ω̇iMi

ρ0
, Yi(t = 0) = Yi0, (i = 1, . . . , N), (2.75c)

where Equation (2.75a) is obtained from Equation (2.21), Equation (2.75b) holds

because it is an isochoric and constant mass system, and Equation (2.75c) is the

constant density version of Equation (2.7). The temperature T , which is required

for the evaluation of ω̇i (see Equations (2.4-2.6), can be obtained by solving the

nonlinear algebraic energy conservation equation (2.42) which is implicit in T .

During numerical computations, Equation (2.42) can be easily solved using Newton-

Raphson method as the left hand side is a polynomial function of temperature T

for a given set of values of species mass fractions Yi, (i = 1, . . . , N), and the right

hand side is the constant mixture internal energy per unit mass e0. The pressure p

is evaluated using the equation of state (2.40). Similarly, the isobaric CASHPR is

modeled by the following n = N + 2 ODEs

dh

dt
= 0, h(t = 0) = h0, (2.76a)

dp

dt
= 0, p(t = 0) = p0, (2.76b)

dYi

dt
=
ω̇iMi

ρ
, Yi(t = 0) = Yi0, (i = 1, . . . , N), (2.76c)

where Equation (2.76a) is obtained from Equation (2.33), Equation (2.76b) holds

because it is an isobaric system, and Equation (2.76c) is the constant pressure version

of Equation (2.7). The temperature T , which is required for the evaluation of ω̇i, can

be obtained by solving the nonlinear algebraic energy conservation equation (2.48)

which is implicit in T . The density ρ is evaluated using the equation of state (2.46).

Equations (2.75) and (2.76) can be rewritten in a succinct form as in Equa-
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tion (2.50)

dy

dt
= f , y(t = 0) = y0, (2.77)

where y = (h, p, Y1, . . . , YN)T and f =
(
0, 0, ω̇1M1

ρ
, . . . , ˙ωN MN

ρ

)T

for the isobaric

CASHPR. Here onwards only the isobaric CASHPR will be considered. Construc-

tion of the ILDM for the isochoric CASHPR is analogous. The complete phase space

or the composition space associated with the dynamical system in Equation (2.77),

is represented by the n-dimensional real space R
n. But the physically accessible

region of the phase space is restricted to the following subspace

S =




p = p0 > 0,

T > 0,

y ∈ R
n 0 ≤ Y1, . . . , YN ≤ 1,∑N

i=1 Yi = 1,∑N
i=1 hi(T )Yi = h = h0,∑N
i=1 ϕil

Yi

Mi
=
∑N

i=1 ϕil
Yi0

Mi
, l = 1, . . . , L.




, (2.78)

because the constant pressure and the temperature of the reactive mixture cannot

be negative or zero, the species mass fractions can only take values from zero to

unity and their sum is always unity, and the mixture enthalpy per unit mass and

the element mass fractions remain constant in the isobaric CASHPR.

A more practical and restrictive constraint for S is because the Arrhenius kinetics

rate constants in Equation (2.6) and the database of thermodynamic properties for

chemical species are usually valid for a restricted temperature range (often 300 K <

T < 3000 K). But mathematically, a certain initial condition in S with temperature

in the range 300 K < T < 3000 K, can result in a temperature at a future time along

the phase space trajectory, which does not lie within the same range. Typically for a

physical initial condition y0 which lies within S, the complete phase space trajectory

and the chemical equilibrium point lie within S.
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The subspace S, itself, is the (N − L)-dimensional ILDM which is the highest

dimensional ILDM for an (n = N + 2)-dimensional system with L + 2 conserved

quantities. Each ILDM of a certain dimension is a subspace of the ILDMs of

higher dimension than itself. If the zero-dimensional ILDM, which is the chemical

equilibrium point, is represented by M0 and ILDM of dimensionality i is represented

by Mi then the following is true

M0 ⊂ M1 ⊂ . . . ⊂ MN−L = S ⊂ R
n. (2.79)

The difference between the system of ODEs in Equation (2.77) and the system

of ODEs in Equation (2.50), both modeling the CASHPR, is that the conserved

quantities have not been eliminated from the former. The Jacobian, J = ∂f
∂y

, for f in

Equation (2.77), can be decomposed to obtain the local eigenvalues and eigenvectors

as done in Equation (2.51). However, if the local time scales are partitioned into m

slow time scales and n−m fast time scales, then out of the eigenvalues λ(1), . . . , λ(m)

associated with m slow time scales as shown in Equation (2.51c), the first L + 2

eigenvalues are identically zero with m > L+ 2. The L+ 2 zero eigenvalues appear

because the L+2 conserved quantities are not eliminated from the system of ODEs

in Equation (2.77). These L+2 conserved quantities do not change along the ILDM.

Hence, the actual dimensionality of the ILDM associated with m slow time scales,

is only md = m − L − 2. For example, a one-dimensional ILDM has md = 1 with

m = L+ 3 used to determine the partitioning of the eigenvalues into slow and fast

sets. The md-dimensional ILDM is associated with reactive processes evolving at

md finitely slow time scales. While deriving the nonlinear algebraic Equation (2.58)

describing the ILDM, it was assumed for convenience that all nonzero eigenvalues

are real and negative. In that case, since, the eigenvalues in Equation (2.51c) are

ordered from least negative to most negative, themd = m−L−2 nonzero eigenvalues,
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in the slow set of eigenvalues λ(1), . . . , λ(m), are the eigenvalues λ(L+3), . . . , λ(m).

However, the eigenvalues are real and negative only when sufficiently close to the

chemical equilibrium point M0, and the derivation in Section 2.2 is not a rigorous

mathematical proof for the existence of the ILDM. In practice it is found that the

ILDM is at times a good approximation of the SIM even if some of the eigenvalues

are complex or some of the eigenvalues in the slow set of eigenvalues have positive

real part. In that case it is not necessary that the first L + 2 eigenvalues are zero

in the slow set of eigenvalues. However, it is required, for the construction of the

ILDM, that the zero eigenvalues associated with the conserved quantities always lie

within the slow set of eigenvalues, or in other words it is required that m ≥ L+ 2.

The complex eigenvalues always appear in pairs of complex conjugates. An

ILDM, associated with m slow time scales, will become discontinuous in that

region of the phase space where the eigenvalues λ(m) and λ(m+1) become a complex

conjugate pair or where they become equal (λ(m) = λ(m+1)). The ILDM ceases to

exist in such regions of the phase space because the local linear slow and fast basis

cannot be decoupled. However, if these complex conjugate pairs or equal pairs of

eigenvalues appear within the slow set of eigenvalues, λ(1), . . . , λ(m), or within the

fast set of eigenvalues, λ(m+1), . . . , λ(n), the ILDM will exist. Here onwards the set of

eigenvalues λ(1), . . . , λ(m) will be referred to as the slow set of eigenvalues, while the

set of eigenvalues λ(m+1), . . . , λ(n) will be referred to as the fast set of eigenvalues.

In some regions of the phase space where
(

λ(m)

λ(m+1)

)
∼ O(1) or in other words the

spectral gap between the slow and fast time scales is not large, the ILDM does

not approximate the SIM well. Close to the chemical equilibrium point M0, the

eigenvalues have mostly negative real parts. However, the eigenvalues might have

a positive real part far from M0 but within the physically accessible subspace S of

the phase space. For the ILDM to be attractive, all the eigenvalues in the fast set
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of eigenvalues should have a negative real part. In practice, in most of the reactive

systems studied, only one or two positive eigenvalues were encountered far from

M0 while computing the ILDM. Some of these peculiar cases associated with the

computation of the ILDM will be demonstrated by examples.

The eigenvectors of the Jacobian J, associated with the system of ODEs in

Equation (2.77), may be difficult to evaluate as J will have multiple zero eigenvalues

and it may also have nonzero eigenvalues with multiplicity more than one. Numerical

difficulties may also arise due to the presence of nearly equal eigenvalues or the

presence of very small, near zero physical eigenvalues which can be confused with

the actual zero eigenvalues. In the presence of complex eigenvalues, the eigenvectors

will be complex. However, it is more convenient to work with a real representation

of the local slow and fast basis vectors, instead of Vs and Vf which can be complex,

as the behavior of the dynamical system model for the CASHPR is described in the

real phase space R
n Hence, instead of an eigenvalue eigenvector decomposition of

J as in Equation (2.51), the real representation of the local slow and fast basis is

obtained as following, starting with a real Schur decomposition of J

J =

(
Qs Qf

) Ns Nsf

0 Nf




 QT

s

QT
f


 , with


 QT

s

QT
f


 =

(
Qs Qf

)−1

,

(2.80)

where the real matrix Qs has dimensions n × m and the real matrix Qf has

dimensions n × (n − m). It is obvious from Equation (2.80) that the matrix(
Qs Qf

)
has orthonormal column vectors. The real matrix Ns is upper

triangular, with dimensions m × m, and has the eigenvalues λ(1), . . . , λ(m), the m

eigenvalues of J with the least negative real parts, along its main diagonal. The real

matrix Nf is also upper triangular, with dimensions (n −m) × (n − m), and has

the eigenvalues λ(m+1), . . . , λ(n), the n−m eigenvalues of J with the most negative
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real parts, along its main diagonal. If complex conjugate pairs of eigenvalues exist

in either the slow or fast sets of eigenvalues, then the real matrices Ns and Nf are

not strictly upper triangular. Instead, the complex conjugate pairs of eigenvalues

exist as two by two blocks along the main diagonal of Ns and Nf , with the real part

of the complex conjugate eigenvalues appearing along the main diagonal of the two

by two block and the complex part of the eigenvalues appearing at the other two

entries of the two by two block. Hence, the first sub-diagonal in the real matrices

Ns and Nf may have some non-zero entries in the presence of complex eigenvalues.

Finally, the real matrix Nsf is full and has dimensions m× (n−m).

The real Schur decomposition of J is followed by a solution of the Sylvester

equation for the unknown matrix X

NsX − XNf = −Nsf , (2.81)

where the real matrix X has dimensions m×(n−m). Finally, the local slow and fast

basis, now represented by the real matrices Zs and Zf , respectively, are evaluated

using the following matrix multiplications

(
Zs Zf

)
=

(
Qs Qf

) I X

0 I


 , (2.82)


 Z̃s

Z̃f


 =


 I −X

0 I




 QT

s

QT
f


 , (2.83)

where the real matrix Zs has dimensions n×m, the real matrix Zf has dimensions

n× (n −m), the real matrix Z̃s has dimensions m× n and the real matrix Z̃f has

dimensions (n−m)×n. Equations (2.82) and (2.83) are used with Equation (2.80)

to obtain the following decomposition of J

J =

(
Zs Zf

) Ns 0

0 Nf




 Z̃s

Z̃f


 , with


 Z̃s

Z̃f


 =

(
Zs Zf

)−1

.

(2.84)
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The decomposition in Equation (2.84) can be done for any real square matrix,

such as J, using the steps in Equations (2.80-2.83), all of which can be implemented

using the subroutines available in the linear algebra package LAPACK [46]. This

decomposition of J was outlined by Maas [47] following the general theory given by

Golub and Van Loan [48]. The column vectors of the real matrix Zs form the local

basis associated with the m slow time scales, while the column vectors of the real

matrix Zf form the local basis associated with the remaining n−m fast time scales.

The two basis are fully decoupled. The row vectors of the real matrices Z̃s and

Z̃f form the reciprocal slow and fast basis, respectively. The decomposition of J in

Equation (2.84) is advantageous as it is not associated with the numerical difficulties

associated with the eigenvalue eigenvector decomposition in Equation (2.51) and it

also gives a real representation of the local slow and fast basis. The column vectors

of the matrices Vs, Zs and Qs (Zs = Qs) span the same local slow basis, while the

row vectors of the matrices Ṽs and Z̃s span the same reciprocal slow basis. The

column vectors of the matrices Vf and Zf span the same local fast basis, while the

row vectors of the matrices Ṽf and Z̃f and the column vectors of the matrix Qf

(Z̃f = QT
f ) span the same reciprocal fast basis. Hence, as in Equation (2.58), the

ILDM can be identically represented by the following nonlinear algebraic Equations

Z̃f f(y) = 0. (2.85)

There are n−m nonlinear algebraic Equations (2.85), in n unknowns, describing

the ILDM. Hence, m = md +L+ 2 supplemental parametric equations are required

to close the system of equations for a priori computation of the ILDM in the phase

space.
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2.4.1 The L+2 parametric equations associated with the L+2 conserved quantities

The L + 2 parametric equations associated with the conserved quantities are

derived first. The conserved quantities for the isobaric CASHPR are represented by

a vector ȳ, with ȳ1 = Ŷ1, . . . , ȳL = ŶL, ȳL+1 = p and ȳL+2 = h, and can be written

in a vector form as following

ȳ =




ȳ1

...

ȳL+2


 =




Ŷ1

...

ŶL

p

h




=




1 −∑L
l=2 ψl

ψ2

...

ψL

pmin + ψL+1(pmax − pmin)

hmin + ψL+2(hmax − hmin)



, (2.86)

where ψl ∈ [0, 1], (l = 1, . . . , L), as the conserved element mass fractions, Ŷ1, . . . , ŶL,

can only have values from zero to unity, and ψl ∈ [0, 1], (l = L + 1, L + 2), as the

ILDM is computed for range of values of the two conserved quantities p and h

given by p ∈ [pmin, pmax] and h ∈ [hmin, hmax]. Since, the sum of the element mass

fractions is unity,
∑L

l=1 ψl = 1. Equation (2.86) can be rewritten as following

ȳ =




1

0(L−1)×1

pmin

hmin




+ Pc




0

ψ2

...

ψL+2



, (2.87)

where the matrix Pc has dimensions (L + 2) × (L + 2), while the remaining two

vectors on the right hand side are of length L+2 each. A null matrix of dimensions
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i× j is represented by 0i×j. The elements of the matrix Pc are given as following

Pc =




1 −1 · · · −1 01×2

1

... I(L−1)×(L−1) 0(L−1)×2

1

pmax − pmin 0

02×1 02×(L−1)

0 hmax − hmin




, (2.88)

where Ii×j represents an identity matrix of dimensions i × j. Note that the first

column vector of the matrix Pc can be any vector with first element unity for

Equation (2.87) to be consistent with Equation (2.86). However, the first column

vector of the matrix Pc is chosen to be orthogonal to all other linearly independent

column vectors of the matrix Pc. This choice ensures that all column vectors of the

matrix Pc are linearly independent and hence, the inverse of the matrix Pc exists.

The conserved quantities can also be expressed as a linear combination of the

dependent variables in Equation (2.77), which models the isobaric CASHPR, as

following

ȳ = Ppy, (2.89)

where the matrix Pp has dimensions (L+ 2) × (N + 2) and is given by

Pp =




0L×2 Φ

0 1

02×N

1 0



. (2.90)
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The matrix Φ has dimensions L × N and has elements φil = ϕil
M̂l

Mi
(with no

summation over repeated indices) which are obtained using Equation (2.12) which

relates the conserved element mass fractions to the species mass fractions.

Substituting the expression for ȳ from Equation (2.89) into Equation (2.87) gives

Ppy =




1

0(L−1)×1

pmin

hmin




+ Pc




0

ψ2

...

ψL+2



. (2.91)

Then applying the operator P−1
c to Equation (2.91) gives

P−1
c Ppy =




1/L

−1/L

...

−1/L

pmin/(pmax − pmin)

hmin/(hmax − hmin)




+




0

ψ2

...

ψL+2



. (2.92)

Equation (2.92) can be written in a compact form as following

Pzy = Ω + Ψ, (2.93)

where the matrix Pz = P−1
c Pp has dimensions (L + 2) × (N + 2), the constant

vector Ω =
(

1
L
, −1

L
, . . . , −1

L
, pmin

(pmax−pmin)
, hmin

(hmax−hmin)

)T

is of length L + 2 and the

conserved parameters vector Ψ = (0, ψ2, . . . , ψL+2)
T is of length L + 2. The vector

Ω is constant for a given reactive mixture with L elements and for the given ranges

of p and h. Note that the first entry of the conserved parameters vector Ψ is zero.

If the chemical equilibrium state is represented by ye, which is also the zero-

dimensional ILDM M0, then using Equation (2.93), the following is obtained

Pzy
e = Ω + Ψe, (2.94)
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where Ψe is the conserved parameters vector associated with ye. From here

onwards in this chapter, any variable with superscript e will represent the value

of that variable at the chemical equilibrium state. Subtracting Equation (2.94)

from Equation (2.93) gives

Pz(y − ye) = Ψ −Ψe. (2.95)

This formulation of the L + 2 parametric equations associated with the conserved

quantities is useful as the ILDM construction is usually initiated from the chemical

equilibrium state, ye, in the phase space. Note that the number of free parameters

associated with the L+ 2 parametric Equations (2.95) is L+ 1 as the first element

of the conserved parameters vector Ψ is zero. This reduction in degrees of freedom

is because the sum of all the conserved element mass fractions is unity.

Sometimes it is not required to compute the ILDM for all ranges of conserved

element mass fractions or the associated L − 1 conserved parameters, ψl ∈ [0, 1],

(l = 2, . . . , L). In some reactive systems as discussed in Appendix B where the mass

diffusivity of all species are equal, all the element mass fractions are linear functions

of the scalar mixture fraction. In a two stream reactive system, the mixture fraction

[20] is a measure of the ratio of the amount of a mixture A, with species mass

fractions Y A
i , i = 1, . . . , N , and the amount of a mixture B, with species mass

fractions Y B
i , i = 1, . . . , N , which react with each other. Instead of computing the

ILDM for different values of element mass fractions, it is computed for different

values of mixture fraction. This will eventually reduce the dimension of the ILDM

table. In a two stream reactive system with one stream of mixture A and the other

stream of mixture B, the element mass fractions, Ŷl, l = 1, . . . , L, are given by (see

Appendix B)

Ŷl = Ŷ A
l + χ(Ŷ B

l − Ŷ A
l ), (l = 1, . . . , L), (2.96)
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where χ ∈ [0, 1] represents the mixture fraction and Ŷ A
l and Ŷ B

l represent the mass

fractions of element l in the mixtures A and B, respectively. Here onwards in this

chapter, any variable with superscripts A or B will represent the value of that

variable in the mixtures A and B, respectively.

As for the chemical equilibrium state in Equation (2.94), using Equation (2.93),

the following is obtained for mixture A

Pzy
A = Ω + ΨA, (2.97)

where yA represents the state of the mixture A and ΨA represents the conserved

parameters vector associated with the mixture A. Subtracting Equation (2.97) from

Equation (2.93) gives

Pz(y − yA) = Ψ −ΨA, (2.98)

which, using Equation (2.96) and ψl = Ŷl, (l = 1, . . . , L) (see Equation (2.86)), can

also be written as

Pz(y − yA) =




0

ψ2 − ψA
2

...

ψL − ψA
L

ψL+1 − ψA
L+1

ψL+2 − ψA
L+2




=




0

χ(ψB
2 − ψA

2 )

...

χ(ψB
L − ψA

L )

ψL+1 − ψA
L+1

ψL+2 − ψA
L+2



, (2.99)

and then in a compact form as following

Pz(y − yA) = Γ




χ

ψL+1 − ψA
L+1

ψL+2 − ψA
L+2


 , (2.100)
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where the matrix Γ has dimensions (L+ 2) × 3 and is given by

Γ =




0 0 0

ψB
2 − ψA

2 0 0

...
...

...

ψB
L − ψA

L 0 0

0 1 0

0 0 1



. (2.101)

The three column vectors of the matrix Γ are orthogonal to each other. The

orthogonal complement to the matrix Γ can be obtained by the following singular

value decomposition

Γ = UΣWT , (2.102)

where the matrix Σ has dimensions (L + 2) × 3, and it has nonnegative diagonal

elements and zero as the other elements. The matrix U has dimensions (L + 2) ×
(L+2) and the matrix W has dimensions 3×3, both containing orthogonal column

vectors. The matrix formed by the last L+ 2− 3 column vectors of the matrix U is

the orthogonal complement of the matrix Γ, and it is represented by the matrix Γ⊥

with dimensions (L + 2) × (L− 1). The matrix represented by Υ with dimensions

(L + 2) × (L + 2) has the first L − 1 columns as the matrix Γ⊥ and the last three

columns as the matrix Γ. Now Equation (2.100) can be written as

Pz(y − yA) = Υ




0(L−1)×1

χ

ψL+1 − ψA
L+1

ψL+2 − ψA
L+2



. (2.103)
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Equation (2.103) can be further simplified to

P(1)
χ (y − yA) =




0(L−1)×1

χ

ψL+1 − ψA
L+1

ψL+2 − ψA
L+2



, (2.104)

where the matrix P
(1)
χ = Υ−1Pz has dimensions (L+ 2) × (N + 2). The inverse of

the square matrix Υ exists as it contains linearly independent column vectors. At

the chemical equilibrium state, M0, Equation (2.104) can be written as

P(1)
χ (ye − yA) =




0(L−1)×1

χe

ψe
L+1 − ψA

L+1

ψe
L+2 − ψA

L+2



. (2.105)

Subtracting Equation (2.105) from Equation (2.104) gives

P(1)
χ (y − ye) =




0(L−1)×1

χ

ψL+1

ψL+2




−




0(L−1)×1

χe

ψe
L+1

ψe
L+2



, (2.106)

which is written in a compact form as following

P(1)
χ (y − ye) = Ξ(1) − Ξe

(1), (2.107)

where the vector Ξ(1) = (0, . . . , 0, χ, ψL+1, ψL+2)
T is of length L+2. This formulation

of the L + 2 parametric equations is useful as the ILDM construction is usually

initiated from the chemical equilibrium state. Note that the number of free

parameters associated with the L+2 parametric Equations (2.107) has been reduced

to three as the first L− 1 elements of the vector Ξ(1) are zero.
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Sometimes it is not required to compute the ILDM for all ranges of the conserved

quantity, h, or the associated conserved parameter, ψL+2. In some reactive systems

as discussed in Appendix B where the Lewis number Le = 1 or the thermal

diffusivity is equal to the mass diffusivity, even the mixture enthalpy per unit

mass becomes a linear function of the scalar mixture fraction. Now, instead of

computing the ILDM for different values of element mass fractions and enthalpies, it

is computed for different values of mixture fraction. This also reduces the dimension

of the ILDM table. In a two stream reactive system, the mixture enthalpy per unit

mass is the following linear function of χ (see Appendix B)

h = hA + χ(hB − hA), (2.108)

where hA and hB represent the enthalpy per unit mass of the mixtures A and B,

respectively. Then using Equation (2.108) with the following relations

h = hmin + ψL+2(hmax − hmin), (2.109a)

hA = hmin + ψA
L+2(hmax − hmin), (2.109b)

hB = hmin + ψB
L+2(hmax − hmin), (2.109c)

the following is obtained

ψL+2 = ψA
L+2 + χ(ψB

L+2 − ψA
L+2). (2.110)

Now using Equation (2.96) with ψl = Ŷl, (l = 1, . . . , L) (see Equation (2.86)), and
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Equation (2.110), Equation (2.98) can be written as

Pz(y − yA) =




0

ψ2 − ψA
2

...

ψL − ψA
L

ψL+1 − ψA
L+1

ψL+2 − ψA
L+2




=




0

χ(ψB
2 − ψA

2 )

...

χ(ψB
L − ψA

L )

ψL+1 − ψA
L+1

χ(ψB
L+2 − ψA

L+2)



, (2.111)

and then in a compact form as following

Pz(y − yA) = Γ


 χ

ψL+1 − ψA
L+1


 , (2.112)

where now the matrix Γ has dimensions (L+ 2) × 2 and is given by

Γ =




0 0

ψB
2 − ψA

2 0

...
...

ψB
L − ψA

L 0

0 1

ψB
L+2 − ψA

L+2 0



. (2.113)

The corresponding orthogonal complement matrix Γ⊥ with dimensions (L+2)×L is

obtained by performing singular value decomposition of the matrix Γ, as described

previously. Now Equation (2.112) can be written as

Pz(y − yA) = Υ




0L×1

χ

ψL+1 − ψA
L+1


 , (2.114)

where the matrix Υ with dimensions (L + 2) × (L + 2) is formed as described
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previously. Finally, Equation (2.114) can be further simplified to

P(2)
χ (y − yA) =




0L×1

χ

ψL+1 − ψA
L+1


 , (2.115)

where the matrix P
(2)
χ = Υ−1Pz has dimensions (L+ 2) × (N + 2). The inverse of

the square matrix Υ exists as it contains linearly independent column vectors. At

the chemical equilibrium state, M0, Equation (2.115) can be written as

P(2)
χ (ye − yA) =




0L×1

χe

ψe
L+1 − ψA

L+1


 . (2.116)

Subtracting Equation (2.116) from Equation (2.115) gives

P(2)
χ (y − ye) =




0L×1

χ

ψL+1


−




0L×1

χe

ψe
L+1


 , (2.117)

which is written in a compact form as following

P(2)
χ (y − ye) = Ξ(2) − Ξe

(2), (2.118)

where the vector Ξ(2) = (0, . . . , 0, χ, ψL+1)
T is of length L + 2. This formulation

of the L + 2 parametric Equations (2.118) is useful as the ILDM construction is

usually initiated from the chemical equilibrium state. Note that the number of free

parameters associated with the L+2 parametric Equations (2.118) has been reduced

to two as the first L elements of the vector Ξ(2) are zero.

To summarize, the general form of the L + 2 parametric equations associated

with the L+ 2 conserved quantities are given by

Pz(y − ye) = Ψ −Ψe, (2.119)
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and in the two special cases, the L+ 2 parametric equations are given by

P(1)
χ (y − ye) = Ξ(1) − Ξe

(1), (2.120)

P(2)
χ (y − ye) = Ξ(2) − Ξe

(2). (2.121)

In Equation (2.119) the number of free parameters are L+ 1, namely ψ2, . . . , ψL+2,

while in Equation (2.120) the number of free parameters are three, namely χ, ψL+1,

and ψL+2, while in Equation (2.121) the number of free parameters are two, namely

χ, and ψL+1.

2.4.2 The md parametric equations associated with the md-dimensional ILDM

The additional md = m − L − 2 parametric equations associated with the md-

dimensional ILDM are given by

Ps(y − ye) = s− se, (2.122)

where the matrix Ps has dimensions md × (N + 2), and the vector s is of length

md. Unlike the parametric matrices, Pz, P
(1)
χ , and P

(2)
χ , the parametric matrix Ps

is user specified, and its md row vectors represent the parameterization directions

in the phase space. Often the parameters s1, . . . , smd
are chosen from the species

mass fractions y3 = Y1, . . . , yn = YN (n > m = md + L+ 2 > md). In that case, the

row vectors of the matrix Ps simply become the standard unit vectors, associated

with the chosen species mass fractions, in the phase space R
n. Typically the mass

fractions of those species are chosen which are products in the reactive mixture, as

they usually provide a single valued parameterization of the ILDM.
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2.4.3 Final form of the m = md + L+ 2 parametric equations

The parametric equation (2.119) or (2.120) or (2.121) can be combined with the

parametric equation (2.122) to represent the m parametric equations as follows

Pd(y − ye) =


 0l1×1

d


 , (2.123)

where them×(N+2) dimensional matrix Pd =


 Pz

Ps


 or


 P

(1)
χ

Ps


 or


 P

(2)
χ

Ps


,

and the vector


 0l1×1

d


 =


 Ψ −Ψe

s − se


 or


 Ξ(1) − Ξe

(1)

s− se


 or


 Ξ(2) − Ξe

(2)

s − se




is of length m. The vector on the right hand side of Equation (2.123) is composed of

a null vector of length l1 and a vector of free parameters, d, of length l2 = m− l1. At

the chemical equilibrium state d = 0. For the most general case in Equation (2.119),

l1 = 1 and l2 = m− 1 with d = (ψ2 −ψe
2, . . . , ψL+2 −ψe

L+2, s1 − se
1, . . . , smd

− se
md

)T .

However, in some fully premixed reactive flow systems, the conserved quantities

do not vary and hence, the ILDM is only computed for one fixed set of conserved

quantities. In that case l1 = L+ 2 and l2 = md with d = (s1 − se
1, . . . , smd

− se
md

)T .

In the special case in Equation (2.120), l1 = L − 1 and l2 = md + 3 with d =

(χ−χe, ψL+1 −ψe
L+1, ψL+2 −ψe

L+2, s1 − se
1, . . . , smd

− se
md

)T , and in the other special

case in Equation (2.120), l1 = L and l2 = md +2 with d = (χ−χe, ψL+1−ψe
L+1, s1−

se
1, . . . , smd

− se
md

)T .

It is obvious from the previous discussion and Equation (2.123) that an md-

dimensional ILDM is parameterized by l2 = m − l1 free parameters. Hence, the
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following equations are required to be solved for a priori computation of the ILDM

Pd(y − ye) =


 0l1×1

d


 , (m parametric equations), (2.124a)

Z̃f f(y) = 0, (n−m ILDM Equations). (2.124b)

Equations (2.124) can also be represented by the following explicit functional form

y = fd(d), (2.125)

where the vector function fd is a mapping of the form fd : D → S, and D ⊂ R
l2 is

the domain of the ILDM functional form in the parametric space R
l2 . All the user

specified free parameters, which are d(l2−md+1), . . . , dl2 (l2 ≥ md), are chosen such

that the mapping fd : D → S is one to one, or in other words the ILDM has a single

valued parameterization.

In the parametric space R
l2 the chemical equilibrium state is at the origin

d = 0. The ILDM is constructed for a l2-dimensional polar grid system centered

around the origin in the l2-dimensional parametric space. Hence, Equation (2.123)

is transformed to the following
 Il1×l1 0l1×l2

0l2×l1 Rl2×l2


Pd(y − ye) =


 Il1×l1 0l1×l2

0l2×l1 Rl2×l2




 0l1×1

d


 =


 0(m−1)×1

r


 ,

(2.126)

where the rotation matrix Rl2×l2 has dimensions l2 × l2 and its elements are given
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by

R11 = − sin(θl2−1), (2.127a)

Ri1 = Ri−1 1 cot(θl2−i+1) sin(θl2−i), (i = 2, . . . , l2 − 1), (2.127b)

Rl21 =

l2−1∏
j=1

cos(θj), (2.127c)

Ri2 = Ri1 tan(θl2−1), (i = 2, . . . , l2), (2.127d)

Rij = Ri j−1
tan(θl2−j+1)

sin(θl2−j+2)
, (j = 3, . . . , i), (i = 3, . . . , l2), (2.127e)

Ri i+1 = cos(θl2−i), (i = 1, . . . , l2 − 1), (2.127f)

Rij = 0, (j > i+ 1), (2.127g)

with θi ∈ [−π/2, π/2], i = 1, . . . , l2 − 2, and θl2−1 ∈ [0, 2π]. The vector on the

extreme right hand side of Equation (2.126) is represented by r =


 0(m−1)×1

r




and is of length m. The vector r is composed of a null vector of length m−1 and an

element r which is the radial distance from the chemical equilibrium state, d = 0,

in the parametric space. The rotation matrix Rl2×l2 depends on the l2 − 1 polar

angles, which are represented in a vector form as Θ = (θ1, . . . , θl2−1)
T . Each set

of polar angles Θ represents a direction within the parametric space along which a

one-dimensional slice of the md-dimensional ILDM can be constructed by varying

r and keeping Θ fixed. A finite number of one-dimensional slices of the ILDM,

in different directions, are constructed for uniformly discretized sets of values of

the polar angles Θ. The parametric vector d is related to the polar parametric

representation by the following functional form

d1 = r

l2−1∏
i=1

cos(θi),

d2 = d1 tan(θl2−1),

di = di−1
tan(θl2−i+1)

sin(θl2−i+2)
, (i = 3, . . . , l2), (2.128)
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which can be succinctly written as following

d = pr(r,Θ), (2.129)

with the vector function pr being easily invertible. As in Equation (2.125), the

ILDM can be represented by the following explicit functional form with polar

parameterization

y = fd(pr(r,Θ)) = fr(r,Θ), (2.130)

with the vector function fd transformed to the vector function fr. However,

Equation (2.130) is only an explicit representation of the actual implicit n algebraic

equations in n unknowns which are to be solved for the construction of the ILDM,

and are now given by

Pr(y − ye) = r, (m parametric Equations), (2.131a)

Z̃f f(y) = 0, (n−m ILDM Equations), (2.131b)

where the matrix Pr =


 Il1×l1 0l1×l2

0l2×l1 Rl2×l2


Pd has dimensions (L+2)× (N +2) and

has elements which are functions of the polar angles Θ. Equation (2.131) is used

to compute one-dimensional slices of the ILDM by varying just one parameter r,

the radial distance from the origin in the parametric space, and keeping the polar

angles Θ or the matrix Pr fixed. However, for each one-dimensional slice of the

ILDM in a particular direction in the parametric space, the matrix Pr is changed

as the rotation matrix Rl2×l2 and the polar angles Θ change.

2.4.4 Predictor corrector method of computing the ILDM

Equation (2.131) are solved in two steps, namely a predictor step and a corrector

step. The chemical equilibrium state ye, which from now on is also represented

by yc0, lies on the md-dimensional ILDM. A sequence of points denoted by yck
,
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(k = 0, 1, . . . , K(Θ)), are computed using Equation (2.131) along a one-dimensional

slice of the md-dimensional ILDM, corresponding to a radial direction (with fixed

polar angles Θ = (θ1, . . . , θl2−1)
T and hence, fixed Rl2×l2 and Pr) from the origin in

the parametric space R
l2. Each point yck

, on the ILDM slice, is at a radial distance

of krp from the origin in the parametric space. The value of the integer K(Θ) is

the number of points which can be computed along the one-dimensional slice of

the ILDM, before it intersects the boundary of the physically accessible subspace,

S ∈ R
n, defined in Equation (2.78). Hence, K(Θ) varies with Θ as different one-

dimensional slices of the ILDM may have different number of discrete points in S.

The discrete points on the one-dimensional ILDM slice are computed in a sequence,

one after the other, starting from k = 1 until k = K(Θ), with k = 0 being the

chemical equilibrium state which is already known.

A tangent predictor is used as a good initial guess for the corrector step. As

discussed earlier and seen in Figure 2.3 the column vectors of the matrix Vs or the

matrix Zs approximate the local tangent space of the ILDM for a nonlinear f(y) in

Equation (2.50). Before computing yck
, a corresponding prediction ypk

is evaluated

along the the local tangent space at the previously computed yck−1
. Hence, ypk

should satisfy the following

Z̃fk−1
(ypk

− yck−1
) = 0, (k = 1, . . . , K(Θ)), (2.132)

with Z̃fk−1
being the orthogonal complement of the approximate local tangent space

Zsk−1
at yck−1

. Both, the predicted ypk
and to be computed yck

should satisfy the

parametric Equation (2.131a) and hence,

Pr(ypk
− ye) = krp, (k = 1, . . . , K(Θ)), (2.133)

Pr(yck
− ye) = krp, (k = 0, . . . , K(Θ)), (2.134)
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where rp =


 0m−1×1

rp


, and both ypk

and yck
correspond to a radial distance

of krp from the origin in the parametric space. Equations (2.133) and (2.134) are

combined to obtain the following recursive relation

Pr(ypk
− yck−1

) = rp, (k = 1, . . . , K(Θ)). (2.135)

Following Maas [47] the following formulation for ypk
will satisfy both Equa-

tions (2.132) and (2.135) on substitution

ypk
= yck−1

+ Zsk−1
[PrZsk−1

]−1rp, (k = 1, . . . , K(Θ)). (2.136)

Finally, in the corrector step, the following equations

Pr(yck
− ypk

) = 0, (k = 1, . . . , K(Θ)), (2.137a)

Z̃f f(yck
) = 0, (k = 1, . . . , K(Θ)), (2.137b)

are solved for yck
using Newton’s method with ypk

being the initial guess.

Equations (2.133) and (2.134) are again used to obtain Equation (2.137a). A

damped Newton’s method [49] is used as it is suitable for the numerical solution of

the highly nonlinear algebraic equations (2.137).

The corrector step can also be performed by integrating the pseudo-transient

ODEs [1] given by

Pr
dyck

dζ
= 0, (k = 1, . . . , K(Θ)), (2.138a)

Z̃f
dyck

dζ
= Z̃f f(yck

), (k = 1, . . . , K(Θ)), (2.138b)

yck
|ζ=0 = ypk

, (k = 1, . . . , K(Θ)). (2.138c)

Equation (2.138a) is obtained by differentiating Equation (2.137a) with respect to

the pseudo-time variable ζ , with ypk
being constant for the corrector step and Pr
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being constant for a particular one-dimensional slice of the ILDM. Equation (2.138b)

is obtained by multiplying Equation (2.50) with the matrix Z̃f and replacing the

time variable by ζ . The initial condition used for the dependent variable yck
is

ypk
, when integrating the pseudo-transient ODEs in the corrector step, as shown in

Equation (2.138c). Equation (2.138) is then rewritten as following

dyck

dζ
=


 Pr

Z̃f




−1 0

Z̃f f(yck
)


 , yck

|ζ=0 = ypk
, (k = 1, . . . , K(Θ)), (2.139)

and integrated using a backward difference formula (BDF) method of LSODE, [50]

until steady state is achieved. The steady state solution for Equation (2.138) or

(2.139) is same as the solution for Equation (2.137).

Sometimes the corrector step may not converge if rp, the radial distance in the

parametric space between consecutive points on the one-dimensional ILDM slice is

too large, as it may result in a predicted ypk
which is too far, in the phase space,

from the corrected solution yck
. In that case rp should be reduced. Sometimes

the corrector step may not converge because the ILDM does not exist in certain

regions of the phase space where λ(m) = λ(m+ 1) or λ(m) ∼ λ(m+ 1) or λ(m)

and λ(m+ 1) become a complex conjugate pair, as discussed earlier in this chapter.

In practice it was found that the corrector step converged more often when using

Equation (2.139) than when using Equation (2.137).

The sequence of points yck
, (k = 1, . . . , K(Θ)), are computed by using the

recursive Equation (2.136), in the predictor step, followed by a numerical solution of

Equation (2.137), in the corrector step. Computation of each one-dimensional slice

is initiated from the chemical equilibrium state yc0 = ye. Thus, a one-dimensional

slice of the ILDM is constructed in the phase space corresponding to a fixed direction

in the parametric space given by fixed Θ and Pr. The global ILDM is constructed in

the phase space by computation of several one-dimensional ILDM slices for varying
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Θ and Pr. Finally, the ILDM is stored as an l2-dimensional table in a discrete

form of the Equation (2.130) for discrete values of r and Θ. A multivariate linear

interpolation is used for the intermediate values of r and Θ which are not available

in the discrete ILDM table. Some more details regarding the ILDM construction

and the associated table will be given with respect to specific examples in the next

section of this chapter. A FORTRAN code, based on the steps described in this

chapter, was developed for construction of the ILDM for the dynamical system

modeling the CASHPR.

2.5 Examples

In this section several examples for computation of the ILDM are given. The

ILDMs are computed for various reaction mechanisms which govern the reactive

processes within the CASHPR. Some of the peculiar cases encountered while

constructing these ILDMs are demonstrated and discussed.

2.5.1 Ozone decomposition reaction mechanism

The ozone decomposition reaction mechanism is considered in the isobaric

CASHPR. This reaction mechanism involves N = 3 species, L = 1 element, and

J = 14 elementary reaction steps as depicted in Table A.1. The initial species

mass fractions are taken to be YO0 = 0.0, YO20
= 0.3333, and YO30

= 0.6667,

and hence, using Equation (2.10), the initial element mass fraction is given by

ŶO0 = 1, which remains constant. Note that the indices in the species and element

mass fraction variables have been replaced by the respective symbols of the species

and elements. The initial temperature and pressure is given by T0 = 300 K and

p0 = 0.832×106 dynes cm−2, respectively. Since, the isobaric CASHPR is considered,

the pressure and mixture enthalpy per unit mass remain constant (see Section 2.1.2).

The constant mixture enthalpy per unit mass is obtained from the initial conditions
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and is given by h0 = 0.9926×1010 ergs g−1. The highest dimensional ILDM, which is

the complete physically accessible subspace of the phase space, has a dimensionality

of N − L = 2, and it is given by

S =




p = p0 > 0

T > 0

y ∈ R
n 0 ≤ YO, YO2, YO3 ≤ 1

YO + YO2 + YO3 = 1

hO(T )YO + hO2(T )YO2 + hO3(T )YO3 = h = h0



, (2.140)

where y = (h, p, YO, YO2, YO3)
T , n = 5, and the indices of the variables representing

the species enthalpy per unit mass as a function of temperature have been replaced

by the symbol of the respective species. The initial state of the reactive mixture

can be represented by y0 = (0.9926 × 1010, 0.832 × 106, 0.0, 0.6667, 0.3333)T . The

conserved quantities in the CASHPR can be represented by ȳ = (ŶO0, p0, h0)
T =

(1, 0.832× 106, 0.9926× 1010)T . The species mass fractions and temperature at the

chemical equilibrium state for the initial condition y0 are computed and given by

Y e
O = 0.47041160501582×10−7, Y e

O2
= 0.99999995256694, Y e

O3
= 0.39191130110168×

10−9, and T e = 1255.68K, respectively. Hence, the chemical equilibrium state which

is the zero-dimensional ILDM, M0, can be represented by ye = (0.9926×1010, 0.832×
106, 0.47041160501582 × 10−7, 0.99999995256694, 0.39191130110168× 10−9)T . The

corresponding conserved parameters vector for the chemical equilibrium state is

given by Ψe = (0, 0, 0)T , assuming that the range of the conserved quantities p

and h, for any future computations of the ILDM, is given by p ∈ [pmin, pmax] =

[0.832×106, 1.832×106] dynes cm−2, and h ∈ [hmin, hmax] = [0.9926×1010, 1.9926×
1010] ergs g−1. Note that Ψ0 = Ψe, where Ψ0 is the conserved parameters vector

for the initial condition y0.

An md = 1-dimensional ILDM is computed in the n = N + 2 = 5-dimensional

72



phase space for a fixed set of values of the conserved quantities. Hence, m =

md + L + 2 = 4 (m < n), determines the segregation of the slow and fast time

scales. A series of points are computed on the one-dimensional ILDM by using

the predictor corrector steps in Equations (2.136-2.137). In this case there are four

linear parametric equations (2.137a) and one nonlinear ILDM equation (2.137b).

The one-dimensional ILDM is computed on either side of the chemical equilibrium

state until it intersects the boundary of the physically accessible subspace S of the

phase space. The parametric matrix Pr has dimensions 4 × 5, and for the one-

dimensional ILDM with a fixed set of values of the conserved quantities, it is given

by

Pr = Pd =


 Pz

Ps


 , (2.141)

where the matrix Pz has dimensions 3 × 5, and is given by

Pz =




0 0 1 1 1

0 1
pmax−pmin

0 0 0

1
hmax−hmin

0 0 0 0


 , (2.142)

while the user specified parametric matrix Ps has dimensions 1× 5, and is given by

Ps =

(
0 0 0 1 0

)
, (2.143)

as the one-dimensional ILDM is chosen to be parameterized by YO2. Finally, for the

one-dimensional ILDM with a fixed set of values of the conserved quantities, the

vector rp is given by

krp =




0

0

0

krp




=




0

0

0

d1




=




0

ψ2 − ψe
2

ψ3 − ψe
3

s1 − se
1




=




0

0

0

YO2 − Y e
O2




= k




0

0

0

1 × 10−3



.

(2.144)

73



Hence, l1 = 3, and l2 = m − l1 = 1, where l2 is the dimension of the parametric

space associated with the ILDM.
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Figure 2.4. One-dimensional ILDM with fixed conserved quantities for ozone
decomposition in the isobaric CASHPR for a reactive mixture of composition
YO0 = 0, YO20

= 0.6667, YO30
= 0.3333 at a temperature T0 = 300 K and pressure

p0 = 0.832 × 106 dynes cm−2.

Figure 2.4 depicts a projection of the one-dimensional ILDM, which exists in

the n = 5-dimensional phase space. Also plotted are the phase space trajectories

which relax to the ILDM and then move close to it until they reach the chemical

equilibrium state. The phase space trajectories have been plotted for different initial

conditions. However, the conserved parameters vector Ψ associated with all the

initial conditions is equal to Ψe associated with the chemical equilibrium state ye

or Ψ0 associated with the original initial condition y0. Also plotted is one of the
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boundaries of the physically accessible subspace S given by YO +YO2 = 1. A peculiar

behavior of both the phase space trajectories and the ILDM, as seen in Figure 2.4,

is that when they both reach the boundary, they move close to it until they reach

the chemical equilibrium state, which also lies very close to the boundary. Hence,

it is verified that the nonlinear dynamical system modeling the CASHPR is defined

in such a way that it never leaves the physically accessible subspace S. In this case

the boundary defined by YO +YO2 = 1 also acts as a low dimensional manifold. The

one-dimensional ILDM does not exist in that region of the phase space where the

eigenvalues λ(4) and λ(5) (m = 4 for this case) have approximately equal values. The

eigenvalue λ(4) switches from the slow set of eigenvalues to the fast set of eigenvalues,

while the eigenvalue λ(5) switches from the fast set of eigenvalues to the slow set of

eigenvalues, across this region of the phase space. A solution for Equation (2.137)

fails to converge in this region of eigenvalue switch depicted in Figure 2.4. The two

branches of the ILDM on either side of this region have been simply connected by

the path taken by the phase space trajectories. There are n− (L+ 2) = 2 nonzero

eigenvalues for this system. The eigenvalue, λ(5), associated with the fast time

scale, always has a negative real part along the ILDM, which is necessary for the

ILDM to be attractive. However, the other nonzero eigenvalue, which is associated

with the slow time scale, has a positive real part along the ILDM for YO2 < 0.96

approximately, while it has a negative real part along the ILDM otherwise. Once

the ILDM has been computed, the species mass fractions and temperature along

the ILDM are tabulated in the following functional forms

Yi = Y (YO2), (i = 1, . . . , 3), (2.145a)

T = T (YO2), (2.145b)

for discrete values of YO2, which is the reference variable for the ILDM table. The
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domain D = {YO2 ∈ R|0 ≤ YO2 ≤ 1} in the parametric space is mapped onto the one-

dimensional ILDM in the phase space using Equation (2.145) (see Equation (2.125)).

The ILDM table is single valued with respect to the reference variable YO2, which

is the major product species.

2.5.2 Syngas combustion reaction mechanism

The syngas combustion reaction mechanism is considered in the isobaric

CASHPR. This reaction mechanism involves N = 13 species, L = 4 elements,

and J = 67 elementary reaction steps as depicted in Table A.2. A syngas fuel

mixture A of composition Y A
CO = 0.4517, Y A

H2
= 0.03, Y A

N2
= 0.5543, with the

remaining 10 species mass fractions being zero, reacts with an oxidizer mixture B

of composition Y B
O2

= 0.2329, Y B
N2

= 0.7671, with the remaining 11 species mass

fractions being zero. The reaction between the mixtures A and B is considered

for two mixture fractions of χ = 0.70, 0.75 at initial temperature and pressure of

T0 = 298 K and p0 = 1× 106 dynes cm−2, respectively. The element mass fractions,

mixture fraction, pressure, and mixture enthalpy per unit mass remain constant

in the isobaric CASHPR. The initial state of the reactive mixture for a certain

mixture fraction is given by y0 = (h0, p0, Y10, . . . , YN0)
T = (hA+χ(hB−hA), p0, Y

A
1 +

χ(Y B
1 − Y A

1 ), . . . , Y A
N + χ(Y B

N − Y A
N ))T . The conserved quantities in the isobaric

CASHPR for a certain mixture fraction are given by ȳ = (Ŷ10, . . . , ŶL0, p0, h0)
T =

(Ŷ A
1 + χ(Ŷ B

1 − Ŷ A
1 ), . . . , Ŷ A

L + χ(Ŷ B
L − Ŷ A

L ), p0, h
A + χ(hB − hA))T . For χ = 0.75,

YCO0 = 0.13858, YH20
= 7.48809 × 10−3, YO20

= 0.17474, YN20
= 0.67918, with the

remaining initial species mass fractions being zero, and ŶH0 = 0.74881 × 10−2,

ŶC0 = 0.59425 × 10−1, ŶO0 = 0.25390, ŶN0 = 0.67918, and h0 = −0.54704 ×
1010 ergs g−1. For χ = 0.70, YCO0 = 0.16630, YH20

= 8.98571×10−3, YO20
= 0.16310,

YN20
= 0.66162, with the remaining initial species mass fractions being zero, and
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ŶH0 = 0.89857×10−2, ŶC0 = 0.71310×10−1, ŶO0 = 0.25808, and ŶN0 = 0.66162, and

h0 = −0.65641 × 1010 ergs g−1. To initiate the ILDM computation, the chemical

equilibrium state ye is computed for each mixture fraction with χe = χ0 = 0.70, 0.75.

An md = 1-dimensional ILDM is constructed in the n = N+2 = 15-dimensional

phase space for each mixture fraction. Hence, m = md + L+ 2 = 7, determines the

segregation of the slow and fast time scales. A series of points are computed on the

one-dimensional ILDM by using the predictor corrector steps in Equations (2.136-

2.137). In this case there are seven linear parametric equations (2.137a) and eight

nonlinear ILDM equation (2.137b). The one-dimensional ILDM is computed on

either side of the chemical equilibrium state until it intersects the boundary of the

physically accessible subspace S of the phase space. The parametric matrix Pr has

dimensions 7×15, and for the one-dimensional ILDM with a fixed mixture fraction,

it is given by

Pr = Pd =


 P

(2)
χ

Ps


 , (2.146)

where the matrix P
(2)
χ has dimensions 6 × 15. Due to the large size of the matrix

P
(2)
χ all its elements are not listed here. The user specified parametric matrix Ps

has dimensions 1 × 15, and is given by

Ps =

(
01×7 1 01×7

)
, (2.147)

as the one-dimensional ILDM is chosen to be parameterized by YCO2. Finally, for

the one-dimensional ILDM with a fixed mixture fraction, the vector rp is given by

krp =


 06×1

krp


 =


 06×1

d1


 =




04×1

χ− χe

ψ5 − ψe
5

s1 − se
1




=


 06×1

YCO2 − Y e
CO2


 = k


 06×1

1 × 10−3


 .

(2.148)
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Hence, l1 = 6, and l2 = m − l1 = 1, where l2 is the dimension of the parametric

space associated with the ILDM.
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Figure 2.5. One-dimensional ILDM for combustion of a syngas fuel mixture A
(Y A

CO / Y A
H2

/ Y A
N2

= 0.4517 / 0.0300 / 0.5543) reacting with an oxidizer mixture B
(Y B

O2
/Y B

N2
= 0.2329/0.7671), for mixture fractions of χ = 0.70, 0.75, in the isobaric

CASHPR at temperature T0 = 298 K and pressure p0 = 1 × 106 dynes cm−2.

Figure 2.5 depicts a projection of the one-dimensional ILDM, which exists in the

n = 15-dimensional phase space, for mixture fractions of 0.70 and 0.75. Also plotted

are the phase space trajectories which relax to the ILDM and then move close to it

until they reach the chemical equilibrium state. For χ = 0.70, the one-dimensional

ILDM has two branches. The split occurs when
λ(7)

λ(8)
∼ 1. For one branch, the matrix

Ps given in Equation (2.147) and the vector rp given in Equation (2.148) are used.
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For the other branch, Ps = (01×9, 1, 01×5), with the ILDM parameterized by YH ,

and krp = (01×6, YH − Y e
H)T = k(01×6, 1 × 10−5)T are used. It is found that not

all of the one-dimensional ILDM approximates the SIM well. It can be seen from

Figure 2.5 that the phase space trajectories relax only to a subset, S
′′, of the ILDM

close to the chemical equilibrium state. On this attractive subset S
′′ of the ILDM

λ(8)

λ(7)
> 3 approximately, and both λ(7) and λ(8) have negative real parts. Even if the

phase space trajectories start exactly from other parts of the one-dimensional ILDM

not in S
′′, they do not stay close to the ILDM until they reach S

′′. Hence, parts

of the ILDM far from the chemical equilibrium state do not have an approximate

invariant property as does S
′′. Hence, only the attractive subset, S

′′, of the ILDM is

useful and should be computed and stored as a table. Similar behavior is depicted

for the one-dimensional ILDM for χ = 0.75. However, for χ = 0.75, the ILDM is not

discontinuous, and it does not split into two branches. All the species mass fractions

and temperature along the subset S
′′ of the one-dimensional ILDM are tabulated in

the following functional form

Yi = Y (YCO2), (i = 1, . . . , 13), (2.149a)

T = T (YCO2), (2.149b)

for discrete values of YCO2, which is the reference variable for the ILDM table. The

domains D = {YCO2 ∈ R|0.19 ≤ YCO2 ≤ 0.25} for χ = 0.70, and D = {YCO2 ∈
R|0.17 ≤ YCO2 ≤ 0.21} for χ = 0.75, in the parametric space are mapped onto

the subset S
′′ of the respective one-dimensional ILDMs in the phase space using

Equation (2.149). The ILDM table is single valued with respect to the reference

variable YCO2 for the subset S
′′ of the one-dimensional ILDM.

An md = 2-dimensional ILDM is constructed in the n = N+2 = 15-dimensional

phase space for χ = 0.70. Hence, m = md + L + 2 = 8. Discrete points on
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the two-dimensional ILDM are computed in the polar parametric space using the

predictor corrector steps in Equations (2.136-2.137). In this case there are eight

linear parametric equations (2.137a) and seven nonlinear ILDM equations (2.137b).

The parametric matrix Pr has dimensions 8×15, and for the two-dimensional ILDM

with a fixed mixture fraction, it is given by

Pr =


 I6×6 06×2

02×6 R2×2


Pd =


 I6×6 06×2

02×6 R2×2




 P

(2)
χ

Ps


 , (2.150)

where the matrix P
(2)
χ has dimensions 6 × 15, R2×2 =


 − sin(θ1) cos(θ1)

cos(θ1) sin(θ1)


 is a

two-dimensional rotation matrix, and the user specified parametric matrix Ps has

dimensions 2 × 15, and its two rows can be represented by

Ps =


 01×6 1 01×8

01×7 1 01×7


 , (2.151)

as the two-dimensional ILDM is chosen to be parameterized by YH2O and YCO2.

Finally, for the two-dimensional ILDM with a fixed mixture fraction, the vector rp

is given by

krp =


 07×1

krp


 =


 I6×6 06×2

02×6 R2×2






06×1

d1

d2


 = k


 07×1

1 × 10−3


 , (2.152)

where




06×1

d1

d2


 =




04×1

χ− χe

ψ5 − ψe
5

s1 − se
1

s2 − se
2




=




06×1

YH2O − Y e
H2O

YCO2 − Y e
CO2


 . (2.153)
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Hence, l1 = 6, and l2 = m − l1 = 2, where l2 is the dimension of the parametric

space associated with the ILDM.
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Figure 2.6. Two-dimensional ILDM for combustion of a syngas fuel mixture A
(Y A

CO / Y A
H2

/ Y A
N2

= 0.4517 / 0.0300 / 0.5543) reacting with an oxidizer mixture
B (Y B

O2
/Y B

N2
= 0.2329/0.7671), for a mixture fraction of χ = 0.70, in the isobaric

CASHPR at temperature T0 = 298 K and pressure p0 = 1 × 106 dynes cm−2.

Figure 2.6 depicts a projection of the two-dimensional ILDM, which exists in

the n = 15-dimensional phase space, for a mixture fraction of 0.70. Also plotted

are the phase space trajectories which relax to the two-dimensional ILDM and then

move close to it until they relax to the one-dimensional ILDM and then move close

to it until they reach the chemical equilibrium state. It can be seen from Figure 2.6

that the one-dimensional ILDM lies completely within the two-dimensional ILDM

subspace. Figure 2.7 depicts the polar parametric space associated with the two-

dimensional ILDM. Note that all the points computed on the two-dimensional ILDM

are not depicted in Figures 2.6 and 2.7 for plotting purposes, as they get too cluttered
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Figure 2.7. Parametric space associated with the two-dimensional ILDM in
Figure 2.6 for syngas combustion.

near the chemical equilibrium point for the polar grid system. The species mass

fractions and temperature are tabulated along the two-dimensional ILDM in the

following functional forms

Yi = Y (r, θ1), (i = 1, . . . , 13), (2.154a)

T = T (r, θ1), (2.154b)

for discrete values of r and θ1, which are given by

d1 = YH2O − Y e
H2O = r cos(θ1), (2.155a)

d2 = YCO2 − Y e
CO2

= r sin(θ1). (2.155b)

The domain D in the parametric space depicted in Figure 2.7 is mapped onto the

two-dimensional ILDM in the phase space using Equation (2.154). Note that the

chemical equilibrium state lies at the origin of the parametric space. The boundary

of the two-dimensional ILDM and the domain D is not computed exactly, and hence,
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appears to be crude. As soon as a point on the two-dimensional ILDM outside the

boundary of the physically accessible subspace S is computed in a certain radial

direction, the computation of the ILDM in that radial direction is terminated. The

ILDM table is single valued with respect to the reference variables YH2O and YCO2,

which are the major product species.

2.5.3 H2/O2/Ar reaction mechanism

The H2/O2/Ar reaction mechanism is considered in the isochoric CASHPR. This

reaction mechanism involves N = 9 species, L = 3 elements, and J = 37 elementary

reaction steps as depicted in Table A.3. The initial species mass fractions are taken

to be YH20
= 0.01277, YO20

= 0.10137, and YAr0 = 0.88586, with the remaining

six initial species mass fractions being zero, and hence, using Equation (2.10),

the initial element mass fractions are given by ŶH0 = 0.01277, ŶO0 = 0.10137,

and ŶAr0 = 0.88586, which remain constant. Since, the isochoric CASHPR is

considered, the mixture density and internal energy per unit mass remain constant

(see Section 2.1.1). The reactions inside the isochoric CASHPR are considered at a

constant mixture density of ρ0 = 0.5 × 10−3 g cm−3, and at a constant mixture

internal energy per unit mass of e0 = 8 × 109 ergs g−1. The initial state of

the reactive mixture can be represented by y0 = (e0, ρ0, Y10, . . . , YN0)
T = (8 ×

109, 0.5 × 10−3, 0, 0, 0.01277, 0.10137, 0, 0, 0, 0, 0.88586)T. The conserved quantities

in the isochoric CASHPR can be represented by ȳ = (Ŷ10 , . . . , ŶL0, ρ0, e0)
T =

(0.01277, 0.10137, 0.88586, 0.5× 10−3, 8 × 109)T . The conserved parameters vector

for the initial state is represented by Ψ0 = (0, 0.10137, 0.88586, 0.33333, 0.77778)T,

assuming that the ranges for the conserved quantities ρ and e, for any future

computations of the ILDM, are given by ρ ∈ [ρmin, ρmax] = [0.25 × 10−3, 1 ×
10−3] g cm−1, and e ∈ [emin, emax] = [1 × 109, 10 × 109] ergs g−1. To initiate

83



the computation of the ILDM, the chemical equilibrium state ye is computed, with

Ψe = Ψ0.

An md = 1-dimensional ILDM is computed in the n = N + 2 = 11-dimensional

phase space for a fixed set of values of the conserved quantities. Hence, m =

md + L + 2 = 6 (m < n), determines the segregation of the slow and fast time

scales. A series of points are computed on the one-dimensional ILDM by using the

predictor corrector steps in Equations (2.136-2.137). In this case there are six linear

parametric equations (2.137a) and five nonlinear ILDM equation (2.137b). The

parametric matrix Pr has dimensions 6 × 11, and for the one-dimensional ILDM

with a fixed set of values of the conserved quantities, it is given by

Pr = Pd =


 Pz

Ps


 , (2.156)

where the matrix Pz has dimensions 5 × 11, while the user specified parametric

matrix Ps has dimensions 1 × 11, and is given by

Ps =

(
01×7 1 01×3

)
, (2.157)

as the one-dimensional ILDM is chosen to be parameterized by YH2O. Finally, for

the one-dimensional ILDM with a fixed set of values of the conserved quantities, the

vector rp is given by

krp =


 05×1

krp


 =


 05×1

d1


 =




0

ψ2 − ψe
2

...

ψ5 − ψe
5

s1 − se
1




=


 05×1

YH2O − Y e
H2O


 = k


 05×1

2 × 10−3


 .

(2.158)

Hence, l1 = 5, and l2 = m − l1 = 1, where l2 is the dimension of the parametric

space associated with the ILDM.
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Figure 2.8. One-dimensional ILDM with fixed conserved quantities for H2/O2/Ar
reaction mechanism in the isochoric CASHPR for a reactive mixture of composition
YH20

= 0.01277, YO20
= 0.10137, YAr0 = 0.88586 at a constant mixture density of

ρ0 = 0.5 × 10−3 g cm−3 and a constant mixture internal energy per unit mass of
e0 = 8 × 109 ergs g−1 (fixed parameterization).

Figure 2.8 depicts a projection of the one-dimensional ILDM, which exists in

the n = 11-dimensional phase space. The one-dimensional ILDM is computed in

the physically accessible subspace S for an additional constraint of 0 ≤ YH2O2 ≤
4.5 × 10−3. Also plotted are the phase space trajectories which relax to the ILDM

and then move close to it until they reach the chemical equilibrium state. A fixed

parameterization matrix Ps in Equation (2.157) is used for computation of the one-

dimensional ILDM. Note that in Figure 2.8, the successive points computed on

the one-dimensional ILDM are spaced far apart as the ILDM becomes orthogonal

to the fixed parameterization direction Ps or the YH2O-axis. Also, with fixed
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Figure 2.9. One-dimensional ILDM with fixed conserved quantities for H2/O2/Ar
reaction mechanism in the isochoric CASHPR for a reactive mixture of composition
YH20

= 0.01277, YO20
= 0.10137, YAr0 = 0.88586 at a constant mixture density of

ρ0 = 0.5 × 10−3 g cm−3 and a constant mixture internal energy per unit mass of
e0 = 8 × 109 ergs g−1 (adaptive parameterization).

parameterization any turning points of the one-dimensional ILDM will not be

captured. However, if the user specified parameterization matrix Ps is adapted, then

these problems can be avoided. Following the adaptive parameterization method

described by Maas [47], the matrix Ps is given by

Ps = (yck−1
− yck−2

)T , (2.159)

and the vector rp for the kth point on the ILDM starting from the chemical

equilibrium point, is given by

rpk
=


 05×1

rpk


 =


 05×1

|yck−1
− yck−2

|2


 , (2.160)
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with d1 = YH2O − Y e
H2O =

∑k
i=1 rpi

. Figure 2.9 depicts the one-dimensional

ILDM computed using adaptive parameterization. Even though in Figure 2.9, the

successive points on the one-dimensional ILDM projection still appear to be far

apart when the ILDM becomes orthogonal to the YH2O-axis, the distances between

the successive points on the ILDM are approximately equal in the eleven-dimensional

phase space. This is not the case for fixed parameterization. Once the ILDM has

been computed, the species mass fractions and temperature along the ILDM are

tabulated in the following functional forms

Yi = Y (YH2O), (i = 1, . . . , 11), (2.161a)

T = T (YH2O), (2.161b)

for discrete values of YH2O, which is the reference variable for the ILDM table. For

fixed parameterization the discrete values of YH2O, for which points along the ILDM

are computed, are uniformly spaced along the YH2O-axis. However, for adaptive

parameterization these discrete values of YH2O are nonuniformly spaced along the

YH2O-axis. The ILDM table for this one-dimensional ILDM is single valued with

respect to the reference variable YH2O.

An md = 2-dimensional ILDM is constructed in the n = N+2 = 11-dimensional

phase space for a fixed set of values of the conserved quantities. Hence, m =

md + L + 2 = 7. Discrete points on the two-dimensional ILDM are computed in

the polar parametric space using the predictor corrector steps in Equations (2.136-

2.137). In this case there are seven linear parametric equations (2.137a) and four

nonlinear ILDM equations (2.137b). The parametric matrix Pr has dimensions

7×11, and for the two-dimensional ILDM with a fixed set of values of the conserved
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quantities, it is given by

Pr =


 I5×5 05×2

02×5 R2×2


Pd =


 I5×5 05×2

02×5 R2×2




 Pz

Ps


 , (2.162)

where the matrix Pz has dimensions 5 × 11, R2×2 is a two-dimensional rotation

matrix as described earlier, and the user specified parametric matrix Ps has

dimensions 2 × 11, and its two rows can be represented by

Ps =


 01×7 1 01×3

01×2 1 01×8


 , (2.163)

as the two-dimensional ILDM is chosen to be parameterized by YH2O and YH .

Finally, for the two-dimensional ILDM with a fixed set of values of the conserved

quantities, the vector rp is given by

krp =


 06×1

krp


 =


 I5×5 05×2

02×5 R2×2






05×1

d1

d2


 = k


 06×1

1 × 10−4


 , (2.164)

where




05×1

d1

d2


 =




0

ψ2 − ψe
2

...

ψ5 − ψe
5

s1 − se
1

s2 − se
2




=




05×1

YH2O − Y e
H2O

YH − Y e
H


 . (2.165)

Hence, l1 = 5, and l2 = m − l1 = 2, where l2 is the dimension of the parametric

space associated with the ILDM.

Figure 2.10 depicts a projection of the two-dimensional ILDM and the phase

space trajectories, which exists in the n = 11-dimensional phase space. It can be
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Figure 2.10. Two-dimensional ILDM with fixed conserved quantities for H2/O2/Ar
reaction mechanism in the isochoric CASHPR for a reactive mixture of composition
YH20

= 0.01277, YO20
= 0.10137, YAr0 = 0.88586 at a constant mixture density of

ρ0 = 0.5 × 10−3 g cm−3 and a constant mixture internal energy per unit mass of
e0 = 8 × 109 ergs g−1.

seen from Figure 2.10 that the one-dimensional ILDM lies completely within the

two-dimensional ILDM subspace. The species mass fractions and temperature are

tabulated along the two-dimensional ILDM in the following functional forms

Yi = Y (r, θ1), (i = 1, . . . , 11), (2.166a)

T = T (r, θ1), (2.166b)

for discrete values of r and θ1, which are given by

d1 = YH2O − Y e
H2O = r cos(θ1), (2.167a)

d2 = YH − Y e
H = r sin(θ1). (2.167b)

The domain D in the parametric space depicted in Figure 2.11 is mapped onto the
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Figure 2.11. Parametric space associated with the two-dimensional ILDM in
Figure 2.10 for H2/O2/Ar reaction mechanism.

two-dimensional ILDM in the phase space using Equation (2.166). It is possible

to use adaptive parameterization for computation of a one-dimensional slice of the

two-dimensional ILDM in a radial direction.

An md = 1-dimensional ILDM is computed in the n = N + 2 = 11-dimensional

phase space for fixed element mass fractions and mixture density but varying mixture

internal energy per unit mass e ∈ [emin, emax] = [1 × 109, 10 × 109] ergs g−1.

Hence, m = md + L + 2 = 6 (m < n). Discrete points on the one-dimensional

ILDM are computed in a polar parametric space using the predictor corrector

steps in Equations (2.136-2.137). In this case there are six linear parametric

equations (2.137a) and five nonlinear ILDM equation (2.137b). The parametric

matrix Pr has dimensions 6×11, and for the one-dimensional ILDM with four fixed
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conserved quantities and one varying conserved quantity e, it is given by

Pr =


 I4×4 04×2

02×4 R2×2


Pd =


 I4×4 04×2

02×4 R2×2




 Pz

Ps


 , (2.168)

where the matrix Pz has dimensions 5 × 11, R2×2 is a two-dimensional rotation

matrix described earlier, and the user specified parametric matrix Ps has dimensions

1 × 11, and is given by

Ps =

(
01×7 1 01×3

)
, (2.169)

as the one-dimensional ILDM is chosen to be parameterized by YH2O and e. Finally,

for the one-dimensional ILDM with four fixed conserved quantities and one varying

conserved quantity e, the vector rp is given by

krp =


 05×1

krp


 =


 I4×4 04×2

02×4 R2×2






04×1

d1

d2


 = k


 05×1

1 × 10−3


 , (2.170)

where




04×1

d1

d2


 =




0

ψ2 − ψe
2

...

ψ4 − ψe
4

ψ5 − ψe
5

s1 − se
1




=




04×1

ψ5 − ψe
5

YH2O − Y e
H2O


 =




04×1

e−ee

emax−emin

YH2O − Y e
H2O


 . (2.171)

Hence, l1 = 4, and l2 = m − l1 = 2, where l2 is the dimension of the parametric

space associated with the ILDM.

Figure 2.12 depicts a projection of the one-dimensional ILDM, which exists in the

n = 5-dimensional phase space, for fixed element mass fractions and mixture density

but varying mixture internal energy per unit mass. The one-dimensional ILDM is
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Figure 2.12. One-dimensional ILDM for H2/O2/Ar reaction mechanism in the
isochoric CASHPR for a reactive mixture of composition YH20

= 0.01277, YO20
=

0.10137, YAr0 = 0.88586 for constant element mass fractions and constant mixture
density of ρ0 = 0.5 × 10−3 g cm−3 but a varying mixture internal energy per unit

mass of e ∈ [emin, emax] = [1 × 109, 10 × 109] ergs g−1.

computed in the physically accessible subspace S for an additional constraint of

0 ≤ YH2O2 ≤ 4.5 × 10−3. The chemical equilibrium state ye from which this ILDM

computation is initiated, corresponds to a mixture density of ρ = 0.5× 10−3 g cm−3

and mixture internal energy per unit mass of e = 5 × 109 ergs g−1. Also, plotted

are the chemical equilibria or the zero-dimensional ILDM for fixed mixture density

and varying mixture internal energy per unit mass. Note that the zero-dimensional

ILDM lies completely within the one-dimensional ILDM. The species mass fractions

and temperature are tabulated along the one-dimensional ILDM in the following
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Figure 2.13. Parametric space associated with the one-dimensional ILDM in
Figure 2.12 for H2/O2/Ar reaction mechanism.

functional forms

Yi = Y (r, θ1), (i = 1, . . . , 11), (2.172a)

T = T (r, θ1), (2.172b)

for discrete values of r and θ1, which are given by

d1 = YH2O − Y e
H2O = r cos(θ1), (2.173a)

d2 = ψ5 − ψe
5 =

e− ee

emax − emin
= r sin(θ1), (2.173b)

The domain D in the parametric space depicted in Figure 2.13 is mapped onto the

two-dimensional ILDM in the phase space using Equation (2.172). The ILDM table

is single valued with respect to the reference variables YH2O and e.

2.5.4 Methane combustion reaction mechanism

The methane combustion reaction mechanism is considered in the isobaric

CASHPR. This reaction mechanism involves N = 17 species, L = 4 elements,
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58 reversible elementary reaction steps, and hence, J = 116 irreversible elementary

reaction steps as depicted in Table A.4. The initial species mass fractions are taken

to be YCH40
= 0.05515, YO20

= 0.22002, and YN20
= 0.72483, with the remaining

fourteen initial species mass fractions being zero, and hence, using Equation (2.10),

the initial element mass fractions are given by ŶH0 = 0.01386, ŶO0 = 0.22002, ŶC0 =

0.04129, and ŶN0 = 0.72483, which remain constant. Since, the isobaric CASHPR

is considered, the pressure and mixture enthalpy per unit mass remain constant

(see Section 2.1.2). The reactions inside the isobaric CASHPR are considered at a

constant pressure of p0 = 1.01325 × 106 dynes cm−2, and at an initial temperature

of T0 = 298 K. Hence, the constant mixture enthalpy per unit mass, using the

initial conditions, is given by h0 = −0.25761× 1010 erg g−1. The initial state of the

reactive mixture can be represented by y0 = (h0, p0, Y10, . . . , YN0)
T = (−0.25761 ×

1010, 1.01325×106, 0.05515, 0, 0, 0, 0, 0, 0, 0, 0, 0, , 0.22002, 0, 0, 0, 0, 0, 0.72483)T. The

conserved quantities in the isobaric CASHPR can be represented by ȳ = (Ŷ10 , . . . ,

ŶL0, p0, h0)
T = (0.01386, 0.22002, 0.04129, 0.72483, 1.01325× 106,−0.25761× 1010)T .

The conserved parameters vector for the initial state is given by Ψ0 = (0, 0.22002,

0.04129, 0.72483, 0, 0)T , assuming that the range of the conserved quantities p and

h, for any future computations of the ILDM, is given by p ∈ [pmin, pmax] =

[1.01325 × 106, 2.01325 × 106] dynes cm−2, and h ∈ [hmin, hmax] = [−0.25761 ×
1010,−0.15761 × 1010] ergs g−1. To initiate the ILDM computation, the chemical

equilibrium state ye is computed, with Ψe = Ψ0.

An md = 1-dimensional ILDM is computed in the n = N + 2 = 19-dimensional

phase space for a fixed set of values of the conserved quantities. Hence, m =

md + L + 2 = 7 (m < n), determines the segregation of the slow and fast time

scales. A series of points are computed on the one-dimensional ILDM by using the

predictor corrector steps in Equations (2.136-2.137). In this case there are seven
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linear parametric equations (2.137a) and twelve nonlinear ILDM equation (2.137b).

The one-dimensional ILDM is computed on either side of the chemical equilibrium

state until it intersects the boundary of the physically accessible subspace S of the

phase space. The parametric matrix Pr has dimensions 7 × 19, and for the one-

dimensional ILDM with a fixed set of values of the conserved quantities, it is given

by

Pr = Pd =


 Pz

Ps


 , (2.174)

where the matrix Pz has dimensions 6 × 19, while the user specified parametric

matrix Ps has dimensions 1 × 19, and is given by

Ps =

(
01×8 1 01×10

)
, (2.175)

as the one-dimensional ILDM is chosen to be parameterized by YCO2. Finally, for

the one-dimensional ILDM with a fixed set of values of the conserved quantities, the

vector rp is given by

krp =


 06×1

krp


 =


 06×1

d1


 =




0

ψ2 − ψe
2

...

ψ6 − ψe
6

s1 − se
1




=


 06×1

YCO2 − Y e
CO2


 = k


 06×1

1 × 10−3


 .

(2.176)

Hence, l1 = 6, and l2 = m − l1 = 1, where l2 is the dimension of the parametric

space associated with the ILDM.

Figure 2.14 depicts a projection of the one-dimensional ILDM, which exists in the

n = 19. Also plotted are the phase space trajectories which relax to the ILDM and

then move close to it until they reach the chemical equilibrium state. As observed

for the syngas combustion case, it is found that not all of the one-dimensional ILDM
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Figure 2.14. One-dimensional ILDM with fixed conserved quantities for methane
combustion in the isobaric CASHPR for a reactive mixture of composition
YCH40

/YO20
/YN20

= 0.05515/0.22002/0.72483 at a temperature T0 = 298K and
pressure 1.01325 × 106 dynes cm−2.

approximates the SIM well. It can be seen from Figure 2.14 that the phase space

trajectories relax only to a subset, S
′′, of the ILDM close to the chemical equilibrium

state. Even if the phase space trajectories start exactly from other parts of the one-

dimensional ILDM not in S
′′, they do not stay close to the ILDM until they reach

S
′′. Hence, parts of the ILDM far from the chemical equilibrium state do not have

an approximate invariant property as does S
′′. Hence, only the attractive subset, S

′′,

of the ILDM is useful and should be computed and stored as a table. The species

mass fractions and temperature along the subset S
′′ of the one-dimensional ILDM

are tabulated in the following functional form

Yi = Y (YCO2), (i = 1, . . . , 17), (2.177a)

T = T (YCO2), (2.177b)

for discrete values of YCO2, which is the reference variable for the ILDM table. The
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ILDM table is single valued with respect to the reference variable YCO2 for the subset

S
′′ of the one-dimensional ILDM.

An md = 2-dimensional ILDM is constructed in the n = N+2 = 19-dimensional

phase space for a fixed set of values of the conserved quantities. Hence, m =

md + L + 2 = 8. Discrete points on the two-dimensional ILDM are computed in

the polar parametric space using the predictor corrector steps in Equations (2.136-

2.137). In this case there are eight linear parametric equations (2.137a) and eleven

nonlinear ILDM equations (2.137b). The parametric matrix Pr has dimensions

8×19, and for the two-dimensional ILDM with a fixed set of values of the conserved

quantities, it is given by

Pr =


 I6×6 06×2

02×6 R2×2


Pd =


 I6×6 06×2

02×6 R2×2




 Pz

Ps


 , (2.178)

where the matrix Pz has dimensions 6 × 19, R2×2 is a two-dimensional rotation

matrix described earlier, and the user specified parametric matrix Ps has dimensions

2 × 19, and its two rows can be represented by

Ps =


 01×8 1 01×10

01×17 1 0


 , (2.179)

as the two-dimensional ILDM is chosen to be parameterized by YCO2 and YH2O.

Finally, for the two-dimensional ILDM with a fixed set of values of the conserved

quantities, the vector rp is given by

krp =


 07×1

krp


 =


 I6×6 06×2

02×6 R2×2






06×1

d1

d2


 = k


 07×1

0.5 × 10−3


 , (2.180)
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where




06×1

d1

d2


 =




0

ψ2 − ψe
2

...

ψ6 − ψe
6

s1 − se
1

s2 − se
2




=




06×1

YCO2 − Y e
CO2

YH2O − Y e
H2O


 . (2.181)

Hence, l1 = 6, and l2 = m − l1 = 2, where l2 is the dimension of the parametric

space associated with the ILDM.
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Figure 2.15. Two-dimensional ILDM with fixed conserved quantities for methane
combustion in the isobaric CASHPR for a reactive mixture of composition
YCH40

/YO20
/YN20

= 0.05515/0.22002/0.72483 at a temperature T0 = 298K and
pressure 1.01325 × 106 dynes cm−2.

Figure 2.15 depicts a projection of the two-dimensional ILDM and the phase

space trajectories, which exists in the n = 17-dimensional phase space. It can be
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Figure 2.16. Parametric space associated with the one-dimensional ILDM in
Figure 2.15 for methane combustion.

seen from Figure 2.15 that the one-dimensional ILDM lies completely within the

two-dimensional ILDM subspace. The species mass fractions and temperature are

tabulated along the two-dimensional ILDM in the following functional forms

Yi = Y (r, θ1), (i = 1, . . . , 17), (2.182a)

T = T (r, θ1), (2.182b)

for discrete values of r and θ1, which are given by

d1 = YCO2 − Y e
CO2

= r cos(θ1), (2.183a)

d2 = YH2O − Y e
H2O = r sin(θ1). (2.183b)

The domain D in the parametric space depicted in Figure 2.16 is mapped onto the

two-dimensional ILDM in the phase space using Equation (2.182). The ILDM table

is single valued with respect to the reference variables YCO2 and YH2O.
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CHAPTER 3

VISCOUS DETONATION IN A REACTIVE MIXTURE OF H2/O2/Ar

In this chapter the standard ignition delay problem for a mixture of hydro-

gen/oxygen/argon (H2/O2/Ar) in a shock tube, extended to the viscous regime, is

solved using the method of Intrinsic Low-Dimensional Manifolds (ILDM) coupled

with a Wavelet Adaptive Multilevel Representation (WAMR) spatial discretization

technique. An operator splitting method is used to separate the reaction part

from the convection and diffusion part of the governing equations, and then the

governing equations are solved in two steps. In the reaction step, the ILDM method,

which rationally reduces detailed chemical kinetics, is used to eliminate the stiffness

associated with the chemistry by decoupling chemical processes which evolve on

fast and slow time scales. The fast time scale chemical processes are systematically

equilibrated, thereby reducing the dimension of the phase space required to describe

the reactive system. In the convection diffusion step, the WAMR is used to capture

the detailed spatial structures automatically with a small number of basis functions

thereby further reducing the number of variables required to describe the system.

Additionally, the resolution of physical diffusion processes minimizes the effects

of potentially reaction-inducing artificial entropy layers associated with numerical

diffusion.
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3.1 Problem description

The ignition delay problem considered is the viscous analog of the inviscid

problem considered by Fedkiw, et al. [51] (see also [52]) and is as follows. As

an initial condition, a shock is taken to be propagating to the right in a mixture

of H2/O2/Ar. The shock is of insufficient strength to induce significant reaction

over the length scales considered. After some time, the shock reflects from a wall

at the right, inducing a reflected, left-propagating shock. This shock leaves the

fluid adjacent to the wall in state of near zero velocity and a temperature which is

sufficiently elevated to induce significant chemical reaction following a short ignition

delay time. The problem considered in Ref. [51] is very similar to that studied

by Oran, et al. [53], who, in a case they label “strong ignition,” consider the

same gaseous mixture at a reflected shock pressure which is roughly 10% higher

and temperature which is roughly 10% lower than that considered in Ref. [51].

Additionally, there are small differences between the models used in Refs. [51] and

[53].

A Strang [39] operator splitting technique is used for numerical simulation of

the governing equations. This technique allows straightforward implementation

of both ILDM and WAMR techniques. After initialization, the Strang splitting

progresses in a series of two step processes. In the first step, convection and

diffusion is suppressed. In this step, each point in physical space is treated as

an isochoric closed adiabatic spatially homogeneous premixed reactor (CASHPR),

and the associated ordinary differential equations (ODEs) at each spatial point are

solved using the ILDM method. In Chapter 2 the ILDM method was developed such

that it is applicable for solving the ODEs modeling the CASHPR under the rather

general conditions which naturally arise from an operator splitting method applied

to fully compressible, non-adiabatic, non-isobaric, diffusive reactive flow systems.
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Such conditions are not fully discussed in most of the ILDM literature and must be

considered if the ILDM method is to be used for general problems.

In the second step, the reaction source terms are deactivated such that the

solution at each spatial point evolves only due to convection and diffusion, and the

associated partial differential equations (PDEs) are solved using the WAMR method.

Traditionally convection and diffusion in reactive flow problems are modeled by finite

difference or finite element methods, which have difficulty modeling phenomena

which have localization in physical and spectral space. The WAMR method is

better suited for problems with physical and spectral localization. This technique,

developed by Vasilyev and Paolucci [54], [55], projects the representation of the

system onto a wavelet basis. This basis has been shown to be very efficient in

representing systems with detailed spatial structures. The capturing of the details

of the structure with a small number of basis functions dramatically reduces the

number of equations which need to be solved, consequently reducing computational

time.

While diffusion is typically not modeled in detonation studies, it is considered

here for two reasons. First, as discussed in detail by Singh, et al. [56], physical

diffusion is necessary to regularize predictions of flow variables downstream of the

lead shock in simulations of multi-dimensional cellular instabilities in a propagating

detonation wave. Whether or not this physically based regularization is crucial in

determining wall tracings of a detonation wave in an open tube [57], is an open

question. Second, as will be shown here, the use of resolved physical diffusion layers

correctly captures entropy layers. As discussed by Menikoff [58], inviscid models

using typical grid resolutions will introduce artificial entropy layers due to numerical

diffusion. The coarser the grid, the more entropy introduced, and the more likely

such a layer could falsely trigger temperature-sensitive chemical reaction.
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3.2 Governing equations

The following equations describe the reactive flow system considered in this

chapter, a one-dimensional viscous mixture of N ideal gases composed of L elements

which undergo J reactions.

∂ρ

∂t
+

∂

∂x
(ρu) = 0, (3.1)

∂

∂t
(ρu) +

∂

∂x

(
ρu2 + p− τ

)
= 0, (3.2)

∂

∂t

(
ρ

(
e+

u2

2

))
+

∂

∂x

(
ρu

(
e+

u2

2

)
+ u (p− τ) + Jq

)
= 0, (3.3)

∂

∂t

(
ρŶl

)
+

∂

∂x

(
ρuŶl + Ĵm

l

)
= 0, (l = 1, . . . , L− 1), (3.4)

∂

∂t
(ρYi) +

∂

∂x
(ρuYi + Jm

i ) = ω̇iMi, (i = 1, . . . , N − L), (3.5)

τ =
4

3
µ
∂u

∂x
, (3.6)

Jq = −k ∂T
∂x

+
N∑

i=1

Jm
i

(
h◦fi +

∫ T

Ts

cpi(T̂ )dT̂

)
−<T

N∑
i=1

DT
i

Mi

(
1

Xi

∂Xi

∂x
+

(
1 − Mi

M

)
1

p

∂p

∂x

)
,

(3.7)

Jm
i = ρ

N∑
j=1,j 6=i

Mi

M
YjDij

(
1

Xj

∂Xj

∂x
+

(
1 − Mj

M

)
1

p

∂p

∂x

)
−DT

i

1

T

∂T

∂x
, (i = 1, . . . , N),

(3.8)

M =
N∑

i=1

MiXi, (3.9)
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Xi =
M

Mi
Yi, (i = 1, . . . , N), (3.10)

Ŷl = M̂l

N∑
i=1

ϕil

Mi
Yi, (l = 1, . . . , L− 1), (3.11)

Ĵm
l = M̂l

N∑
i=1

ϕil

Mi

Jm
i , (l = 1, . . . , L− 1), (3.12)

N∑
i=1

Yi = 1, (3.13)

L∑
l=1

Ŷl = 1, (3.14)

ω̇i =

J∑
j=1

αjT
βj exp

(−Ej

<T
)(

ν ′′ij − ν ′ij
) N∏

k=1

(
ρYk

Mk

)ν′
kj

, (i = 1, . . . , N − L),

(3.15)

p =
ρ<T
M

, (3.16)

e =

N∑
i=1

Yi

(
h◦fi +

∫ T

Ts

cpi(T̂ )dT̂

)
− <T

M
. (3.17)

Equations (3.1-3.4) describe the conservation of mass, linear momentum, energy, and

mass fraction of L−1 elements. Equation (3.5) is an evolution equation for N−L of

the N species. Equations (3.6-3.8) give constitutive relations for momentum, energy,

and mass diffusion which are the Newtonian stress-strain rate relation, extended

Fourier’s law, and extended Fick’s law. The form of both Fourier’s and Fick’s

law given at this point is appropriate for a mixture of ideal gases, as detailed in

a derivation by Merk [59] and summarized by Kee, et al. [60]. Equations (3.7)
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and (3.8) account for multicomponent mass diffusion as well as Soret and DuFour

effects, all of which are included at this stage for completeness. These will be

later reduced to a simpler form which will be used in the analysis. Equation (3.9)

defines the mean molecular mass, and Equation (3.10) defines the species mole

fraction. Equations (3.11) and (3.12) define the mass fraction and diffusive mass

flux, respectively, of element l. Equations (3.13) and (3.14) constrain the species and

element mass fractions to sum to unity. Equation (3.15) is a constitutive equation

for the evolution of species given by the law of mass action with Arrhenius kinetics.

Equations (3.16) and (3.17) are, respectively, thermal and caloric state equations

for a mixture of ideal gases with temperature dependent specific heats.

The N + 2 PDEs (3.1-3.5) are taken to be fundamental equations for N + 2

dependent variables, which are taken to be mass density, ρ; mass-averaged velocity,

u; mass-averaged internal energy per unit mass, e; mass fraction of element l,

Ŷl (l = 1, . . . , L − 1); and mass fraction of species i, Yi (i = 1, . . . , N − L).

These are supplemented by 3N + L + 5 constitutive equations, equations of state,

and supplementary algebraic equations (3.6-3.17) for the remaining 3N + L + 5

intermediate variables which are taken to be pressure, p; viscous stress, τ ; diffusive

energy flux, Jq; mole fraction of species i, Xi (i = 1, . . . , N); mass fraction of element

L, ŶL; mass fraction of species i, Yi (i = N − L + 1, . . . , N); diffusive mass flux of

element l, Ĵm
l (l = 1, . . . , L− 1); diffusive mass flux of species i, Jm

i (i = 1, . . . , N);

molar production rate per unit volume of species i, ω̇i (i = 1, . . . , N − L); mean

molecular mass, M ; and temperature, T . The independent variables are time t and

position x. The specific heat at constant pressure of species i on a mass basis, cpi,

is taken to be a known function of temperature. The function is taken to be in the

form of a standard polynomial curve fit found in the Chemkin III thermodynamic

data base, [61].
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Constant parameters in Equations (3.1-3.17) are Mi, M̂l, αj, βj , Ej, <, ν ′ij , ν
′′
ij ,

ϕil, Dij, DT
i , µ, k, and h◦fi. They represent the molecular mass of species i, the

atomic mass of element l, the kinetic rate constant of reaction j, the temperature

dependency exponent of reaction j, the activation energy of reaction j, the universal

gas constant (< = 8.31441×107 erg mol−1 K−1), the stoichiometric coefficient of the

ith species on the reactant and product sides in reaction j, respectively, the number

of atoms of element l in species i, the multicomponent mass diffusion coefficient,

the Soret/DuFour thermal diffusion coefficient, the dynamic viscosity, the thermal

conductivity, and the standard enthalpy of formation per unit mass of species i.

All reactions are treated as forward reactions with explicit reactions written for the

actual reverse reactions. Following Maas and Warnatz [62], parameters for those

reactions which could be written as reverse reactions are chosen to be consistent

with thermodynamic equilibrium relations.

Many studies do not explicitly form Equation (3.4) and instead solve N−1 species

equations. Equation (3.4) is included because it is critical in the implementation of

the ILDM method within an operator splitting scheme. Equation (3.4), along with

Equations (3.1) and (3.13), can be obtained by enforcing stoichiometric balances

for the jth reaction
∑N

i=1 ν
′
ijϕil =

∑N
i=1 ν

′′
ijϕil for l = 1, . . . , L, and the definition

of molecular mass, Mi =
∑L

l=1 ϕilM̂l, along with Equation (3.11) and appropriate

manipulations of Equation (3.5) when written in a form in which the evolution of

all N species is considered.

It is straightforward to show that conditions exist which guarantee a constant

element mass fraction for all time. Using Equation (3.1) and introducing the

material derivative, D
Dt

≡ ∂
∂t

+ u ∂
∂x

, Equation (3.4) transforms to

ρ
DŶl

Dt
= −∂Ĵ

m
l

∂x
, (l = 1, . . . , L− 1). (3.18)

For general expressions of mass diffusion, such as that of Equation (3.8), the right

106



hand side of Equation (3.18) will be non-zero, and one can conclude that the

element mass fraction of a fluid particle will change with time. Assuming now

that 1) all multicomponent mass diffusion coefficients are equal, Dij = D, 2) the

molecular masses of each species are close to the mean molecular mass, Mi ∼M , and

consequently mass fractions are roughly the same as mole fractions Yi ∼ Xi, and 3)

Soret mass diffusion due to thermal effects is negligible, DT
i ∼ 0, and consequently

DuFour effects are negligible as well, a form of Fick’s law is obtained, which is

commonly used in the combustion community, e.g. Williams [63] and Merk [59],

and which will be adopted from here on in this chapter

Jm
i = −ρD∂Yi

∂x
, (i = 1, . . .N). (3.19)

Note that for the problem considered in this chapter with the H2/O2/Ar reaction

mechanism, it can be shown, using a Maxwell diffusion formulation, that assumption

2) is not necessary.

Now using Equation (3.19), the Equation (3.12) reduces, using Equation (3.11),

to

Ĵm
l = −ρD∂Ŷl

∂x
, (l = 1, . . . , L− 1) . (3.20)

Then Equation (3.18) simplifies, through use of Equation (3.20), to

ρ
DŶl

Dt
= D ∂

∂x

(
ρ
∂Ŷl

∂x

)
, (l = 1, . . . , L− 1). (3.21)

Consequently, for a system with a diffusive mass flux of the described character,

no initial gradients of element mass fraction ∂Ŷl

∂x
(x, t = 0) = 0, and no fluxes at

boundaries ∂Ŷl

∂x
(x = 0, t) = ∂Ŷl

∂x
(x = Lx, t) = 0 (where Lx is the domain length),

Equations (3.21) and (3.14) insure there is no tendency for any element mass fraction

to change from its uniform initial value, and each element mass fraction will remain

constant for all x and t. The same conclusion obviously holds for systems with
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no mass diffusion. For non-premixed flames with similar assumptions, the mixture

fraction described by Warnatz, et al. [20] can be used to parameterize the Ŷl values

in a way that also simplifies the system.

It is recognized that the assumptions necessary to obtain Equation (3.21) are

somewhat crude for the H2/O2/Ar reactive mixture, and that this most likely

induces small errors in zones in which mass fraction gradients are steep. While

the methods used in this study to solve the governing equations can deal with the

more complete system, these simplifications have been made for the following two

reasons: 1) if preferential diffusion were allowed, a use of an ILDM of much higher

dimension will be required in order to account for local non-conservation of element

mass fractions, and 2) while the computational cost for adding such terms would be

high, it is not clear that the effect of those terms in this problem is large.

The kinetic model, identical to that used in [51], was originally developed by

Maas and Warnatz [62] and considers the reaction of N = 9 species (H , O, H2, O2,

OH , H2O, HO2, H2O2, Ar) constituted from L = 3 elements (H , O, Ar), in J = 37

reactions. Coefficients for this mechanism are listed in Table 1. For this mechanism,

the corrected value of third body efficiency for hydrogen, fH2 = 1.00 as appears in

Ref. [1], has been adopted. As reported in Ref. [62], no special tuning was imposed

to match experimentally observed ignition delay times.

In order to verify the kinetic model, preliminary calculations were performed

to simulate the experiments of Schott and Kinsey [64]. In their experiments,

induction times, ti, were measured in shock tubes for dilute, low pressure (p ∼
3× 105 dynes cm−2) mixtures of H2 and O2 in Ar. The kinetic model under closed,

adiabatic, isochoric, homogeneous premixed conditions predicted induction times

which were within the experimental error bounds reported for conditions of Ref. [64].

A full simulation including the effect of spatial gradients proved impractical. This
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is because the instrumentation in the experiment required at least a 1 ms induction

time, rendering the ratio of the induction time to the reaction time sufficiently

large to make its computation with full spatial details prohibitively expensive. The

reflected shock pressure and temperature in Ref. [51] are 11.88×105 dynes cm−2 and

1196 K, Under these high pressure and temperature conditions, a closed, adiabatic,

isochoric, homogeneous premixed calculation with the kinetic model for the reactive

mixture of H2/O2/Ar in a 2 : 1 : 7 molar ratio, yields ti = 58.2 µs. This is

within the error bounds of an extrapolation of results of Ref. [64], which predicts

7.3 < ti < 81.9 µs at this state.

The values of the diffusion parameters are taken to be D = 5.6 × 101 cm2 s−1,

µ = 1.0 × 10−2 dynes s cm−2, and k = 8.3 × 105 erg cm−1 s−1 K−1. It is noted

that the viscosity is roughly one order of magnitude too large. Computations with

a viscosity of the right magnitude would entail a much higher computational cost.

There are two reasons for taking the larger value of viscosity. First, since the

WAMR method captures all length scales present automatically, a smaller viscosity

will require an increase in the number of degrees of freedom to do so. Second,

subsequent calculations at resulting higher resolutions would necessitate quadruple

precision computations because approximations of second derivatives on the finest

scale using double precision are corrupted by machine roundoff! A discussion of the

effect of this choice of viscosity on the results is given later.

A shock tube of length 12 cm filled initially with a reactive mixture of H2/O2/Ar

in a 2 : 1 : 7 molar ratio, is considered. For 0 ≤ x ≤ 6 cm, the gas is taken to be at

ρ = 0.18075×10−3 g cm−3, u = 487.34×102 cm s−1, and p = 3.5594×105 dynes cm−2.

For 6 < x ≤ 12 cm, the gas is at ρ = 0.072 × 10−3 g cm−3, u = 0 cm s−1, and

p = 0.7173× 105 dynes cm−2. This state is consistent with Rankine-Hugoniot jump

conditions for the inviscid equivalent of Equations (3.1-3.17). Knowledge of these
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parameters allows determination of all other dependent variables at t = 0 s through

the use of the governing equations. At x = 12 cm, a closed and adiabatic boundary is

considered. Consequently u = 0 cm s−1, and additionally diffusive mass and energy

fluxes Jm
i (i = 1, . . . , N), and Jq must be zero. At x = 0 cm, inflow conditions of

u = 487.34× 102 cm s−1, ρ = 0.18075× 10−3 g cm−3, p = 3.5594 × 105 dynes cm−2

are allowed.

3.3 Operator splitting

The governing equations (3.1-3.17) can be written in the following compact form

∂y

∂t
= f(y) − ∂

∂x
h(y), (3.22)

where y, representing the set of conserved dependent variables, f(y), representing

the reaction source term, and − ∂
∂x

h(y) representing convection and diffusion, are

given by

y =




ρ

ρu

ρ
(
e+ u2

2

)
ρŶ1

...

ρŶL−1

ρY1

...

ρYN−L




, f(y) =




0

0

0

0

...

0

ω̇1M1

...

ω̇N−LMN−L




,h(y) =




ρu

ρu2 + p− τ

ρu
(
e+ u2

2

)
+ u (p− τ) + Jq

ρuŶ1 + Ĵm
1

...

ρuŶL−1 + Ĵm
L−1

ρuY1 + Jm
1

...

ρuYN−L + Jm
N−L




.

(3.23)

Here the vectors y, f , and h are all of length N +2. Equation (3.22) is solved in two

steps, a reaction step and a convection diffusion step, using Strang-splitting [39].
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This splitting results in second order accuracy in time if both steps have the same

accuracy in time.

3.3.1 Reaction step

In Step 1 or the reaction step, the following equation is solved at each spatial

point

∂y

∂t
= f(y). (3.24)

The first 2+L equations of Equation (3.24) are homogeneous and can be integrated

exactly to give

ρ = ρ0; u = u0; e = e0; Ŷl = Ŷl0, (l = 1, . . . , L− 1). (3.25)

The remaining N − L species evolution equations in Equation (3.24) reduce to the

following PDEs, which are treated at each point in space as ODEs with ρ, u, e, and

Ŷl held constant to the values given in Equation (3.25) every time Step 1 is repeated:

∂Yi

∂t
=
ω̇iMi

ρ0

, (i = 1, . . . , N − L). (3.26)

It is noted that even though during a single reaction step at each spatial point, the

values of ρ0, e0, u0, and Ŷl0 do not change; because of convection and diffusion, in

general, all vary in physical space and will change with time.

Equation (3.26) coupled with the algebraic equations (3.25), (3.11), (3.13),

(3.14), (3.16), and (3.17) are solved in the reaction step at each spatial point to

obtain the species and element mass fractions, pressure, temperature and density at

the end of the reaction time step. These differential algebraic equations together are

identical to the system of Equations (2.38-2.42) modeling the isochoric CASHPR as

discussed in Chapter 2. Hence, in the reaction step each spatial point is treated as

the isochoric CASHPR. Also these differential algebraic equations can be written in
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a compact form as following

dY

dt
= f(Y), (3.27)

where Y = (Y1, . . . , YN−L)T and f(Y) =
(

ω̇1M1

ρ0
, . . . , ω̇N−LMN−L

ρ0

)T

. This can

be accomplished by inverting and substituting all the algebraic equations into

Equation (3.26). However, inversion of all the algebraic equations cannot be

done algebraically; instead, it is done numerically. Equations (3.13) and (3.25)

with (3.11) are appropriate to determine the remaining L mass fractions not

included in vector Y. Assuming all the gases in the reactive mixture are thermally

perfect, the specific internal energy of each component, ei, is at most a function

of temperature. Hence, knowledge of the mass fractions and the constant (within

a single reaction step at a spatial point) mass-averaged specific internal energy

e0, allows one to use Newton’s method to invert Equation (3.17) to form T =

T (Y1, . . . , YN−L; ρ0, e0, Ŷ10, . . . , Ŷ(L−1)0). Hence, ω̇i, which is in general a function

of temperature, density, and species mass fractions, can now be considered as a

function of only N − L of the species mass fractions for fixed values of ρ0, e0, and

Ŷl0:

ω̇i = ω̇i(Y1, . . . , YN−L; ρ0, e0, Ŷ10, . . . , Ŷ(L−1)0), (i = 1, . . . , N − L). (3.28)

Both ω̇i and ei can be easily evaluated using the Chemkin III [42] package.

Equation (3.27) is well posed and can be solved in its entirety by any standard

implicit or explicit technique at every point in space. Because these equations are

stiff, the LSODE software package [50] in full implicit mode is used, when solving the

full set of Equation (3.26). Alternatively, Equation (3.26) can be solved using the

ILDM method, described in Chapter 2, which systematically removes the stiffness

associated with reactions. When using the ILDM method, a simpler explicit Runge-

Kutta method for time advancement is used, which is second order accurate in time.
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The size of the time step is dictated by the convection diffusion time step restriction

discussed in the next section.

3.3.2 Convection diffusion step

In Step 2 or the convection diffusion step, the following equation, which is a set

of PDEs, is solved for the convection diffusion step:

∂y

∂t
= − ∂

∂x
h(y). (3.29)

Again, Equation (3.29) can be solved by a variety of standard discretization

techniques developed for inert fluid mechanics. Here the WAMR technique is used,

as discussed in detail by Vasilyev and Paolucci [54], [55]. The method is summarized

as follows. At any given time step, the temperature, density, pressure, species mass

fractions and velocity fields are projected onto a multilevel wavelet basis. The

amplitudes of the wavelet basis functions give a measure of the importance of a

particular wavelet mode. Additionally, one has available a priori error estimates,

in contrast to most gradient-based adaptive mesh refinement techniques. All

wavelets whose amplitude are below a defined threshold are removed. Calculations

are performed for each wavelet whose amplitude is above the threshold (essential

wavelets) and for a certain number below the threshold (neighboring wavelets). If

at the completion of a time step, an essential wavelet has its amplitude drop below

the threshold, it is reclassified as a neighboring wavelet or eliminated, and the

neighboring region is adjusted; similarly, if a wavelet in the neighboring region has

its amplitude become sufficiently large, it is reclassified as an essential wavelet, and

the neighboring region is adjusted. The method is based on a collocation strategy

using the auto-correlation function of the Daubechies scaling function of order four

as the basis. A linearized trapezoidal (implicit) scheme in conjunction with GMRES
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iterations is used for time advancement. The size of the time step is chosen to satisfy

a CFL condition associated with the fastest local velocity.

3.4 ILDM for the reaction step

In the reaction step of the operator splitting technique, each discrete point in

physical space behaves as the isochoric CASHPR, thus enabling the use of the ILDM

method which provides a systematic way to overcome the severe stiffness which is

associated with full chemical kinetics models of gas phase combustion, and thus

significantly improves computational efficiency. In a closed, adiabatic, isochoric and

homogeneous premixed calculation, the full H2/O2/Ar model predicts the ratio of

the time scale of the slowest reaction mode to that of the fastest reaction mode to

typically reach values near 105, which indicates severe stiffness is present. The ILDM

method systematically eliminates most of this stiffness by equilibrating fast time

scale chemical processes and describing parametrically a low-dimensional manifold

close to which slow time scale chemical processes evolve.

The computation of the ILDM for the isochoric CASHPR has been discussed

in detail in Chapter 2. The behavior of the isochoric CASHPR can be described

by trajectories in an (n = N + 2)-dimensional composition (phase) space. The

N + 2 dependent variables ρ, e, Yi (i = 1, . . . , N) form the coordinates of this

(N + 2)-dimensional composition space. Using the analysis in Section 2.4, an md-

dimensional ILDM can be identified in the composition space for fixed values of

ρ0, e0, Ŷ10 , . . . , Ŷ(L−1)0 . Close to this md-dimensional ILDM only the md slowest

time scales evolve, while the remaining fast time scale processes have equilibrated.

A different ILDM is required for a different set of densities, internal energies and

element mass fractions. Since in general reactive flow calculations one can expect all

of these quantities to vary, the actual relevant dimension of the ILDM table which
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must be formed has dimension md +L+1 and can be tabulated numerically to give

Yi = Yi(Y1, . . . , Ymd
, ρ, e, Ŷ1, . . . , ŶL−1), (i = md + 1, . . . , N), (3.30)

T = T (Y1, . . . , Ymd
, ρ, e, Ŷ1, . . . , ŶL−1), (3.31)

p = p(Y1, . . . , Ymd
, ρ, e, Ŷ1, . . . , ŶL−1), (3.32)

where Y1, . . . , Ymd
(md + L + 1 < N + 2) are the chosen reference variables for

the table, and ρ, e, Ŷ1, . . . , ŶL−1 are the remaining parameters. This ILDM table

for the species mass fraction, temperature and pressure is generated by solving the

ILDM equation (2.58) coupled with the parametric equation (2.95), and the ideal

gas thermal and caloric state equations (3.16) and (3.17) for discrete values of the

md + L + 1 parameters. The reference variables are chosen in such a way that the

ILDM is single valued with respect to these variables for easy lookup. While there

is no guarantee of single-valuedness, in the problems studied, it has been found that

this is the case.

It is the dimension of the table, md + L + 1, which is critically important in

the ILDM method. Many previously reported calculations have been restricted

to premixed conditions in the isobaric and/or adiabatic limits, thus reducing the

dimension of the table. In the calculations presented here, variable density and

energy are intrinsic features of the flow; and by choosing md = 1 for the H2/O2/Ar

system, which has L = 3, in principle a table which has dimension five must be

used. Because a uniformly premixed reactive mixture is studied, and because

the earlier described simplified diffusion model has been employed, L − 1 = 2

independent element mass fractions remain constant throughout the calculations

at ŶH = 0.01277, ŶO = 0.10137, reducing the effective dimension of the table to

three; the variables of table parameterization are chosen to be YH2O, ρ, and e.
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Figure 3.1. ILDM projection for 9 species 37 step reaction mechanism of H2/O2/Ar
combustion as function of YH2O at constant values of ρ = 0.5 × 10−3 g cm−3, e =
8.0 × 109 erg g−1. Element mass fractions fixed at ŶH = 0.01277, ŶO = 0.10137,
ŶAr = 0.88586. Also plotted are trajectories from full time integration showing
relaxation to the ILDM and equilibrium. The symbol ‘x’ denotes equally spaced

0.10 µs time intervals. Total time to relax to equilibrium is near 0.1 ms.

With md = 1, a projection of the ILDM for fixed density, internal energy, (as

well as the always fixed element mass fractions), for the H2/O2/Ar system is plotted

in Figure 3.1 with YH2O used as the reference independent variable for the ILDM

and YH2O2 as the dependent variable. Mass fractions for all species, not shown

here, are also available as functions of YH2O for the same fixed density and internal

energy. Also shown on the plot are projections of trajectories in this two-dimensional

subspace for a variety of initial conditions. It is seen that all trajectories relax to the

ILDM. As indicated on Figure 3.1, the relaxation from the initial state to the ILDM

occurs on a relatively fast time scale on the order of microseconds, while once on

the ILDM, the subsequent relaxation to final equilibrium occurs on a much slower
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time scale on the order of 0.1 ms. The phase space trajectories appear to cross, but

this is because they have been projected into a lower dimensional space.
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Figure 3.2. ILDM projection for 9 species 37 step mechanism of H2/O2/Ar
combustion giving YH2O2 as a function of YH2O and e for constant ρ = 0.5 ×
10−3 g cm−3. Element mass fractions fixed at ŶH = 0.01277, ŶO = 0.10137,

ŶAr = 0.88586.

A projection of the three-dimensional ILDM table for constant density and

the same constant element mass fractions for the H2/O2/Ar system is plotted in

Figure 3.2, with YH2O and e used as the reference independent variables and YH2O2

as the dependent variable. The portion of the ILDM depicted closely corresponds

to values realized in the detonation calculation. Also, for the system studied here,

the dependency of all variables on density was weak for the range of realized density

values.

Instead of solving the full Equation (3.27) at each spatial point in the reaction

step, only md of the species equations (3.26) for the reference species Y1, . . . , Ymd
are
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solved, while the ILDM table depicted in Equations (3.30-3.32) is used to obtain all

necessary secondary variables. However, this ILDM technique can only be used for

those spatial points if the state of the reactive mixture at the corresponding spatial

points in the reaction step is close to the ILDM subspace in the composition space.

When using ILDMs with md = 1, only one differential equation (dY1

dt
= ω̇1M1

ρ0
)

associated with the reference species is integrated. If the state of the reactive

mixture is far from the ILDM subspace, it is important to incorporate the off-

ILDM kinetics in some fashion. Here the full Equations (3.27) are integrated using

LSODE in implicit mode. The integration is switched from full integration to the

ILDM method, for a certain spatial location in the reactive flow system, when the L2

distance norm between the actual state of the reactive mixture in the composition

space and the ILDM subspace is less than 1×10−6. While this reduces the efficacy of

the ILDM method, it is critical to avoid large phase errors associated with projecting

onto the ILDM from a remote region of the composition space. In other words, while

all processes are typically destined to reach the ILDM subspace, it is critical for the

proper sequencing of events that they reach the ILDM subspace at the correct time,

and reach the right point on the ILDM subspace. In practice, during calculations,

it is found that the ILDM method can be used in cells or spatial points which have

recently been shocked, have passed through the bulk of the induction zone, and

are well within the thermal explosion region. The ILDM method is also applied to

points in the trailing rarefaction wave.

The convection diffusion step results in to a perturbation off the ILDM.

Subsequent to the perturbation, there is a fast relaxation to the ILDM corresponding

to a new set of conserved parameters which are ρ0 and e0 in the premixed detonation

problem. This is accomplished here by projection onto the ILDM while holding the

reference variable, YH2O, constant. This projection is allowed by the large time scale
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Figure 3.3. Sketch of projection back to the ILDM of new energy and density levels
following perturbation due to convection and diffusion.

difference between slow chemical/fluid time scales and fast chemical time scales as

long as convective and diffusive effects are not large. It is noted that for this reaction

mechanism the fast directions are nearly orthogonal to the slow variable, YH2O, on

the ILDM. Figure 3.3 depicts how this projection is accomplished. A slightly more

accurate alternative would be to project to the ILDM in the direction of the vectors

associated with the local fast eigenmodes. In contrast to many implementations of

the ILDM method for partial differential equations modeling reactive flow systems,

all variables are convected and diffused, not just slow variables. While this comes

at a cost of solving more equations, it is necessary to preserve the consistency of the

Strang operator splitting method.
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3.5 Results
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Figure 3.4. Predictions of temperature, velocity, pressure, and density vs. distance
at t = 195 µs using a maximum of 300 collocation points, 15 wavelet scale levels for
full chemical kinetics (solid lines) and ILDM kinetics (dots) for viscous H2/O2/Ar

detonation.

Results for the detonation calculations in a shock tube are given here. Figure 3.4

gives predictions of temperature, velocity, pressure, and density vs. distance at time

t = 195 µs. At this time, the lead right-traveling inert shock has reflected off the

right wall and is propagating to the left with its head near x = 6.5 cm at a pressure

and temperature of 11.88× 105 dynes cm−2 and 1196 K, respectively. Close behind

the lead shock is the much stronger, left-propagating ZND detonation wave, with

its head near x = 7.2 cm. All of the usual salient features of a ZND detonation

are predicted here. The von Neumann spike is predicted at a pressure of around

45.0 × 105 dynes cm−2, and the pressure relaxes to near 20.0 × 105 dynes cm−2 at
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the right boundary. The post-detonation temperatures are near 2500 K, and the

velocity is seen to relax to a value of zero at the right boundary.

The solid lines show the predictions of the full chemical kinetics model. The

dots show the results of the calculations using the ILDM method resolving only the

slowest reaction time scale; this can be interpreted as one-step chemistry with a

rational fidelity to full chemical kinetics. It is seen on this scale that the predictions

are very similar Examination of the local eigenvalues indicates that use of the ILDM

method suppresses temporal resolution of chemical processes which occur faster than

times scales of the order of 0.1 µs. For a given ρ and e, the ILDM is constructed as

described in Section 2.4. This is done for sixteen values of ρ ranging from 0.25 ×
10−3 g cm−3 to 1.00×10−3 g cm−3 in steps of 0.05×10−3 g cm−3. Similarly nineteen

values of e ranging from 0.5 × 109 erg g−1 to 9.5 × 109 erg g−1 are used in steps of

0.5 × 109 erg g−1. Hence, 304 slices such as shown in Figure 3.1 were constructed.

Finally each ILDM was stored with an equally spaced parameterization of 100 values

of YH2O for easy lookup. Thus, the ILDM table has a size of 16×19×100. For easy

lookup, a uniform grid has been used.

For this particular problem, use of the full integration technique requires three

times as much computational time as the ILDM technique. It is noted however, that

general conclusions regarding computational efficiency are difficult to draw as the

savings realized will be model-dependent as well as initial condition-dependent. The

bulk of the savings are realized near the end of the computation as more and more

spatial cells have become chemically activated. At the beginning of the calculation,

when most spatial cells are in a cold state far from equilibrium, there is no savings.

The calculation itself took roughly ten hours on a 330 MHz Sun Ultra10 workstation.

Figure 3.5 shows similar results for the species mass fractions at the same time,

t = 195 µs. Steep gradients in mass fractions are predicted near the detonation
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Figure 3.5. Predictions of species mass fractions vs. distance at t = 195 µs using a
maximum of 300 collocation points, 15 wavelet scale levels for full chemical kinetics

(solid lines) and ILDM kinetics (dots) for viscous H2/O2/Ar detonation.

front. As expected, HO2, H , and H2O2 mass fractions have relatively small values

which peak at the detonation front. Under these conditions, the major product is

H2O. On the length scales shown in Figures 3.4 and 3.5, the results appear very

similar to the inviscid predictions of Fedkiw, et al. [51].

The WAMR algorithm adapts to the features of the flow. Figure 3.6 depicts the

distribution of the collocation points and their wavelet scale levels at two different

times, first at t = 180 µs, when the lead shock and the approaching detonation are
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Figure 3.6. Spatial distribution of collocation points and wavelet levels at t = 180 µs
(two shock structure), and t = 230 µs (single shock structure) demonstrating grid

adaption.

present, and later at t = 230 µs, after they have merged. In both cases, at most

three hundred collocation points and fifteen wavelet scale levels were sufficient to

capture the flow features.

The effects of diffusion are clearly seen when one examines finer length scales.

Figure 3.7 shows two views of pressure vs. distance at a somewhat later time, t =

230 µs, by which time the detonation wave has overtaken the reflected shock. In the

second subfigure, the same length scale is shown as in Figure 3.4. The first subfigure

shows a 120 factor spatial magnification near the lead shock. In this figure the dots

represent the actual collocation points as chosen by the WAMR technique. It is clear
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Figure 3.7. Predictions of pressure vs. distance at t = 230 µs on a coarse and fine
length scales demonstrating the spatial resolution of viscous and induction zone

structures.

on this scale that both the viscous shock and chemical induction zones have been

resolved. Here it is predicted that the shock is essentially inert and has a thickness

of roughly 5 × 10−3 cm.

The induction zone, a region of essentially constant pressure, temperature, and

density, has a thickness of roughly 47 × 10−3 cm. In the induction zone many

reactions are occurring, giving rise to a release of energy which, because of the

extreme temperature sensitivity of reaction rates, accumulates to an extent that

a thermal explosion occurs at the end of the induction zone. While the wavelet

representation certainly has captured these thin layers, it is noted that because it

was chosen not to use individual species mass fractions as part of the adaption

criteria, some finer scale reaction zone structures have not been spatially resolved.

In the process of understanding the time scales associated with the kinetics of a

spatially homogeneous reactive mixture, all time scales have been computed through

an eigenvalue analysis. This analysis indicates that reaction time scales as small as

sub-nanosecond are predicted by the standard models of Maas and Warnatz [62], and
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Maas and Pope [1]. Such small time scales give rise to small reaction induced spatial

scales which violate the continuum assumption. It is essentially for this reason that

spatial grid is not adapted to capture the subsequent extremely fine length scales

associated with individual species mass fraction variation. This issue is pervasive in

most calculations involving detailed chemical kinetics, but it is not often addressed

since standard spatial discretization algorithms are unable to resolve this range of

scales.
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Figure 3.8. Predictions of temperature, velocity, pressure, and density vs. distance
before commencement of significant reaction but after shock reflection using a

reactive Navier-Stokes model (t = 177 µs).

As discussed by Menikoff [58], inviscid codes introduce pseudo-entropy layers

near regions of wave-wave and wave-boundary interactions. These often appear as

O(1) anomalies in temperature and density near the wall in shock tube predictions.
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Figure 3.8 shows the results of the viscous calculation in a spatial zone near the wall

just after shock reflection. On this scale, there is no apparent entropy layer near

the wall.
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Figure 3.9. Close-up view of predictions of temperature, velocity, pressure, and
density vs. distance before commencement of significant reaction but just after shock

reflection (t = 174 µs) and slightly later (t = 177 µs).

A finer scale examination of the dependent variables, shown in Figure 3.9,

reveals what is happening. It is evident from the temperature plot that there is

a small entropy layer near the wall, here physically induced. The physical diffusion

mechanisms rapidly smear the layer within a few microseconds. It may be possible
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that the correct capturing of a temperature-sensitive ignition event near a wall could

be critically dependent on having the correct physics in the model. For the viscous

calculation, a temperature rise of roughly 5 K is predicted. Performing a similar

calculation with an inviscid Godunov-based model with first order upwind spatial

discretization near regions of steep gradients using 400 evenly spaced grid points

induces a temperature rise of nearly 20 K, which persists. It might be expected that

numerical diffusion would dissipate this temperature spike. However, as detailed

by LeVeque [65], the leading order numerical diffusion coefficient for such methods

is proportional to the local fluid particle velocity. As the fluid particle velocity at

the wall and in the region downstream of the reflected shock is zero, the effects of

numerical diffusion here are, at most, confined to higher order. This temperature

rise, similar to that obtained by Fedkiw, et al. [51] [66], has been obtained by

effectively imposing an adiabatic boundary condition done through extrapolation.

It is noted that this type of condition is inconsistent with the inviscid governing

equations.

In concluding, it is pointed out that decreasing the viscosity an order of

magnitude to the more appropriate value does not change the results, as the viscous

and induction length scales (which are the smallest and next to smallest length

scales, respectively) are sufficiently segregated. A decrease of the viscosity would

simply further segregate these scales. Because of the segregation, there is little

interaction between these scales. Thus reducing viscosity will only reduce the shock

thickness.

In addition, the value of viscosity, be it physical or numerical, has a substantial

effect on the entropy layer resulting from shock reflection, as discussed above. In

order to properly capture this entropy layer, one must have a numerical viscosity

which is much smaller than the physical viscosity. This is the case in the viscous
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calculations and is clearly not in inviscid calculations. In inviscid calculations, the

dynamics of the entropy layers are dependent upon the particular discretization

employed as well as artificial flux boundary conditions used.

The issues relating to scale segregation and entropy layer have been verified by

performing calculations using a somewhat smaller value of viscosity without any

noticeable changes from the results reported here.
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CHAPTER 4

APPROXIMATE SLOW INVARIANT MANIFOLD FOR
REACTIVE FLOW SYSTEMS

In this chapter a theoretical development of the Approximate Slow Invariant

Manifold (ASIM) for reactive flow systems will be given. The ASIM approximately

describes the slow dynamics of a reactive flow system once the fast dynamics has

been equilibrated. The ASIM is then used to obtain reduced model equations

for a simple reaction diffusion system and a premixed laminar flame for ozone

decomposition. The ASIM is also compared with the Mass Pope Projection (MPP)

method which is a strategy to extend the ILDM method to reactive flow systems.

4.1 Reactive flow equations

The governing equations for a one-dimensional reacting flow system can be

written in the following compact form:

∂y

∂t
= f(y) − ∂

∂x
(h(y)) , (4.1)

where y ∈ R
n represents a set of dependent variables, the vector function h(y)

represents the convective and diffusive fluxes, and the vector function f(y) represents

the reaction source term. The independent time and space variables are t and x,

respectively.

The reactive flow model equations are rewritten in terms of a new set of variables

defined by z = Ṽy. The eigenvector matrix of the Jacobian, J, of the source term
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f(y) is represented by V and its is defined in Equation (2.51). Note that the basis,

V, is based only on the chemistry of a spatially homogeneous reactive system. A

better basis on which to project would take account of the infinite-dimensional

eigenfunctions associated with the convection diffusion operator. This, however, is

difficult.

Equation (4.1) can be rewritten as

1

λ(i)

(
∂zi

∂t
+ ṽi

n∑
j=1

∂vj

∂t
zj

)
= zi +

1

λ(i)

(ṽig)− 1

λ(i)

(
ṽi
∂h

∂x

)
, (i = 1, . . . , n), (4.2)

where g = f − Jy, and the right eigenvectors vi and the left eigenvectors ṽi are

defined in Equation (2.51). It is assumed that only the dynamics of the processes

occurring at time scales of O
(

1
|λ(m)|

)
or slower are relevant, and that a spectral gap

exists between |λ(m)| and |λ(m+1)|.
The left hand side of Equation (4.2) is O

(
1

|λ(m+1)|

)
for i = m + 1, . . . , n,

while the right hand side of Equation (4.2) is O(1). By neglecting all the terms

of O
(

1
|λ(m+1)|

)
from the left hand side of Equation (2.55), the fast processes are

effectively equilibrated, and the slow dynamics of the system can be approximated

by the following set of partial differential algebraic equations

1

λ(i)

(
∂zi

∂t
+ ṽi

n∑
j=1

∂vj

∂t
zj

)
= zi +

1

λ(i)

(ṽig) − 1

λ(i)

(
ṽi
∂h

∂x

)
, (i = 1, . . . , m),

(4.3a)

0 = zi +
1

λ(i)

(ṽig) − 1

λ(i)

(
ṽi
∂h

∂x

)
, (i = m+ 1, . . . , n).

(4.3b)

In writing Equation (4.3b), it is assumed that ‖g‖ can be O (|λ(m+1)|
)

or greater,

and hence, the second term is not neglected. If convection and diffusion processes

occur at time scales which are slower than the fast chemical time scales of

O
(

1
|λ(m+1)|

)
, then the third term 1

λ(i)

(
ṽi

∂h
∂x

)
in Equation (4.3b) can be neglected,
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as it becomes O
(

1
|λ(m+1)|

)
or smaller, and hence, Equation (2.58) is obtained.

Instead, if convection and diffusion time scales are of the same order as the fast

chemical time scales, then such an approximation cannot be made as the third

term in Equation (4.3b) will become O(1). No robust analysis exists to determine

convection and diffusion time scales a priori. It is assumed that convection and

diffusion processes occur at time scales of O
(

1
|λ(p)|

)
(m < p < n) and slower.

Then by equilibrating the fast dynamics, the slow dynamics of the system can be

approximated by the following set of partial differential algebraic equations

1

λ(i)

(
∂zi

∂t
+ ṽi

n∑
j=1

∂vj

∂t
zj

)
= zi +

1

λ(i)

(ṽig) − 1

λ(i)

(
ṽi
∂h

∂x

)
, (i = 1, . . . , m),

(4.4a)

0 = zi +
1

λ(i)

(ṽig) − 1

λ(i)

(
ṽi
∂h

∂x

)
, (i = m+ 1, . . . , p),

(4.4b)

0 = zi +
1

λ(i)

(ṽig) , (i = p+ 1, . . . , n).

(4.4c)

These equations can be rewritten in a more convenient form as

Ṽs
∂y

∂t
= Ṽsf − Ṽs

∂h

∂x
, (4.5a)

0 = Ṽfsf − Ṽfs
∂h

∂x
, (4.5b)

0 = Ṽff f , (4.5c)
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where now

Ṽf =




− ṽm+1 −
...

− ṽp −
− ṽp+1 −

...

− ṽn −




=


 Ṽfs

Ṽff


 , (4.6)

where the matrix Ṽfs has dimensions (p−m)×n and its row vectors contain the left

eigenvectors associated with the time scales 1
|λ(m+1)| , . . . ,

1
|λ(p)| , and the matrix Ṽff

has dimensions (n−p)×n and its row vectors contain the left eigenvectors associated

with the time scales 1
|λ(p+1)| , . . . ,

1
|λ(n)| . The matrices Ṽs and Ṽf are same as that

used in Equation (2.57). The reduced PDEs in Equation (4.5a) describe the time

evolution of the slow dynamics, and are solved in conjunction with Equations (4.5b)

and (4.5c). The stiffness due to the reaction source term in Equation (4.1) is

substantially reduced in Equations (4.5).

Hence, analogous to the ILDM for a spatially homogeneous reactive system, the

infinite-dimensional Approximate Slow Invariant Manifold (ASIM) for the reactive

flow system is given by

Ṽfsf − Ṽfs
∂h

∂x
= 0, (4.7a)

Ṽff f = 0. (4.7b)

The ASIM is a slow manifold which accounts for the effects of convection and

diffusion, and close to it slow dynamics occurs once all fast time scale processes

have equilibrated. The system of differential algebraic equations representing the

ASIM have to be solved in physical space dimensions together with the prescribed

boundary conditions. It is obvious that for two- and three-dimensional reactive flow
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equations the ASIM is described by a set of elliptic partial differential algebraic

equations.

4.2 Simple example

The simple system in Equation (2.64) of Chapter 2 is extended by including

diffusion effects in one spatial dimension so as to obtain an equation of the form of

Equation (4.1). Specifically y, f(y) and h(y) are chosen so as to obtain the following

system of equations

∂y1

∂t
= −y1 + D∂

2y1

∂x2
, (4.8a)

∂y2

∂t
= −γy2 +

(γ − 1)y1 + γy2
1

(1 + y1)2
+ D∂

2y2

∂x2
. (4.8b)

The chemical time scales are 1 and γ−1, while the diffusion time scales depend on

the parameter D and local spatial gradients. The ILDM for this system is given by

Equation (2.68).

A spatial domain of x ∈ [0, 1] and the following boundary conditions, which lie

on the ILDM, are chosen

y(t, 0) =


 0

0


 , y(t, 1) =


 1

1
2

+ 1
4γ(γ−1)


 . (4.9)

The reason for choosing the boundary conditions to lie on the ILDM will be clarified

later. The following initial conditions are chosen which, for convenience only, linearly

interpolate between the two boundary conditions

y(0, x) =


 x(

1
2

+ 1
4γ(γ−1)

)
x


 . (4.10)

Figure 4.1 depicts results at time t = 5 for the integration of the full system of

Equations (4.8), for D = 0.1, 0.01 and γ = 10. The numerical computations are
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Figure 4.1. Comparison of solution of the full PDEs at t = 5 with the ILDM, for
γ = 10 and D = 0.01, 0.1, for Davis and Skodje’s [36] model problem extended to

include diffusion.

done using a uniform grid of 100 points in the spatial dimension x. A central

difference approximation of second order is used for spatial discretization. A

backward difference formula (BDF) of second order accuracy in time is used for

time advancement with the aid of the LSODE [50] package. The solution is plotted

in the two-dimensional phase space of the dependent variables. Stars represent the

solution at various grid points in physical space. The time t = 5 is long enough for

the fast time scales to equilibrate; in fact, the system is close to steady state. It can

be seen from the figures that the steady state solution does not lie on the the ILDM.
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Figure 4.2. Maximum error (L∞[0, 1]) between solution of the full PDEs at t = 5
and the ILDM, for fixed γ = 10 and varying D, for Davis and Skodje’s [36] model
problem extended to include diffusion. Stars indicate the values of D for which the

computations were done.

Hence, forcing the solution onto the ILDM, or approximating the slow dynamics of

Equations (4.8) by the ILDM, will lead to large errors. The effect of reducing the

value of D is the appearance of sharper gradients in the solution in physical space.

The maximum, or the L∞ norm, of the difference between the full solution and the

ILDM for fixed γ is seen in Figure 4.2 to remain large even when D is decreased.

Figure 4.3 depicts results at time t = 5, for the integration of the full system

of Equations (4.8), for γ = 100 and D = 0.1. It can be seen that for this

case the solution is closer to the ILDM primarily because the diffusion term in

Equation (4.3b) has a smaller contribution. Hence, the slow dynamics is better

approximated by the ILDM for large γ. The L∞ norm of the difference between the
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Figure 4.3. Comparison of solution of the full PDEs at t = 5 with the ILDM, for
γ = 100 and D = 0.1, for Davis and Skodje’s [36] model problem extended to include

diffusion.

full solution and the ILDM for fixed D is seen in Figure 4.4 to decrease as γ, or the

stiffness due to the reaction source term f(y), increases.

The slow dynamics for Equations (4.8), obtained by using the ASIM as done in

Equations (4.5), for n = 2, m = 1 and p = n, is given by

∂y1

∂t
= −y1 + D∂

2y1

∂x2
, (4.11a)

0 = −y2 +
y1

1 + y1
+

2y2
1

γ(γ − 1)(1 + y1)3
−
(
γ − 1 + (γ + 1)y1

γ(γ − 1)(1 + y1)3

)
D∂

2y1

∂x2
+

1

γ
D∂

2y2

∂x2
.

(4.11b)

The solution obtained by integrating Equations (4.11) will be compared to the

solution obtained by integrating the full system of Equations (4.8). Note that the

boundary conditions and initial condition for y1(t, x) are the same as before, but
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the initial condition y2(0, x) must be chosen such that Equation (4.11b), which

represents the ASIM for the system, is satisfied for given y1(0, x). That is, the

initial condition is chosen so that it lies on the ASIM and minimizes the phase error

that might occur if an arbitrary initial condition is used. Equation (4.11b) with

boundary conditions given in Equation (4.9) constitute a two-point boundary value

problem which can be written in the form

Ly2 = F (y1(t, x)), y2(t, 0) = 0, y2(t, 1) =
1

2
+

1

4γ(γ − 1)
, (4.12)

where

L =
∂2

∂x2
− γ

D , (4.13)
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F (y1(t, x)) = − γ

D
(

y1

1 + y1
+

2y2
1

γ(γ − 1)(1 + y1)3
−
(
γ − 1 + (γ + 1)y1

γ(γ − 1)(1 + y1)3
D∂

2y1

∂x2

))
,

(4.14)

the solution of which is given by

y2(t, x) =

(
1

2
+

1

4γ (γ − 1)

)
sinh

(√
γ
Dx
)

sinh
(√

γ
D
) +

∫ 1

0

G(x, s)F (y1(t, s)) ds, (4.15)

where the Green’s function G(x, s) is given by

G(x, s) =




sinh(
√

γ
D (s−1)) sinh(

√
γ
D x)√

γ
D sinh(

√
γ
D )

, 0 ≤ x ≤ s,

sinh(
√

γ
D (x−1)) sinh(

√
γ
D s)√

γ
D sinh(

√
γ
D )

, s ≤ x ≤ 1.
(4.16)

Maas and Pope [38] have proposed a different projection (MPP) method when

the diffusion time scales are of the order of the slow chemical time scales and much

slower than the fast chemical time scales. They assume that diffusion processes

perturb the system off the ILDM, but it rapidly relaxes back to the ILDM due to

the fast chemistry. This procedure is implemented by the following projection of

the convection diffusion term in Equation (4.1) along the local slow subspace on the

reaction ILDM:

∂y

∂t
= f(y) −VsṼs

∂

∂x
(h(y)) . (4.17)

The corresponding equations for the system in Equation (4.8) are then given by

∂y1

∂t
= −y1 + D∂

2y1

∂x2
, (4.18a)

∂y2

∂t
= −γy2 +

(γ − 1)y1 + γy2
1

(1 + y1)2
−
(
γ − 1 + (γ + 1)y1

γ(γ − 1)(1 + y1)3

)
D∂

2y1

∂x2
. (4.18b)

One can then solve either of the Equations (4.18a) or (4.18b) along with the ILDM

equation (2.68). Hence, the slow dynamics for the MPP method is described by

∂y1

∂t
= −y1 + D∂

2y1

∂x2
, (4.19a)

y2 =
y1

1 + y1

+
2y2

1

γ(γ − 1)(1 + y1)3
. (4.19b)
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The MPP method effectively chooses n = 2 and m = p = 1. Hence, the MPP

method forces the solution onto the finite-dimensional ILDM, which will incur a

large error for the cases depicted in Figure 4.1. Equation (4.19b) of the MPP

method has as its analog Equation (4.15) of the ASIM method. It is clear that

Equation (4.15) accounts for slow reaction and diffusion processes, and boundary

conditions, while Equation (4.19b) only accounts for slow reaction processes.
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Figure 4.5. Comparison of errors incurred by the three methods at a resolution
of 100 grid points relative to a baseline solution of full integration at a resolution
of 10000 grid points, for γ = 10 and D = 0.1, for Davis and Skodje’s [36] model

problem extended to include diffusion.

Figure 4.5 compares the solution obtained by full integration, use of the ASIM

and the MPP method, all using a fixed grid of 100 points, with the baseline

solution obtained by full integration at high spatial resolution of 10000 points.

The computations are for γ = 10 and D = 0.1. The numerical scheme used is
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the same as described previously. Use of an implicit time stepping scheme is not

required when using the ASIM or the MPP method. Also, larger time increments

can be used for the solution of Equations (4.11a) and (4.15) when using the ASIM

and the solution of Equations (4.19) when using the MPP method, than that for

the solution of Equations (4.8), if explicit numerical methods are used, due to the

reduced stiffness in the equations. However, since the accuracy of the three methods

is to be compared, the numerical solutions of all the three methods are obtained

using the same LSODE package with the same time increments until steady state

is achieved. Note that a numerical quadrature of Equation (4.15) is done in the

ASIM procedure. The L2 norm of the errors between the solutions obtained by the

three methods and the baseline solution at various times have been plotted. When

full integration is used, discretization error is incurred as the 100 grid points used

for the computation are substantially fewer than those used for the computation

of the baseline solution. At steady state, the error in the full integration method

becomes constant. The initial error incurred when using the ASIM is due to the fact

that the solution from the initial condition takes some time to relax to the ASIM.

Near steady state the error incurred when using the ASIM and the error incurred

by full integration are essentially identical. A large error is incurred by the MPP

method in both transient and steady state periods. This is due to the fact that the

MPP method forces the solution onto the finite-dimensional ILDM even though the

solution does not lie on it. It can be seen that the overall error incurred when using

the ASIM is substantially less than the error incurred when using the MPP method.

If the boundary conditions were not chosen on the ILDM, then the MPP method

would incur larger errors, as that would further cause the solution to not lie on the

ILDM. On the other hand, errors incurred when using the ASIM will not be affected

by the choice of the boundary conditions. Figure 4.6 depicts the solutions in the
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Figure 4.6. Comparison of solutions obtained by full integration, using the ASIM
and the MPP method at t = 5, for γ = 10 and D = 0.1, for a case where the

boundary condition at x = 1 does not lie on the ILDM.

phase space at time t = 5, obtained using the three methods, for a case where one

of the boundary condition, y(t, 1) =


 1

3
4


, does not lie on the ILDM. It can be

seen that the error in the solution obtained by the MPP method will always remain

large near the boundary at x = 1 which does not lie on the ILDM. In the earlier

case for which the errors are plotted in Figure 4.5, the error due to the boundary

condition in the MPP method is eliminated so as to separate the errors.

4.3 Premixed laminar flame for ozone decomposition

The governing equations which model the time-dependent, one-dimensional,

isobaric, premixed laminar flame for ozone decomposition in Lagrangian coordinates
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are derived from the Navier-Stokes equations under the assumptions of low Mach

number [67],

∂T

∂t
+ ṁ0

∂T

∂ψ
= − 1

ρcp

3∑
k=1

ω̇kMkhk +
1

cp

∂

∂ψ

(
ρk
∂T

∂ψ

)
+

3∑
k=1

cpk

cp
ρ2Dk

∂Yk

∂ψ

∂T

∂ψ
,

(4.20a)

∂Yk

∂t
+ ṁ0

∂Yk

∂ψ
=

1

ρ
ω̇kMk +

∂

∂ψ

(
ρ2Dk

∂Yk

∂ψ

)
, k = 1, 2, 3, (4.20b)

where the dependent variables are the fluid temperature T and the mass fractions in

the fluid mixture, Y1, Y2 and Y3, of oxygen atom O, oxygen molecule O2 and ozone

molecule O3, respectively. The terms Mk and cpk represent the molecular mass and

the specific heat capacity at constant pressure, respectively, of species k. The mass

averaged specific heat capacity at constant pressure of the fluid mixture is given by

cp =
∑3

k=1 Ykcpk. The specific enthalpy of species k is given by hk = h◦fk +
∫ T

Ts
cpkdT ,

where h◦fk is the standard enthalpy of formation per unit mass of species k at the

standard temperature Ts = 298 K. The mass diffusion coefficient of species k into

the fluid mixture is Dk, while the thermal conductivity of the fluid mixture is k.

The mixture density is ρ. The independent variables are time t, and the Lagrangian

coordinate ψ, where

ψ(t, x) =

∫ x

0

ρ(t, x̃)dx̃, (4.21)

where x is the spatial coordinate. The inlet mass flow rate, ṁ0, is given by

ṁ0(t) = ρu|x=0, (4.22)

where u is the flow velocity. The molar rate of production of species k per unit

volume, ω̇k, is given by the law of mass action with Arrhenius kinetics

ω̇k =

J∑
j=1

αjT
βj exp

(−Ej

<T
)(

ν ′′kj − ν ′kj

) N∏
i=1

(
ρYi

Mi

)ν′
ij

, k = 1, . . . , N, (4.23)

where J = 14 is the number of elementary reaction steps and N = 3 is the number of

species in the ozone decomposition reaction mechanism. The constant parameters
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αj, βj , Ej , ν
′
kj, ν

′′
kj and < represent the kinetic rate constant of reaction j, the

temperature dependence exponent of reaction j, the activation energy of reaction

j, the stoichiometric coefficient of kth species on the reactant and product sides

in reaction j, and the universal gas constant (< = 8.31441 × 107 erg mol−1 K−1),

respectively. The elementary reaction steps in the ozone decomposition reaction

mechanism, with the associated parameters, are given in Table A.1. The system of

Equations (4.20) are closed using the ideal gas equation of state

p0 = ρ<T
3∑

k=1

Yk

Mk
, (4.24)

where p0 = 8.32 × 105 dynes/cm2 is the constant pressure.

Following Margolis [67], the governing equations are simplified using the

following assumptions and constants: D1 = D2 = D3 = D, ρ2D = 4.336 ×
10−7 g2/(cm4-s), ρk = 4.579 g2/(cm2-s3-K), cp1 = cp2 = cp3 = cp = 1.056 ×
107 erg/(g-K), M1 = 16 g/mol, M2 = 32 g/mol, M3 = 48 g/mol, h◦f1 =

1.534 × 1011 erg/g, h◦f2 = 0 erg/g, h◦f3 = 3.011 × 1010 erg/g. The initial and the

boundary conditions are applied in a frame of reference in which the fluid is initially

at rest. A semi-infinite computational domain is considered with the following

boundary conditions

∂T

∂ψ
=
∂Y1

∂ψ
=
∂Y2

∂ψ
=
∂Y3

∂ψ
= 0, for ψ = 0,∞ and t ≥ 0. (4.25)

These conditions are equivalent to zero flux of thermal energy and species mass

at ψ = 0,∞, which also leads to u(t, 0) = 0, and hence, ṁ0 = 0. Using these

assumptions with a unity Lewis number and non-dimensionalization as done in

Margolis [67], Equations (4.20) can be simplified to
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∂T ∗

∂t∗
= − 1

ρ∗

3∑
k=1

ω̇∗
kM

∗
kh

∗
k +

∂2T ∗

∂ψ∗2 , (4.26a)

∂Yk

∂t∗
=

1

ρ∗
ω̇∗

kM
∗
k +

∂2Yk

∂ψ∗2 , k = 1, 2, 3, (4.26b)

where the star superscript denotes non-dimensional quantities.

The governing equations can be further simplified by replacing the species

evolution equation for k = 2, in Equation (4.26b), by the following algebraic

equation for the mass fractions
3∑

k=1

Yk = 1. (4.27)

The mixture enthalpy h∗, in its non-dimensional form, is given by the following

equation

h∗ =

3∑
k=1

Ykh
∗
k =

3∑
k=1

Ykh0
∗
k + T ∗ − T ∗

s . (4.28)

Using Equations (4.27) and (4.28) with Equations (4.26) and boundary conditions

in Equation (4.25) the following is obtained

∂h∗

∂t∗
=
∂2h∗

∂ψ∗2 , with
∂h∗

∂ψ∗ (t∗, 0) =
∂h∗

∂ψ∗ (t∗,∞) = 0. (4.29)

If the initial conditions are chosen such that h∗(0, ψ∗) = h∗r, where h∗r is the specific

enthalpy of the reactant mixture, then Equation (4.29) ensures that there is no

tendency for the specific enthalpy of the fluid mixture to change from its uniform

initial value, and thus remains constant for all ψ∗ and t∗. Hence, Equation (4.26a)

can be replaced by the following Schwab-Zeldovich relation

T ∗ = T ∗
s + h∗r −

3∑
k=1

Ykh0
∗
k. (4.30)

Therefore, the solution of only two PDEs from Equation (4.26b) is required, for

k = 1 and 3 (O and O3), coupled with algebraic Equations (4.27) and (4.30).
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A computational domain of finite length is chosen from ψ∗ = 0 to 2000. The

following initial and boundary conditions are chosen

Y1(0, ψ
∗) = 0, 0 ≤ ψ∗ ≤ 2000, (4.31a)

Y3(0, ψ
∗) = 0.15, 0 ≤ ψ∗ ≤ 300, (4.31b)

Y3(0, ψ
∗) = 0.15 − 0.15 cos5

(
π

2

ψ∗

2000

)
, 300 < ψ∗ ≤ 2000, (4.31c)

∂Y1

∂ψ∗ (t∗, 0) =
∂Y1

∂ψ∗ (t∗, 2000) =
∂Y3

∂ψ∗ (t∗, 0) =
∂Y3

∂ψ∗ (t∗, 2000) = 0. (4.31d)

The initial conditions are chosen such that the computational domain near ψ∗ = 0

has a small pocket of gas which has a composition close to that of the products at

chemical equilibrium. The rest of the computational domain contains the reactant

mixture. There is a reaction zone or a flame front of small initial thickness between

the products and reactant mixture. After the flame front is fully developed, it

propagates into the reactant mixture at a steady flame speed. The reactant mixture

is at temperature T = 300 K, hence, h∗r = 1.432.

Figure 4.7 depicts the steady state solution of the full PDEs, plotted in the

two-dimensional YO-YO2 phase space. Stars represent the steady state solution at

the actual grid points. One thousand equally spaced Lagrangian grid points were

used, and for clarity every tenth grid point has been plotted. The numerical com-

putations are done using second order central difference approximations for spatial

discretization and second order BDF method in LSODE for time advancement. Also

plotted is the one-dimensional ILDM as a curve in the same phase space. It can

be seen from the figures that the steady solution does not lie on the ILDM. This

is emphasized in Figure 4.7b which shows a close up of the region of phase space

where the difference between the steady state solution and the ILDM is maximum.

145



 

 
0.99 0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1
0

0.5

1

1.5

2

2.5

3
x 10

−6

 

b

Y O

YO2

0.85 0.9 0.95 1
0

0.5

1

1.5

2

2.5

3
x 10

−6

Y O 

a

YO2

✻   Full PDE Solution
     ILDM

✻   Full PDE Solution
     ILDM

Figure 4.7. Comparison of the steady state solution of the full PDEs with the ILDM
in the phase space for ozone decomposition laminar flame: a) global view b) close-up

view.

Hence, forcing the solution onto the ILDM, as done in the MPP method, will lead

to errors. The steady state temperature profile and mass fraction distribution of

O, O2 and O3, in the premixed laminar flame of ozone decomposition, are plotted

in Figure 4.8. The region of phase space depicted in Figure 4.7b corresponds to

the flame front in physical space. Within the flame front the temperature gradients

and the mass fraction gradients are large, hence, the effects of diffusion are large.

Therefore, the steady solution deviates the most from the ILDM within the flame
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front, as the ILDM is obtained from chemistry alone without incorporating the

effects of diffusion.
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Figure 4.8. Ozone decomposition flame profile at t∗ = 70000 for a) temperature,
and b) species mass fractions.

It can be seen from Figure 4.8 that the steady profiles obtained when using

the ASIM are nearly identical to those obtained by full integration. In this case,

since the ASIM is given by the solution of a non-linear boundary value problem,

the Green’s function has not been constructed, but instead a discretized form of the

partial differential algebraic equations (4.5) are solved.
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Figure 4.9. The phase error δ incurred in computations of the premixed laminar
flame of ozone decomposition with the three methods, at a resolution of 1000 points,

relative to computations using full integration at a resolution of 10000 points.

Figure 4.9 compares the phase error in the solutions obtained by full integration,

use of the ASIM, and the MPP method, all using a spatial resolution of 1000 grid

points, relative to the baseline solution obtained by full integration at a spatial

resolution of 10000 grid points. The numerical computations are done using second

order central difference approximations for spatial discretization and second order

BDF method, in the differential algebraic solver DASSL [68], for time advancement.

Use of DASSL is not required for full integration, but it is required when using the

ASIM and for the MPP method for solving the resulting differential algebraic system

148



of equations from spatial discretization. For error analysis all the computations are

done using the DASSL package with same time increments until steady state is

achieved, in order to remove any numerical bias as done for the simple example

in the previous section. The phase error δ is measured as the Lagrangian distance

between the location within the flame front where the mass fraction of O3 is 0.075,

for the solution obtained by the three methods and the baseline solution. It is noted

that there is a phase difference between the full integration using 1000 grid points

and the baseline solution due to the inherent phase error in the BDF numerical

method used. This is depicted in Figure 4.9 where stars represent the phase error

in the full integration. At steady state the flame front propagates at a uniform

speed, and the phase difference increases linearly, which signifies that different flame

propagation speeds or burning rates are predicted at different grid resolutions. Near

steady state, as can be seen from Figure 4.9, the phase errors incurred when using

the ASIM and full integration with the same resolution, are essentially identical.

On the other hand the phase error incurred by the MPP method is larger. Hence,

there is also an error in the prediction of flame propagation speed or the burning

rate by the MPP method. This is evident from the difference in slopes of the phase

error curve for the MPP method and the slope of the phase error curve when the

ASIM or full integration is used.

The amplitude error in the solutions obtained by the three methods relative to

the baseline solution has also been computed. To estimate the amplitude error the

phase error has to be eliminated. This is done by first estimating the difference in

the flame front propagation speeds obtained by the three methods from that of the

baseline solution. The flame propagation speed can be estimated from the slope

of the linear part of the phase error curves at steady state. The flame profiles are

then shifted to minimize the phase error at all times. Finally, the amplitude error
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is estimated as the L∞ norm of the error between the solution obtained by the

three methods and the baseline solution. While not shown here, it is found that

the error incurred when using the ASIM and the error incurred by full integration

is essentially identical, and both relax to a constant value of 3.75 × 10−5 at steady

state. On the other hand the error in the MPP method is slightly larger (4.5×10−5)

and increases slowly due to the fact that the solution is forced onto the ILDM when

it does not lie there.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

The Intrinsic Low-Dimensional Manifolds (ILDM) method offers an effective

way to rationally reduce the stiff ordinary differential equations modeling the

Closed Adiabatic Spatially Homogeneous Premixed Reactor (CASHPR). The ILDM

method equilibrates the fast time scale chemical processes and resolves only the

slow time scale chemical processes. The advantage is that the reduced model is

guaranteed to maintain fidelity to full kinetic models to within a time scale which

is easily determined. The accuracy of the ILDM method was clarified, and it was

shown that the ILDM approximates the Slow Invariant Manifold (SIM) well for

dynamical systems with large stiffness or large time scale separations. The error

in the ILDM approximation of the SIM increases in that region of the phase space

where the manifold curvature is large. An algorithm for computation of the multi-

dimensional ILDM in a polar parametric space was developed. The associated

parametric equations were derived and described in detail. A FORTRAN code

based on the algorithm was developed to compute the ILDM for various reaction

mechanisms.

An operator splitting method was used to extend the use of the ILDM method

for efficient simulation of a viscous H2/O2/Ar detonation in a shock tube, which

is modeled by a system of partial differential equations. The operator splitting

method allows each spatial cell to be treated as an isochoric CASHPR in the
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reaction step. The ILDM method was used for efficient solution of the stiff ODEs

modeling the reactive processes at each spatial location. The Wavelet Adaptive

Multilevel Resolution (WAMR) method used to solve the PDEs modeling the mixing

processes in the convection-diffusion step, allows the attainment of dramatic spatial

resolution for flows, such as viscous detonations, with widely disparate spatial scales.

Thin viscous shocks, entropy layers, and induction zones were fully resolved along

with phenomena which evolved on much larger laboratory scales. The detonation

computations using the ILDM and WAMR methods were three times faster than

the computations done by integrating the full model equations. It appears clear

that these methods can be used effectively to solve problems with disparate length

and time scales which are endemic in scientific computing.

Analogous to the ILDM for the CASHPR modeled by a system of ODEs, an

infinite-dimensional Approximate Slow Invariant Manifold (ASIM) is developed for

the reactive flow systems modeled by a system of PDEs. While no robust analysis

exists to determine convection and diffusion time scales a priori, it is found that in

reactive flow systems in which convection and diffusion have time scales comparable

to those of reactions, the Mass and Pope projection (MPP) method can lead to

large transient and steady state errors in numerical simulations. These errors occur

because the MPP method projects the system onto the ILDM when it may not

exist there. The error incurred when using the ASIM is much smaller than that in

the MPP method. This is because when using the ASIM, reaction, convection and

diffusion can be better coupled, while systematically equilibrating fast time scales.

The ASIM is shown to be a good approximation for the long time dynamics of

reactive flow systems. In this study, the improved accuracy in describing the slow

dynamics of two simple reaction-diffusion systems by using the ASIM, has been

illustrated with a concomitant decrease in computational cost.
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Some future work of importance is required in the area of efficient computation

of the multi-dimensional ILDM for various reaction mechanisms. It includes

compression of the large data tables generated from a priori numerical computation

of the high dimensional ILDMs. There is also a need for developing an improved

storage system for these tables, possibly using data structures, so that data can be

efficiently retrieved from the ILDM tables while they are being used for efficient

numerical simulations of reactive systems.

Often an a priori computation of the the complete global ILDM in the phase

space is not required because, usually only a small subset of the global ILDM is

required for numerical simulation of a reactive system. The boundaries of this subset

can be roughly estimated from initial conditions of the reactive system. Developing

a method for an in situ computation of the ILDM may be beneficial. A subset of

the global ILDM is computed and stored as a table in that region of the phase space

where it is required during a numerical simulation of a reactive system. If that

same subset of the global ILDM is required during the same or another numerical

simulation of a reactive system, it is not recomputed and instead, retrieved from

the stored ILDM table. However, if another subset of the global ILDM, which is

not yet stored in the ILDM table, is required, then that subset of the global ILDM

is computed and also added to the ILDM table. Hence, the size of the ILDM table

grows. Another reason why the global ILDM should not be computed is because, it

does not approximate the SIM well everywhere in the phase space. Only a subset

of the global ILDM near the chemical equilibrium point, where the spectral gap

condition holds, approximates the SIM well. This was shown for the examples in

Chapter 2. Hence, only those subsets of the global ILDM, where the spectral gap

condition holds, are useful and should be computed and stored in the ILDM table.
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Another possible area of future work is obtaining an algebraic approximation of

the multi-dimensional SIM using the functional iteration method [35]. A symbolic

logic code was written to generate a polynomial series approximation of a one-

dimensional SIM around the chemical equilibrium point for the dynamical system

modeling the CASHPR. However, the polynomial approximation obtained worked

well only close to the chemical equilibrium point and rapidly diverged away from it.

It might be possible to use some algebraic functional form other than polynomials

to better approximate the SIM. This possibility can be explored.

In this work, the ILDM method is used in conjunction with operator splitting

method for numerical simulations of a viscous detonation. It is noted that the

computational savings are problem dependent. A similar implementation of the

ILDM and operator splitting methods with respect to a large scale commercial

CFD code for solution of some real world reactive flow systems can give a better

insight into the computational efficiency achieved.

The ASIM for reactive flow systems has been shown to work work well for a

simple reaction diffusion system and ozone decomposition premixed laminar flame.

By linearizing the ASIM about the ILDM, which lies close to it, the computation

of the local fast and slow basis vectors can be avoided as they can also be stored

in the ILDM tables. This can potentially make the computations of reactive flow

systems with ASIM more efficient. A Green’s function solution was obtained for

the ASIM of the simple reaction diffusion system. Similarly, a numerical Green’s

function solution method for PDEs describing the ASIM can also be explored for

more complicated reactive flow systems. At this point the fast and slow subspace

decomposition is dependent only on reaction and should itself be modified to account

for convection-diffusion effects.
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APPENDIX A

REACTION MECHANISMS

The ozone decomposition, syngas combustion, hydrogen combustion, and

methane combustion reaction mechanisms are represented in tabular forms. The

species, elements and elementary reaction steps in the reaction mechanisms are listed

in the tables. Third body (represented by M) collision efficiencies with respect to

all the species are taken to be unity unless specified otherwise in a reaction step.

Units of αj are in appropriate combinations of cm, mol, s, and K, so that ω̇i has

units of mol cm−3 s−1; units of Ej are in erg mol−1.
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Table A.1. OZONE DECOMPOSITION REACTION MECHANISM

Species: O, O2, O3

Elements: O

j Reaction αj βj Ej

1 O3 + O → O2 + O + O 6.76 × 106 2.50 1.01 × 1012

2 O2 + O + O → O3 + O 1.18 × 102 3.50 0.00
3 O3 + O2 → O2 + O + O2 6.76 × 106 2.50 1.01 × 1012

4 O2 + O + O2 → O3 + O2 1.18 × 102 3.50 0.00
5 O3 + O3 → O2 + O + O3 6.76 × 106 2.50 1.01 × 1012

6 O2 + O + O3 → O3 + O3 1.18 × 102 3.50 0.00
7 O + O3 → O2 + O2 4.58 × 106 2.50 2.51 × 1011

8 O2 + O2 → O + O3 1.88 × 106 2.50 4.15 × 1012

9 O2 + O → O + O + O 5.71 × 106 2.50 4.91 × 1012

10 O + O + O → O2 + O 2.47 × 102 3.50 0.00
11 O2 + O2 → O + O + O2 5.71 × 106 2.50 4.91 × 1012

12 O + O + O2 → O2 + O2 2.47 × 102 3.50 0.00
13 O2 + O3 → O + O + O3 5.71 × 106 2.50 4.91 × 1012

14 O + O + O3 → O2 + O3 2.47 × 102 3.50 0.00
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Table A.2. SYNGAS COMBUSTION REACTION MECHANISM

Species: N2, CO, H2, O2, H2O, CO2, OH, H, O, HO2, HCO, H2O2, CH2O

Elements: H, C, O, N

j Reaction αj βj Ej

1 O2 + H → OH + O 2.00 × 1014 0.0 16790.1
2 OH + O → O2 + H 1.47 × 1013 0.0 501.6
3 H2 + O → OH + H 5.06 × 1004 2.7 6281.3
4 OH + H → H2 + O 2.24 × 1004 2.7 4394.6
5 H2 + OH → H2O + H 1.00 × 1008 1.6 3295.9
6 H2O + H → H2 + OH 4.46 × 1008 1.6 18414.1
7 OH + OH → H2O + O 1.50 × 1009 1.1 95.5
8 H2O + O → OH + OH 1.51 × 1010 1.1 17100.5
9 H + H + M → H2 + M 1.80 × 1018 −1.0 0.0
10 H2 + M → H + H + M 6.98 × 1018 −1.0 104131.8
11 H + OH + M → H2O + M 2.20 × 1022 −2.0 0.0
12 H2O + M → H + OH + M 3.80 × 1023 −2.0 119273.9
13 O + O + M → O2 + M 2.90 × 1017 −1.0 0.0
14 O2 + M → O + O + M 6.78 × 1018 −1.0 118557.4
15 H + O2 + M → HO2 + M 2.30 × 1018 −0.8 0.0
16 HO2 + M → H + O2 + M 2.66 × 1018 −0.8 49247.7
17 HO2 + H → OH + OH 1.50 × 1014 0.0 1003.1
18 OH + OH → HO2 + H 1.63 × 1013 0.0 37735.8
19 HO2 + H → H2 + O2 2.50 × 1013 0.0 692.6
20 H2 + O2 → HO2 + H 8.39 × 1013 0.0 55600.7
21 HO2 + H → H2O + O 3.00 × 1013 0.0 1719.6
22 H2O + O → HO2 + H 3.29 × 1013 0.0 55457.4
23 HO2 + O → OH + O2 1.80 × 1013 0.0 -406.0
24 OH + O2 → HO2 + O 2.67 × 1013 0.0 52615.2
25 HO2 + OH → H2O + O2 6.00 × 1013 0.0 0.0
26 H2O + O2 → HO2 + OH 8.97 × 1014 0.0 70026.3
27 HO2 + HO2 → H2O2 + O2 2.50 × 1011 0.0 -1241.9
28 OH + OH + M → H2O2 + M 3.25 × 1022 −2.0 0.0
29 H2O2 + M → OH + OH + M 2.11 × 1024 −2.0 49391.0
30 H2O2 + H → H2 + HO2 1.70 × 1012 0.0 3749.7
31 H2 + HO2 → H2O2 + H 9.35 × 1011 0.0 21781.7
32 H2O2 + H → H2O + OH 1.00 × 1013 0.0 3582.5
33 H2O + OH → H2O2 + H 2.66 × 1012 0.0 73465.5
34 H2O2 + O → OH + HO2 2.80 × 1013 0.0 6400.8
35 OH + HO2 → H2O2 + O 6.80 × 1012 0.0 22546.0
36 H2O2 + OH → H2O + HO2 5.40 × 1012 0.0 1003.1
37 H2O + HO2 → H2O2 + OH 1.32 × 1013 0.0 34153.3

Continued on next page
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Table A.2. Continued from previous page
j Reaction αj βj Ej

38 CO + OH → CO2 + H 4.40 × 1006 1.5 -740.4
39 CO2 + H → CO + OH 6.12 × 1008 1.5 22474.3
40 CO + HO2 → CO2 + OH 1.50 × 1014 0.0 23573.0
41 CO2 + OH → CO + HO2 2.27 × 1015 0.0 83520.4
42 CO + O + M → CO2 + M 7.10 × 1013 0.0 -4537.9
43 CO2 + M → CO + O + M 1.69 × 1016 0.0 120945.8
44 CO + O2 → CO2 + O 2.50 × 1012 0.0 47766.9
45 CO2 + O → CO + O2 2.55 × 1013 0.0 54693.1
46 HCO + M → CO + H + M 7.10 × 1014 0.0 16790.1
47 CO + H + M → HCO + M 1.07 × 1015 0.0 2054.0
48 HCO + H → CO + H2 2.00 × 1014 0.0 0.0
49 CO + H2 → HCO + H 1.17 × 1015 0.0 89419.6
50 HCO + O → CO + OH 3.00 × 1013 0.0 0.0
51 CO + OH → HCO + O 7.72 × 1013 0.0 87532.8
52 HCO + O → CO2 + H 3.00 × 1013 0.0 0.0
53 CO2 + H → HCO + O 1.07 × 1016 0.0 110747.6
54 HCO + OH → CO + H2O 1.00 × 1014 0.0 0.0
55 CO + H2O → HCO + OH 2.60 × 1015 0.0 104537.9
56 HCO + O2 → CO + HO2 3.00 × 1012 0.0 0.0
57 CO + HO2 → HCO + O2 5.21 × 1012 0.0 34511.6
58 CH2O + M → HCO + H + M 1.40 × 1017 0.0 76427.0
59 HCO + H + M → CH2O + M 2.62 × 1015 0.0 -13565.8
60 CH2O + H → HCO + H2 2.50 × 1013 0.0 3988.5
61 HCO + H2 → CH2O + H 1.82 × 1012 0.0 18151.4
62 CH2O + O → HCO + OH 3.50 × 1013 0.0 3487.0
63 HCO + OH → CH2O + O 1.12 × 1012 0.0 15763.1
64 CH2O + OH → HCO + H2O 3.00 × 1013 0.0 1194.2
65 HCO + H2O → CH2O + OH 9.71 × 1012 0.0 30475.3
66 CH2O + HO2 → HCO + H2O2 1.00 × 1012 0.0 8001.0
67 HCO + H2O2 → CH2O + HO2 1.32 × 1011 0.0 4131.8

Note: Third body collision efficiencies in all reaction steps involving M
enhanced with respect to the following species: fO2 = 0.35, fH2O = 6.5,
fN2 = 0.5, fCO = 1.5, fCO2 = 1.5.
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Table A.3. HYDROGEN COMBUSTION REACTION MECHANISM

Species: H, O, H2, O2, OH, H2O, HO2, H2O2 Ar

Elements: H, O, Ar

j Reaction αj βj Ej

1 O2 + H → OH + O 2.00 × 1014 0.00 70.30
2 OH + O → O2 + H 1.46 × 1013 0.00 2.08
3 H2 + O → OH + H 5.06 × 104 2.67 26.30
4 OH + H → H2 + O 2.24 × 104 2.67 18.40
5 H2 + OH → H2O + H 1.00 × 108 1.60 13.80
6 H2O + H → H2 + OH 4.45 × 108 1.60 77.13
7 OH + OH → H2O + O 1.50 × 109 1.14 0.42
8 H2O + O → OH + OH 1.51 × 1010 1.14 71.64
9 H + H + M → H2 + M 1.80 × 1018 −1.00 0.00
10 H2 + M → H + H + M 6.99 × 1018 −1.00 436.08
11 H + OH + M → H2O + M 2.20 × 1022 −2.00 0.00
12 H2O + M → H + OH + M 3.80 × 1023 −2.00 499.41
13 O + O + M → O2 + M 2.90 × 1017 −1.00 0.00
14 O2 + M → O + O + M 6.81 × 1018 −1.00 496.41
15 H + O2 + M → HO2 + M 2.30 × 1018 −0.80 0.00
16 HO2 + M → H + O2 + M 3.26 × 1018 −0.80 195.88
17 HO2 + H → OH + OH 1.50 × 1014 0.00 4.20
18 OH + OH → HO2 + H 1.33 × 1013 0.00 168.30
19 HO2 + H → H2 + O2 2.50 × 1013 0.00 2.90
20 H2 + O2 → HO2 + H 6.84 × 1013 0.00 243.10
21 HO2 + H → H2O + O 3.00 × 1013 0.00 7.20
22 H2O + O → HO2 + H 2.67 × 1013 0.00 242.52
23 HO2 + O → OH + O2 1.80 × 1013 0.00 −1.70
24 OH + O2 → HO2 + O 2.18 × 1013 0.00 230.61
25 HO2 + OH → H2O + O2 6.00 × 1013 0.00 0.00
26 H2O + O2 → HO2 + OH 7.31 × 1014 0.00 303.53
27 HO2 + HO2 → H2O2 + O2 2.50 × 1011 0.00 −5.20
28 OH + OH + M → H2O2 + M 3.25 × 1022 −2.00 0.00
29 H2O2 + M → OH + OH + M 2.10 × 1024 −2.00 206.80
30 H2O2 + H → H2 + HO2 1.70 × 1012 0.00 15.70
31 H2 + HO2 → H2O2 + H 1.15 × 1012 0.00 80.88
32 H2O2 + H → H2O + OH 1.00 × 1013 0.00 15.00
33 H2O + OH → H2O2 + H 2.67 × 1012 0.00 307.51
34 H2O2 + O → OH + HO2 2.80 × 1013 0.00 26.80
35 OH + HO2 → H2O2 + O 8.40 × 1012 0.00 84.09
36 H2O2 + OH → H2O + HO2 5.40 × 1012 0.00 4.20
37 H2O + HO2 → H2O2 + OH 1.63 × 1013 0.00 132.71

Note: Third body collision efficiencies in all reaction steps involving M
enhanced with respect to the following species: fO2 = 0.35, fH2O = 6.5.
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Table A.4. METHANE COMBUSTION REACTION MECHANISM

Species: CH4, CH3, CH2, CH, CH2O, HCO, CO2, CO, H2, H, O2, O, OH,
HO2, H2O2, H2O, N2

Elements: H, C, O, N

j Reaction αj βj Ej

1 CH3 + H + M 
 CH4 + M 8.00 × 1026 −3.0 0.0
2 CH4 + O2 
 CH3 + HO2 7.90 × 1013 0.0 56000.0
3 CH4 + H 
 CH3 + H2 2.20 × 1004 3.0 8750.0
4 CH4 + O 
 CH3 + OH 1.60 × 1006 2.4 7400.0
5 CH4 + OH 
 CH3 + H2O 1.60 × 1006 2.1 2460.0
6 CH3 + O 
 CH2O + H 6.80 × 1013 0.0 0.0
7 CH3 + OH 
 CH2O + H2 1.00 × 1012 0.0 0.0
8 CH3 + OH 
 CH2 + H2O 1.50 × 1013 0.0 5000.0
9 CH3 + H 
 CH2 + H2 9.00 × 1013 0.0 15100.0
10 CH2 + H 
 CH + H2 1.40 × 1019 −2.0 0.0
11 CH2 + OH 
 CH2O + H 2.50 × 1013 0.0 0.0
12 CH2 + OH 
 CH + H2O 4.50 × 1013 0.0 3000.0
13 CH + O2 
 HCO + O 3.30 × 1013 0.0 0.0
14 CH + O 
 CO + H 5.70 × 1013 0.0 0.0
15 CH + OH 
 HCO + H 3.00 × 1013 0.0 0.0
16 CH + CO2 
 HCO + CO 3.40 × 1012 0.0 690.0
17 CH2 + CO2 
 CH2O + CO 1.10 × 1011 0.0 1000.0
18 CH2 + O 
 CO + H + H 3.00 × 1013 0.0 0.0
19 CH2 + O 
 CO + H2 5.00 × 1013 0.0 0.0
20 CH2 + O2 
 CO2 + H + H 1.60 × 1012 0.0 1000.0
21 CH2 + O2 
 CH2O + O 5.00 × 1013 0.0 9000.0
22 CH2 + O2 
 CO2 + H2 6.90 × 1011 0.0 500.0
23 CH2 + O2 
 CO + H2O 1.90 × 1010 0.0 -1000.0
24 CH2 + O2 
 CO + OH + H 8.60 × 1010 0.0 -500.0
25 CH2 + O2 
 HCO + OH 4.30 × 1010 0.0 -500.0
26 CH2O + OH 
 HCO + H2O 3.43 × 1009 1.2 -447.0
27 CH2O + H 
 HCO + H2 2.19 × 1008 1.8 3000.0
28 CH2O + M 
 HCO + H + M 3.31 × 1016 0.0 81000.0
29 CH2O + O 
 HCO + OH 1.81 × 1013 0.0 3082.0
30 HCO + OH 
 CO + H2O 5.00 × 1012 0.0 0.0
31 HCO + M 
 H + CO + M 1.60 × 1014 0.0 14700.0
32 HCO + H 
 CO + H2 4.00 × 1013 0.0 0.0
33 HCO + O 
 CO2 + H 1.00 × 1013 0.0 0.0
34 HCO + O2 
 HO2 + CO 3.30 × 1013 −0.4 0.0
35 CO + O + M 
 CO2 + M 3.20 × 1013 0.0 -4200.0
36 CO + OH 
 CO2 + H 1.51 × 1007 1.3 -758.0

Continued on next page

160



Table A.4. Continued from previous page
j Reaction αj βj Ej

37 CO + O2 
 CO2 + O 1.60 × 1013 0.0 41000.0
38 HO2 + CO 
 CO2 + OH 5.80 × 1013 0.0 22934.0
39 H2 + O2 
 2OH 1.70 × 1013 0.0 47780.0
40 OH + H2 
 H2O + H 1.17 × 1009 1.3 3626.0
41 H + O2 
 OH + O 5.13 × 1016 −0.8 16507.0
42 O + H2 
 OH + H 1.80 × 1010 1.0 8826.0
43 H + O2 + M 
 HO2 + M 3.61 × 1017 −0.7 0.0

Third body collision efficiencies enhanced for reaction step 43:
fH2O = 18.6, fCO2 = 4.2, fH2 = 2.86, fCO = 2.11, fN2 = 1.26

44 OH + HO2 
 H2O + O2 7.50 × 1012 0.0 0.0
45 H + HO2 
 2OH 1.40 × 1014 0.0 1073.0
46 O + HO2 
 O2 + OH 1.40 × 1013 0.0 1073.0
47 2OH 
 O + H2O 6.00 × 1008 1.3 0.0
48 H + H + M 
 H2 + M 1.00 × 1018 −1.0 0.0
49 H + H + H2 
 H2 + H2 9.20 × 1016 −0.6 0.0
50 H + H + H2O 
 H2 + H2O 6.00 × 1019 −1.2 0.0
51 H + H + CO2 
 H2 + CO2 5.49 × 1020 −2.0 0.0
52 H + OH + M 
 H2O + M 1.60 × 1022 −2.0 0.0

Third body collision efficiencies enhanced for reaction step 52:
fH2O = 5.0

53 H + O + M 
 OH + M 6.20 × 1016 −0.6 0.0
Third body collision efficiencies enhanced for reaction step 53:
fH2O = 5.0

54 H + HO2 
 H2 + O2 1.25 × 1013 0.0 0.0
55 HO2 + HO2 
 H2O2 + O2 2.00 × 1012 0.0 0.0
56 H2O2 + M 
 OH + OH + M 1.30 × 1017 0.0 45500.0
57 H2O2 + H 
 HO2 + H2 1.60 × 1012 0.0 3800.0
58 H2O2 + OH 
 H2O + HO2 1.00 × 1013 0.0 1800.0

Note: All the reversible reaction steps are treated as two irreversible
reaction steps. The forward reaction rates are evaluated using the
parameters given in the table, while the backward reaction rates are
evaluated using the package CHEMKIN [42].
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APPENDIX B

MIXTURE FRACTION

It is shown in Chapter 3 that the element conservation equations in a reactive

flow system can be simplified to the following

ρ
DŶl

Dt
= D ∂

∂x

(
ρ
∂Ŷl

∂x

)
, (l = 1, . . . , L), (B.1)

by using a form of Fick’s law given in Equation (3.19). This form of Fick’s law

is obtained by assuming that all the multicomponent mass diffusion coefficients

are equal (Dij = D), the molecular masses of each species are close to the mean

molecular mass (Mi ∼M), and the Soret and DuFour effects are negligible (DT = 0).

If in a reactive flow system, a stream of mixture A with species mass fractions

represented by Y A
i , (i = 1, . . . , N), reacts with a stream of mixture B with species

mass fractions represented by Y B
i , (i = 1, . . . , N), then a choice of initial conditions

for species mass fractions may be given by

Yi(x, t = 0) =




Y A
i , 0 ≤ x ≤ Lx

2

Y B
i ,

Lx

2
≤ x ≤ Lx


 , (i = 1, . . . , N), (B.2)

implying that initially there is only mixture A in first half of the domain and only

mixture B in second half of the domain. The length of the domain is represented

by Lx. The two streams mix and react at future time. Zero gradient boundary

conditions are chosen for all the species mass fractions

∂Yi

∂x
(x = 0, t) =

∂Yi

∂x
(x = Lx, t) = 0, (i = 1, . . . , N). (B.3)
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Using Equation (2.10), the initial and boundary conditions for element mass

fractions are then given by

Ŷl(x, t = 0) =




Ŷ A
l , 0 ≤ x ≤ Lx

2

Ŷ B
l ,

Lx

2
≤ x ≤ Lx


 , (l = 1, . . . , L), (B.4)

∂Ŷl

∂x
(x = 0, t) =

∂Ŷl

∂x
(x = Lx, t) = 0, (l = 1, . . . , L), (B.5)

where Ŷ A
l = M̂l

∑N
i=1 ϕil

Y A
i

Mi
and Ŷ B

l = M̂l

∑N
i=1 ϕil

Y B
i

Mi
represent the mass fractions

of element l in mixtures A and B, respectively.

If the element mass fraction Ŷl is normalized as follows

χl =
Ŷl − Ŷ A

l

Ŷ B
l − Ŷ A

l

, (B.6)

then the conservation equation (B.1) and the initial and boundary conditions in

Equations (B.4-B.5) for the element mass fraction Ŷl can be simplified to

ρ
Dχl

Dt
= D ∂

∂x

(
ρ
∂χl

∂x

)
, (B.7)

χl(x, t = 0) =




0, 0 ≤ x ≤ Lx

2

1, Lx

2
≤ x ≤ Lx


 , (B.8)

∂χl

∂x
(x = 0, t) =

∂χl

∂x
(x = Lx, t) = 0. (B.9)

Note that by using the normalization in Equation (B.6) for the two stream reactive

flow system, the conservation equations and the initial and boundary conditions for

all element mass fractions become identical and are given in Equations (B.7-B.9).

Hence, χl(x, t) = χ(x, t), which is also known as mixture fraction. Even though this

simplification has been done for particular forms of initial and boundary conditions

for demonstration purposes, it can also be done for other forms of linear initial and

boundary conditions in multidimensional reactive flow systems.
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The element mass fractions in a reactive flow system do not change due

to the reactive processes. This can be deduced from the element conservation

equation (B.1), which has no reactive source term. Instead, the element mass

fractions change only due to the mixing processes. Since, all the mass diffusion

coefficients are equal, all the elements mix alike (see Equation (3.20)). Hence,

by solving the conservation equation (B.7) for a single scalar mixture fraction,

χ(x, t) = χl(x, t), and then using Equation (B.6), all the element mass fractions,

Ŷl(x, t), (l = 1, . . . , L), can be tracked in space and time.

For the simplified mass diffusion models in Equations (3.19-3.20), the numerical

simulation of a reactive flow system can be done by solving the mass, momentum

and energy conservation equations (3.1-3.3), the species evolution equation (3.5),

the mixture fraction conservation equation (B.7), and Equation (B.6). The main

advantage of this formulation is that the dimension of the ILDM table required

for efficient simulation of the reactive flow model equations is reduced by L − 2

(see Section 2.4.1). Instead of tabulating the ILDM for different values of element

mass fractions, it needs to be tabulated only for different values of mixture fraction,

χ ∈ [0, 1].

For an isobaric, low Mach number laminar flame, where the effects of fluid viscos-

ity are assumed to be negligible, the simple mass diffusion model in Equation (3.19)

is used, and the Lewis number is assumed to be unity (Le = k
ρcpD = 1) or in

other words thermal and mass diffusivities are assumed to be equal, the energy

conservation equation (3.3) can be simplified to

ρ
Dh

Dt
= D ∂

∂x

(
ρ
∂h

∂x

)
. (B.10)

In the two stream reactive flow system described previously with initial conditions

given in Equation (B.2), the initial condition for mixture enthalpy per unit mass is
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given by

h(x, t = 0) =




hA, 0 ≤ x ≤ Lx

2

hB, Lx

2
≤ x ≤ Lx


 , (B.11)

where hA =
∑N

i=1 hi(T )Y A
i and hB =

∑N
i=1 hi(T )Y B

i represent the enthalpy per unit

mass of mixtures A and B, respectively. Zero gradient boundary conditions are

chosen for the mixture enthalpy per unit mass

∂h

∂x
(x = 0, t) =

∂h

∂x
(x = Lx, t) = 0. (B.12)

By using the following normalization for h

χ =
h− hA

hB − hA
, (B.13)

the conservation equation (B.10) and the initial and boundary conditions in

Equations (B.11-B.12) for the mixture enthalpy per unit mass h also become

identical to those given in Equations (B.7-B.9) with χl = χ.

Hence, for the the assumptions described earlier, the numerical simulation of

the isobaric, low Mach number laminar flame can be done by solving the mass

conservation equation (3.1), the species evolution equation (3.5), the mixture

fraction conservation equation (B.7), Equation (B.6), and Equation (B.13). The

momentum conservation equation (3.2) reduces to the constant pressure condition

when fluid viscosity is neglected. The element and energy conservation equations

have been replaced by Equations (B.7), (B.6), and (B.13). However, this

simplification can be done only if the boundary conditions for the element and

energy conservation equations are similar in form. This is the case in the laminar

flame problem where a zero flux boundary condition is used for both. The main

advantage of this formulation is that the dimension of the ILDM table required for

efficient simulation of the laminar flame model equations is reduced by L − 1 (see

Section 2.4.1). Instead of tabulating the ILDM for different values of element mass
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fractions and enthalpies, it needs to be tabulated only for different values of mixture

fraction, χ ∈ [0, 1].
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APPENDIX C

ELEMENT CONSERVATION IN THE CASHPR

The species evolution equations in the CASHPR are given by

dYi

dt
=
ω̇iMi

ρ
, (i = 1, . . . , N). (C.1)

Using the following relationship between element mass fractions and species mass

fractions

Ŷl = M̂l

N∑
i=1

ϕil
Yi

Mi
, (l = 1, . . . , L), (C.2)

with Equation (C.1), the element conservation equations can be written as

dŶl

dt
=
M̂l

ρ

N∑
i=1

ϕilω̇i, (l = 1, . . . , L). (C.3)

Since, the molar rate of evolution per unit volume of species i is given by

ω̇i =

J∑
j=1

(
ν ′′ij − ν ′ij

)
rj , (i = 1, . . . , N), (C.4)

Equation (C.3) can be rewritten as follows

dŶl

dt
=
M̂l

ρ

N∑
i=1

ϕil

J∑
j=1

(
ν ′′ij − ν ′ij

)
rj, (l = 1, . . . , L), (C.5)

which can be further modified to

dŶl

dt
=
M̂l

ρ

J∑
j=1

rj

N∑
i=1

ϕil

(
ν ′′ij − ν ′ij

)
, (l = 1, . . . , L). (C.6)

The stoichiometric balances of elementary reactions give the following relations

N∑
i=1

ν ′ijϕil =

N∑
i=1

ν ′′ijϕil, (l = 1, . . . , L), (C.7)
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which when used with Equation (C.6), simplifies the element conservation equations

to

dŶl

dt
=
M̂l

ρ

J∑
j=1

rj

N∑
i=1

ϕil

(
ν ′′ij − ν ′ij

)
︸ ︷︷ ︸

=0

= 0, (l = 1, . . . , L). (C.8)

Hence, the element mass fractions in the CASHPR remain constant for all times.
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