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HYDRODYNAMIC LUBRICATION THEORY 
IN ROTATING DISK CLUTCHES 

Abstract 

by 

Andrew M. Smith 

This dissertation is concerned with modeling the friction, load capacity, and tem­

perature rise between a pair of rotating disk clutch plates using a hydrodynamic 

lubrication model. The lubricating film possesses a temperature dependent viscosity 

which significantly affects overall clutch performance. The model can accommodate 

an arbitrary film shape. The governing mass, momentum, and energy equations are 

simplified using the assumptions of incompressibility, negligible body forces, and a 

thin-film assumption. Velocity, pressure, and temperature profiles are obtained using 

a marker and cell method and a three-level fully implicit method. These methods were 

verified by comparing numerical results to analytical solutions obtained in limiting 

cases in which exact solutions exist. Results are presented for (1) the case of a sinu-

soidally varying film thickness, (2) the constant film thickness case, (3) groove studies, 

and (4) a conjugate heat transfer problem. As expected for hydrodynamic theory, 

the results indicate that predicted friction coefficients (f-LF ~ 0.005 - 0.03) are nearly 

an order of magnitude below typical clutch operating conditions (f-LF ~ 0.1 - 0.3). 

A limited set of results indicates that, for the constant film case, spatial gradients 

in viscosity may be neglected if the bulk viscosity is chosen to satisfy the viscosity­

temperature relation using the average temperature. Both the viscosity-temperature 

relation and film size have a significant effect on clutch performance. 
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CHAPTER 1 

INTRODUCTION 

This dissertation will apply hydrodynamic lubrication theory to model the behav­

ior of disk clutches. In particular, this research considers a thin film of lubricant oil 

between a pair of rotating disk clutch plates. This oil is capable of supporting load, 

transmitting a shear stress, and sustaining large temperature rises induced by viscous 

dissipation. Using the disciplines of fluid mechanics and heat transfer, the velocity, 

pressure, and temperature fields are predicted in the lubricant and the surrounding 

plates. These distributions may be used to predict normal loads, frictional moments, 

volumetric flow rates, friction coefficients, and heat generated between clutch plates. 

1.1 Description of Clutch Operation 

A clutch is a mechanical device designed for engaging and disengaging two working 

parts of a shaft or a shaft and a driving mechanism. Figure 1.1 shows a simplified 

schematic of a clutch. A rotating input shaft with inertia, II, and angular velocity, 

0 1 , engages a rotating output shaft with inertia, 12 , and angular velocity, O2 . In 

some cases, O2 will initially be zero. A driving mechanism supplies an input moment. 

kI1• In general, the driven side, or output side will have a load moment, A£2, which 

will effect the engagement process. Friction is the physical mechanism through which 

engagement occurs. If a frictional moment, }VIF , acts at the clutch mating surface, 

1 
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the equations of motion for bodies 1 and 2 are as follows: 

A transmission of mechanical energy, from the input to the output side, occurs during 

engagement. 

Input 
Speed 

M1 
Input 
Moment 

" , I 
, I 
, I 
, I 

I 

I I 
I I 

I ' 
I ' 
I t 
\" 

Clutch mating 
surface 

, 
II Output 
~~2 Speed 
, I 
, I 
, I 
, I 
I I 

I I M 
, I 2 
I I 
I I IJ Output 

Moment 

Figure 1.1: Simplified Clutch Schematic 

Due to the second law of thermodynamics, not all of the mechanical energy on 

the input side is transferred to the output side of the clutch. In general, a transient 

degradation of mechanical to thermal energy occurs. This degradation can lead to 

high temperatures which may result in several forms of permanent clutch damage. 

These include warping, melting, seizure, and degradation of friction coefficient. 

There is no single design criterion to determine when a clutch should be lubricated 

to avoid these problems. In dry clutches, typically used in low power applications, 

one relies on various forms of passive cooling to prevent overheating. Usually, one 

is concerned with the thermal capacity of the dry clutch's enclosure. However, for 

2 
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Clutch mating 
Input 0 1 

surface 
~ Output 

Speed Speed 1\ 1\ 
I \ 1\ 
I \ , I , 
I \ I , 
I , I , , I , 

11 
M1 

I , I 
I I I I M2 I I I I 
I I , I 

Input \ t ' ' Output 
\1 Ii 

Moment Cool oil in Hot oil out Moment 

Figure 1.2: Simplified Clutch Schematic with Lubrication 

high power applications, a different strategy is to actively cool the mating surfaces as 

illustrated in Figure 1.2. A lubricant acts as a cooling medium by conveying thermal 

energy generated between clutch plates. In general, the purpose of lubrication in 

clutches is to cool frictional surfaces while maintaining desirable friction characteris-

tics. This strategy of active cooling and its effect on the frictional characteristics of 

disk clutches will be modeled in this research. 

1.2 Overview of Current Research 

In order to investigate the thermal and frictional effects in rotating disk clutches. 

three models have been developed. They are (1) a thermal model which, considering 

only the plates, predicts clutch temperature distributions using a presumed friction 

coefficient, (2) a fluid model which, considering only the lubricant, predicts a friction 

coefficient using velocity, pressure, and temperature distributions, and (3) a conjugate 

model which considers the domains encompassing both plates and fluid. The subject 

of this dissertation is the conjugate model. Each model has benefits and shortcomings. 

3 
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These will be discussed here. 

To adequately discuss the thermal model, some preliminary comments regarding 

clutch plates are given here. A disk clutch assembly is composed of friction plates 

and separator plates. Friction plates, which tend to be associated with the input side 

of a clutch, have three composite material regions as shown in Figure 1.3. The two 

outer regions, or lining materials are referred to as the friction material. The inner 

core region of the friction plate is referred to as the backing material. Unlike friction 

plates, separator plates are made of a single homogeneous region and are usually 

associated with the output side of a clutch. 

The thermal model predicts a detailed temperature distribution in an assembly 

of clutch plates without consideration of the fluid film. Figure 1.3 illustrates the 

configuration for the thermal model. Here, 2Lb is the axial thickness of the backing 

material, 2Ls is the axial thickness of the separator plate, and L f is the a.xial thickness 

of the friction material lining on each side of the friction plates. The temperature 

distribution can be obtained by solving the thermal energy equation. At the interfacial 

boundaries of the clutch plates, continuity of temperature and heat flu..x is enforced. 

Heat is generated at these interfaces using specified friction coefficients and pressure 

distributions. At all other boundaries to the clutch, passive cooling is modeled by 

specifying the ambient convection coefficients, hoo , and ambient temperatures, Too, 

as shown in Figure 1.3. Further, the thermal model accounts for different thermal 

properties in the three material regions: (1) the friction material, (2) the backing 

material, and (3) the separator plate. 
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z' 

Passive 
Cooling 

T 
Separator plate 

Backing material • 

Friction material 

Heat Generated 
by Friction 

M~n.-QJ 

Figure 1.3: Thermal Model Schematic 

In addition to predicting the temperature field, the thermal model predicts clutch 

speed and torque. A shortcoming of this model is that a friction coefficient must be 

specified a priori. This is considered a shortcoming because the coefficient of friction 

is a contrived quantity which could, in principle, be determined from the physics of 

clutch engagement. The thermal model is discussed in further detail by Quast and 

Smith [47] and is not considered in detail in this dissertation. 

The fluid model predicts a friction coefficient given the lubricant properties, clutch 

operating conditions, and geometry. A steady state, incompressible flow field is found 

in a cylindrical frame, (r, (), z), between a pair of rotating clutch plates. The cylindrical 

5 
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Figure 1.4: Fluid Model Schematic 

frame rotates with the clutch friction plates. In other words, velocities are reported 

with respect to an observer rotating with the friction plates. Figure 1.4 illustrates the 

fluid model. Here, Bo is the domain angle of periodicity, h is the local film thickness 

which is assumed to be a known function of rand B, and ho is the minimum film 

thickness. In Figure 1.4(a), the absolute frame is shown in which the angular velocity 

of the friction plate is 0 1 and the angular velocity of the separator plate is O2 , The 

rotating frame in which we will study the problem moves with the friction plates as 

shown in Figure 1.4(b). Here, nd = n2 - n1 is the angular velocity of the separator 

plate as viewed in the rotating frame. In the absolute frame, the film thickness is 

considered a function of time. However, in the rotating frame the film thickness is 
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independent of time. In addition, the transformation to the rotating frame gives rise 

to additional terms, namely centripetal and Coriolis terms, in the governing equations. 

In the lubricant, velocity, pressure, and temperature distributions are determined 

which may be used to predict other clutch performance parameters including fric­

tional moments, normal loads, friction coefficients, and radial volumetric flow rates. 

However, a coupling between the thermal model and the fluid model is still required 

because temperature continuity and heat flux continuity is enforced at the solid-fluid 

interface. 

The conjugate model predicts both temperature distributions in the solid clutch 

plate assembly and velocity, pressure, and temperature distributions in the lubricant. 

A schematic of the model under consideration is shown in Figure 1.5. A lubrica­

tion model is developed between two adjacent, rotating clutch plates. This model 

is coupled to a model in the adjacent plates by requiring temperature and heat flux 

continuity across the interfaces. As shown in Figure 1.5, a periodic section of a radi­

ally grooved friction pair is considered. While periodic, the theory is developed using 

an otherwise arbitrarily shaped film. Further, the domain of interest consists of a 

friction plate and a separator plate separated by a lubricant film. 

In the long time limit, a steady state solution is sought for the conjugate heat 

transfer problem. In such a scenario, towards the middle of an assembly of clutch 

plates, the temperature gradient is expected to vanish near the center of friction and 

separator plates resulting in adiabatic conditions at the lubricant/solid interfaces. 

Several results are given for this worst case scenario of clutch plate engagement. 

7 
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However, some discussion and results are presented for a more general problem which 

considers the presence of passive cooling at the end of an assembly of clutch plates. 

1.3 Utility of the Research 

Analyzing clutch behavior often involves a variety of conflicting design criteria. 

These devices are designed to deliver a certain amount of torque while experiencing 

limited or no wear. \Vear tends to cause friction coefficient degradation resulting in 

inconsistent clutch performance. Further, at the design stage, one should be wary 

of large temperature rises which may result during clutch engagement. High tem­

peratures decrease lubricant viscosity leading to a decrease in clutch frictional per­

formance. Moreover, clutches are designed with the intention of meeting a certain 

engagement schedule. That is, given a torque and a slip speed, a clutch is designed 

to engage in a certain amount of time, typically under a second. 

The reason that meeting these criteria is difficult is that the expectations men­

tioned are not mutually exclusive. In other words, obtaining a desired torque level 

within specified design constraints such as low temperature rises, scheduled engage­

ment time, and other operating conditions may be physically impossible. 

In order to meet these demanding e:x-pectations, a necessary first step to under­

standing and ultimately optimizing clutch design is to have a valid model. The goals 

of this dissertation are to (1) construct a model which can be used as a design tool, 

and (2) to evaluate model results. These goals are discussed here. 

Various lubrication theories may be adopted to construct this design tool. Some 
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background concerning these theories is given here. Hamrock [22} classifies the lubri­

cation regimes as shown in Table 1.1. The thick and thin film regimes are considered 

hydrodynamic. Here, the ratio of film thickness to surface roughness, A, is large 

enough to neglect asperity contact, and the geometry may be considered smooth. In 

the hydrodynamic regime, a continuum of lubricant fluid is recognizable. As the film 

thickness gets smaller, the surface roughness becomes more significant, and asperities 

begin to support the load. The mixed lubrication regime gets its name from the fact 

that the load is supported by both asperities and the lubricant. Finally in the bound­

ary lubrication regime, the load is supported by asperities and the lubricant's effects 

are qualified using chemistry. For example, boundary lubricants form molecular films 

on the solid surfaces which serve to protect the surfaces from high friction and wear. 

It is known that the lowering of friction produced by a boundary lubricant is in di­

rect proportion to its molecular weight, and therefore the length of the hydrocarbon 

chain [30}. Thus, chemistry is employed to qualify the effect of boundary lubrication. 

Here, the surface geometry and frictional conditions become too complex for a simple 

continuum model. 

Hydrodynamic lubrication theory starts from the perspective that the film size is 

large enough such that existing continuum theories are valid. Typical mathematical 

models use the Reynolds equation which may be derived from the more general Navier­

Stokes equations in certain distinguished limits. However, assumptions built into the 

derivation of the Reynolds equation are relaxed in this dissertation. In particular, the 

assumption of constant viscosity across the film is investigated. In general, it is our 

9 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Lubrication Range of Load 

Regime Validity Supported By 

Thick Film (hydrodynamic) lD<A<oo Lubricant 

Thin Film (hydrodynamic) 3 < A < 10 Lubricant 

Mixed I<A<3 Lubricant and Asperities 

Boundary O<A<1 Asperities 

Table 1.1: LUBRICATION REGIMES (A = su~~"b~~g~:~~ss) 

intention to model this problem from first principles. 

The first goal mentioned was to construct a model to be used as a design tool. 

Properly constructed, such a design tool can be employed to save money, resources. 

and time. Numerous experiments could be performed in different environments, with 

different clutch plates, using different lubricants, while running at different operating 

conditions. On the other hand, significant effort is required to create a complete 

mathematical model. While a complete mathematical model is beyond the scope of 

this dissertation, the number of experimental scenarios can be dramatically reduced 

with simplified mathematical models. 

The second goal, evaluating the model results, consists of (1) indicating trends. 

(2) identifying deficiencies, and (3) proposing needs for future work. Expected or 

unexpected results obtained from this model are indicated and questioned. Do the 

parameters used as input predict a logical output? Can the results be used to model 
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actual clutch engagement? vVhat additional physics should be considered to improve 

the model? These questions are addressed in the final chapter of this dissertation. 

1.4 New Contributions 

This dissertation contains many new contributions. Three major contributions 

are allowing for a variable film shape, allowing for a variable viscosity, and coupling 

the heat transfer problem to the fluid problem. The first two are discussed here. 

Hydrodynamic lubrication theory has never been applied to lubricated disk clutches 

with an arbitrary film shape. Fluid mechanics problems have been considered in radial 

grooves [43, 44] and simplified models have been constructed for disk couplings [63]. 

Further, algebraic mappings which transform a complex domain into a manageable 

domain are commonly found in computational fluid mechanics studies. Nevertheless, 

these studies rarely consider arbitrary geometries. In other words, the geometry is 

typically specified prior to solving the problem of interest. Allowing the film shape 

to be defined arbitrarily enables virtually any groove pattern to be studied. Further-

more, macroscopic and microscopic deformations could be accommodated using this 

theory. 

Although viscosity variation is claimed in many lubrication studies, the fact is 

that these models have a viscosity which does not vary in the axial direction. This is 

not to say that numerical codes which claim to accommodate variable viscosity have 

not been written.t However, classical derivations of the Reynolds equation assume a 

tCFX5, for example, claims to accommodate variable properties. CFX5 is a thermofluids analyis 
code maintained by AEA Technology located in Pittsburgh, Pennsylvania. 
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uniform viscosity across the film, and this assumption usually gets carried into the 

model of interest. It is worth the effort to allow for viscosity variation in clutches 

because drastic changes in viscosity result from a sensitive temperature relationship. 

As will be shown, neglecting variable viscosity may result in significant errors in 

several clutch performance predictions. Furthermore, allowing the viscosity to vary 

across the film not only has potential in clutch studies, but may be generalized to a 

larger set of lubrication problems. 
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CHAPTER 2 

LITERATURE REVIEW 

This review of the relevant literature is divided into four sections: the first gives an 

overview of clutch studies, the second reviews several devices which are mec!lanically 

similar to disk clutches, the third discusses tribological issues pertinent in modeling 

clutches, and the fourth focuses on several fluid mechanics and heat transfer problems 

related to clutches. In the first section, the clutch studies overview considers both the­

oretical and experimental work. The second section discusses studies concerned with 

rim clutches, disk brakes, and disk couplings. The discussion on tribological issues 

includes a discussion on lubricant properties and a discussion on surface topography. 

Finally, the overview of heat transfer and fluid mechanics problems discusses axisym­

metric rotating geometries including single and multiple disks in an infinite quiescent 

fluid, hydrodynamic lidded annulus problems, and differentially heated cavities. 

2.1 Clutch Studies 

Several topics encountered in studying disk clutch engagement are evident in the 

literature: comparing lubricant performance, friction coefficient degradation, wear of 

friction surfaces, microscopic and macroscopic deformation, and the influence of ther­

mal effects including convection, conduction, and thermoelastic deformation. The 

fact that modeling clutches involves many disciplines has led authors to focus on par­

ticular problems. However, several authors have constructed robust models capable 
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of predicting clutch performance under a variety of conditions. Theoretical models 

and experimental investigations are discussed here. 

2.1.1 Theoretical Models 

Payvar [43, 44] has done extensive work in modeling fluid mechanics and heat 

transfer in the radial grooves of a pair of clutch plates. In his earlier paper, he devel­

ops a method to determine heat transfer coefficients in the grooves. In particular, he 

assumes a Couette flow pattern in the oil film and couples this to a numerical solution 

in the groove. He treats the film and recirculation zone in the groove as independent 

thermal resistors which may be added in series to determine the overall heat trans­

fer coefficient. His numerical results compare well with his experimental results. In 

his later paper, Payvar gives a comparison between experimental techniques and a 

numerical solution. He considers the steady incompressible Navier-Stokes equations 

and a diffusing species concentration equation which is analogous to an energy equa­

tion. By obtaining measurements for the net sublimated mass of naphthalene before 

and after a certain time period, comparisons between the average Sherwood number 

obtained numerically and experimentally were given. All in all, while he considers 

many terms in the Navier-Stokes equations, he has a limited parameter space. In his 

models, he neglects viscosity-temperature effects, assumes a flow solution adjacent to 

the grooves of the friction plates, and insulates the friction plates to expedite a so­

lution. Nevertheless, he predicts convection coefficients based on groove dimensions. 

Reynolds number, and Nusselt number. 

The conditions of clutch operation can have significant consequences on the lubri-
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cant. The sensitive viscosity-temperature relation should be considered in hydrody­

namic models. Natsumeda and Miyoshi [381 develop a fairly elaborate clutch model 

which takes viscosity-temperature effects into account. However, as suggested in the 

previous chapter, this model does not account for viscosity variation across the film. 

Nevertheless, they allow for clutch plate waviness, elastic deformation due to asperity 

contact, and surface roughness using Patir and Cheng's model [411. Their model may 

be considered a mixed lubrication problem. However, many questionable assump­

tions are made in the formulation of the model. For example, asperity deformation is 

assumed elastic which should be confirmed by computing a Greenwood-vVilliamson 

plasticity index [301 or by some other rational method. Nevertheless, they make a 

valuable contribution by computing the load carrying capacity using both asperity 

contact and hydrodynamic lubricant pressure. Bardzimashvili and Yashvilli [3] de­

scribe a method which accounts for not only the mixed regime of lubrication, but the 

hydrodynamic and boundary regimes as well. However, results are not given. Their 

model predicts multiple disk clutch torque and angular velocity using an interrelated 

set of ordinary differential equations. They do not account for thermal effects. 

Severe wear of clutch lining materials has motivated many studies, including Solt 

[59] who attempts to optimize the load distributions using finite element methods. 

He explains that non-uniform loadings, which induce deformation, lead to wear near 

the location of maximum pressure. For known clutch plate dimensions, his results 

suggest that there is an optimum location for the actuating force. Zagrodzki [691 de­

velops a similar model which is generalized to account for thermoelastic effects. His 
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two-dimensional, time-dependent heat conduction model accounts for heat generation 

and elastic deformation due to dry contact. Yevtushenko and Ivanyk [68] estimate 

the surface temperatures and normal temperature displacements due to thermoelas­

tic effects using a straightforward analytic model. They show that the change in 

magnitude of contact area due to thermal distortion may be neglected. 

2.1.2 Experimental Investigations 

The choice of lubricant has Significant effects on the performance of disk clutches. 

Ito, Fujimoto, Eguchi, and Yamamoto [32] experimentally determine clutch friction 

coefficients under various conditions. In addition to varying the lubricant, their 

studies include variable speed, loading, and friction plate porosity. Results indicate 

marked difference in clutch performance. In particular, two oils were used: Dex­

tron 2 automatic transmission fluid (ATF) and a paraffinic mineral oil which was 

equivalent to the base oil of the ATF. For a range of sliding velocity varying from 

0.01 to 1.0 ":' the ATF's friction coefficient remained fairly constant at 0.15 while 

the paraffinic oil's friction coefficient approximately changed from 0.2 to 0.1. This 

is significant because the ATF will provide a nearly constant torque level over this 

speed range and the paraffinic oil's torque level could reduce by one half. Ichihashi 

[31] discusses the increasing trend of equipping automobiles with ATF's as well as 

developing improvements in ATF additives for improved clutch performance. Scott 

and Suntiwattana [56] examine wear rates, lubricant temperature, and clutch torque 

by varying the relative quantities of five different additives to the same base oil. Scott 

and Suntiwattana report marginal differences in clutch friction coefficient and lock-up 
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time with different additive concentration. 

Viscosity-temperature effects are one of many effects which can be used to explain 

degradation of clutch friction coefficients. Another effect is the presence of additives. 

Inorganic additives added to the base oil chemically attack asperities yielding differ­

ent friction properties of the mating surfaces. Still another effect is direct wear of 

friction materials. Osani, Ikeda, and Kato [39] show that there is a distinct degree 

of carbonization of paper-based facings beyond which the friction coefficient drops 

off rapidly. Schulz [55] agrees that this gaseous form of wear plays a major role in 

determining friction characteristics in a disk clutch. 

2.2 Related Mechanical Devices 

Takemuro and Niikuro [63] analyze viscous disk couplings which may be used in 

limited slip differentials. Disk clutches and disk couplings have very similar geome­

tries. Each may contain multiple disks which rotate for the purpose of transmitting 

torque. However, disk couplings have separator rings which ensure a finite clearance 

between adjacent plates. Takemuro and Niikruo develop a straightforward method to 

determine torque, temperature rise, and dynamic response in the couplings. Viscosity­

temperature effects and non-Newtonian effects are taken into account to model the 

working fluid, silicone oil. However, an energy equation was not stated explicitly for 

the lubricant. Rather, a numerical method which employed a lumped analysis was 

used to obtain the temperature at disk interfacial locations. In other words, spatial 

temperature gradients in the fluid were ignored. 
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vVhittle, Atkin, and Bullough [64] examine a rim clutch filled with an electrorhe­

ological fluid. As in other clutch lubrication problems, the equations of motion are 

analyzed under the assumption of small clearance. U nUke a disk clutch, the small 

clearance in a rim clutch is the difference in radii. 

Stebar, Davison, and Linden [60] examine the effects that various automatic trans­

mission fluids have on the torque versus time curve for band clutch engagement. Their 

experimental results indicated that the choice of lubricant can have dramatic effects 

on shift smoothness, clutch capacity, energy absorption, lock-up torque, and engage­

ment time. 

2.3 Trihological Issues 

Tribology is the science of the mechanisms of friction, lubrication, and wear of in­

teracting surfaces that are in relative motion. Here, two pertinent aspects of tribology 

are discussed: (1) rheology of mineral oils, and (2) surface topography. 

2.3.1 Mineral Oil Rheology 

This discussion of mineral oils is divided into four sections. First, a discussion of 

mineral oils' chemistry is given. Second, the constitutive equation relating the stress 

and strain rate tensors is discussed. Third, comments regarding property variations 

are given. Fourth, a specific discussion of the viscosity-temperature relation is given. 

Chemistry of a Mineral Oil 

Hamrock [22] and Robertson [48, 49] give synopses of the chemistry of mineral 

oils and why their chemistry is important from an engineering perspective. :\lineral 
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oils are composed of paraffinic chains and naphthenic rings of hydrocarbons. Paraf­

fins tend to weigh less, have less severe viscosity-temperature relations, and have 

higher flash and fire points than naphthenes. N aphthenes have lower pour points 

and produce less carbonaceous residue at extreme temperatures. These flash, fire, 

and pour points, indicative of a mineral oil's temperature related classification, will 

be discussed shortly. In lubrication applications, additives are used to improve the 

friction properties of the base oil. Singh [58] discusses viscosity index improvers such 

as oil soluble polymers which tend to decrease the viscosity's dependence on temper­

ature depending on the base oil character, type of finishing procedure, and additive 

concentration. 

Stress-Strain Rate Relation 

Mineral oils exhibit Newtonian behavior over a wide range of operating conditions. 

N on-Newtonian effects come into play with very large strain rates and are usually 

considered in the presence of additives such as oil soluble polymers. Roelands [50] 

states that significant changes in the oil's viscosity occur at strain rates exceeding 

107s-1. One should be concerned about the non-Newtonian character of the fluid 

when the relative velocity is large and the film is thin. For the problem discussed in 

this dissertation, typical strain rates are approximately 105 S-l which are significantly 

below the point at which non-Newtonian effects occur . 

. An extensive review of experimental and theoretical non-Newtonian fluid me­

chanics is given by Wilkinson [65]. A more restricted study is given by Johnson 

and Tevaarwerk [34] in which they analyze non-Newtonian effects in oil films using 
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experimental methods. 

Property Variations 

Pressure dependent viscosities are considered in non-conformal contact problems 

such as modeling gears, cams, or bearings [23, 28]. A nonconformal contact occurs 

when the bodies in question mate at a point under no load. For example: the contact 

between two spheres is considered a nonconformal contact. Under such conditions, the 

pressures become extremely high and viscosity variations become important. Specif­

ically, Roelands [50] states that when the average pressure over the contact area 

exceeds several thousand pounds per square inch, piezoviscous effects become impor­

tant. On the macroscopic scale, a wet disk clutch has the geometry associated with 

a nominally conformal contact problem, and pressure dependent viscosities may be 

neglected. Typical clutch lubrication and actuation pressures rarely exceed two or 

three hundred pounds per square inch. 

For mineral oils, the specific heat and conductivity are relatively constant for 

large changes in temperature [22, 50]. Compared to the changes associated with the 

viscosity-temperature relation, these variations are extremely small. 

For the range of pressures and temperatures considered in this lubrication prob­

lem, mineral oils have a fairly constant density compared to the variation of viscosity 

with temperature. Roelands [50] notes that the kinematic viscosity may be taken as a 

good measure of the viscosity for mineral oils and other synthetic oils \vith nearly equal 

densities. For a typical mineral oil, the variation in density with pressure becomes 

significant (greater than one percent) at pressures exceeding 0.02 MPa. However. the 
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variation of density with temperature is more sensitive. Density changes of nearly ten 

percent occur from O°C to 160°C. Nevertheless, while it is unclear how seriously den­

sity variations will effect clutch performance, these variations are small compared to 

the relative change in viscosity for the same conditions and are consequently ignored. 

Nevertheless, there is concern regarding incompressibility, at low pressures. If the 

lubricant':; pressure falls below the vapor pressure, cavitation will occur. Batchelor 

[4] notes the fundamental difference between a real liquid and an ideal incompress­

ible fluid: negative pressures can be predicted in an ideal fluid, and a liquid cannot 

support a large tension. Rather, Batchelor states that small pockets of gas appear in 

the liquid which are responsible for cavity formation and supporting tension. Ham­

rock [22] notes that mineral oils contain nearly ten percent entrained gases which 

form cavities when the pressure falls below the saturation pressure. Further, he sum­

marizes the traditional boundary conditions used in modeling converging/diverging 

domains. Birkhoff and Hays [7] cite specific theorems regarding geometry and operat­

ing conditions which necessarily lead to cavitation. Further, they developed a general 

improvement over the Swift-Steiber boundary conditions [22] commonly employed 

today. Coyne and Elrod [11] develop a rational method to apply boundary bound­

ary conditions when cavitation is expected to occur in converging-diverging domains. 

Surface tension effects are included in their analysis. Most importantly, they state 

that the load carrying capacity does not vary appreciably no matter which boundary 

conditions are used. In more general fluid mechanics problems, bubble formation is 

treated using the full Navier-Stokes equations. Ryskin and Leal [51, 52, 53] develop 
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a numerical procedure for two-dimensional mapping of a liquid-solid interface with 

unknown orientation. 

Viscosity-Temperature Relation 

For a wet disk clutch, the most quantitatively significant dependence of any phys-

ical property is that of the viscosity with temperature. Mineral oils are classified 

according to their viscosity-temperature performance. For example, the familiar SAE 

10-W30 designation is a Society of Automotive Engineers' approved classification of 

a mineral oil.t The first number, 10, denotes the Saybolt Universal Viscosityt (SUV) 

restrictions at 1300 F and at 2100 F. The alpha-numeric code, VV30, denotes the SlV 

restrictions at 00 F. 

Further temperature related classifications and restrictions on the viscosity of a 

mineral oil exist. Several examples are mentioned here. The viscosity index (VI) is 

a classification which measures the rate which a given mineral oil's viscosity changes 

with an increase in temperature. A high viscosity index, indicative of small viscosity 

variation with temperature, is considered desirable so that the lubricant film main-

tains stable frictional characteristics at high temperatures. The Flash Point is the 

lowest temperature at which oil vapors appear. The Fire Point is the lowest temper-

ature at which a continuous combustion of oil occurs. In order to maintain the film. 

the operating lubricant temperature should be safely below the Flash Point. The 

Pour Point is the lowest temperature at which the oil will remain fluid enough to 

tSince 1978, this method of classification has been accepted by the American Petroleum Institute 
(API) and the American Society for Testing and Materials (ASTM) [13]. 

tSee Hamrock [22] and/or Robertson [48, 49] for good discussions of the Saybolt Universal 
Viscosity. 
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perform a required task. For example, an automotive application of the Pour Point 

may be the lowest temperature at which oil will flow into the pump inlet of a crank 

case. This is important in cold weather environments. 

The fact that these loosely defined terms have become commonplace in practical 

engineering applications has not helped to quantify a viscosity-temperature relation. 

Exact numbers simply do not exist for every mineral oil. Rather, as mentioned above. 

the viscosity of a mineral oil falls in a range given by the SUV restrictions. 

Still, several attempts have been made to quantify the viscosity-temperature rela­

tion for mineral oils. Hersey [24] cites nearly ten viscosity-temperature relationships. 

Hamrock [22] cites three such relations. More recent authors, including Hussain [29] 

have made attempts at modeling the viscosity-temperature relation. The viscosity­

temperature relation used in this dissertation will be that of Walthers [18]. 

2.3.2 Surface Topography 

Surface topography is a geometrical description of t.he surface of interest. In 

modeling clutch plate engagement, both macroscopic and microscopic descriptions 

are relevant. The macroscopic description refers to gross deformations or outstanding 

geometric patterns while the microscopic description refers to the surface roughness 

which is describable in a statistical sense. 

In all previously mentioned deformation related studies, clutch plate deformation 

occurs as a result of direct contact. Specifically, two mechanisms are responsible 

for macroscopic clutch plate deformation: elastic and thermoelastic effects. Elas­

to hydrodynamic lubrication (EHL) would likely not occur on the macroscopic scale 
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because, as mentioned previously, the engagement of clutch plates is a nominally 

conformal contact problem. Again, in a conformal contact problem, the lubricant 

pressure will act over a greater area and not cause any significant deformation. In 

fact, Hoglund and Jacobson [26] state that in an EHL contact the pressures are very 

high (1 - 3 GPa). This is three orders of magnitude higher than typical clutch 

actuation pressures, 2 Jy[ Pa. 

EHL may be relevant on a microscopic scale. Certainly significant asperity de-

formation occurs as a result of direct contact between engaging clutch plates. This 

has been modeled in several of the mentioned clutch studies. On a microscopic scale. 

statistical descriptions seem to be the only rational method to incorporate surface 

roughness in the models. 

Hamrock [22] and Hutchings [30] give discussions on how to quantify surface rough-

ness. The most popular measure of surface roughness, (j, is the root mean square (rms) 

of the height measured from the mean surface height: 

1 rC 
2 

(j = c, 10 Z (8) ds. 

Here, C, is the measured length of a simple trace and Z (s) is the local height computed 

above and below the mean value at the s-location along the trace. The trace is usually 

taken with a device known as a stylus profilometer [30]. 

One of the difficulties with using the above description of surface roughness is 

that it only gives a two-dimensional sample of the entire three dimensional surface. 

Sullivan, Poroshin, and Hooke [62] discuss the necessity of incorporating a three-

dimensional description of the surface roughness. Further, they discuss problems 
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encountered in differentiating between elastic and plastic deformation of asperities. 

Three-dimensional surface roughness effects have been included in several lubrication 

studies [66, 70]. In these studies, Patir and Cheng's [41, 42] work on developing an 

average Reynolds equation to obtain the pressure was used. In particular, Patir and 

Cheng use an equation which takes surface roughness and non-isotropic asperity ef­

fects into account. Specifically, given the gross film thickness and limited information 

about the microscopic description of the surface, they introduce what they label flow 

rate factors to predict the lubricant pressure in separate lubrication studies. 

2.4 Related Fluid Mechanics and Heat Transfer Problems 

The fluid mechanics and heat transfer problems discussed in this section are ex­

amples of axisymmetric flow adjacent to solid rotating disks. There is a wealth of 

basic studies of such flows, a few of which are mentioned here. 

Batchelor [5] has considered the steady axisymmetric flow between two infinite 

rotating disks. He reduced the governing equations using an assumed similarity so­

lution. His results may be used to obtain information locally to a set of finite disks. 

Millsaps and Pohlhausen [36] generalized Batchelor's similarity solution to include 

heat transfer. Stewartson [61] provided experimental evidence supporting Batche­

lor's predicted streamlines when the disks rotate in the same direction. Lance and 

Rogers [35] solved the hydrodynamic problem numerically. They present results for 

the two dimensionless parameters: the ratio of the angular velocities of the disks and 

the Reynolds number. Boundary layers in single disk solutions using the similarity 
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solution are discussed extensively by Schlichting [54]. Pearson [45] generalized the 

previous hydrodynamic theory to include time-dependent terms in the Navier-Stokes 

equations. In particular, he obtained numerical results using a generalized similarity 

transformation with either one or two impulsively started infinite disks. Unlike pre­

viously mentioned authors, Pearson's problem involves partial differential equations 

with time and axial position as independent variables. 

Recent improvement in computer hardware and numerical methods has enabled 

the systematic computation of solutions to larger sets of partial differential equations. 

Evans and Grief [15] consider flow and heat transfer around a rotating disk chemical 

vapor deposition reactor. Compressibility and buoyancy are taken into account. Here, 

a single disk is centered in a cylindrical tube. The spin axis of the cylinder and the 

gravity vector are coaxial. Buoyancy effects in differentially heated rotating vertical 

cavities are discussed by Barcilon and Pedlosky [1, 2] and Homsy and Hudson [27]. 

Their work included obtaining physical solutions by formally linearizing the equations 

of motion in the limits of small and large Eckman number. Chew [9] and Guo and 

Zhang [20] present numerical results for these rotating lidded cylinders. 

Lidded annulus problems are reviewed extensively by Oi Prima and Swinney [12] 

within the context of studying instabilities in Taylor flow. Experimental results show­

ing Taylor vortices in lidded cylinders are given by Cole [10]. Numerical results for 

chaotic flow in a lidded annulus are presented by Hadid [21]. 
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CHAPTER 3 

MATHEMATICAL MODEL 

This chapter gives the mathematical statement of the problem investigated in this 

research. In the first section, the domain and physical variables are defined. In the 

second section, the mass, momentum, and energy equations are listed, and under­

lying assumptions pertinent to disk clutch lubrication are discussed. In the third 

section, constitutive equations are stated. In the fourth section, boundary conditions 

are stated. In the fifth section, the equations are non-dimension ali zed and written 

in terms of 0 (1) dimensionless variables and appropriate dimensionless quantities. 

Further, the equations are simplified by examining the order of magnitude of the 

dimensionless parameters. In the sixth section, the complete statement of the prob­

lem is given. The seventh section introduces the algebraic coordinate transformation 

used to solve the governing equations in a computational domain. In the eighth sec­

tion, pertinent clutch performance parameters are defined in terms of the dependent 

variables. 

3.1 Domain and Variable Definitions 

The lubrication problem is illustrated in Figure 3.1. Let r, 8, and z denote the 

radial, angular, and axial Eulerian cylindrical coordinates which rotate with angular 

velocity 0 1 , coincident with the clutch friction plates. The separator plate angular 

velocity, as viewed in the rotating frame, is rl d • The physical domain for the lubrica-

28 

---.-----



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Coordinate system (r.9.z) 
rotates with friction plate 

land 

Friction plate stationary in 
rotating coordinate system 

!lctr 
MOving separator plate 

in rotating coordinate system 

Lubrication 
Problem 
Domain 

Problem 
Domain 

Figure 3.1: Lubrication Problem Domain 

tion problem as indicated in Figure 3.1 is defined by F4 :s; r :s; Ro , 0 :::; 0 :s; Bo, and 

a :s; z :s; h (r, 0). Here, I4. and Ro are inner and outer clutch radii, 00 is the domain 

angle of periodicity, and h is the local film thickness. The domain angle of periodicity 

is the minimum angle required to replicate the entire film thickness. It is always 

an integral fraction of 211". The film thickness, h, is a known periodic but otherwise 

arbitrary function of rand O. That is, h (r, 0) = h (r, ( 0 ) = h (r, nOo), where n is 

any integer. The radial channels shown in Figure 3.1 are referred to as grooves. The 
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adjacent portions to the grooves are referred to as lands. Thus, the domain shown in 

Figure 3.1 contains a groove and two half lands. 

The general lubrication problem is then to determine the radial velocity, V r , the 

angular velocity, vs, the axial velocity, vz , the pressure, p, and temperature, T, of 

the fluid as functions of position and time. These quantities, with the exception of 

vs, are invariant when referred to an absolute frame. The absolute angular velocity 

is Vs + n1r. The radial flow of lubricant into the domain is affected by a specified 

pressure difference. The radial inlet temperature of the lubricant is controlled with 

an external cooling system. 

The thermal problem is to obtain the temperature distribution in the solid clutch 

plates by determining the distributions in each material region. The separator plate 

is composed of one solid homogeneous region, while a friction plate is composed of 

three composite homogeneous regions. Referring to Figure 1.3, assuming the modeled 

lubricant is near the center of a large number of plates, a worst case scenario, illus­

trated in Figure 3.2, would employ adiabatic conditions at the central axial planes of 

the friction and separator plates. The thermal problem is then subdivided into three 

complementary domains: (1) the backing material, (2) the friction material, and (3) 

the separator plate. For each region, the radial and angular coordinates coincide 

with the lubrication problem. However, as shown in Figure 3.2, the axial coordinate 

depends on the material region of interest. The backing material with a.xial length 

Lb uses the axial coordinate Zb as shown in Figure 3.2. Similarly, the friction and 

separator materials with a.xial lengths L f + ho - h and La use the axial coordinates 
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z/ and zs, respectively. 
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Figure 3.2: Thermal Problem Domain 

3.2 Conservation Principles 

To start, we adopt the incompressible Navier-Stokes equations to model the lu-

bricant behavior. "We assume the fluid is continuous and sufficiently thick to neglect 

surface roughness effects. Body forces are neglected. 

The condition of incompressibility requires the continuity equation to be of the 

following form: 

1 8 1 avo 8vz -- (rvr ) + -- + - = o_ 
r 8r r ao 8z 

(3.1) 

The momenta equations are written in a frame moving with the constant friction 

plate angular velocity, fh: 

[
avr aVr V8 8vr 8vr 1 ( (") 2] P -+Vr-+--+Vz---V8+ H l r ) at aT r 80 8 z r 

= _ 8p +!~ (r7rr ) +! ar8r + 87zr _ 788 , 

8r r 8r r 80 8 z r 

(3.2) 
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[
avo avo Vo avo avo vrvO 2r2 ] 

p at + Vr ar + -;: a8 + v: az + -r- + 1 Vr 
(3.3) 

= _~ ap + ~~ (rTrO) + ~ aTOO + aT:o + TrO, 
r 88 r 8r r 88 8z r 

[
8V: 8v: Vo 8v: 8V:] _ _ 8p ~~ ( ) ~ 8To: 8T:: (3.4) 

P at + Vr 8r + r 88 + Vz 8z - 8z + r 8r rTrz + r 88 + 8z . 

The lubricant energy equation, written to account for incompressibility, is as follows: 

(3.5) 

In Equations {3.2} through (3.5), Trr , TOO, Tzz , TrO = TOr, Trz = T:r, and Toz = T:O are 

the components of the symmetric stress tensor, qT' qo, and qz are the components of 

the heat flux vector, e is the internal energy per unit mass, and p is the density. 

The governing equation used to predict the temperature distribution in each ma-

terial region of the solid clutch plates is the thermal energy equation. In the rotating 

frame, the thermal energy equations for the material regions in the friction plates is 

as follows: 

(3.6) 

(3.7) 

Also in this frame, the thermal energy equation for the separator plates is as follows: 

(3.8) 

In Equations (3.6-3.8), the subscripts j, b, and s denote friction, backing, and sepa-

rator material regions. 
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3.3 Constitutive Equations 

The modeled lubricant is considered to be a Newtonian thermoviscous Stokesian 

fluid [14]. The components of the stress tensor in cylindrical coordinates are defined 

as follows: 

Trr = 2JL ~~, TrO = JL [r! (~) + ~ ~~ 1 ' 

TOO = 2: [~~ + Vr 1 ' Toz = JL [~~ + ~ ~~z 1 ' 
(3.9) 

In Equation (3.9), JL is the viscosity. The components of the heat flux vector in the 

fluid are defined as follows: 

aT 
qz = -k-. az (3.10) 

Similarly, using Fourier's law in the material regions of the clutch plates, the compo-

nents of the heat flux vectors are defined as follows: 
aT kfaT 8T 

qrf = -kf ar ' qOf = --;: ao' qzf = -kf az
f

' 

aT kb8T &T 
qrb = -kb ar ' Qob = --;:- 80 ' qzb = -kb 8z

b
' (3.11) 

aT ks 8T 8T 
qrs = -ks ar ' qos = --;:- 80' qzs = -ks 8z

s 
. 

In Equations (3.10) and (3.11), k, kf' kb, and ks are the thermal conductivities for 

the lubricant, friction material, backing material, and separator material respectively. 

For the lubricant, the internal energy per unit mass is related to the temperature by 

the following caloric equation of state: 

e = cT. (3.12) 

Likewise, the internal energy per unit mass in the clutch plates is defined as 

(3.13) 

33 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

for the friction, backing, and separator materials respectively. In Equations (3.12) 

and (3.13), C, cI, Cb, and Cs are the specific heats for the lubricant, friction material, 

backing material, and separator material respectively. 

SAE m A B Trel Prel 

number x 10-11 x107 X 104 

(Km) (~n (K) (~n 

SAE 10 4.6384 5.8352 4294.1 300 712.1 

SAE 20 4.5268 3.4057 2596.4 300 1113.2 

SAE 30 4.3354 1.2779 5138.3 300 1968.8 

SAE 40 4.4733 3.0758 -2209.4 300 3367.2 

SAE 50 4.0416 .28723 1497.9 300 5805.2 

SAE 60 3.9152 .14758 -3837.2 300 8390.4 

SAE 70 3.8165 .08901 455.9 300 12420.0 

Table 3.1: RESULTS FROM FITTING SHIGLEY'S DATA INTO \JVALTHERS'S 
EQUATION 

The viscosity-temperature relation used in this dissertation is based on \Valther's 

equation [18]: 

This correlation has two noteworthy shortcomings. First, the kinematic viscosity can 

not be measured experimentally. Therefore, there is an implicit assumption in this 

equation that the viscosity depends on the density, 1/ = ;. However, the density is a 
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Figure 3.3: Viscosity-Temperature Relation for Seven SAE Oils 

thermodynamic property, the viscosity is a transport property, and there is generally 

no correlation between them. Second, the dimensions on this equation are ambiguous. 

It is assumed that the parameters A and BI have units of Km and ~2 respectively. 

To avoid these problems, we adopt a hybrid of Walther's viscosity-temperature 

relation, 

10 (J.1. + B ) _ A (_1 __ 1 ) 
gIO J.1.reJ + B - Tm Tr~J ' 

(3.14) 

which contains five parameters: m, A., B, TreJ and J.1.reJ. Here, J.1. is the viscosity at 

temperature T. Equation (3.14) may be rewritten in the follmving form: 

(3.15) 

Here, J.1. is the viscosity at temperature T. The parameters were determined using 

Shigley's [57] viscosity-temperature data for seven SAE oils. These are shown in Table 

3.1. Viscosity-temperature plots are shown in Figure 3.3. 
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3.4 Initial and Boundary Conditions 

Initial and boundary conditions for the general physical problem are given here. 

First, initial conditions are given. Second, boundary conditions are given. 

The following generalized initial conditions are given for the lubricant velocity and 

temperature fields: 

at t = 0 : vr = vro (r, (), z) , Vo = V80 (r, (), z) , Vz = VzO (r, (), z) , 
(3.16) 

and T=To(r,(),z). 

Similarly, generalized initial conditions are given for the temperature fields within the 

material regions of the clutch plates: 

att=O: T=To/(r,(),z/) for friction material, 

for backing material, (3.17) 

T = Tos (r, (), zs) for separator material. 

It is further noted here that all bounding geometry and constraints are independent 

of time. For example, the relative angular velocity of the separator plate, Od, is taken 

as constant. 

The classic no-slip condition is enforced on the clutch plate surfaces. 

on z = 0: Vr = Vz = 0 
(3.18) 

on z = h (r, ()) : Vr = Vo = Vz = 0 

Here, the only nonhomogeneous condition relates the angular component of velocity, 

as viewed in the rotating frame, to the relative slip speed of the clutch. 

The pressure is subjected to the following boundary conditions: 

P (~, ()) = Pi, P (Ro, ()) = Po, 

8p (r, 0) 8p (r, ()o) 
-8() 8() 

(3.19) 
p (r, 0) = p (r, ()o), 
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The pressure is prescribed at the inner and outer radii. The periodic conditions on 

pressure are to be expected from the geometry. 

In the fluid, the inlet radial temperature, To, is prescribed. Further, a periodic 

condition on temperature is prescribed: 

T (~, 0, z) = To, T (r, 0, z) = T (r, 00 , z) . (3.20) 

The additional conditions for the temperature distribution couple the thermal and 

fluid problems. vVe require temperature and heat fltL"{ continuity at all axial interfaces: 

TI =TI ' 
zb=Lb Z/=O 

TI -TI 
zf=L/+ho-h - z=h' 

T! =T!. 
z,,=L. Z=O 

aT! aT! - =- =0 
8zb Zb=O 8zs Za=O ' 

81'1 aTl kb- =kf- , 
8Zb zb=Lb 8zf Z/=O 

(3.21) 

aTl aTl ks - =k-, 
8zs za=La 8z z=o 

ki'V fT· nfl = -k"VT . n! . 
z/=L/+ho-h z=h 

Here, nf and n are unit outward normals to the friction and lubricant's surfaces at 

their common interface. Using the following relationships, 

"VT = [ fr 

187' 
T 80 

1 ]

T 1 
18h -r============== 
r 80 ( )2 ( )2 ' a;. + ~~~ +1 

n = [ _ '!!:. _1 8h 1] T 1 
ur r80 2 2' 

(a;.) + U~~) + 1 

the last of these conditions, given in Equation (3.21), may be simplified to the fol-

lowing equation: 

[
8h aT 1 8h aT] I aT I aT ! (kf-k) --+--- +k- +kf- =0 
8r 8r r2 80 80 z=h 8z z=h 8zf z/=L/+ho-h . 
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3.5 N on-Dimensionalization 

The governing equations are non-dimensionalized in order to investigate the rel-

ative order of magnitude of the terms involved. The choice of scaling and typical 

values of dimensionless parameters will be discussed in this section. 

3.5.1 Choice of Scaling 

First, the nondimensional independent spatial variables are defined as follows: 

r 
r.= -, 

E4 
e. = e, z 

z .. =-. 
ho 

(3.22) 

The radius, r, was scaled by the inner clutch radius, E4, and the axial coordinate, 

z, was scaled by the minimum film thickness, ho• Again, the film thickness, h, is in 

general a function of the radial coordinate, r, and the angular coordinate, e. 

Second, the components of velocity were scaled as follows: 

.. Vr 

Vr = nl~' 
• Vo 

Vo = nl~' 
• Vz 

Vz = nlho· (3.23) 

These scalings are chosen such that all terms in the continuity equation are given 

equal significance. The angular component of velocity is scaled by the friction plate 

absolute velocity, or the input driving velocity of the clutch. 

Third, the viscosity and temperature were non-dimensionalized. Again, the lubri-

cant viscosity depends on temperature, /-L = /-L (T). Assuming the lubricant's charac-

teristic temperature is the radial inlet temperature, To, the characteristic viscosity is 

/-Lo = /-L (To)· The viscosity and temperature were scaled as follows: 

/-L /-L. = -, 
/-Lo 

T 
T. = To. (3.24) 
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Fourth, a dimensionless pressure was defined. Very large changes in pressure are 

expected to occur in small clearances where relative velocities exist. This premise of 

lubrication theory has motivated a widely accepted scaling of pressure [18, 22, 40]: 

(3.25) 

Here, the characteristic pressure, 1'o~!Rr, may be justified. If the clearance to radius 
o 

ratio is smail, pressures are expected to be high. Increases in the angular speed and/or 

viscosity are expected to increase the pressure. From Equation (3.19), the pressure, 

Pi, is the uniform pressure at the inner radius of the clutch. At T = Ro, the pressure 

is specified as P = Po, or P* = p~ in dimensionless terms. 

Fifth, the time, t, was nondimensionalized. We assume that the appropriate 

time scale may be found by considering the rate of change of the no-slip boundary 

condition at the clutch surface. Here, we temporarily relax the previous statement 

that the boundary constraints are independent of time. A simple equation which 

relates the clutch frictional moment to the relative angular acceleration of the clutch 

is as follows: 

(3.26) 

In Equation (3.26), load torques, T2, and the term ~~ in the (}z-stress component 

have been neglected. Using the above dimensionless definitions and letting r2. de-

note the ratio of relative speed to input speed, r2. = ~, we can non-dimensionalize 

Equation (3.26) as follows: 

dr2. lRo 2 aVe 
-d = 27rT*/J·-a dT*, 

t* 1 z* 
(3.27) 
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where, 

J.LoR{ 
t. = -h J. t. 

o 2 
{3.28} 

Here, R. = t is the ratio of outer to inner clutch radii. It is clear that increasing the 

viscosity will increase the torque delivered and decrease the time in which significant 

changes occur in the relative slip speed. Further, increasing the film size or output 

inertia would increase the time in which changes in the clutch slip speed occur. 

Sixth, the dimensionless axial coordinates for the solid clutch plates were defined 

as follows: 

{3.29} 

The notation used in Equation (3.29) corresponds to Figure 3.2. The corresponding 

radial and angular scaling in the solid material regions is defined in Equation {3.22}. 

3.5.2 Dimensionless Equations 

The result of substituting the above dimensionless variable definitions, Equations 

(3.22-3.25), (3.28), and (3.29), and the constitutive equations, (3.9-3.13), into the 

governing equations, (3.1-3.8), the viscosity-temperature equation, (3.15), and the 

initial and boundary conditions, (3.16-3.21), is shown below: 

1 8 .. 1 avo av; 
--8 (r .. vr ) + -afJ + -a = 0, r .. r.. r.... z. 

I av; R [ .. av; v; av; .. av; 1 ( .. )] ap. 
R-+f e v -+--+v --- vo+r =-­at.. r ar.. r. ao.. z az.. r. .. ar. 

2f2 a ( av.) f2 a [ ( a (V") 1 av .. )] r 0 r + -- J.L r - + -- J.L r - - +--
r. ar.. ... ar.. r .. ao. • .. ar. r. r. ao .. 
a [ (2av; av;)] 2J.L .. f

2 
( 1 avo V;) +- J.L f -+- --- --+-az. • ar. az.. r. r .. ao.. r. ' 
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I av; R [.av; v; av; .av; v; v; 2 .]_ 1 ap. Rat +€ e Vr-a +-afJ +Vz -a +--+ Vr - --afJ • r. r.. z. r. r. • 
€2 a [ (a (V· ) 1 av.)] 2 8 r + -- J.L r r - - +--r; ar. •• • ar. r. r. afJ. 
2€2 a [ (1 av· v.)] a [ (av. €2 av.)] (J r 8 z +-- J.L --+- +- /-L -+--r. afJ. • r. afJ. r. aZ." aZ. r. afJ. ' 

21 av; 3R [.av; VB av; • av;] _ _ ap. 
€ Rat + € e Vr a + afJ + Vz a - a .. r. r.. z. z. 

1 a [ (av. av.)] €2 a [ (av. €2 av.)] 4 z 2 r (J z + -- fJ r € - + € - + -- /-L - + --r. ar. •• ar. az. r. afJ. .. az. r. afJ. 
2 a [ av;] + 2€ az. /-L. az. ' 

IRGrffI'. G [.ffI'. v;ffI'. .ffI'.] 
-R at +€ r vr-a +-afJ +vz -a e. r. r... z. 

€3 a ( aT. ) €3 a2T. a2T. 
= T. ar. T. ar. + r; ae; + € a z; 

2 3 B [(av:)2 (1 av; V:)2 (av:) 2] + € TJ.L. - + -- + - + -ar. r. afJ. r. az. 

B [ 
3 ( 1 av; v; av; ) 2 (~ av; 1 av; ) 2 + rfJ. € -- - - + - + €2 - + €2-

r. afJ. r. ar. ar. az. 

+ €2-+--( 
1 av; €~ av;) 2] 

az. r. afJ. ' 

I RPr ffI'. €2 a ( aT. ) €2 a2T. 1 a2T. 
aj at. = r. ar. r. ar. + r; afJ; + Lj2 azj2 ' 

I RPr aT. €2 a ( aT. ) €2 a2T. 1 a2T. 
--;;; at. = r. ar. r. ar. + r; afJ; + L'b2 az;2 ' 

IRPr ffI'. Grn. aT. €2 a ( aT.) €2 a2T. 1 a2T. 
~ at. +~ afJ. = r. ar. r. ar. + T; afJ; + L:2 az;2' 

_ (Ki + 1) exp [Ki (~ - K; m)] - 1 

fJ. - (Ki + 1) exp [K2 (1 - Ki m )] - 1 

at t. = 0 : v; = v;o (r., fJ., z.) , Vo = voo (r., fJ., z.) , 

and v; = v;o (r., fJ., z.) , T. = T; (r., fJ., z.) , 

·u 

(3.32) 

(3.33) 

(3.34) 

(3.35 ) 

(3.36) 

(3.37) 

(3.38) 

(3.39) 
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at t. = 0 : T. = T;f (r.,B.,zi) for friction material, 

for backing material, (3.40) 

for separator material, 

on z. = 0 : v; = O.r., 
(3.41) 

on z. = h. (r.,B.) : v; = v; = v; = 0, 

p. (1, B.) = 0, p. (R., B.) = p~, 

8p. ( ) 8p. ) 
8B. r., ° = 8B. (r.: Bo : p(r.,O) =p(r.,Bo), 

(3.42) 

T. (1, B., z.) = 1, T. (r., 0, z.) = T. (r., Bo, z.) , (3.43) 

T.I =T·I ' zb=l zi=o T.I = T·I ' zi=Li+1-h. z.=h. 

I I aT. I aT. I T. = T. , - = - = 0, 
z;=l z.=o 8zb zi=O 8z; z;=o 

kbLj aT. I aT. I k; aT. I 81'.1 
kjLi, 8zb Zb=l = 8zj zi=o' L: 8z; z;=l = 8z. z.=O' 

(3.44) 

2 (k. 1) [8h. aT. 1 8h. aT.] I or. I 
€ f- --+2-- +-

8r. 8r. r. 8B. 8B. z.=h. 8z. z.=h. 

+ kj or. I = 0" 
Lj 8zj zi=Li+1-h. 

Here, € = l£ is the ratio of film thickness to inner radius, Re = pnlRjho is the 
.... flo 

Reynolds number, IR = P~ho is the ratio of fluid inertia to output clutch inertia. 

Gr = Pcn:h~ is the Graetz number, Br = /lo~;oRr is the Brinkman number, v;o = n':r~i' 

V • - ~ v· -...!!;.JL rr. - Tn. rr. - fu rr. -.Thl!. and rr. - ThL are the l"nl"tl"al 
/JO - nlR;' zO - nlho ' .Lo - To' .LOf - To' .LOb - To' .LOs - To 

dimensionless velocity and temperature profiles, O. = ~ is the ratio of relative speed 

to input speed, Pr = ¥ is the Prandtl number, Ki = /lSI, Ki = A ir:..LO , and 
o 

K; = T.To are dimensionless parameters found in the viscosity-temperature equation, 
ref 

-!2 
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ho = 5.0 X 10-5 m ~ = 5.0 X 10-2 m Ro = 6.5 X 10-2 m eo = 0.2 rad 

0 1 = 50 Tad s Od=50 ~ s Pi = 1.4 X 106 Pa Po = 7.0 X 105 Pa 

P = 830 ~ PI = 8800 ~ Pb = 7800 ~ Ps = 7800 ~ 

c = 2.0 X 103 
k: K CI = 4.2 X 102 

k:K Cb = 4.3 X 102 
k: K 

2 J Cs = 4.3 X 10 kg K 

k = 0.14 mWK kl = 50.0 ~VK kb = 65.0 mWK ks = 65.0 ~VK 

To = 400 K J.Lo = 2.5 X 10-3 ~~ [2 = 2.6 kg m 2 L, = 2.5 X 10-4 m 

Lb = 2.5 X 10-4 m Ls = 2.5 X 10-4 m 

Table 3.2: TYPICAL CLUTCH OPERATING CONDITIONS 

h.. = hho is the dimensionless film thickness, Q,* = kkp',PcC" Q* = ~ and a* = ~ b kPbCb' 5 kp.c. 

are respectively the ratios of friction, backing, and separator thermal diffusivities to 

lubricant thermal diffusivity, Lj = ~, Lb = ~, and L; = t are respectively the 

ratios of friction, backing, and separator axial lengths to minimum film thickness, 

and kj = '¥-' k; = ~, and k; = ~ are respectively the ratios of friction, backing, and 

separator thermal conductivities to lubricant thermal conductivity. 

3.5.3 Simplifications 

For the equations of motion at hand, the primary dimensionless groups are an-

alyzed at typical operating conditions listed in Table 3.2. The range of parameters 

studied in this dissertation are listed in Table 3.3. These values were used to calculate 

dimensionless operating conditions listed in Table 3.4. The ranges of dimensionless 

parameters studied in this dissertation are listed in Table 3.5. In some instances, 
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3 X 10-6 m $ ho $ 2.0 X 10-4 m 50 rad < n < 200 rad 
s - d - s 

0.5 MPa $ Po ~ 2.0 MPa 300 K ~ To ::; 500 K 

1.0 X 10-3 Ns < II < 7.0 X 10-2 Ns 
m2 - t-o - m2 

Table 3.3: RANGE OF PARAMETERS STUDIED 

€ = ~ = 1.0 X 10-3 

Gr = pcfl:h~ = 1.5 

Pr= ¥ =36 

a* = ..&e!:.. = 230 s kp.c. 

Kt = &. = 0.33 
lJo 

Re = pOl EYho = 42 
lJo 

Br = lJo~joRr = 2.8 x 10-4 

L* - !:L - 5 ,- ho -

R -&-13 *-Ri- . 

K* -.& -11 2 - T:;' - • 

IR = PRLho = 1.0 X 10-7 

n -&-1 
H* - 01 -

L* - f.ll. - :; 
b - ho - V 

P* - (po-pilh~ - -5 6 
o - lJoOlRr - • 

Kj = &. = -0.15 
lJo 

Table 3.4: TYPICAL CLUTCH DIMENSIONLESS PARAMETERS 

6 X 10-5 < € = fuz. < 4.0 X 10-3 
- Ri -

9 X 10-5 ::; Br = lJo~foR; ::; 0.16 

5 x 10-3 < Gr = pcOlh; < 105 
- k-

Table 3.5: RANGE OF DIMENSIONLESS PARAMETERS STUDIED 
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a best guess is made for the operating conditions. The radii, ~ and Ro, and axial 

lengths, Lb, Ls , and L" are based on a Clark 18000 forward first clutch. The material 

and lubricant properties are based on steel for the backing and separator materials, 

commercial bronze for the friction material, and SAE 10 for the lubricant. It is noted 

that the operating parameters could significantly change the Brinkman and Graetz 

numbers via the film size, input speed, and viscosity-temperature relation. Further 

discussion on these parameter ranges is given shortly. 

In view of the dimensionless numbers predicted, the following arguments are made 

to simplify the governing equations: 

1. All dimensionless variables, t., T., 0., Z., v;, ve, v;, p., T., and J.L., are 0 (1). 

2. The ratio of fluid to solid inertia, I R , is negligible. 

3. The solid to fluid thermal diffusivity ratios, ai, ab' and a;, are large. 

4. The film thickness to inner radius ratio, €, is small. 

5. The film thickness, h. = h. (T., 0.), has no severe spatial gradients. 

The consequence of the second assumption is that time variations in the model are 

ignored. We consider steady state solutions which satisfy the governing equations 

and boundary conditions. In this long time limit, the initial conditions, Equations 

(3.39) and (3.40), are omitted. Gross [18] gives an excellent discussion as to why time 

variations in lubrication problems can usually be neglected. 
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3.6 Summarized Problem Statement 

Using the assumptions presented in the previous section, the relevant dimension-

less governing equations and boundary conditions are summarized below: 

a (r.v;) avo av; _ 0 ( a + a() + r·-a - , 3.45) r. • z. 

ap. a ( av;) (3.46) ar. = az. J.L. az. ' 

1 ap. a ( avo) (3.47) 
r. a(). = az. J.L. az. ' 

ap. _ 0 (3.48) az. - , 

(K~ + 1) exp [K;' (rin - Kj m)] - 1 
J1. - (3.53) 
• - (Ki + 1) exp [Ki (1 - Ki m)] - 1 

on z. = 0 : v· = v· = 0 r z , VB = O.r., 
(3.54) 

on z. = h. : 

p. (1,9.) = 0, p. (R., 9.) = p~, 

( ) ( ) ap. ( ap. 
p r.,O = p r., ()o, a(). r.,O) = ao. (r., ( 0 ) , 

(3.55) 
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T. (r., 0, z.) = T~ (r., 0o, z.) , (3.56) 

T_I =T·I, 
zi=Li+l-h. z.=h. 

I I or. I aT. I T. = T., - = - = 0, 
z;=l z.=O 8zb Zb=O 8z; z;=O 

k;Lj aT. I aT. I k; aT., aT., 
kjLb 8zb zb=l = 8zj zi=o' L: 8z; z;=1 = 8z. <:.=0' 

(3.57) 

kj aT. I _ or_I 
L j 8zj zi=Li+l-h. - - 8z. z.=h.· 

The first four of these equations, (3.45-3.48), are the classical incompressible lu-

brication equations from which a Reynolds equation may be found. In this simplified 

energy equation for the lubricant, (3.49), we are allowing for viscous dissipation to 

heat the clutch and convection to cool the clutch. In particular, one will note that 

the Brinkman number given in Table 3.4 is significanty lower than 0 (1). This sug-

gests that viscous dissipation could safely be neglected given the operating conditions 

stated in Table 3.2. Nevertheless, we make no such assumption regarding the vis-

cous dissipation for two reasons mentioned here. First, having neglected asperity 

contact, viscous dissipation is the only source of heat generation for this problem. 

In reality, the solid to solid rubbing of clutch plates significantly increases the clutch 

temperature. Second, the scalings given are not the most judicious choice. As in-

dicated previously, the range of the Brinkman and Graetz numbers is fairly broad. 

It was found a posteriori that while the terms in the energy equation balance, the 

order of magnitude of these quantities is not 0 (1). However, as the Brinkman and 

Graetz numbers approach unity, the ordering of the energy balance terms becomes 

exact. This is shown in the results for a specific set of operating conditions for various 

Graetz and Brinkman numbers. 
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Comparing the last condition in Equation (3.44) to the last condition in Equation 

(3.57), the leading term having the factor €2 was omitted. Here, it was not only 

assumed that € was small, but that the gradients a;:.: and ~~: are 0 (1). 

Two obvious conclusions follow immediately from Equations (3.48) and (3.50-

3.52): (1) the pressure is independent of the axial coordinate, and (2) the temperature 

distribution is axially linear in the solid clutch plates. In other words, 

p. = p. (r., ().), (3.58) 

T. = C{ (r., ().) zj + C£ (r., ().), 

T. = C~ (r., ().) z; + C~ (r., ().) , (3.59) 

T. = C~ (r., ().) z; + C~ (r., ().) . 

Further, from Equations (3.57) and (3.59), the following simplified boundary condi-

tions on the lubricant may be deduced: 

aT. I = aT. I = o. 
8z. z.=o 8z .. z.=h. 

(3.60) 

This is shown in Appendix A. In addition, it may be shown that the temperature 

distribution in both the backing and friction materials is T. = T.lz.=ho and in the 

separator plates, T. = T.lz.=o. Mathematically, Equation (3.60) decouples the fluid 

problem from the thermal problem. 

The dimensionless set of equations, (3.45-3.57) are sufficient to determine the 

velocity, pressure, and temperature in the lubricant and solid clutch plates given a 

periodic, but otherwise arbitrary, film shape. 
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3.7 Algebraic Coordinate Transformation 

The following algebraic mapping transforms the independent physical variables 

into the working set of independent transformed variables: 

r = .!::.=.!. R.-l 

z = z. 
h.(r.,8.) 

1 $ T. $ R., 

0$ z. $ h. (r.,O.). 

(3.61) 

The transformed domain is thus: 0 $ f $ 1,0 $ ii $ 1, and 0 $ z $ 1. The pertinent 

metrics for the above transformation are elements of the Jacobian matrix, J: 

af af af 1 
0 0 

ar. ao. az. (R. - 1) 

J= aii aii aii 
0 

1 
0 -

ar. ao. az. 00 

az az 8z z. ah. z. ah. 1 --- - h; 8O. ar. ao. 8z. h; 8r. h. 
(3.62) 

1 
(R. - 1) 

0 0 

0 
1 

0 -
00 

z 1 8h. z 1 ah. 1 

h* (R. - I) af - h. 00 aii h. 

Note that the off-diagonal terms in Equation (3.62) are present due to the arbitrarily 

defined film thickness, h. = h. (f, 8). The final matrix in Equation (3.62) is desirable 

because all terms are expressed in terms of the working transformed variables. 

Derivatives in the governing equations may be expressed using the chain rule for 
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partial differentiation: 

8 ar 88 8f 8 
ar. ar. ar. ar. ar 

8 - ar 80 of 8 (3.63) 
80. 00. 80. 00. 89 

8 ar 88 of 0 
oz. oz. 8z. oz. 8z 

The matrix given in Equation (3.63) is the transpose of the Jacobian matrix given in 

Equation (3.62). Further use of the chain rule may be employed to evaluate second 

derivatives in the governing equations: 

8
2 

8 (8) 8 (8f 8 80 8 8z 8) 
8z; = 8z. 8z. = 8z. 8z. 8f + 8z. 80 + 8z. 8z 

= 8~. (:. :Z) = :. :z (:. :z) = :~!:. 
Only second derivatives in z. appear in the governing equations. 

The mass, momentum, and energy equations for the lubricant, (3.45-3.49), are 

written in terms of the working transformed variables and metrics as follows: 

(R. ~ 1) [h. :f [(f [R. - 1] + 1) v;] - za;; :z [(f [R. - 1] + 1) v;]] 

1 [8ve _8h.8V9] - ] 8v; 
0

0 
h. 80 - z 80 8z + [r (R. - 1) + 1 8z = 0, 

h: 8p. 8 ( 8V;) 
(R. - 1) 8f = 8z j.L. 8z ' 

h: 1 8p. 8 ( 8ve) 
[f (R. - 1) + 1] 00 80 = 8z j.L. 8z ' 

8p. = 0 
8z ' 

Grh;v; aT. Grh;ve 1 aT. 
(R. - 1) 8f + [f(R. - 1) + 1] 00 80 

[ 
• v;z 8h. vez 8h. 1] aT. 

+ Grh. Vz - (R. _ 1) 8f - [f (R. - 1) + 1] 80 0
0 

8z 

_ ~~. = ~.Br [ (~n ' + (~vn '] . 
50 
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The boundary conditions on the lubricant, Equations (3.54-3.56) and (3.60), are also 

written in terms of transformed variables: 

on z = 0: v· = v· = ° r z V8 = n.r., 
(3.69) 

on z = 1: 

p. (0,8) = 0, p. (1,8) = p~, 

() () 8p. (_ 8p. (_ ) 
p. f, ° = p. f,l, 88 r,O) = 88 r,l , 

(3.70) 

T. (1,8, z) = 1, T. (f,O, z) = T. (f, 1, z), (3.71) 

aT. I = aT. I = O. 
8z .:=0 8t .:=1 

(3.72) 

The above equations, (3.64-3.72), the viscosity-temperature relation, (3.53), and a 

specified film thickness, h. = h. (f, 8), are sufficient to determine the velocity com-

ponents, pressure, and temperature in the transformed domain. 

In summary, this algebraic coordinate transformation is advantageous because it 

generalizes the problem to account for an arbitrary film shape. Furthermore, the 

transformed domain is a unit cube rather than a complex figure. Thus, we have 

dramatically simplified the geometry at the expense of a more complicated set of 

governing equations. Discussions on generalized algebraic transformations are given 

by Fletcher [17] and Minkowycz, Sparrow, Schneider, and Pletcher [37], and Hirsch 

[25]. Further, Wirz and Smolderen [67] list and discuss other options to consider in 

numerically solving problems in irregular domains. 

A subtle critique of the mathematical model's development is mentioned here. 

The philosophy used to obtain the governing equations went as follows: (1) state the 

governing equation, (2) non-dimensionalize the equations, (3) simplify the equations. 
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and (4) transform the equations into a domain of manageable form. If the domain 

was tranformed prior to the simplifications, additional terms would be present in the 

governing equations. For example, the conduction term in the radial direction is of 

the form: r~ ::.. (r.::,). In terms of computational variables this term is as follows: 

1 a (aT) 1 [a ( [aT. af aT. az]) af r. ar. r. ar. = r. af r. af ar. + az ar. ar. 
a ( [aT. af aT. az]) ar] +- r --+-- -. az • af ar. az ar. ar. 

Some of these terms become significant when steep geometrical gradients are present. 

A thorough approach would first transform the governing equations, identify the 

appropriate scalings for all the terms in the scaled equations, and finally simplify the 

equations. 

3.8 Clutch Performance Parameters 

On finding a solution to the system of equations presented in the previous sec-

tion, it is possible to study clutch performance within the regime of hydrodynamic 

lubrication. The quantities of interest, for a wet disk clutch, are the radial volumetric 

flow rate, the normal load capacity, tangential forces, the frictional moment, and the 

friction coefficient. These clutch performance parameters will be discussed, defined, 

and non-dimensionalized in this section. A detailed formulation of the definitions of 

these quantities is given by Hamrock [22]. 

A new dimensionless parameter which depends on the input conditions appears 

in this section. The Sommerfeld number is defined as follows: 
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(3.73) 

This dimensionless number is sometimes referred to as the Bearing characteristic 

number [18]. 

3.8.1 Radial Volumetric Flow Rate 

The total volume flow rate in the radial direction across the clutch, is defined as 

follows: 

(00 (h(r,B) 
Qr = Ngr 10 10 Vr (r, 8, z) dz d8. (3.74) 

Here, Ng = ~:, is the total number of periodic domains on the clutch friction plate. 

Given a set of operating conditions, this equation is used to obtain a relationship 

between the supply pressure and the flow rate. In terms of the working transformed 

variables, Equation (3.74) may be written as follows: 

(3.75) 

3.8.2 Normal Load 

The total normal load supported by the lubricant is the pressure integrated over 

the clutch surface. 

Io°
0 1Ro 

Fz = Ng p(r,8)r dr d8 
o R; 

(3.76) 

Given a set of operating conditions, this equation may be used to obtain a relation-

ship between the film thickness and the normal load. In other words, in practical 

applications the minimum film thickness is typically not known a priori. The above 

53 

-------



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

equation facilitates a mean by which the film thickness can be found. Equation (3.76) 

may be written in terms of the transformed variables as follows: 

* Fz SNlJo r1 r1 
(_ -) _ _ -

Fz = Pi
7r 
(R~ _ R;) = 1 + 7r (R. + 1) 10 10 P. r,O [r (R. - 1) + 1] dr dO. (3.77) 

3.8.3 Tangential Forces 

The tangential forces on the clutch may be decomposed into two types. They are 

(1) the tangential forces due to viscous shearing and (2) the tangential forces due to 

pressure. Since the clutch separator plate is defined to be in the z = 0 plane, the 

tangential force due to pressure on the separator plate is zero. However at the friction 

plate, z = h (r, 0), the tangential force due to pressure is non-trivial. This tangential 

force may be expressed as follows: 

10
00 ~Ro ah 

Fp,h = -Ng P (r, 0) ao (r,O) dr dO. 
o Ri 

(3.78) 

Note that when the film is axisymmetric, ~; = 0, the tangential force due to pressure 

vanishes. Equation (3.78) is written in terms of the working transformed variables as 

follows: 

F* - Fp,h _ ENg r1 r1 ah* (- 0-) [ (- 0-) ] dr- dO-. ( ) 
p,h - Pi7r (R~ _ R'f) - - IT (R. + 1) 10 10 aU r, Sp. r, + 1 3.79 

The tangential forces due to viscous shearing occur on both the separator plate 

and the friction plate. They depend on the shear stress evaluated at z = 0 and z = h 

respectively. 

100
0 ~Ro ( avo ) I Fo,o = Ng J1. (r, 0, z) -a (r, 0, z) r dr dO 

o ~ z z=O 
(3.80) 
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100
0 lRo ( avo ) I FO,h = -Ng J.L (rJ), z) -a (r, 0, z) r dr de 

o ~ Z z=h(r,O) 
(3.81) 

In general, these quantities are not equal and opposite. However, since the lubricant 

is not accelerating, it is known that Fo,o + FO,h + Fp,h = o. This relation offers a 

valuable check to results obtained. These equations may be written in terms of the 

transformed variables as follows: 

F.* _ Fo,o 
0,0 - Pi1f (R~ - R'f) 

= Sf.NgOo r1 r1 
(J.L* (r, 0, z) av! (r, 0, z)) I [r (R* - 1~ + 1] dr dO, 

1f (R* + 1) 10 10 az £=0 h* (r,O) 
(3.82) 

F.* _ Fo,o 
0,0 - Pi1f (R~ - R'f) 

= _ Sf.NgOo r1 r1 
(J.L. (r, 0, z) av! (r, 0, z)) I [r (R. - 1) + 1] df dO. 

1f (R. + 1) 10 10 az £=1 h* (r,O) 
(3.83) 

3.8.4 Frictional Moment Delivered 

The frictional moment delivered to the separator plate is the shear stress at z = 0 

multiplied by the radius integrated over the clutch surface. 

100
0 lRo ( avo ) I !vIp = Ng J.L (r, e, z) -a (r, 0, z) r2 dr dO 

o Ri Z z=o 
(3.84) 

This quantity represents only a fraction of the total moment delivered to the output 

side of the transmission. In general, a clutch pack has multiple interfaces which gener-

ate frictional torque. The frictional moment may be defined in terms of computational 
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variables as follows: 

M. _ NIp 
- p - P(Tr (R~ - ]{f) ~ 

= S€Ng{}o 1111 ( (- {}- -) avo (- {}- -)) I [r (R. - I) + 1]2 dr- d{}-. 
( D 1) fl.. r, ,Z a r" Z ( -) 

7r .L 4 + 0 0 Z. z=o h. r, {} 
(3.85) 

3.8.5 Friction Coefficient 

The friction coefficient is the ratio of friction to normal forces. In particular, for 

this lubrication problem the friction coefficient is defined as the net tangential force 

delivered to the separator plate divided by the normal force. 

Fo,o F;'o 
fl.P=--=--

Fz F; 
(3.86) 

The negative sign in front of this expression is used because the frictional force is 

defined positive to the right. Again, since the separator plate is defined to be in the 

Z = 0 plane, pressure effects need not be considered. This would not be the case if the 

friction force was computed on Z = h (r, (}). From the previous discussion, the friction 

coefficient would be fl.p = P9.h;'PP,h. Again, since the lubricant is not accelerating, 

this quantity is equal to the friction coefficient given by Equation (3.86). 
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CHAPTER 4 

NUMERICAL SOLUTION METHOD 

This chapter describes the mathematical model's numerical implementation used 

in this dissertation. The first section discusses the staggered grid on which the gov­

erning equations are discretized. The second section lists the discrete form of the 

governing equations and supplemental boundary conditions. Here, the governing 

equations and boundary conditions are converted to algebraic equations using finite 

difference discretization. In the third section, the algorithm employed to solve the 

governing equations is summarized. The fourth section gives the method used to 

obtain the clutch performance parameters introduced in the previous chapter and 

discusses an example. The fifth section presents two verification test cases for the 

numerical solution method. 

4.1 Staggered Grid 

The numerical solution of the governing equations is obtained on a staggered grid. 

Here, we employ equispaced nodal grid points at discrete locations in the computa­

tional domain. The grid is staggered in the f-O plane as shown Figure 4.1. The grid 

is not staggered in the i-direction. 

In the computational domain, the discrete location of the dependent variables' 
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i = 1 i=3 

~-- ---.--- -- ---.- --. . . 
A. v* r 

• v.* : e : 

• v*n T: 
Z't""*, *: . . - -----.... --- - - _ ... --_. 

a = 1----------. • 
• .. • .. 
• • • • • • · .. . .. . .. . .. . .. . .. 
• • • • • • 

• • 
.I~ · , · .. . .. . .. . .. . .. . .. . 

• • • • • • • · .. . .. . .. . .. . .. . .. . 
• • • • • • ·j=5 -................. . 

• 

Figure 4.1: Staggered Grid 

nodes is illustrated in Figure 4.1 and defined mathematically below: 

f·= -- ~f (
i -1) 

I 2 ' 
- (j - 1) -OJ = -2- ~O: 

where i = 1, 3, 5, ... ,1Vr for v;,v;,p.,and T., 

i = 2,4, 6, ... , Nr - 1 for v;, 

j = 1,3,5, ... , N8 for ve, 

j = 2,4,6, ... , N8 - 1 for V;, v;,P., and T., 

k = 1,2,3, ... , Nz for • •• dT. vr ,v8,vz ,p.,an •. 

( 4.1) 

( 4.2) 

Here, Nr , N8, and N z are respectively the total number of radial, angular, and a.xial 

grid points. It is assumed that Nr , N8: and Nz are positive, odd integers. In Figure 
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4.1, Nr = No = 13. The computational grid spacings are defined in terms of the 

number of nodes: 

2 
D.f = N

r 
-1' 

- 2 
D.(J= , 

No-1 

1 
~z=--­

Nz -1 
(4.3) 

This staggered grid is advantageous for several reasons. The prescription of pres-

sure and temperature boundary conditions at the inner and outer radii is straight-

forward. Further, truncation error and undesirable oscillations, which may occur on 

non-staggered grids, are avoided in the solution of Poisson pressure equations [46]. 

Further discussion on the use of staggered grids is given by Fletcher [17]. 

4.2 Discretized Equations 

The discrete representation of the governing equations is given in this section. 

First, the radial momentum equation, angular momentum equation, and no-slip 

boundary conditions are discretized. Second, an integral form of the continuity equa-

tion is combined with the momentum equations in order to obtain a Poisson pressure 

equation. Third, a differential form of the continuity equation is used to obtain a 

finite difference relation for the axial velocity. Fourth, the energy equation, along 

with boundary conditions on the temperature field, are given in discrete form. 

In short, the terms in the governing equations are approximated by finite difference 

expressions which enable a systematic computation of the dependent variables. To 

solve for the pressure, radial velocity, and angular velocity, a Marker and Cell (M.-\C) 

method is employed. This method is characterized by the use of a staggered grid and 

solving a Poisson pressure equation. To solve for the temperature, a three level fully 
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implicit (3LFI) routine is used. In this method, the energy equation is treated as 

parabolic in radius. 

4.2.1 Discrete Radial and Angular Momentum 

The numerical discretization of Equations (3.65) and (3.66) subjected to the 

boundary conditions stated in Equation (3.69) are presented in this section. At 

present, it is assumed that both the discrete solution of the pressure field and the 

discrete solution of the viscosity are known. A discussion of how the pressure and 

viscosity are obtained is given shortly. 

The momentum equations are written in discrete form using spatial central dif-

ferencing as follows: 

h[ij) 2 1 [i,j,k) 
_*_ (p[i+l,j) _ p[i-l J )) = ~ (V*[i,j,k+l] _ 2V*[i,j,k] + V*[i,j,k-l]) 

D..f (R* - I) * * .6.22 r r r 

+ (1t~,j'k+1] _ 1l~,j'k-1J) (V;[i,j,k+l) _ V;[i,j,k-l]) 

2.6.2 2.6.2' 

(4.4) 

and 

h
[ij] 2 1 [i,j,k] 
* _ ([i,j+l] _ [iJ-l]) = ~ ( .. [iJ,k+l) _ 2 .. [i,j,k) + "[i,j,k-lJ) 

[f[i) (R .. - 1) + 1]D..0 0
0 

p. P* .6.z2 Vs Vs Vs 

Il* - It.. Vs - Vs 

( 

[i,j,k+l) [i,j,k-lj) ("[i,j,k+l) "[i,j,k- lJ ) 

+ 2D..2 2.6.2' 

(4.5) 

The no-slip boundary conditions, Equation (3.69), may be written in discrete form 

as follows: 

V"[i,j,l) - V*[i,j,N=] - V·[i,j,N:) - 0 
r -r -s -, V;[iJ,l) = n* [f[i) (R .. - 1) + 1]. (4.6) 

In Equations (4.4), (4.5), and (4.6), the superscripts in brackets denote the nodal 

position of the dependent variables with i, j, and k corresponding to radial, angular, 
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and a.xial grid locations. As indicated by Equation (4.2), Equation (4.4) is defined on 

i = 2,4,6, ... , Nr -1, j = 2,4,6, ... , Ne - 1, and k = 1,2,3, ... ,Nz . Similarly, Equa-

tion (4.5) is defined on i = 1,3,5, ... , NT! j = 1,3,5, ... , Ne, and k = 1,2,3, ... , N:. 

Note that in addition to the five dependent variables, v;, v;, v;, p., and T., discrete 

locations are indicated for the film thickness, h., and the viscosity, J.1. •• 

For given values of i and j, Equations (4.4), (4.5), and (4.6) may be written for 

all values of k, (k = 1,2,3, ... , Nz )' in a compact matrix form: 

[A[i,j]] v[i,j] = r[i,j] 
r Vr , 

[A[i,j]] v[i,j] - r[i,j] + r[i] o - vo VO BC, (4.7) 

where 

1 0 0 0 0 

A[i,j,2] 
1 

A~,j,2] A~,j,2] 0 0 0 

0 A~i,j,3] A~i,j,3] A~i,j,3] 0 0 

[A[i,j]] = 0 0 

A~i,j,N:-2] A~,j,N:-2] -l [i,j,N: -2] 
• 3 0 

0 0 0 A~,j,N:-l] 4.[i,j,N:-lJ 
• 2 

4.[i,j,N:-lJ 
• 3 

0 0 0 0 0 1 

(4.8) 
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v~,j] = [ V;[i,j,l] V"[i,j,2] 
r 

V .. [i,j,3] 
r 

V·[i,j,N:-2] 
r 

V·[i,j,N: -1] 
r 

v;j;,;,N.1 r, 
V~,j] = [ V;[i,j,l] .[i,j,2] 

VB 
.[i,j,3] 

VB 
V;[i,j,N: -2] V;[i,j,N: -1] .j;j,N,1 r 

VB ' 

f[i,j] - [ 0 
Vr - 1 1 1 1 o rft11, (4.9) 

rtil] = [ 0 1 1 ... 1 1 o rfNJ, 

rtk Be = [ fl. [t[i] (R. - 1) + 1] 0 0 ... 0 0 or. 
and 

.. h[ij]2~-2 1 
1[',]] _. Z ( [Hl,j] _ [i-l,j]) 

Vr - ~t (R. - 1) P. p" , 

h[ij ] 2 A -2 1 
j [i,j] _ • "-lZ _ ([i,j+l] . [i,j-1]) 

VB - [t[i] (R. - 1) + 1]~0 0
0 

p" - P. , (4.10) 

A[i,j,k] = lI[i,j,k] _ ~ ("[i,j,k+l] _ lI[i,j,k-l]) 
1 r. 4 ,-" ,-. , 

A[i,j,k] = lI[i,j,k] + ~ ("[i,j,k+l] _ lI[i,j,k-l]) 
3 ,-. 4'-" ,-. . 

It is seen that [A[i,j]] is tridiagonal. 

4.2.2 Discrete Poisson Pressure Equation 

This section discusses the derivation of a discrete Poisson pressure equation. This 

equation is derived using Equations (3.64), (3.69), (4.7), and (4.10). The following 

derivation parallels classical derivations of the Reynolds equation discussed by Ham-

rock [22] and Gross [18]. Allowing for variable viscosity across the film complicates the 

derivation. However, for current purposes, a known viscosity distribution is assumed. 

First the continuity equation, (3.64), is integrated from z = 0 to z = 1. Using 

integration by parts, Leibnitz's integration rule, and the no-slip boundary conditions 

listed in Equation (3.69), the following integral form of the continuity equation was 
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derived: 

(R. ~ l):f (h.[f (R. - 1) + l]ii;) + :0 :0 (h.ii;) = 0, (4.11) 

where 

and -* • -1
1 

Vo = 0 vodz. (4.12) 

Recalling that we required Nz to be a positive odd integer, it is possible to ap-

proximate the integrals of Equation (4.12) numerically using Simpson's rule. For ii;, 

we have 

6 - ( N.-l N.-2) 
ii; [iJ] ~ t v; [iJ.I] + v; [iJ.N.] + 4 t v; [iJ.k] + 2 ~ v; [i.i.k] . 

k=2.4.... k=3.<> •... 

More generally, numerical integration techniques are simply weighted sums of the 

discrete values of the integrand. Returning to the notation of Equation (4.7), a more 

general approximation of ii; is as follows: 

N. 
ii; [iJ] ::::: L W[iJ] . V~iJ], (4.13) 

k=1 

where W[iJ] is a known vector with components equal to the weights in the integration 

method. In the case of Simpson's rule, 

w[iJI = ~z [ 1 4 2 4 2 ... 2 4 2 4 1 r 
Substituting Equations (4.7) into (4.13) we have 

N. N. 
ii; [i.i] ~ t W[iJ] . [A[i.i]] -lft~~] = f~~] t w[iJ] . [A[iJ ]] -ll~J], (4.14) 

k=l k=l 

where 
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Rearranging Equation (4.14), and recalling Equation (4.10), the following expression 

for v; is found: 

v; [iJ] ~ IJiJ] (p~+1J] _ p~-lJ]) , 

h[ii] 2 D. -2 1 N: 
I[iJ] =. Z '" w[iJ] . [A[iJI] -ll[iJI 

T D.t (R. - 1) ~ 1 • 

(4.15) 
where 

Similarly, 

v· [iJ] ...., l[iJI (p[iJ+l] _ p[iJ-l]) + [[i,i] 
8 ,.... 8. • 8 BC, 

where 
h[iil 2 D. -2 1 N: 

[[iJI = • Z '" w[iJI . [A[iJI] -ll[iJ] 
8 [t[il (R. - 1) + 1]D.0 00 f:l 1 , (4.16) 

N. 
I~i~IC = fl. [t[il (R. - 1) + 1] t w[iJI. [A[i,il] -ll~,il. 

k=l 

and 

Unlike, the radial counterpart, ve contains a term due to the non-homogeneous no-slip 

boundary condition. In Equation (4.16), 

o 0 0 r 
Discretizing Equation (4.11) on the pressure nodes shown in Figure 4.1, we have 

1 1 (hli+1JI [t[i+11 (R _ 1) + 1] v· [i+1JI 
(R. - 1) D.t • • r 

_h~-lJI[t[i-ll (R. -1) + 1]V; [i-lJI) (4.17) 

+ ~ 1_ (h[i,i+llv• [iJ+l1 _ h[iJ-l]V· [iJ - lJ) = a 
0

0 
D.O. 8 ,. 8 • 

Substituting the finite difference expressions derived for v; [i,il and v; [iJI, defined as 

approximations in Equations (4.15) and (4.16), a discrete Poisson pressure equation 

is obtained: 

a[iJlp[iJI + b[iJlp[i+2JI + c[iJlp[i-2JI + d[iJlp[iJ+21 + e[iJlp[iJ-21 = j[iJI 
p. p. p. p. p * p' (4.18) 
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where a[i,j] = _ 1 1 (I[i+L,i]h[i+L,j] [f[i+L] (R _ 1) + 1] 
P (R. - 1) I1f T. • 

+I~i-l,j]h~-l,j] [f[i-L] (R. - 1) + 1]) 

_.!. 1_ (/[i,j+L]h[i,j+L] + I[i,j-L]h[i,j-L]) 
()o 11() 8 • 9 • , 

b[i,j] = 1 1 I[i+L,j]h[HL,j] [r[HL] (R - 1) + 1] 
P (R. - 1) ~r T. • , 

e[i,j] = 1 1 /[i-L,j]h[i-L,j] [r[i-LJ (R - 1) + 1] 
P (R. - 1) ~r T. • , 

d[i,j] =.!. 1_/[i,j+L]h[i,j+L] 
P ()o 11() 8 * , 

[i,j] _ .!.~l[i,j-L]h[i,j-L] 
ep - ()o 118 8 • , 

j [i,j] =.!. 1_ (I[i,j-l]h[i,j-L] _ I[i,j+L]hli,j+L]) 
p ()o 11() 8 Be. 8 • . 

Equation (4.18), referred to as the discrete Poisson pressure equation, is defined on 

odd i-nodes and even j-nodes as indicated in Figure 4.1. Note that the boundary 

values of pressure must be supplied to close the numerical problem. From Equations 

(3.70) and (4.2), we have 

p~L,j] = 0 (4.19) 

on the radial boundaries. On the angular boundaries, Equation (4.18) suggests that 

we must have knowledge of p~,O] and p~,Nt+L]. Using second order finite differencing 

and averaging for Equation (3.70), it can be shown that 

and P
[i,Nt+L] = p[i,2] . . . (4.20) 

Equations (4.18), (4.19), and (4.20) can be written in terms of a general block-banded 

matrix. Note that, knowledge of the velocity field is not required to obtain the 

pressure. Rather, the boundary conditions at the clutch plates are required. Further. 
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the viscosity distribution is assumed to be known. 

Again, the above method, which outlines a methodology by which a pressure 

distribution may be found, parallels classical derivations of the Reynolds equation. 

The additional complication of allowing for variable viscosity across the film demands 

numerical treatment in all but the simplest of cases. The analogous steps used to 

derive a variable viscosity Reynolds equation are given in AppendL'{ B. Terms in this 

variable viscosity Reynolds equation are integrals of the form: Jol zdz and Jol dz. These 
1'- 1'-

integrals would have to be evaluated numerically. Further, the discretization of such 

a Reynolds equation would demand numerical treatment to solve for the pressure. 

Thus, the procedure to follow in solving the variable viscosity Reynolds equation 

must use the methodology given above. In other words, both accounting for variable 

viscosity and solving a Poisson pressure equation would demand numerical treatment 

in either case. The methodology outlined in this section is advantageous because 

continuity will clearly be satisfied on a discrete level. 

4.2.3 Discrete Axial Velocity Equation 

This section discusses the discretization of the differential form of Equation (3.64) 

which is used to obtain the axial velocity. It is assumed that the radial and angular 

components of velocity are known. 
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First, Equation (3.64) is differentiated with respect to the variable z: 

(4.21) 

which can be rearranged as follows: 

(4.22) 

where 

fvz = (14 ~ 1) [h·:r ([r(R. -1) + 11~i) 
-[r(R. - 1) + 11~~* (;; + z~;;) 1 

1 [ 8
2
v; 8h* f 8v; _82VO) 1 

+ (}o h* 8z80 - 80 l 8z + z 8z2 . 

Second, Equation (4.22) is discretized on odd i-nodes and even j-nodes: 

[r[i] (R* - 1) + 1] (V*[i,j,k+l] _ 2V*[i,j,k] + V*[i,j,k-l]) = _ /i,j,k] (4.23) 
~z2 z z z Vz , 

where f
[i,j,k] =a[i,j,k]v*[i+l,j,k+l] + a[i,j,k]v·[Hl,j,k-l] + a[i,j,k]v·[i-l,j,k-l] 
Vz lVz r 2Vz r 3Vz r 

+ a[i,j,k]v*[i-l.j,k+l] + a[i,j,k] (V*[i+l,j,k] + V·[i-l,j,k]) 
H'z r 5V~ r r 

+ [i,j,k] *[i,j+l,k+l] + [i,j,k] .[i,j+l,k-lj + [i,j,k] *[i,j-l,k-lj 
a6Vz Vo a7vz Vo asvz Vo 

+ [i,j,k] .[i,j-l,k+l] + [i,j,k] ( .[i,j+l,k] + .[id-l,k]) 
agVz Vo alOvz Vo Vo , 
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a [i,j,k] = 1 1 [h[i,J] [r[i+l] (R - 1) + 1] 
IVz 2~r~z (R. - 1)· • 

_[;01'1 (R. -1) + 1] (h~+l,1L h~-lJ1) (1 + ~~) 1 ' 
a [i,j,k] = 1 1 [_h[i,j] [r[i+l] (R. _ 1) + 1] 

2Vz 2~r~z (R. - 1) • 

+ [r[i] (R. - 1) + 1] (h~+l,j] - h~-l,j]) ( 1 - ~:) 1 ' 
a[i,j,k] = 1 1 [h[i,j] [r[i-lJ (R. - 1) + 1] 

3Vz 2~r~z (R. - 1) • 

+ [r[,1 (R. - 1) + 1] (h~+lJL h~-ljl) ( 1 - ~~) 1 ' 
a[i,j,k] = 1 1 [_h[i,j] [r:[i-lJ (D _ 1) + 1] 

Wz 2~r~z (R. _ 1). LLoo 

-[r[;[ (R. - 1) + 1] (h~+lj[ - h~-ljl) ( 1 + ~~) 1 ' 
[i,j,k] _ z[k] 1 

a5Vz - ~T~Z2 (R. - 1)' 

a[i,j,k] = 1 1 [Mi,j] _ (h[i,j+l] _ Mi,J-lJ) (1 + z[k]) 1 
6Vz 2~(}~z (}o· • • ~z' 

a[i..[,k] = 1 1 [_Mi,j] + (h[i,j+l] _ h[i,J-lJ) (1 - z[k]) 1 
7Vz 2~(}~z (}o • • • ~z' 

a[i,j,k] = 1 1 [h[i,j] + (h[i,j+l] _ h[i,j-lJ) (1 - z[k]) 1 
8Vz 2~(}~z (}o· • • ~z' 

a[i,j,k] = 1 1 [_h[i,j] _ (h[i,j+l] _ h[i,j-l]) (1 + z[k]) 1 
9Vz 2~(}~z (}o • • • ~z' 

[i,j,k] _ z[k] 1 
alQVz - ~(}~z2 (}o 

As can be seen from Equation (4.23) and Figure 4.1, the angular boundaries do 

not present a problem. However, at i = 1 and i = Nr information outside the 

domain is required. For example, at i = 1, v;[O,j,k+l], v;[O,j,k], and v;[O,j,k-l j need to be 

specified. To circumvent this problem, truncated Taylor series expansions are written 

to approximate values outside the domain For example V*[O,j,k]::::: 3v*[2,j,kj_3v*[4.j,kl+ . , r r r 

V;[6,j,k]. Only second order truncation error is introduced using these expressions. This 
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analysis differs from the specification of boundary conditions in that ultimately only 

values inside the domain are required. 

Since Equation (4.22) is a second order differential equation in z, both no-slip 

boundary conditions listed in Equation (3.69) for v; are utilized. Here we have 

V;[iJ,l] = v;[iJ,N:] = o. ( 4.24) 

Equations (4.23) and (4.24) may be written using a tridiagonal matrix in the same 

form as Equation (4.7). 

It is not hard to show that if the integral and differential forms of continuity are 

satisfied, then Equation (3.64) is satisfied. A simplified proof is given here. Here, 

IOh 'V . v dz = 0 is considered the integral form of continuity, and :z ('V . v) = 0 is 

considered the differential form of continuity. Let"· v = Ie. Given that :z ('V. v) = 

~ = 0, it is known that Ie can be a function of rand () at most. Therefore, 

IOh Ie dz = Ie I; dz = feh. But since h =1= 0, and it is given that the integral form 

of continuity is zero, we must have Ie = O. Therefore continuity is satisfied. This is 

particularly relevant because the previous section which derived the Poisson pressure 

equation used the integral form of continuity and this section employed the differential 

form of continuity. 

4.2.4 Discrete Energy Equation 

This section discusses the discretization of Equations (3.68), (3.71), and (3.72). It 

is assumed that the velocity components and viscosity are known. 
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First, Equation (3.68) is written in the form 

(4.25) 

where the coefficients of the energy equation, (4.25), are defined as follows: 

Ar- = Grh:v; A _ _ Grh:vo 
(.R.-l)' o-[f{R.-l)+l]Oo' 

[ 
* 8h. v;z 8h. voz 1 

Af = Grh. V z - 8f (14 - 1) - 89 [f (R* - 1) + 1]0
0 

' (4.26) 

fVD = ~.Br [(;;)' + (;;) ']. 

Second, using Equation (4.2) the terms in Equation (4.26) are discretized: 

[

0 ° k] Grh[iJ ]2v *[iJ,k] G h[iJ]2 *[iJ,k] 
A!J, = • r A~J,k] = r. vB 

r (14 - 1)' B [f[i] (14 - 1) + 1]00 ' 

_ [iJ] Z Z T • * 
[ 

(v*[i+l,j,k] + V*[i-l,j,k]) V.[iJ,k]z[k] (h[i+lJ ] _ h[i-1J ]) 

Az - Grh* 2 - !1f (R. - 1) 

( 
*[H1J+1,k] + *[i-1J+l,k] + *[H1J-1,k] + .[i-l,j-l,k]) -[k] (h[iJ+l] h[iJ-lJ)] 

vB VB VB VB Z * -. 

- 4!10[f[i] (R. - 1) + l]eo ' 

[i,j,k]B [ 2 
iiJ,k] = J1.. r (v.[i,j,k+l] _ v.[i,j,k-l]) 

VD 4!1i2 r r 

+ 1 ( .[Hl,j+l,k+l] +. *[i-1J+l,k+l] + .[H1J-l,k+l] + *[i-1J-1,k+l] 
16~ ~ ~ ~ 

*[i+lJ+l,k-l] *[i-1J+1,k-l] *[i+1J-l,k-1] *[i-l,j-l,k- lJ)2] 
-vB - VB - V(J - VB . 

( 4.27) 

Note that Af, Az, and fv·D are defined on even i-nodes and even j-nodes, while Aij is 

defined on odd i-nodes and odd j-nodes. 

Third, the finite difference equation, which approximates Equation (4.25), was ob-

tained by applying a three-level fully implicit (3LFI) [16] scheme. Here, the equation 

was treated as parabolic in f. Diffusive and convective terms in the i-direction were 

handled implicitly using second order central differencing, while the convective term 
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in the 8-direction was treated explicitly using a three point upwinding technique. The 

discrete form of the energy equation was taken as follows: 

a[i,j,k]T[i,j,k] + a[i,j,k]T[i,j-2,k] + a[i,j,k]T[i,j-4,k] + a[i,j,k]T[i,j,k+l] 
IT. 2T. 3T. 4T. 

(4.28) 

+ a [i,j,k)T[i,j,k-l] _ j.[i,j,k] 
5T. - T , 

· . 3A~-I,j,k] 2 3 . . . . 
[1,J,k] = r + __ + ___ (A~,J+l'k) + A~,J-I,k]) 

alT 2~f ~z2 4~O S S ' 
where 

[i,j,k] __ ~ (\ ~,j+l,k) + \ ~,j-l,k]) 
a2T - ~8 AS AS ' 

[i,j,k] __ 1_ (A~,j+l,k) + A~,j-l,k]) 
a3T - 4~8 S S ' 

· . 3A~-1,j,k] 1 A~-3,j,k] [1,J,k] _ z _ __ _ z 
a4T - 4~z ~z2 -4~-z-' 

· . 3A~-I,j,k] 1 A~-3,j,k] 
[1,J,k):: + --=-.Z __ 

aST = - 4~z - ~z2 4~z' 

j.[i,j,k) =_ j[i-l,j,k) __ ii-3,j,k) + T[i-2,j,k] f + Af 
3 1 (3A[i-l,j,k] \ [i-3,j,k)) 

T 2 VD 2 VD • 2~f -2~-l -f-

A[i-3,j,k) 
_ T[i-4,j,k]_f __ 

• 2~f ' 
when i = 5, 7, ... Nr , while for i = 3, 

where 
. . Al2,j,k] Al4,j,k) ? 3 . . . . 

a[I,J,k) = _r __ + _r __ + _-_ + ___ (A~,}+l,k) + A~'}-l,k]) 
IT 2~f 2~f ~z2 4~O S S ' 

[i,j,k] __ ~ (\ ~,j+l,k] + \ ~,j-I,k)) 
a2T - ~8 AS AS ' 

[i,j,k] = ~ (A~,j+l,k) + A~,j-l,k)) 
a3T 4~O S S ' 

a[i,j,k) = _1_ (Al2,j,k) + Al4,j,k]) __ 1_ 
4T 4~z z z ~z2 ' 

~i,j,k] = _1 __ (Al2,j,k) + A(:i,j,k]) __ 1_ 
aoT 4~z z % ~z2 ' 

j. [i,j,k] = ~ (f[2,j,k] + f[~,j,k)) + T[I,j,k]_l_ (Al2,j,k] + Al4,j,k]) 
T 2 v D \I D • 2~f r r . 

Two sets of coefficients were required because Equation (4.28) requires two pre\'ious 

levels, i - 2 and i - 4, to determine the current level i. In other words, the solution to 
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the energy equation was obtained by marching forward in radius. This is considered 

a three level, fully implicit (3LFI) scheme. 

Note that at i = 1, the radial boundary condition in Equation (3.71) may be 

written discretely as follows: 

T[lj,k) = 1. .. (4.29) 

Further, for j = 2 and j = 4, Equation (4.28) suggests we must have knowledge of 

the temperature at j = -2 and j = o. However, as periodicity suggests, we have 

T[i,-2,k) = T[i,NI-3,k) .. .. , T [i,Q,k) = T[i,NI-l,k) .. .. . (4.30) 

In other words, two conditions are given because an upwinding technique is employed 

for the angular coordinate. Finally, Equation (3.72) is discretized using spatial second 

order differencing: 

T [ij,Q) = T[ij,2) 
* .' 

T[ij,N:+l) = T[ij,N:-l) .. ... (4.31) 

For each i-level, or discrete radial position, Equations (4.28), (4.29), (4.30), and 

(4.31) may be combined and written in terms of a block-banded matrLx. As men-

tioned above, an upwinding technique was used for the term BJoo. This term was 

handled implicitly as indicated by the finite difference structure of Equation (4.28). 

It was found that this considerably reduced numerical oscillations in the 8-direction 

compared with explicit second order central differencing. 

4.3 Algorithm Summary 

In the previous section, it has been indicated that each numerical problem may 
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be written in the following general form: 

[A]x=y. (4.32) 

In general, A is a block-banded matrix, x is an unknown vector corresponding to 

one of the unknown dependent variables: v;, v;, v;, p., or T., and y is a known 

forcing function corresponding to the right hand sides of Equations (4.7), (4.18), 

(4.22)' or (4.28). Further, it has been assumed that the viscosity distribution is 

known. However, we require the viscosity-temperature relation (3.53) to be satisfied. 

The algorithm used to solve the discrete form of the governing equations which are 

coupled by Equation (3.53) is discussed in this section. 

It is noted here that several methods exist to solve the system of linear algebraic 

equations indicated by Equation (4.32). A numerical scheme which solves a system 

of linear algebraic equations having a real banded coefficient matri"{ was chosen. The 

scheme computed a lower-upper (LU) factorization [16] of the coefficient matri"{ in 

order to check for a singular matrix and to expedite the solution. 

The first step in the algorithm was to assume a temperature distribution. The 

viscosity may be found on all nodal locations using Equation {3.53} and second order 

averaging. For example, to find the viscosity on even i-nodes and even j-nodes, the 

viscosity is computed at adjacent radial grid locations using Equation (3.53) and 

[" "k] ( ["+1 "kl [" 1 "kl) second order averaging, J1.:J • = ~ J1.: J. + J1.:- .). . 

Second, with the estimated viscosity distribution a pressure distribution is ob-

tained by solving the discrete pressure equation, introduced in section 4.3.2, written 

in the form of Equation (4.32). Third, the radial and angular components of velocity 

73 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

are solved using the equations introduced in section 4.3.1. Recall that in this sec-

tion the pressure and viscosity were treated as known quantities. Fourth, the a.xial 

velocity is obtained using the equations discussed in section 4.3.3. In this section, 

the radial and angular velocity components were treated as known quantities. Fifth, 

the temperature is obtained using the equations introduced in section 4.3.4. 

A better approximation of the viscosity may be obtained using Equation (3.53). 

This iterative procedure is continued until the difference in the temperature fields falls 

below a specified error tolerance. In particular, the maximum temperature difference 

was required to be less than a specified tolerance. 

4.4 Treatment of Clutch Performance Parameters 

Upon solving the discretized fluid mechanics problem discussed in the previous 

section, the performance parameters are found using numerical integration. N umeri-

cal quadrature is employed. 

For example, the application of Simpson's rule on the radial volumetric flow rate 

will be discussed here. For convenience, this flow rate is redefined here: 

The inner integral can be approximated as follows: 

10
1 . . ~z ( N:-l N:-2) 

v* dz ~ I[IJ) = - v*[i,j,l) + v*[i,j,N=) + 4 '" v* [i,j,k) + 2 '" v* [i,j,k) 
or Q 3 r r ~ r ~ r . 

k=2,4,... k=3,<l, ... 

After obtaining the approximation for the inner integral, I Q , the flow rate may be 
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found using a second application of Simpson's rule: 

NO [r[i) (R. - 1) + 1]~8 .' . 
Q........ 9 0 (h["l)I["l) + h[i,Ns)I[I,Ne) 

r....... 6 • Q * Q 

Ne-1 Ne-2 ) 

+4 ~ Mi,jj I[i,j) + 2 ~ h[i,j) I[i,j) 
L....J • Q L....J. Q . 

j=2,4,... j=3,5, ... 

However, as can be noted from Equation (4.2), v;, and therefore I Q , is defined on even 

j-nodes. Using second order averaging for the terms defined in the above equation 

on odd j-nodes, the above expression reduces to the following equation: 

Ns-l 
Q; ~ NgOo[r[i) (R. - 1) + 1]~8 2: h~i.i)Ig,j). 

j=2,4, ... 

Similar expressions were obtained for the normal force, F;, the tangential forces, F;.h' 

F;'o, and FO,h' and the frictional moment, l\11'F. 

4.5 Numerical Verification 

The solutions presented in this section offer specialized check cases for the nu-

merical algorithm. The first section discusses isoviscous axisymmetric solutions and 

presents an analytical solution. The second section discusses an isoviscous solution 

with radial grooves. In each section, numerical and analytical results are compared. 

4.5.1 Isoviscous Axisymmetic Solutions 

This section discusses isoviscous axisymmetric solutions of the governing equa-

tions. Since the flow field is incompressible, the assumption of constant viscosity. 

fl.. = 1, decouples the energy equation from the momentum equations. We consider 

only the hydrodynamic dependent variables: P., v;, vB' and v;. The assumption of 
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axisymmetry implies all changes in the B.-direction are zero, a~. = O. This is accom-

plished by using a film thickness which is a function of radius only, h. = h. (T.). 

Under these conditions, a solution for v; may be obtained using Equations (3.47) 

and (3.54): 

(4.33) 

Equations (3.46) and (3.54) may be used to obtain an expression for v; in terms of 

the pressure: 

• 1 ap. ( 2 ) vr = --a Z. - z.h. . 
2 T. 

(4.34) 

To obtain a solution for the pressure field, the above equation and (3.45) are integrated 

with respect to Z., from Z. = 0 to z. = h •. The following differential equation results 

from combining the resulting expressions: 

a ( ap.) aT. T.h. aT. = O. (4.35) 

The boundary conditions listed in Equation (3.55) may be used with Equation (4.35) 

to find the pressure field. Once the pressure is obtained, the radial velocity may 

be obtained using Equation (4.34). The axial velocity may be obtained from the 

differential form of Equation (3.45) along with Equation (3.54). 

An analytical solution was obtained for a radially varying film thickness of the 

form h. = 1 + b1 T., where b1 is a constant: 

• p~ (2 h ) Vr = 2b h3 Z. - z. * , 
2T •• 
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v" = blP~Z; (Z .. _ 1) 
~ 2b2r .. h~ h.. ' 

= P~ [(2h .. + 1) _ (2hi + 1) In [(h .. - 1) hi]] 
p.. b 2h2 2h!2 + (h! - 1) h . 

2 .. 1 1" 

Here, the dimensionless radial inlet and outlet film thicknesses were defined as hi = 

1 + b1 and h~ = 1 + b1 R.. The constant b2 is defined as follows: 

b = (2h~ + 1) _ (2hi + 1) In [(h~ - 1) hi]. 
2 2h .. 2 2M2 (h! - 1) h· o 1 1 0 

While the flow is axisymmetric, the film varies linearly with r... In the limit that the 

film thickness is constant, b1 = 0, one can show that the axial velocity vanishes using 

L'Hopital's rule. Intuition suggests this feature is a necessity from mass continuity 

arguments. 

Figures 4.2 through 4.5 show a comparison between the analytical and numerical 

solutions using R .. = ~, r2. = 1, p .. o = -1.393, and b1 = 1. Using these specified 

parameters, the reader can verify that hi = 2, h~ = i, and b2 = 0.043456. 

Dimensionless Pressure vs. Qimensionless RaaiL.<s 
0.0 I I 

-0.5 

r i 
1 

+ NumeriCOI SOlution j 
- AnOlyticcl Solut;on J 

! 
1 
i 

1 
i 
i -1.0~ J 

t j 

-1.5 '------~ _'--------' 
1.0 1.2 1.4 , .6 ~ .8 

r. 

Figure 4.2: Numerical and Analytical Pressure Profiles 
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2.0 
Redial Velocity 

2.0 

(a) (b) 

Figure 4.3: (a) Numerical and (b) Analytical Radial Velocity Profiles 

AnqulC r velocity 

2.0 2.0 

(a) (b) 

Figure 4.4: (a) Numerical and (b) Analytical Angular Velocity Profiles 

A convergence study on the velocity components was completed using the following 

error equation: 

error 

Here, VA and VN respectively denote analytically and numerically predicted velocity 

components, and N represents the total number of nodes for a particular velocity 

component. Summations are taken over the radial, angular, and axial grid locations. 

This error was presumed to be a function of grid resolution. The results from this error 
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<.2 

•. 0 

(a) (b) 

Figure 4.5: (a) Numerical and (b) Analytical Axial Velocity Profiles 

analysis are shown in Figure 4.6. In this study, while the computational grid spacings 

Error Anal sis of Velocit Components 
10-4r-------~------~--~~--~~~-, 

2 
c 
Q) 10-6 c 
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0 10-8 · u + v, 
?:- · " Vs 
u · .2 10- 10 - Vz Q) 

> 

10-12~ c 
'-
0 
'-
'-w 

10- 14
1 

0.01 D.: 0 
M, 68, 6"2 

Figure 4.6: Error Analysis for Isoviscous Axisymmetric Check Case 

were varied, the relative size of these grid spacings were held fixed: 6.f = 6.8 = ~Z. 

From Figure 4.6, the error in the numerically predicted angular velocity distribution 

is round-off error. In other words, there is no truncation error in the prediction of the 

angular velocity component. Further, the error in the radial and axial components ap-

pear similar in magnitude over the range of grid spacings examined. The results from 
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these two components indicate that the measured order of accuracy was 0 (~f3.456) 

for v; and 0 (~f3.379) for v;. This is an improvement over the theoretical order of 

accuracy, 0 (Af2). While no formal truncation error analysis was completed, it is 

believed that this improvement is a result of the symmetry present in the problem. 

In addition, the clutch performance parameters, mentioned previously, were ob-

tained for this check case: 

F;,h = 0, 

where, 

b = (h* _ h~) _ ~ I h~ ~ (~ _ ~) _ (2hi + 1) (h~2 - h;2 _ h* h~) 
3 0 I 2 n h~ + 2 h* h~ 2h~2 2 0 + I 

I 0 I I 

+ {h~ ~ 1)2 (2In{h~ -1) -1) _ {hi ~ 1)2 (2In{h; -1) -1) 

h*2 h*2 
- _0 (2Inh* -1) + _i (2Inh~ -1) + (h*lnh* - h*) - (h~lnh~ - h~) 4 0 4 I 000 I I I 

_ I (hi - 1) (h~2 - hi
2 

_ h* h~) 
n h~ 2 0 + I , 

I 

h*3 h*3 3 h* 
b4 = 0 - i - - (h*2 - h~2) + 3 (h* - h~) - In .-£. 3 2 0 I 0 I h~ . 

I 

It should be clear that the analytical expressions are cumbersome for this relatively 

simple flow field. Nevertheless, agreement was found between the numerically pre-

dieted performance parameters and the analytical expressions above. For the speci-

fied dimensionless parameters, along with S = 0.598 and € = 8.33 X 10-4 , the clutch 

performance parameters were computed: 

Q; = 16.79, F; = 0.456, 
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F;,Q = -F;,h = -2.843 x 10-4, 

MF = -3.90 x 10-4
, J1.F = 6.23 X 10-4

• 

4.5.2 Isoviscous, Radially Grooved Solution 

This solution considers a non-axisymmetric film thickness. The geometry under 

consideration is similar to a parallel-step slider bearing, or Rayleigh Step Bearing. 

Similar two-dimensional problems are solved by Hamrock [22] in Cartesian coordinates 

and Gross [18] in cylindrical coordinates. As in the previous analytical solution, 

the lubricant was taken as isoviscous which decoupled the momentum and energy 

equations. Results are presented for dimensionless pressure distribution, p ... 

The film thickness was defined in parts: 

1 O<(J <!lsz. _.. 3 

h. = 2 !lsz. < (J < £!lsz. 3 _. 3 (4.36) 

1 

Unlike the previous section, the film thickness depends on the angular coordinate, 

(J., and is not continuous. In Chapter 3, we assumed that there were no severe 

gradients in the film thickness. Here, we temporarily relax this assumption and 

assume Equations (3.64-3.72) are still valid. We note that this violates the strict 

ordering scheme developed earlier so that the solutions obtained are not rational limits 

of the Navier Stokes Equations. Nevertheless, such analyses have yielded results which 

compare favorably with experiments and are consistent with Hamrock and Gross. 

Analytical solutions can be obtained because the pressure adjacent to each parallel 
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surface satisfies Laplace's equation [18, 22]: 

In addition to the periodic boundary conditions at (). = 0 and (). = (}o listed in 

Equation (3.55), the pressure and flow rates per unit depth across the planes 0. = ~ 

and (). = ~ are required to be continuous. The angular flow rate per unit depth is 

defined as 

rh(r,O) 

Qo = 10 Vo dz, 

or 

• _ Qo _ rh.(r.,O.) • 

Qo - rh~ho - 10 Vo dz., 

in dimensionless terms. For isoviscous flow, Equations (3.47) and (3.54) may be used 

to predict an angular velocity in terms of the pressure gradient: 

• _ (z; - z.h.) 8p. () (1 _ z.) 
Vo - 2r* 8(}. + r*H. h*· 

By substituting this equation into the expression for Qo and requiring the flow rates 

per unit length to be continuous as mentioned above, the boundary conditions on 

pressure may be stated mathematically as follows: 

p·1 9+ = p·1 9-0.==+ 0.==+ [
_ h~ 8p. + n.r.h.] = [_ h~ 8p. + n.r"h*] 

12r.8(}. 2 o.=~ 12r" 80. 2 o.=~ 

[ 
h~ 8p. n.r.h.] [h; 8p" n.r"h.] 

-12r.8(). + 2 o.=¥ = -12r" 8(}. + 2 0.==+ 
Further, we require a homogeneous condition on r. = R •. Namely, from Equation 

(3.55), p~ = o. 
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The solution for the pressure distribution, in each region where the film thickness 

is continuous, may be stated as follows: 

00 

p. = L [.an cosh (AnO.) + 'Yn sinh (AnO.) 1 sin (An In T.) (4.37) 
n=l 

The coefficients, .an and 'Yn, are defined for the three separate continuous regions: 

Pn = 

'Yn = 

o 

r n (18 sinh A0380 - 22 sinh A0380 - 14 sinh AnOo - 4 sinh 2A380 ) 

( 
. 4AnOo . AnOo . 

- rn -32smh -3- + 18sinh-
3

- + 28smhAnOo 

18 . h AnOo 32· h 2AnOo) + sm --- sm--
3 3 

2r n (18 cosh 2A380 - 32 cosh A~80 + 14) 

( 
4AnOo AnOo 

- r n 18 cosh -3- - 14 + 14 cosh -3- - 14 cosh AnOo 

4 h 2AnOo) - cos --
3 

( 
4AnOo AnOo 

r n -32 cosh -3- + 18 cosh -3- + 28 cosh AnOo 

18 h 5AnOo 32 h 2AnOo) + cos -- - cos--
3 3 

Here, r n and An are defined as follows: 

-12n. [l-R~cosmr] r _ In R. (An)2+4 

n - -64 - 98 cosh A"380 + 162 cosh AnOo ' 

0<0 <&. - * 3 

A comparison of the analytical and numerically predicted pressure solutions is 

shown in Figure 4.7. The numerical and analytical solutions used the following di-

mensionless parameters: R. = ~, n. = 1, and 00 = 0.3. The infinite series in Equation 

(4.37) was truncated after the first one hundred terms. 
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pre~sure pressure 
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(a) (b) 

Figure 4.7: (a) Numerical and (b) Analytical Pressure Profiles using Nr = No = 125 

A more detailed comparison was completed by way of a convergence study. The 

following equation was used to evaluate the error in the analytical and numerical 

solutions: 

error 

Similar to the previous case, PA and PN respectively denote analytically and numeri-

cally predicted pressure values, and N represents the total number of nodes on which 

the solution was evaluated. Since the pressure is independent of z, summations are 

taken over the radial and angular indices only. As in the previous case, while the com-

putational grid spacings were varied, the relative size of these grid spacings were held 

fixed: I::..f = 1::..0. Figure 4.8 shows the results of this convergence study. Local peaks 

in the figure occur when the number of angular nodes, No, equals 37, 61, 85, 109, 133, 

and 157. For each of these scenarios, angular grid points lie exactly on the lines 0 = t 

and 0 = ~ where the discontinuities in film thickness occur. This can be shown using 

Equations (4.1) and (4.3). Considering both cases separately (where angular grid 
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Figure 4.8: Error Analysis for Isoviscous Radially Grooved Case 

points do and do not lie on the mentioned lines), the error decreases with decreasing 

grid spacing. The measured order of accuracy using No = 37,61,85,109,133, and 157 

was found to be 0 (~f1.968) and 0 (~f1.950) for the remaining cases. 

Once the pressure distribution is known, it is possible to obtain the radial and 

angular velocity components via the momentum equations. 

• 1 ap. ( 2 ) 
vr = 2' aT. z. - z.h. 

• 1 ap. ( 2 ) (z. ) 
Vo = 2T. ae. z. - z.h. + n.T. 1 - h. 

Note that while the pressure distribution is continuous, ~ is not everywhere con-

tinuous. This is shown in Figure 4.7 for both the exact solution and the numerical 

solution. Specifically, at the film thickness discontinuities the pressure gradient is 

not continuous. This shortcoming, overlooked throughout hydrodynamic lubrication 

theory, renders the angular velocity discontinuous at these planes. 
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Several statements can be made about this check case. First some general state­

ments can be inferred regarding the dependent variables: v;, vo, v;, and p., given an 

arbitrary film thickness. If the film thickness is continuous, then v;, vo, p., and 'Vp. 

are continuous. If the film thickness, and its derivative are continuous (C1) then v;, 

ve, v;, p., and 'Vp. are continuous. However, if the film thickness is discontinuous, 

then p. is continuous, but 'Vp. is discontinuous. These comments are justified in Ap­

pendix C by considering a simplified two-dimensional lubrication problem. Second, 

this geometry could be that of a legitimate clutch problem. Payvar [43, 44] consid­

ers this problem with the inclusion of diffusion terms in the angular direction. It 

is expected that these terms, and further no slip conditions, are required to smooth 

out the discontinuities. Nevertheless, the thin-film limit is an approximation which 

attempts to describe the physical problem. 

86 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 5 

RESULTS 

This chapter presents the results obtained for this dissertation. In the first section, 

the solution for a sinusoidally varying film is given. Here, the velocity, pressure, and 

temperature profiles are presented. In the second section, the effects of variable 

viscosity on the constant film case will be examined. Here, the effect on clutch 

performance of varying four independent parameters is examined. These results are 

compared to the analytical solution of the isoviscous, constant film case. In the third 

section, results indicating the effects of grooves are given. This section is divided 

into two parts: cavitation results and non-cavitation results. In the cavitation part, 

the effects of varying the Sommerfeld number and dimensionless groove depth on the 

normal load are given. In the non-cavitation part, the effects of varying groove depth 

on several performance parameters are given. In the fourth section, a generalization of 

the mathematical model to include heat transfer in the plates is given. The purpose 

of this section is to show how the lubrication theory may be coupled to a larger 

conjugate problem. Here, results are given for constant film shapes, variable film 

shapes, constant viscosity, and variable viscosity. 

5.1 Model Solution for a Sinusoidally Varying Film Thickness 

In this section, velocity, pressure, and temperature profiles are given for the fol-
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lowing film thickness: 

h B [ (27r(})] h = ho + ~ 1 - cos 0: . (5.1 ) 

Note that h is periodic and has the following properties: 

where ()' varies between 0 and !l;, and hgB is a constant. In dimensionless terms, the 

film thickness is as follows: 

h h*B [ (27r(}*)] h* = ho = 1 +; 1 - cos Oa ' (5.2) 

where h;B = ~. The dimensionless film thickness is shown in Figure 5.1. Dimen-

0.5 

Figure 5.1: Film thickness profile from Equation 5.2, using Nr - 49, NB - 49, 
R* = 1.3, (}o = 0.1, and h;B = 1.0. 

sionless velocity, pressure, and temperature profiles are shown in Figures 5.2 through 

5.6. Here, dimensionless parameters which were held fixed for this solution are listed 

in Table 5.1. 
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Figure 5.2: Pressure Profile 

€ = 1.0 X 10-3 Gr = 4.93 Br = 1.21 x 10-3 0. = -1.0 

R. = 1.3 p~ = -4.91 X 10-2 
hgO = 1.0 Bo = 0.1 

Ki = 165.83 K2 = 0.663 Kj = 1.5 m = 4.6384 

Nr =49 No =49 N z = 25 

Table 5.1: CONSTANT PARAMETERS FOR RESULTS PRESENTED IN SEC­
TION 5.1 

The pressure distribution, shown in Figure 5.2, satisfies the boundary conditions 

given in Equation (3.42). In particular, a radial pressure gradient, evident in the fig-

ure, is partially due to the enforcement of the radial boundary conditions: p. (1, B) = 0 

and p. (R., B) = p~. However, the relative angular velocity of the separator plate also 

plays a role in determining the pressure distribution. Since the relative angular ve-

locity of the separator plate, r2., is negative, the angular inlet section of the domain 

is B. > ~, and the angular outlet section is B. < ~. The dimensionless lubricant 
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pressure decreases upon entering the inlet section until it reaches a minimum. Beyond 

this point, at smaller values of ()., the pressure increases until it reaches a maximum. 

The pressure decreases beyond this maximum, and exhibits periodicity as indicated 

in Equation (3.42). 

o. 

0.2 

(a) (b) 

0·" 

0.2 C.2 

(c) Cd) 

Figure 5.3: Radial Velocity Profiles at (). = (a) 0, (b) 9t, (c) ~, and (d) ~. 

The velocity components, shown in Figures 5.3, 5.4, and 5.5, are shown in the 

r. - z. plane for four values of () •. All velocity components satisfy the no-slip condi-
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tion, indicated by Equation (3.41). Further, a recirculation pattern is evident in the 

velocity field. 

The temperature distribution, shown in Figure 5.6, satisfies the adiabatic con­

ditions, Equation (3.60), at the clutch plates, as well as the periodicty and inlet 

temperature conditions given by Equation (3.56). The temperature at the inner ra­

dius is equal to the inlet radial temperature, T. = 1. At larger radii, the temperature 

of the lubricant increases until it reaches a maximum at the outer radius. In this 

scenario, it was found that the maximum temperature occured at (). = ~ and z .. = h. 

This may partially be explained by the fact that the pressure gradient is severe at 

this location resulting in large viscous dissipation. 

5.2 Effects of Variable Viscosity on the Constant Film Thickness Case 

In this section, several clutch performance parameters are studied as functions of 

four independent parameters: the outer pressure, Po, the inlet temperature, To, the 

relative angular velocity, S1d , and the film thickness, ho . The performance parameters 

presented are the flow rate, Qr, the normal force, Fz, the tangential force due to vis­

cous shearing on the separator plate, F8,Q, the frictional moment, lVIF , the coefficient 

of friction, J-LF, and the maximum temperature rise, ~Tma.x. The maximum tempera­

ture rise is the largest increase in temperature found in the lubricant domain. In all 

cases it was found that the maximum temperature was located at r = Ro, and the 

minimum temperature was located at r =~. It is assumed that the film is constant, 

h = ho, and the viscosity is given by Equation (3.15) using SAE 10 oil. Constant 
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parameters which were held fixed are listed in Table 5.2. 

Nr =31 

~ = 5.0 X 10-2 m Ro = 6.5 X 10-2 m (}o = 0.1 rad 

Pi = 2.5 Jy[ Pa p=920 ~ c = 2 0 -Y- k = 0.14 mWK • kgK 

Table 5.2: CONSTANT PARAMETERS FOR RESULTS PRESENTED IN SEC­
TION 5.2 

Assuming that the viscosity is constant, f..L = f..Lo, the solution for the hydrodynamic 

variables, Vr , Vo, vz , and p, is as follows: 

V z = 0, 

(p } ln~i 
P = Pi + 0 - Pi l&'· 

nR.; 

In this scenario, the energy equation reduces to the following relation: 

fJT a T aVr aVe 2 [() 2 ( ) 2] PCUr ar = k az2 + f..Lo az + GZ ' 

which may be used with the appropriate boundary conditions, 

onr=~ 

- -- -0 aTl aTl a z z=O - GZ z=ho - , 

{5.3} 

{5.-1} 

{5.5} 

{5.6} 

(5.7) 

to obtain the temperature. In short, a closed form analytic solution for the tem-

perature field was not obtained for the isoviscous case. Nevertheless, five of the six 
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performance parameters may be stated explicitly: 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

Equations (5.3-5.12) represent the isoviscous, constant film solution. This solution 

is qualitatively compared to numerically predicted, variable viscosity results given in 

Figures 5.7 through 5.24. 

The effects of varying the outer pressure, Po, are illustrated in Figures 5.7 through 

5.12 using To = 300K and nd = -100 r~d. Note that increasing the outer pressure 

decreases the pressure difference, Pd = (Pi - Po) It is found that increasing the 

pressure difference increases the flow rate, Qr. as shown in Figure 5.7. This trend 

is consistent with the isoviscous case given by Equation (5.8). The normal force, 

Fz , increases with increasing outer pressure as indicated in Figure 5.8. This trend 

is consistent with Equation (5.9) for t = 1.3. Both the tangential force, FO,D, and 

the moment }.t[F, decrease with increasing outer pressure as shown in Figures 5.9 and 

5.10. This effect is due to the viscosity-temperature relation as it can not be explained 

using Equations (5.1O) and (5.11). Both the increasing normal force and decreasing 

tangential force with increasing outer pressure lead to a decreasing friction coefficient 
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as shown in Figure 5.11. Depending on whether the film thickness is large or small, 

the maximum temperature rise will either increase or decrease with increasing outer 

pressure as shown in Figure 5.12. That is, for large h, as Pd ~ 0, ~Tmax ~ 0, and 

for small h, as Pd ~ 0, ~Tmax ~ 00. Assuming a finite radial flow, the term Il( ~)2 

in the energy equation is the most significant heating term for large h, and the term 

Il ( ~ ) 2 
is the most significant heating term for small h. As the pressure difference 

goes to zero, Il( t:-) 2 for large h goes to zero, resulting in decreased temperature 

rises. On the other hand, for small h, Il( ~) 2 is nearly unaffected by the pressure 

difference. However, in this case convection in the radial direction is hindered with 

decreasing Pd, resulting in increased temperature rises. 

The effects of varying the inlet temperature, To, are illustrated in Figures 5.13 

through 5.18 using Po = 0.5 NI Pa and nd = -100 r~d. In Figure 5.13, the radial flow 

rate increases with increasing inlet temperature. Since the viscosity decreases with 

increasing temperature, the resistance to flow decreases and the flow rate increases. 

This is consistent with Equation (5.8). Unlike the isoviscous normal force given in 

Equation (5.9), the normal force was found to increase with increasing inlet temper-

ature as shown in Figure 5.14. The tangential force, moment, and friction coefficient 

were found to decrease with increasing temperature as shown in Figures 5.15, 5.16. 

and 5.17. This is consistent with the viscosity-temperature relation and Equations 

(5.10), (5.11), and (5.12). The maximum temperature rise increases for smaller inlet 

temperatures as shown in Figure 5.18. For small inlet temperatures, the viscosity is 

high reSUlting in large viscous dissipation. In other words, high temperature rises are 
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expected for low inlet temperatures. For the five highest temperature rises shown in 

Figure 5.18 the ratio of Brinkman to Graetz numbers varies between 0.042 and O.OB. 

Clearly, when this ratio increases (decreasing film thickness) the maximum temper-

ature rise increases. A particular study, involving the relative order of magnitude of 

the terms in the energy equation, was performed for this set of operating conditions. 

Dimensionless results are reported for the maximum values of convection, conduction, 

and viscous dissipation in Table 5.3. The Graetz and Brinkman numbers were varied 

Case # 1 2 3 4 5 6 

h X 106 (m) 60 8 8 8 8 8 

To (K) 400 400 425 450 475 500 

Gr x 102 473 8.40 8.40 8.40 8.40 8.40 

Br x 104 10 10 7.4 5.4 4.2 3.4 

[v*aT.] x 102 
r ar. max 9.78 2.37 1.92 1.55 1.30 1.10 

[tL(~) 2] YnnT 
1.69 1.17 1.41 1.53 1.60 1.63 

rtL(~ )2]= 446 0.18 0.31 0.48 0.69 0.92 

[Grv* aT. ] X 104 
r 8r. max 4620 20.6 16.1 13.0 10.9 9.24 

[§.] X 104 
az. max 

1420 7.00 5.B8 4.96 4.30 3.81 

[Brp ((~)2 + (~)2) ] milT X 104 44BO 13.5 12.6 10.8 9.56 8.67 

Table 5.3: MAXIMUM VALUES OF TERMS IN DIMENSIONLESS ENERGY 
EQUATION 

by changing the film thickness and inlet temperature respectively. The ma...amum 
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values of the convection, conduction, and viscous dissipation were obtained by exam-

ining the entire domain using finite differencing and determining the maximum. The 

results indicate that while a balance between the terms in the energy equation was 

achieved, the choice of scaling could be improved. Clearly, the convection, conduc-

tion, and viscous dissipation differ by no more than an order of magnitude for any 

individual case. Furthermore, the numbers given in the last three rows indicate that 

the contibution of each of these mechanisms is significant. Interestingly, conduction 

is consistently the smallest. It is believed that this quantity is the smallest because 

of the adiabatic conditions enforced on the clutch plates. However, as indicated, 

the dimensionless variables are not 0 (1) for the results examined. This is clearly 

illustrated by the terms [v; ~.] and [88
2
').] in Table 5.3. 

ur. max z. max 

The effects of varying the relative angular velocity, nd, are illustrated in Figures 

5.19 through 5.24 using Po = 0.5 NI Pa and To = 300 K. Increasing the magnitude of 

the slip speed tends to increase the shear rate leading to high temperatures. Results 

regarding the flow rate, normal force, and maximum temperature rise are consistent 

with previous discussions. Increasing the slip speed magnitude tends to increase 

the tangential force, moment, and friction coefficient. This is consistent with the 

isoviscous trends given in Equations (5.10), (5.11), and (5.12). 

The effects of varying the film thickness are shown in Figures 5.7 through 5.24. 
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'. ~ 

(a) (b) 

(c) (d) 

Figure 5.4: Angular Velocity Profiles at (J. = (a) 0, (b) ~, (c) ~, and (d) ~. 
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(a) (b) 
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.. 
~ 

(c) (d) 

Figure 5.5: Axial Velocity Profiles at (J. = (a) 0, (b) ~, (c) ~, and (d) ~. 
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,.0020 

(a) (b) 

(e) Cd) 

Figure 5.6: Temperature Profiles at (). - (a) 0, (b) ~, (e) ~, and (d) ~. 
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Figure 5.7: Variation of Flow Rate with Outlet Pressure 
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Figure 5.8: Variation of Normal Force with Outlet Pressure 
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Figure 5.9: Variation of Tangential Force with Outlet Pressure 
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Figure 5.10: Variation of Friction Torque with Outlet Pressure 

Friction ::oefficien! vs. ",1m -hickness 
0.008 

:l. :: 0.5 UPc'" 1 
••• 1.0 UPo. ,i 

C o.=l.SUPo' 
.~ 0.006 p. = 2.0 liFo - -i 

~ f j 
.. g~ 0.004 ~ ~ ' •• 300 ~ j 
: 000'[ ~ •. -'00 ."'j 

L I 
0.000 i"" _________ --=:z-________ ... i. 

10-5 10-4 :0-3 

1"1, Film ihiCkness. (meters) 

Figure 5.11: Variation of Friction Coefficient with Outlet Pressure 
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Figure 5.12: Variation of Temperature Rise with Outlet Pressure 
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=Iaw Rote 'IS. Film T .,ickness 

Figure 5.13: Variation of Flow Rate with Inlet Temperature 
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Figure 5.14: Variation of Normal Force with Inlet Temperature 
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Figure 5.15: Variation of Tangential Force with Inlet Temperature 
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Figure 5.16: Variation of Friction Torque with Inlet Temperature 
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Figure 5.17: Variation of Friction Coefficient with Inlet Temperature 
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Figure 5.18: Variation of Temperature Rise with Inlet Temperature 
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Figure 5.19: Variation of Flow Rate with Relative Angular Velocity 
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Figure 5.21: Variation of Tangential Force with Relative Angular Velocity 
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Figure 5.22: Variation of Friction Torque with Relative Angular Velocity 

Results which are inconsistent with the isoviscous solution can be explained with 

the viscosity-temperature relation. For example, the frictional moment shown in 

Figure 5.22 reaches a maximum and begins to decrease with decreasing film thickness. 

Here, the small film thickness tends to increase the temperature, resulting in reduced 

viscosity, which finally leads to a decrease in frictional moment. Another example 

is the trend of quantities to approach a limiting curve as the film thickness becomes 

large. Note that the tangential force and torque approach a single curve as shown 

in Figures 5.9 and 5.10. Again, this can be explained by the fact that at large 

film thicknesses, temperature differences in the domain are negligible, resulting in a 

fairly constant viscosity. From Equations (5.1O) and (5.11), since lv!F and Fs.o are 

independent of Po, a limiting curve is expected for constant viscosity solutions. 

A comparison between variable viscosity and constant viscosity predictions is given 

in Table 5.4. Constant viscosity clutch performance parameters were based on a nodal 

average temperature: 

4 "'~r ",ry9 "'~: T[iJ.kj 
T - L..l=1.3 •... L..J=2.4 ••.• L..l=1.2 •.•• 

AVG - (Nr + 1) (Ns - 1) Nz 
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Figure 5.23: Variation of Friction Coefficient with Relative Angular Velocity 
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Figure 5.24: Variation of Temperature Rise with Relative Angular Velocity 

To obtain the average temperature, the existing algorithm was changed merely by 

requiring a spatially independent viscosity. In other words, an inital guess for viscos-

ity was made. The pressure, velocity components, and temperature were obtained 

as explained in Chapter 4. The average temperature was computed using the above 

equation. Finally, an improved guess for the viscosity, based on Equation (3.53), was 

made. Again, iteration was required. Thus, the constant viscosity clutch performance 

parameters listed in Table 5.4 are based on a reasonable approximation of the bulk 

viscosity of the lubricant. Five input states are given in Table 5.3. State 1 is consid-

106 

---------- ---- --



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

ered Po = 1.5 lv[ Pa, ho = 60 f.1.m, To = 400 K, and nd = -50 r~d. The remaining 

four input states show the effects of individually varying the four input parameters 

from state 1. Figures 5.25- 5.28 compare velocity, pressure, and temperature profiles 

for variable and constant viscosity using the input data for state 1. 

Dimensionless Pressure vs. Dimensionless Rcdius 
0 j 

-2 .. Variaci. Viscosity ~ 
- Constant Viscosity 

~ -4r l 
i 1 

a. r 1 -6r 1 

-8~ ~ 
r l 

-10~ ...J 

-1) " I 
; 

1 
! 

1.0 1.2 1.4 
r. 

Figure 5.25: Variable and Constant Viscosity Pressure Profiles 

(a) (b) 

Figure 5.26: (a) Variable and (b) Constant Viscosity Radial Velocity Profiles 

While the predicted values of f.1.F, Fz , lV[F, Tmax , and Qr change significantly from 

state 1 by individually varying the outer pressure, film thickness, inlet temperature, 

and relative slip speed, the variation between the cr.lnstant viscosity model (CY) 
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Figure 5.27: (a) Variable and (b) Constant Viscosity Angular Velocity Profiles 

._00' 

(a) (b) 

Figure 5.28: (a) Variable and (b) Constant Temperature Profiles 

and the working variable viscosity model (VV) was found to be negligible. Clutch 

performance parameters predicted with the constant viscosity model were found to be 

within 1.5% of performance parameters predicted with the variable viscosity model. 

While only four parameters were examined, it can be concluded from the constant film 

case that if a rational method to choose the bulk viscosity is taken, spatial viscosity 

variations may be neglected. In practice, this may be difficult as one does not know 

a priori which temperature to choose. 

In summary, significant variations in the clutch performance parameters were 
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found by varying input parameters such as the film thickness and inlet temperature. 

The viscosity-temperature relation was found to show significant variation from the 

isoviscous results given by Equations (5.8-5.12). However, when a good estimation is 

made for the bulk viscosity of the lubricant, (such as the viscosity evaluated at the 

average temperature) the constant viscosity model produces similar results. 

5.3 Groove Studies 

In this section, several studies involving grooves in friction plates are presented. 

As mentioned previously, grooves are present in friction plates to enhance lubricant 

cooling. In the absence of grooves, the model reduces to a parallel plate hydrody-

namic thrust bearing. As a consequence, no load carrying capacity may be generated 

except by hydrostatic means. When grooves are present, the model may predict a 

hydrodynamic load carrying capacity. Again, our purpose for allowing for arbitrary 

geometry is to allow for any groove pattern. However, the results presented in this 

section use the following dimensionless groove shape: 

1 o ~ (J .. < ~ (1 - xd 

h" [8 ] 1 + --::.i.- 2....:. - 1 + Xl Xl-X2 80 
~ (1 - xd ~ (J. < ~ (1 - X2) 

h. = 1 +h* ~ (1 - X2) ~ (J * < ~ (1 + X2) (5.13) 
9 

h" [8 ] 1 - --::.i.- 2....:. - 1 - Xl 
Xl-X2 80 

~ (1 + X2) ~ O. < ~ (1 + xd 

1 ~ (1 + xd ~ O. < 00 

which is illustrated in Figure 5.29. In Equation (5.13), h; = ~ is the ratio of groove 

depth to minimum film thickness, and Xl and X2 are referred to as the major and 
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- X190-
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z. 

e. 
90 
(a) (b) 

Figure 5.29: (a) Film Thickness Schematic in (). - z. plane and (b) Film Thickness 
with Xl = 0.4, X2 = 0.2, R. = 1.3, ()o = 0.1 rad, h; = 3.5. 

minor groove fractions, respectively. Finally, results presented in this section are 

divided into two parts: cavitation and non-cavitation studies. The results presented 

in the cavitation part are an isolated set in that negative pressures are predicted using 

the existing governing equations. Giimbel's [7, 18, 19, 22] approximation is employed 

to predict a load carrying capacity for this section. In the non-cavitation part, and 

throughout the remainder of this dissertation, negative pressures are not predicted. 

5.3.1 Cavitation Studies 

Cavitation refers to the formation of partial gas pockets in a liquid. This phe-

nomenon occurs when the liquid pressure falls below the vapor pressure. In an ideal 

incompressible fluid, Batchelor [4] notes that it is possible to predict thermodynami-

cally inadmissible negative pressures. In reality, the assumption of incompressibility 

is certainly questionable at these low pressures. 

This topic is relevant under groove studies. Birkhoff and Hays [7] cite specific 

lemmas regarding increasing and decreasing pressures in converging and diverging 
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domains. In particular, when the local film thickness is less than a specific value. 

the pressure will necessarily increase with further reduction in film size. Above this 

specific height, which is defined by the geometry and operating conditions of the 

lubrication problem of interest, the pressure will decrease. For the domain defined by 

Equation (5.13), the pressure will necessarily decrease in the diverging section and 

increase in the converging section. 

We adopt Giimbel's assumption which states that the vapor pressure is zero and 

negative pressures are neglected. Here, the difference between the vapor pressure and 

zero is small compared to positive pressures predicted in the lubricant. Physically, 

predicting negative pressures infers that a cavity is formed, the no-slip conditions and 

the incompressible continuity equation are inappropriate next to the cavity, and the 

posed model breaks down. Using the posed model with the assumption of neglecting 

negative pressures is a first approximation. Mathematically, Giimbel's assumption is 

to ignore negative pressures if the following inequality holds: 

(5.14) 

which may be shown using Equations (3.25) and (3.73). 

For this isolated set of results, we are only concerned with the lubricant load carry-

ing capacity, F;. The numerical analysis is performed exactly as before. However, in 

computing the performance parameters, negative pressures are simply ignored. ~ u-

merical results are presented for variable groove depth, h;, and Sommerfeld number, 

S. Unless otherwise stated, relevant dimensionless parameters which were held fi.xed 

are listed in Table 5.5. Isoviscous results, fl" = 1, are presented in Figures 5.30-5.33. 
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while variable viscosity results using the viscosity-temperature relation with SAE 10 

oil are shown in Figure 5.34. 
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Figure 5.30: (a) Typical Pressure Distribution and (b) Pressure Contours. (Using 
S = 968.72 and h; = 3.5.) 

Figure 5.30(a) shows a typical pressure distribution predicted by the numerical 

model using S = 968.72 and h; = 3.5. Figure 5.30(b) shows the same set of data 

displayed as a contour plot. Figure 5.31 shows the zones where cavitation will and 

will not occur. Note in Figure 5.31(a), for h; ~ 0 cavitation will not occur. In other 

words, without grooves cavitation will not occur. In Figure 5.31(b) the boundary 

between regimes reaches a maximum and then tends toward zero as hg ~ 00 • For 

large Sommerfeld number, cavitation occurs. These results are consistent with the 

two-dimensional Rayleigh thrust bearing theory [18, 22]. Figure 5.32 may be used to 

explain Figure 5.31. In this figure, S = 200. Assuming symmetry as shown in Figure 

5.30, the maximum and minimum dimensionless pressures have the same magnitude. 

Therefore, the groove depth which predicts the largest ma.ximum pressure should 

correspond to the position where cavitation is likeliest to occur in Figure 5.31. Further 
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in Figure 5.32, as the groove depth goes to zero, the ma..amum dimensional pressure 

approaches the inlet radial pressure. This corresponds to P* = 0 in dimensionless 

terms. The minimum pressure is found at the radial outlet, P* = p~. On the other 

hand, as the groove depth increases, cavitation occurs when the maximum pressure 

is larger than p* = ~ = 0.005. The minimum value for maximum pressure occurs 

in the zone where cavitation does not occur. As the groove depth gets large, the 

maximum pressure value remains finite resulting in an expanded zone of cavitation 

to include S = 200 as h; -+ 00. Figure 5.33 shows the normal load as a function of 

Sommerfeld number and groove depth. The trends indicate that using an ideal groove 

depth with a large Sommerfeld number will increase the load carrying capacity. The 

effect of the viscosity-temperature relation is shown in Figure 5.34. Here, S = 33.9 

and p~ = -0.02949. The constant viscosity case uses the dimensionless viscosity 

based on the inlet temperature throughout the domain. In other words, J.L* = 1 for 

the constant viscosity case. Note that the employment of the viscosity-temperature 

relation tends to decrease the load carrying capacity. This is consistent with previous 

results. That is, while no physical wedge was present for the constant film case. 

normal forces computed for variable viscosity were found to be less than constant 

viscosity predictions. This can be verified using Equation (5.9), Figure 5.14, and 

Table 5.2. 

5.3.2 Non-Cavitation Studies 

In this section, dimensionless results using variable and constant viscosity, groov­

ing and no grooving are presented. Here the effect of varying the groove depth, h;, on 
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Figure 5.31: Zones of Cavitation and No Cavitation 
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Figure 5.32: Maximum Pressure vs. Groove Depth 

800 'ece 

eight dimensionless clutch performance parameters is examined. These parameters 

are (1) the flow rate, Q;, (2) the normal load, F;, (3) the tangential force on the 

separator plate due to viscous shearing, Fo,o, (4) the tangential force on the friction 

plate due to viscous shearing, F;,h' (5) the tangential force on the friction plate due 

to pressure, F;,h' (6) the moment, !vIF, (7) the friction coefficient, iJF, and (8) the 

maximum temperature T~ax' All results predict positive pressures throughout the 

domain, P* > -~. Relevant dimensionless parameters which were held fixed are 

listed in Table 5.6. 

Results for this section are shown in Table 5.7. Here, the results for no grooves, 
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Figure 5.33: Normal Load vs. Groove Depth and Sommerfeld Number 
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Figure 5.34: Normal Load vs. Groove Depth using Variable and Constant Viscosity 

h; = 0, are compared to varying groove depth, h; = 0.5, h; = 1.0, and h; = 2.0. 

Further, the variable viscosity model is compared to the constant viscosity model. 

The acronyms, VV and CV, used in Table 5.7 denote variable and constant viscosity, 

respectively. Note that the flow rate increases as the groove depth increases. This is 

expected because a constant pressure difference, p~, is maintained. The normal force 

is constant for the CV case and increases for the VV case for increasing h;. This 

latter trend was observed for small film thicknesses as shown in Figures 5.8, 5.14, 

and 5.20. It is expected that the normal force will remain constant for the CV case 

because of the symmetry in pressure shown in the previous section. The tangential 
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forces due to viscous shearing decrease in magnitude as the groove depth increases. 

However, the tangential force due to pressure is zero for constant groove depth and 

increases as the groove depth increases. This is consistent with Equation (3.79). Note 

that in all cases, F;'o + F;,h + F;,h = a as mentioned in Chapter 3. This relation, 

which states that the sum of the tangential forces is zero, is in keeping with Newton's 

laws since acceleration terms in the momentum equations have been neglected. The 

maximum temperature decreases for increasing groove depth because the dominant 

heating term in the energy equation is J.L~, and this term decreases for increasing 

film thickness. 

Figure 5.35 shows velocity vectors at the average radius, T. = l+2
R
., for the case 

where h; = 0.5. Here, the velocity field is essentially a Couette flow in the O-direction. 
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Figure 5.35: Velocity Vectors at Average Clutch Radius 

Note that the axial velocity is significant on the physical wedges. 

5.4 Multiple Disk Solutions 

In this section, dimensional results for a conjugate lubrication, heat-transfer prob-
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lem are given. Here, an assembly of five clutch plates is examined as shown in Figure 

5.36(a). Temperature profiles throughout the assembly are predicted. 

1\,.,( T • Too) hoo( T - Too) 

~ •• t.. ____ 
2Lb ~ t.. ____ 

2Lb z,l 2Ls 2L 
-r---- --'- -A-S--__________ 1 __ 

-~-

----------'--
Lubricant Film .L 

-----'-----.-- h ---'------.--
-r -----r--- ____ t.. __ ----A---Thickness, h 

Lf ---&-- L f 
Separator plate 

LS Adiabatic 
Backing material • 

Friction material 
Separator plate 

5 Backing material • 
Friction material 

1\,.,( T • Toa) 
(a) (b) 

Figure 5.36: Multiple Disk Clutch Conjugate Model Schematic 

It is assumed that the ambient conditions, namely the convection coefficient, hoo, 

and ambient temperature, Too, are constant. Further, the film thickness between each 

plate is identical. These assumptions imply that axial symmetry may be taken about 

Zl = 3Ls + 2Lf + 2ho + 2Lb, as indicated in Figure 5.36(b). The thermal energy 

equation for each material region is ~~~ = 0, as indicated by Equations (3.50-3.52) 

and Figure 5.36(b). The boundary conditions on the temperature field are as follows: 
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on z' = 0 : 

on z' = Ll : 

on z' = Ll + h: 

on z' = L2 : 

on z' = L3 : 

on z' = L4 - h: 

on z' = L4 : 

on z' = L5 : 
(5.15) 

where, 

Ll = 2Ls , 

In the above equation, it has been assumed that L f is the maximum a.'Cial length of 

the friction material as shown in Figure 3.2. 

Using the fact that the temperature distributions are linear in the a.'Cial direction. 

the temperature distributions in the solid material regions may be determined in terms 

of the lubricant temperature and its derivative on z' = L 1 , Z' = Ll + h, z' = L4 - h. 

and z' = L4 • In other words, we have, 

(5.16) 
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where, 

k uri 
k. az' Z':L1 

·O<z'<L ' _ _ 1 

k uri kaz' 
/ Z':L1+h 

; L1 + h :::; z' :::; L2 

G1= k uri 
ko az' Z':L1 +h 

; L2 :::; Z' :::; L3 

k uri ; L3 :::; z' :::; L4 - h 
k/ az' , L h z: 4-

0 ; L4 :::; z' :::; L5 

TI - .!.. ur I L1 k az' 
Z'=L1 • Z'=L1 

·O<z'<L , _ _ 1 

TI - .!..url (L 1 + h) k az' 
Z'=L1 +h / Z'=L1 +h 

t (L2 - L1 - h)] 

TI - .!.. ur I [L4 - h] ; L3 :::; Zl :::; L4 - h 
Z'=L4-h k/ az' Z'=L4-h 

TI ; L4 :::; Zl :::; L5 
Z'=L4 

These ten expressions for C1 and C2 were found from the fourteen conditions in 

Equation (5.15). In addition, it may be shown that 

(5.17) 

Equation (5.17) is used to solve two coupled lubrication problems. The boundary con-

ditions which replace the adiabatic conditions given in dimensionless form in Equation 
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I
n=2 In=1 

I
n - 1 T - T 

kaT - _ z-h z-h 
8z z=h - 2Lt+:;o-2h + ¥:-' (5.18) 

and for the second lubricant film are 

aTln=2 aTln=1 
8z z=h = - 8z z=h' 

aTln=2 - =0. 
8z z=o 

(5.19) 

Here, n = 1 denotes the lubrication problem with axial domain L1 :s; z' :s; L1 + h, 

and n = 2 denotes the lubrication problem with axial domain L4 - h :s; z' :s; L4. For 

n = 1, z = z' - L1, and for n = 2, z = L4 - z'. Note that Equations (5.18) and 

(5.19) use a consistent notation convention with the axial coordinate, z, described in 

chapter 3. That is, in both lubrication problems we have z = 0 on the separator plate 

surface, and z = h on the friction plate surface. 

In order to solve this problem, iteration was employed. An initial guess was made 

for the second, n = 2, lubricant temperature field. Using this guess, the first, n = 1, 

lubrication problem was solved as usual substituting Equation (5.18) for Equation 

(3.60). Then, the second lubrication problem was solved by substituting Equation 

(5.19) for Equation (3.60). This procedure was continued until the difference between 

temperature fields between iteration cycles was negligible. 

Upon solving the coupled lubrication problems, the moment delivered to the clutch 

may be found. Referring to Figure 5.36(a) and observing symmetry, the net moment. 

MF, delivered to the output side of the clutch is the sum of the moments at each 

interface: 

(5.20) 
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The individual moments, AlF=l and AI'F=2, are calculated using Equation (3.84). 

An analytical solution was obtained using a zero radial pressure difference, Po = Pi, 

a constant viscosity, f.L = f.Lo, and a constant film thickness, h = ho• Under such 

conditions, the hydrodynamic variables for the lubricant are 

Vr = V z = 0, P=Pi· (5.21) 

Equation (5.21) applies to both lubricant films. The temperature field for the assem-

bly shown in Figure 5.36{b) is as follows: 

llonar2 [L + ~ + ~ + ...1... _ h _ ~] 
ho kl 2k k. hoc kl kl 

T-Too = llon~r2 [L + ~ + lli + ...1... + 0. _ h] 
ho kb 2k k. hoc kl kb 

llonar2 
[L + ~ + ~ + ...1... _ f.a. + 0. + lli] ; L3 :::; Z' :::; L4 - ho 

ho kl 2k k. hoc kl kl kb 

llonar2 [_(L4- ZI
)2 + ~ + lli + lli + ...1... + 2LI] ; L4 - ho :::; z' :::; L4 

ho 2kho k kb k. hoc kl 

llo~~r2 [¥: + ~ + h: + ¥;- + ~ I] ; L4 :::; Z' :::; L5 

(5.22) 

For this solution, the temperature condition at r = ~, Equation (3.20), is relaxed. 

This condition does not effect the temperature field because the energy equation for 

this case reduces to the following expression: 

In other words, since the convection terms vanish identically, information at the inner 

radius is not convected to the rest of the domain. 

121 

----- -----



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Relevant dimensional parameters which were held constant for the following results 

are listed in Table 5.8. Variable viscosity results are presented using the parameters 

associated with SAE 10 oil. The inlet pressure and groove depth were also varied in 

this study. The film shape was given by Equation (5.13). In dimensional form, this 

equation is as follows: 

h + ~ [2.!. - 1 + Xl] o XI-X2 80 

h= 

h - ~ [28. - 1 - Xl] o XI-X2 80 

o :5 () < ~ (1 - xd 

~ (1 - xd :5 () < ~ (1 - X2) 

~ (1 - X2) :5 () < ~ (1 + X2) 

~ (1 + X2) :5 () < ~ (1 + xd 

~ (1 + xd :5 () < ()o 

(5.23) 

Dimensional temperature profiles at the outer radius, r = Ro, are shown in Figures 

5.37-5.41. Figure 5.37 shows a comparison between the analytical and numerical 

solutions. Here, the viscosity is constant, the pressure difference is zero, ;; = 1. and 

the film thickness is constant, ~ = o. Figure 5.38 shows the effect of increasing 

the inlet lubricant pressure, Ei. = 2, while holding all other parameters fixed as in 
po 

Figure 5.37. Note that increasing the radial inlet pressure increases the flow rate 

resulting in significant convection to cool the clutch. Figure 5.39 illustrates the effect 

of using grooves, ~ = 0.5. Compared to Figure 5.38, the temperature distribution 

is lower. The temperature distribution resulting from the assumptions of constant 

film thickness and variable viscosity is shown in in Figure 5.40. Compared with 

Figure 5.38, the temperature distribution is slightly less with variable viscosity. The 

temperature distribution resulting from the assumptions of variable viscosity with 
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Figure 5.37: Comparison Between Numerical and Analytical Assembly Temperature 
Distributions at r = Ro using constant viscosity, 2i = 1, and :.!!Lhh = o. 

po 0 

grooves is shown in Figure 5.41. Here the temperature distribution is the lowest of 

the results presented. 

A summary of the clutch performance is given in Table 5.9. It is noted that 

while grooving serves to cool the clutch, the frictional moment is reduced. The 

model assumption of variable viscosity will give more realistic performance predic-

tions. However, at high temperatures, such as in this scenario (Too = To = 450K), 

the viscosity-temperature relation is not very sensitive compared to low temperature 
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Figure 5.38: Numerical Assembly Temperature Distributions at r = Ro with constant 
viscosity, 2i. = 2. and ~h = O. Po . 0 

scenarios. In other words, ~I < ~I . This results in approximately the same 
high T lowT 

temperature predictions for equal film shapes as shown in Table 5.9. 

In summary, temperature distributions were obtained for a symmetric clutch pack 

with five disks. It was assumed that the minimum film thickness, ho, was constant 

for all interfaces. The extension of this methodology to incorporate more disks, with 

or without the assumption of symmetry, is straightforward. One would solve the 

lubrication problem, as developed here, for each lubricant interface between clutch 
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plates. The appropriate heat flux and temperature continuity conditions should be 

used to replace the adiabatic conditions given by Equation (3.60). 

Numerical Solution 
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Figure 5.39: Numerical Assembly Temperature Distributions at T = Ro and () = 0 
with constant viscosity, Ei. = 2, and ~h = 0.5. 
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Po ho To nd J.LF Fz }.IfF Tmax Qr 

X 10-6 X 106 x102 X 105 X 10-4 x102 X 104 

(Pa) (m) (K) (r~d) (N) (N-m) (K) (";3 ) 

1.5 60 400 -50 VV 6.028 1.059 3.713 401.3 1.768 

CV 6.025 1.060 3.715 401.3 1.762 

0.15 60 400 -50 VV 9.601 0.6576 3.670 405.5 4.243 

CV 9.529 0.6625 3.671 404.5 4.191 

1.5 6 400 -50 VV 48.22 1.039 28.85 436.6 0.002179 

CV 48.05 1.060 29.63 437.1 0.002210 

1.5 60 300 -50 VV 153.2 1.048 92.83 304.3 0.06909 

CV 153.2 1.060 94.44 304.4 0.06932 

1.5 60 400 -150 VV 18.08 1.060 11.14 401.3 1.769 

CV 18.07 1.060 11.14 401.3 1.763 

Table 5.4: COMPARISON BETWEEN CONSTANT AND VARLI\BLE VISCOS­
ITY PREDICTIONS FOR THE CONSTANT FILM CASE (CV: CONSTANT VIS­
COSITY BASED ON AVERAGE TEMPERATURE PREDICTED THROUGHOCT 
DOMAIN, VV: WORKING VARIABLE VISCOSITY MODEL) 

127 

--------



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

€ = 2.0 X 10-4 Gr = 0.2628 Br = 2.1527 x 10-3 n. =-1 

R. = 1.3 p~ = -1.4747 X 10-4 Xl = 0.4 X2 = 0.2 

(Jo = 0.1 Ki = 165.83 K; = 0.663 Kj = 1.5 

NT = 31 No =31 N z =31 m = 4.6384 

Table 5.5: CONSTANT PARAMETERS FOR RESULTS PRESENTED IN SEC­
TION 5.3.1 

€ = 2.0 X 10-4 Gr = 0.2628 Br = 2.1527 x 10-3 n. =-1 

R. = 1.3 p~ = -7.3735 X 10-2 Xl = 0.4 X2 = 0.2 

(Jo = 0.1 Ki = 165.83 Ki = 0.663 Kj = 1.5 

NT = 31 No = 31 Nz = 31 m = 4.6384 

S = 6.7810 

Table 5.6: CONSTANT PARAMETERS FOR RESULTS PRESENTED IN SEC­
TION 5.3.2 
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h* 
9 Q; F* z F;'o F;'h F;'h }vI;" J.LF T;ax 

x102 X 102 x103 x102 
X 102 

0 CV 0.1472 0.7282 0.1569 -0.1569 0.000 0.1824 0.2154 1.163 

VV 0.1742 0.7134 0.1294 -0.1294 0.000 0.1494 0.1840 1.113 

0.5 CV 0.2440 0.7282 0.1476 -0.1323 -0.1530 0.1716 0.2027 1.098 

VV 0.2734 0.7178 0.1296 -0.1161 -0.1345 0.1499 0.1805 1.076 

1.0 CV 0.4245 0.7282 0.1458 -0.1157 -0.3009 0.1695 0.2002 1.060 

VV 0.4571 0.7212 0.1336 -0.1060 -0.2760 0.1548 0.1853 1.051 

2.0 CV 1.142 0.7282 0.1419 -0.0993 -0.4264 0.1650 0.1949 1.045 

VV 1.166 0.7260 0.1378 -0.0964 -0.4144 0.1601 0.1899 1.043 

Table 5.7: RESULTS FOR SECTION 5.3.2 (VV - VARIABLE VISCOSITY, CV -
CONSTANT VISCOSITY) 

Ro = 6.5 X 10-2 m ~ = 5.0 X 10-2 m ho = 1.0 X 10-5 m Od = -100.0 T~c1 

Po = 1.0 }vI Pa p= 920.0 ~ Xl = 0.4 X2 = 0.2 

k = 0.14 ~ ks = 60.0 ~i kf = 35 0 ..!!::.. • mK kb = 60.0 ~i 

(Jo = 0.1 Tad c = 2.0 k~~ To = 450.0 K Too = 450 K 

Nr = 13 No = 19 N z = 21 hoo = 800.0,:rK 

Ls = 1.5 X 10-3 m Lf = 1.0 X 10-3 m Lb = 5.0 X 10-4 m 

Table 5.8: CONSTANT PARAMETERS FOR RESULTS PRESENTED IN SEC­
TION 5.4 
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Figure 5.41: Numerical Assembly Temperature Distributions at r = Ro and () = 0 
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Input Maximum Temperature Moment 

Parameters Tmax , (K) M F , (N - m) 

Ei=l ~=O CV 
po ' ho ' 

466.14 0.989 

Ei = 2 ~ = 0 CV 
po ' ho ' 

457.27 0.989 

Ei = 2 ~ = 0.5 CV 
Po ' ho ' 

454.68 0.923 

Ei=2 ~=O VV 
po ' ho ' 

456.90 0.957 

Ei = 2 ~ = 0.5 VV 
Po ' ho ' 

452.74 0.904 

Table 5.9: SUMMARY OF CLUTCH PERFORMANCE (VV - VARIABLE VIS­
COSITY, CV - CONSTANT VISCOSITY) 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

This discussion of the conclusions and recommendations is presented in two sec­

tions. In the first section, the results presented in the previous chapter are briefly 

discussed and critically reviewed. In the second section, recommendations for future 

research are presented in two parts: experimental research and theoretical research. In 

the experimental part, benefits and foreseeable difficulties in correlating the hydrody­

namic theory are discussed. In the theoretical part, incremental model improvements 

as well as boundary and mLxed film lubrication theories are discussed. 

6.1 Discussion of Results 

In the previous chapter, results were presented for (1) the constant film, variable 

viscosity case, (2) groove studies including cavitation and noncavitation, and (3) the 

conjugate multiple disk model. These results are discussed and critically reviewed 

below. 

In the constant film, variable viscosity case an isoviscous analytic solution was 

presented for the hydrodynamic variables, Vr , VB, vz , and p, while a simplified form 

of the energy equation was given for the temperature, T. This solution was used to 

highlight the effects of variable viscosity on six clutch performance parameters (radial 

flow rate, normal load, frictional force, frictional torque, friction coefficient, and max­

imum temperature rise) while varying four operating conditions (film thickness, inlet 
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temperature, radial pressure difference, and relative angular velocity). In general, 

the results' trends agreed with the expectations of the isoviscous case. Exceptions in 

the trends were accounted for using arguments involving the viscosity-temperature 

relation. Further, a limited study comparing variable and constant viscosity models 

was given for the constant film case. A bulk viscosity, based on the nodal average 

lubricant temperature was used for the isoviscous results presented. It was found 

that the difference between the variable viscosity results and isoviscous results was 

negligible. 

In the groove studies, the effects of Gumbel's cavitation assumption on load car­

rying capacity were presented as functions of Sommerfeld number and dimensionless 

groove depth. In the noncavitation results, eight dimensionless parameters (radial 

flow rate, normal load, tangential force due to viscous shearing on the separator 

plate, tangential force due to viscous shearing on the friction plate, tangential force 

due to pressure, frictional torque, coefficient of friction, and maximum temperature) 

were studied as functions of dimensionless groove depth. In both cavitating and 

noncavitating parts, results were presented for variable and constant viscosity. 

Gumbel's cavitation assumption is based on assuming that the film length de­

creases appropriately in the ambient region such that the continuity equation is sat­

isfied. In such a scenario, the no-slip boundary conditions are inappropriate in the 

ambient region. Such arguments attacking this ad hoc model are noteworthy. Most 

importantly, the continuity and momentum equations are elliptic in this formula­

tion. Any change in the nature of the solution will influence the solution throughout 
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the domain. In other words, setting predicted subambient pressures equal to zero 

should influence the positive pressures. Giimbel's assumption ignores the nature of 

the governing equations. 

A more general critique of the groove studies concerns the model's claim to han-

dIe an arbitrary film thickness. Consider the isoviscous Reynolds equation for this 

problem: 

which may be obtained by integrating the radial and angular momentum equations 

with respect to z, enforcing the no-slip boundary conditions on Vr and Vo, integrating 

the continuity equation from z = 0 to z = h, integrating the continuity equation 

from z = 0 to z = h, enforcing the no-slip boundary conditions on vz , and invoking 

Leibnitz's integration rule. For a specified film thickness, h = h (r, (J), the above 

equation is a linear partial differential equation in p. To guarantee existence and 

uniqueness the coefficients of the pressure derivatives must be continuous within the 

domain. This implies that the film thickness must be continuous and differentiable, 

Cl, to guarantee a unique solution. Nevertheless, solutions presented in this disser-

tation which violate this criteria predict smoothly varying pressure distributions in 

sub domains where h is C1
. It is at discontinuities in film thickness where the pressure 

gradient is not continuous. In conclusion, we note the following constraint on the film 

thickness for lubrication problems: if the pressure gradient in the direction across the 

film is taken to be zero, the film shape must be C1 in order to predict a smoothly 

varying pressure distribution. 
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In the multiple disk solutions, two coupled lubrication problems were solved us­

ing a straightforward iterative technique. Temperature profiles were presented for 

grooves and no grooves, variable and constant viscosity, and finite and zero radial 

convection. The results clearly indicate that the clutch temperature can be signifi­

cantly reduced with grooves and larger radial pressure gradients. However, the cost 

of this temperature reduction is a decreased torque level. 

While the model shows how this lubrication theory may be used to model multiple 

disk clutch engagement, a critique is that the problem is fairly cumbersome for only 

two steady state, scaled lubrication problems. At each iteration level, two lubrication 

problems are solved which include solving for the pressure, velocity components, 

and temperature iteratively using the viscosity-temperature relation as a constraint 

equation. In reality, the physical problem could be significantly more complicated 

requiring a more robust model. Some suggestions are recommended in the following 

section. 

6.2 Recommendations 

The following recommendations for future research are presented in two parts: ex­

perimental and theoretical. Recommendations in experimental studies are suggested 

via stating benefits of correlating theoretical and experimental data. Foreseeable 

problems in the experimental method are also mentioned. Theoretical recommen­

dations include incremental model improvements as well as mLxed and boundary 

lubrication theory models. 

134 

~------



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

6.2.1 Recommendations in Experimental Studies 

Before this hydrodynamic theory can be used to model actual clutch engagement, 

experimental and theoretical data must be correlated. Benefits of such a correlation 

include the establishment of a range of validity of the theory, as well as discovering 

new insights concerning the physical problem which may lead to improvements in the 

model. 

The range of validity of this model is restricted in many ways. If the temperature 

is in excess of 600 K, the lubricant will vaporize. As the film thickness gets smaller, 

surface roughness and eventually asperity contact become important. On the other 

hand, as the film gets larger, different terms, other than those included in this model. 

become increasingly important in the governing equations. If the pressure falls below 

the ambient pressure, surface tension and compressibility effects become important. 

Obviously it would be beneficial to establish a range of validity for this model. 

However, a price must be paid to establish such a range. Foreseeable problems in 

establishing an experimental to theoretical correlation include fixing the experimental 

domain conditions (film thickness, inlet temperature, inner and outer clutch pressures. 

slip speed, etc.) to coincide with the input conditions of the theory: as well as installing 

the measuring components. Fixing the domain conditions is not simple. Setting the 

radial pressure difference, Pd, and the film thickness, h, are two examples. Some 

type of measuring device, such as pressure transducer, would need to be installed 

at or near the inner and outer clutch radii. Information would likely need to be 

acquired remotely for two reasons: (1) the plates move with a relative speed and (2) 
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splines located at the inner and outer clutch plate radii and connecting hub severely 

complicate installation. An alternative to pressure measurement would be flow rate 

measurement. This might be easier depending on instrument availability, cost, and 

installation. In any case, it should be possible to back out the pressure difference from 

the measured flow rate using this theory. Fixing and measuring the film thickness 

are also complicated issues. Perhaps fixing the film size could be accomplished by 

fabricating separator rings similar to those found in rotating disk couplings [63]. The 

use of shims would not be recommended for two reasons: clutch plates have a relative 

motion and the shim's presence would disrupt the flow field. The relative motion of 

the plates complicates measuring the film size. A distinction between the grooves 

and the lands of the friction plates should be recognizable. An alternative to film 

thickness measurement would be torque measurement. Here, strain gages could be 

installed, the torque could be measured, and the film thickness could be obtained 

from the theory. 

6.2.2 Recommendations in Theoretical Studies 

This discussion of the theoretical recommendations is divided into two parts: in­

cremental model improvements as well as mixed and boundary lubrication models. 

The incremental model improvements part focuses on previous criticisms, while the 

boundary and mixed film part highlights the relevant mechanisms to be included in 

future studies and lists pertinent references. 
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Incremental Model Improvements 

Posing the hydrodynamic theory with additional terms in the governing equations, 

further boundary and initial conditions, and further constraint conditions would cer­

tainly be an improvement from a physical standpoint. Obviously, a greater effort 

from a computational perspective as well as a theoretical development perspective 

would be required. Perhaps the most critical benefit of such an exercise would be to 

show under what conditions the existing theory is valid. 

The philosophy used to obtain this dissertation's mathematical model used the 

following line of reasoning: (1) state a governing set of equations, (2) nondimen­

sionalize the governing equations using the appropriate scales, and (3) transform the 

nondimensional equations into a domain of manageable form. Clearly, by comparing 

the final conditions in Equations (3.44) and (3.57), information is lost when the film 

thickness gradient is infinite. In such a scenario, special treatment should be given 

to the nondimensional scales and the geometrical domain transformation. 

Some of the shortcomings with the existing cavitation model have been discussed. 

Some recommendations are given here. As a first approach it is recommended to allow 

for compressibility. This would require an additional equation of state relating the 

pressure, temperature, and density. Hamrock [22] cites two such equations relating the 

pressure and density for mineral oils. A second approach would be to use a boundary 

condition formulation similar to those developed by Swift and Steiber [22, 18], Coyne 

and Elrod [11], or Birkhoff and Hays [7] for one dimensional pressure distributions. 

In all of these cases, one could argue that this involves the additional specifications 
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of a surface tension condition, a flow rate condition, and a gas to liquid interface 

location condition. It is unknown whether any of the above methods have been 

generalized to accommodate two dimensional pressure distributions as assumed in this 

model. A third approach would be to examine the entire three dimensional problem. 

Here, additional terms in the Navier-Stokes equations and boundary conditions are 

appropriate. Ryskin and Leal [51, 52, 53] discuss these types of problems in two 

dimensions. 

More efficient iterative procedures, such as Newton's method, exist and could 

certainly be implemented to satisfy the nonlinearity present due to the viscosity-

temperature relation. Similarly, the coupled lubrication problem's iteration proce-

dure could be solved using a Newton-Raphson method. In general, several iterative 

procedures could be incorporated to improve efficiency by accelerating convergence. 

6.2.3 Boundary and Mixed Film Lubrication Models 

The friction coefficients predicted by this hydrodynamic theory are too low to 

adequately describe clutch performance. For the simplest case, the friction coefficient 

increases with decreasing film size as indicated by Equation (5.12). To give an idea 

of the friction coefficient magnitude predicted by this theory, take f2d = 100 r~d, 

/-Lo = 0.104 Ns R 
m2' 0 = 0.065 m, ~ = 0.05 m, ho = 1.0 X 10-5 m, and 

Pi = Po = 2 X 106 Pa. From Equation (5.12), we have J.tF = 0.03. First it is 

noted that this friction coefficient is approximately an order of magnitude larger than 

typically predicted using this model. This is because (1) the viscosity is based on a 

small temperature, 293 K, for SAE 10, (2) the slip speed is high, and (3) the film 
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is small. Notwithstanding, it is noted that the predicted friction coefficient is still 

nearly an order of magnitude below typical clutch operating conditions, J..LF ~ 0.1- 0.3 

[32]. To remedy this shortcoming, boundary and mixed film lubrication models are 

recommended. 

As the minimum film size decreases below the clutch plate surface roughness, 

ho < a, boundary lubrication is an applicable theory. Only a limited number of the­

oretical models have been constructed for this regime of lubrication largely because 

the friction is nearly completely dependent on the chemistry of the boundary and the 

lubricant. However, according to Bhushan [6], improvements in computer hardware. 

increasingly clever algorithms, and recent developments in modeling interatomic in­

teractions are having major impacts on the chemical sciences. This is e"idenced by 

his discussion on molecular dynamic computer simulations. Nevertheless, usually 

one relies on simple models to describe friction in this regime. For example, in the 

boundary lubrication regime the normal load is transferred by asperity contact. High 

wear rates result from such contacts. Models such as the Archard Wear Law [30] are 

used to describe wear. This model is considered ad hoc because the dominant wear 

mechanism, such as adhesion, abrasion, or fatigue is rarely discernible [8, 30]. 

Between the hydrodynamic and boundary lubrication regimes, 1 < t;;z. < 3, lies 

the mixed lubrication regime. Here, the normal load between surfaces is transferred 

from one surface to another by both asperity contact and the pressurized lubricant. 

In general, the friction mechanisms depend on both the chemistry and bulk prop­

erties of the lubricant. Unlike the boundary regime, wear is relatively low. Several 
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mixed film lubrication clutch models, which include surface roughness effects and/or 

asperity contact, are present in the literature [3, 38, 39, 69]. Models which only in­

clude the effect of surface roughness should be incorporated to describe the transition 

between contacting and noncontacting regimes. However, to predict realistic friction 

coefficients, it is recommended to include both asperity contact and surface roughness 

in a mixed lubrication model. 

As it stands, the hydrodynamic lubrication theory presented in this dissertation 

for disk clutches is an integral part of a broader tribology problem. In order to 

incorporate this theory into the larger problem, first one must take the non-trivial 

step of modeling asperity contact as indicated above. This will both (1) increase 

the clutch temperature given realistic operating conditions and (2) increase the pre­

dicted friction coefficient. Towards this end, a serious review of contact mechanics 

[33] is recommended. Second, one must determine the limits of each of the theories. 

In previous discussions, it was indicated that the film thickness is not known a pri­

ori. Rather, the normal load, treated as a derived quantity in this dissertation, is 

known. Typically, given a load, the film thickness is obtained iteratively by solving 

boundary, mixed, and hydrodynamic lubrication problems. The appropriate regime 

is determined by comparing the predicted film thickness to the surface roughness. 

1-10 
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APPENDIX A 

This appendix will give the derivation of Equation (3.60) using Equations (3.57) 

and (3.59). For convenience, both equations are restated here: 

T.! = T.! ' 
z;=l zj=O T.! = T.! ' zi=Li+1-h. z.=h. 

T. ! = T.!, EiT'. ! = &1'. ! = 0, 
z;=l z.=O 8z;, z;=o 8z; z;=o 

k'bLj &1'.! EiT'.! k; &1'.! EiT'.! 
kiL'b 8z; z;=l = 8zi Zj=o' L; 8z; z;=l = 8z. z.=o' 

(.·1.1) 

kj EiT'. ! &1'. ! 
Lj 8zi zi=Li+1-h. = - 8z. z.=h.' 

T. = C{ (r., f).) zj + ct (r., f).) , 

T. = C~ (r., f).) z; + C~ (r., f).) , (..1.2) 

T. = Cf (r., f).) z; + c~ (r., 9.). 

Substituting the expressions for the temperature fields given in Equation (..1.2) into 

the eight expressions given by (A.1), we have 

(04.3) 

c{ (Lj + 1- h.) +ct = T.lz.=h.' (A...!) 

C: +C~ =T.I ' 
z.=o 

(.-L5) 

Cb -0 1 - , (04.6) 

C: = 0, (..1.7) 

(..1.8) 
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k;cs _ aT. I 
1- . 

L; 8z. z.=o· 
(.-l.9 ) 

k~ c{ = _ aT. I . 
Lf 8z. ;;.=h. 

(.-l.1O ) 

Here, we have eight linear algebraic equations in the ten unknowns: C~, c~, Ct, 

ct, C:, C~, T.lz.=o' T.lz.=h.' fz: Iz.=o' and fz: IZ.=h.' which are in general functions 

of r. and (J •• Treating T.lz.=o and T.lz.=h. as known quantities, the solution to the 

remaining eight unknowns is as follows: 

c~ = Cf = C{ = aT. I = aT. I = 0, 
8z. z.=o 8z .. ;;.=h. 

(.-1.11) 

C~ =ct =T .. I ' z.=h. 
(.-l.12) 

C~=T .. I . z.=O 
(.-1.13) 

From Equation (A.11), the adiabatic conditions listed in Equation (3.60) are evident. 

From (A.12) and (.4.13), we see that the temperature distribution in both the backing 

and friction materials is T. = T. Iz.=h.' and in the temperature distribution in the 

separator plates is T. = T. Iz.=o' 
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APPENDIX B 

This appendix gives the derivation of the variable viscosity Reynolds equation. 

This derivation is based on the validity of Equations (3.45)-(3.48) and (3.54). For 

convenience, these equations are presented in dimensional form here: 

(B.l) 

ap _ ~ (J-L avr) 
ar - az az ' (B.2) 

! ap = ~ (f-L ave) r ao az az ' (B.3) 

ap =0 
az ' (BA) 

on z = 0: Vr = Vz = 0, 
(B.5) 

on z = h (r, 0) : Vr = Ve = V;: = o. 
First, Equation (B.l) is integrated from z = 0 to z = h: 

rh [a (rvr ) aVe av;:] d _ 
10 ar + ao + r az z - o. (B.6) 

Making use of Leibnitz's rule and enforcing the no-slip conditions given in Equation 

(B.5), Equation (B.6) may be written as follows: 

(B.7) 

Second, the velocity components, Vr and Ve, are obtained. From Equation (BA), 

the pressure is independent of z. This allows one to integrate Equations (B.2) and 

(B.3) with respect to z holding ~ and ~ fixed. Enforcing the no-slip conditions 
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again, the velocity components may be written as follows: 

Vr = - - dz - - dz , ap [Io z 
z' , foh ~ dz Ioz 

1 '1 
aT 0 J1. foh ; dz 0 J1. 

(B.8) 

1 ap [1Z z' foh ~ dz In z 1 1 [foZ 1 dZ'l 
V8 = - afJ - dz' - h ': - dz' + ndT 1 - h ~ . 

T 0 J1. ho - dz 0 J1. fo - dz 
I/o I/o 

(B.9) 

Third, the integrals in Equation (B.7) may be found using Equations (B.8) and 

(B.9): 

Io
h ap [Ioh Ioz 

Z' foh ~ dz Ioh Ioz 
1 1 Vr dz = -a - dz' dz - h ': - dz' dz , 

o TOO J1. fo ;; dz 0 0 J1. 

{h V8 dz =~ aaPfJ [{h r Zl dz' dz _ f~ ~ dz {h (Z ~ dz' dZ] 
Jo T Jo Jo J1. fo ;; dz Jo Jo f.L 

[ 
II: Ioz !; dz' dZ] 

+ ndT h - h 1 . 
10 ;; dz 

Finally, substituting these expressions into (B.7)' the variable viscosity Reynolds 

equation is as follows: 

T - T - - dz' dz - p. - dz' dz a ( ap [Io h Ioz 
z' fl: ~ dz Ioh Io z 

1 ] ) 
aT aT 0 0 J1. fl: ; dz 0 0 f.L 

a ([Ioh Io Z 

z' II: ~ dz Ioh Io z 
1 ] ) + afJ - dz' dz - h ~ - dz' dz 

o 0 f.L fo ;; dz 0 0 f.L 
(B.lO) 

_ _ 2 ~ [ _ foh foz ; dz' dzl 
- ndT

afJ h hl . 
fo ;; dz 

For the isoviscous case, J1. = J1.o, Equation (B.10) simplifies to the following expression: 
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APPENDIX C 

This appendix will give the velocity, pressure, and stream function for an arbitrary 

film shape. Emphasis is placed on the continuity and differentiability of film shapes. 

The simplified lubrication problem studied here is two-dimensional and ismiscous. 

The relevant governing equations and boundary conditions are taken as follows: 

mass: 
8u 8w_

O 8x + 8z - , 

x-momentum: 
8p 82u 
8x = /-L 8z2 ' 

z-momentum: 8p =0 
8z ' 

on z = 0: u=U, w=O, 
no - slip conditions: 

on z = h (x) : u =W = O. 

on x = 0: 
pressure conditions: 

onx = L: P=Po· 

Here the velocity is specified on the surfaces z = 0 and z = h (x), and the pressure 

is specified at the inlet, x = 0, and the outlet, x = L. Since the pressure and film 

thickness depend on x only, partial derivatives will be replaced by ordinary derivatives 

where appropriate. 

The x-component of velocity may be stated in terms of the pressure gradient as 

follows: 

U = -- z - hz + U 1 - - . 1 dp ( 2 ) ( Z) 
2/-L dx h 
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To obtain the pressure, it is convenient to use the following integral form of the 

continuity equation: 

~ rh 
u dz = ~ [_l!.... dp + Uh] = 0, 

8x 10 dx 12JL dx 2 

which may be written as the following Reynolds equation: 

~(h3dP) =6JLU
dh

. 
dx dx dx 

The z-component of velocity may be obtained from the continuity equation: 

w = _~ [rfP (z3 _ hZ2) _ dp dh Z2]_ Uz
2 

dh. 
2J.L dx2 3 2 dx dx 2 2h2 dx 

Streamlines may be obtained once a stream function has been defined. A suitable 

stream function may satisfy the following conditions: 

81jJ 81jJ 
-=u, 
8z 

--=W. 
8x 

The stream function for this generalized lubrication problem is as follows: 

Clearly, the velocity components and stream function depend on the film thickness. 

pressure, and their derivatives. 

In order to justify some of the statements made at the end of Chapter 4, consider 

the following continuous, non-differentiable film shape: 

a :::; x :::; nL 

nL:::; x ~ L 
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This is shown in Figure C.1. The pressure may be found in each continuous zone using 

the Reynolds equation. Since the Reynolds equation is a second order differential 

equation, two boundary conditions must be supplied for each zone. This requires a 

total of four conditions. The standard assumptions [I8! 22] are to require continuity 

of flow rate per unit length and pressure as additional conditions. 

plx=nL+ = plx=nL-, 

[ 
h3 dp hUl [ h

3 
dp hUl 

I2JL dx + 2 x=nL+ = I2JL dx + 2 x=nL-' 

Given these conditions, the pressure may be stated in parts as follows: 

P(X)= 

where, 

6n [ 1 x 
I+H --o n 

Ho (1 + Ho) (-1- Ho + n) 

(-2 - 4Ho - 2H; + 2n + 3nHo) (1 + Ho _ -;::)2 
2 + Ho - 2n 1 

+ -2 - 4Ho - 2H; + 2n + 3nHo 
6n (X - 1) 

Ho (-2 - 4Ho - 2H; + 2n + 3nHo) 

x 
X=-, 

L 

n:::;X:::;I 

vVe find that the pressure and its derivative are continuous at x = nL. Further. 

the velocity, u, and stream function, 'I/J, are continuous. However, the z-component 

of velocity is not continuous across x = nL. These results are in keeping with the 

general remarks at the end of Chapter 4. Streamlines using a dimensionless stream 

function, 'I/J* = s:u' with n = 0.7 and Ho = 1.0, are given in Figure C.2. Here, 

Z-.L 
- Sh' 
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p 
p 

U 
Figure C.I: Continuous, non-differentiable film shape 

Streamlines 
2.0 

1.5 

N 1.0 ~ __ ---~ 

~ 
j 
J 
J 
I 

1 
~ 

0.5 r--------------.:J.., 

0.0 ~ __ ...L....._ __ _'__~ _ _'_~_~_~__' 

0.0 0.2 0.4 0.6 0.8 1.0 
x 

Figure C.2: Dimensionless streamlines using n = 0.7 and Ho = 1.0 
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