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Abstract 
 

The objective of this research was to determine the concentrations of the 

intermediate molecular species with respect to time during the isothermal spatially 

homogeneous decomposition of ozone in order to identify the invariant manifold for 

the system.  The fourteen elementary reactions of the decomposition process were 

identified, and the reaction rates of each constituent intermediate species were 

formulated from these reactions.  The steady-state equilibrium conditions and an 

additional six non-physical critical points were determined and locally classified 

using eigensystem analysis.   The reaction rate equations were numerically solved to 

produce the system response so as to predict the concentrations of the intermediate 

species as a function of time.  The one-dimensional manifold that stretched from the 

stable physical steady-state equilibrium to a non-physical unstable source was 

identified and analyzed.  The resulting analysis yielded a description of the physical 

reaction process for specific physical initial concentrations of the constituent 

elements as the elements approached the one-dimensional manifold and steady-

state conditions.        
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1 Introduction 

 

1.1 Combustion 

 

The chemical processes involved in the combustion process is the focus of much 

study; for without a complete understanding of how the major species involved in 

oxidation interact over time, it is difficult to accurately model an event.  The 

simplicity of the stoichiometric balance equations used to represent many high-

temperature combustion processes, such as the decomposition of ozone, is rather 

deceptive in that this representation assumes the products of such a reaction are 

solely mixtures of ideal products.  True high-temperature combustion processes 

usually produce numerous minor species – some in relatively large quantities – of 

the associated chemical components as the major chemical species tend to dissociate.  

An understanding of the equilibrium or steady-state of a chemical combustion 

process requires an understanding of how the properties of a chemical system vary 

with time and initial conditions. 

 

The manner in which the amounts of the components involved in a combustion 

process change over time is controlled and influenced by the chemical reaction rates 

of the system under study.  The study of these reactions and their associated 

chemical reaction rates is referred to as chemical kinetics.  The goal of chemical 

kinetics is to define the specific pathways of a chemical system from initial reactants 

to final equilibrium products and define their reactions rates along this path.  

Numerical solutions that take into account the chemistry of a system are generally 

required to solve for these rates and generate the corresponding reaction response.   
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1.2 Chemical Reactions 

 

A combustion process involving one mole of fuel F and a moles of oxidizer O in the 

formation of b moles of combustion product P is referred to as the global reaction 

mechanism and is represented by 

 

 bPaOF →+ .  (1.1)  

 

The rate at which the fuel is consumed during the reaction dtXd F ][ can be modeled 

by the law of mass action as 

 

 m
Ox

n
FG

F XXTk
dt

Xd
][])[(

][
−= ,  (1.2) 

 

where ][ iX refers to the molar concentration of the ith species of the reaction, Gk (T) 

is the global rate coefficient and is a function of temperature, and the exponents n 

and m are the reaction orders for a particular reaction component, [1].  The sum of 

the reaction orders yields the overall reaction order, and the exponents, n and m, 

reflect individual system components.  The rate coefficient remains constant during 

an isothermal reaction, but varies for reactions that do not occur at a constant 

temperature.  The negative sign preceding the rate coefficient indicates that the 

reaction consumes fuel and that the concentration of fuel decreases as the reaction 

progresses.  The global reaction orders are usually integers of low order for 

elementary reactions. 

 

An examination of the global reaction equation generally does not yield a 

substantial amount of information regarding the events that occur within a chemical 

reaction.  Theoretically, it is possible to assume from Equation (1.1) that a moles of 

oxidizer collide with one mole of fuel to produce exactly b moles of product; 
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however, the results of experimentation indicate the presence of many intermediate 

species in the reaction.  The elementary reactions involving these intermediate 

species are required to understand the dynamic behavior of a combustion process 

and the entire reaction mechanism.   

 

Some chemical reactions involve dozens of elementary reactions, each with its own 

corresponding reaction rate and rate coefficient.  Elementary reactions typically 

involve the collision of two molecules which result in the formation of two products.  

The forward bimolecular reaction can be expressed as 

 

 DCBA +→+ . (1.3) 

 

For example, the associated elementary reaction rate of species A or dtAd ][ , the rate 

at which the fuel is consumed during the reaction can be shown as 

 

 ]][)[(
][

BATk
dt

Ad −=  , (1.4) 

 

where ][A  refers to the molar concentration of species A, ][B  refers to the molar 

concentration of species B and k (T) is a temperature-dependent rate coefficient.  In 

this situation the reaction orders for each species A and B are both unity; therefore, 

the overall reaction order is two.   
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As with the global rate coefficient discussed earlier, the rate coefficient of the 

elementary reaction shown in Equation (1.3) is dependent on reaction temperature 

as represented by the Arrhenius form     

 

 TR
E

b u

A

eATTk
−

=)( ,   (1.5) 

 

where A is the frequency factor, b is an empirical form factor, Ea is the activation 

energy, T is the temperature of the reaction and Ru is the universal gas constant and 

equal to 8314.5 J/(kmol-K).  The Arrhenius form of the rate coefficient is derived 

from molecular collision theory and applies as long as the temperature is not too 

large.  Similar to bimolecular reactions, but involving only one single species 

undergoing an isomerization or decomposition rearrangement, unimolecular 

reactions can be represented by  

 

 
CBA

BA

+→
→

.  (1.6) 

 

For example, the associated elementary reaction rate of species A or dtAd ][ , the rate 

at which the fuel is consumed during the reaction can be represented as 

 

 ])[(
][

ATk
dt

Ad −= ,   (1.7) 

 

where ][A  refers to the molar concentration of species A and k (T) is the rate 

coefficient for species A.  Here the reaction order is one.  The chemical kinetics of a 

combustion process can be ascertained by examining the global reaction mechanism 

and the elementary reactions involving all of the intermediate species associated 

with the given process.  For each species involved in the reaction process, there 

exists a corresponding reaction rate equation that represents the rate of change of 
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that particular species over time based directly on the elementary reactions involved 

in the combustion process.   

 

1.3 Example of the Zeldovich Mechanism 

 

Let us examine the Zeldovich mechanism for the formations of nitric acid from 

atmospheric nitrogen as defined by  

  NNOON
k

+→+
1

2 ,    (1.8)                             

  ONNNO
k

+→+ 2

2

,    (1.9)   

 ONOON
k

+→+
3

2 ,     (1.10) 

 2

4

ONONO
k

+→+ ,    (1.11) 
 

where k1 and k3 are forward reaction coefficients for reaction one and three, 

respectively, [2].  Additionally, k2 and k4 are the reverse reaction coefficients for the 

process.  The Zeldovich mechanism describes a widely studied reaction process and 

demonstrates the characteristics common to many reactions with multiple 

intermediate species present throughout the reaction.  The forward global 

mechanism that represent the system shown in Equations (1.8 - 1.11) is 

 

 NOON
Gk

222 →+ .    (1.12)  

 

An examination of the elementary reactions in Equations (1.8-1.11) indicates the 

presence of five intermediate species in the formation of nitric acid: NO, N, N2, O2 

and O.  Note that the global expression in Equation (1.12) that defines the initial 

reactions and the final products fails to account for these intermediate species and 

therefore is not representative of the actual chemical process.   
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Utilizing the four elementary reactions in Equations (1.8 - 1.11) and the law of mass 

action it is possible to obtain the elementary reaction rates for the process and 

represent them by 

 

 ]][[]][[]][[]][[
][

423221 ONOkONkNNOkONk
dt

NOd −+−= ,   (1.13) 

 ]][[]][[]][[]][[
][

423221 ONOkONkNNOkONk
dt

Nd +−−= ,   (1.14) 

 ]][[]][[
][

221
2 NNOkONk

dt

Nd +−= ,   (1.15) 

 ]][[]][[
][

423
2 ONOkONk

dt

Od +−= ,   (1.16) 

 ]][[]][[]][[]][[
][

423221 ONOkONkNNOkONk
dt

Od −++−= .   (1.17) 

 

The reaction rate for each intermediate species is itself a non-linear ordinary 

differential equation (ODE) whose order is equal to the largest sum of the reaction 

orders for each term of the rate equation.  For the Zeldovich mechanism, the largest 

sum of the reaction orders for each of the five reaction rates is two; thus, the overall 

reaction order for each rate equation in this system is two.   
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2 Analysis Techniques 

 

2.1 Ordinary Differential Equations 

 

The evolution of species concentration during any reaction, like the Zeldovich 

mechanism, is determined by a system of ODEs.  Combustion processes can be 

described by a system of ODEs representing the reaction rates of the intermediate 

species derived from the elementary reaction equations and the law of mass action.  

A complete solution for the ODEs will yield a description of the chemical kinetics of 

system evolution over time.  And as with the Zeldovich mechanism, the ODEs that 

make up the representative system are usually stable and non-linear in nature. They 

also typically lack explicit, closed form, solutions.  In these situations, where no 

closed form solution to the system is obtainable, it is necessary to compute 

numerical solutions to the differential equations.   

 

Numerical solutions to systems of ODEs cannot provide an exact closed functional 

form to the given problem and instead produce a subset of points from the solution 

space.  These points contain numerical errors based upon the integration routine 

used to perform the calculations; however, this error can be minimized by varying 

several computational parameters, especially the length of the time steps used in the 

integration and acceptable error tolerances of the routine.  To obtain convergence 

between the theoretical closed-form solution – and mimic the real-life behavior of a 

chemical reaction – the distance between the individual points of the numerical 

solution must be small enough to reflect all variations in the system at all times 

scales of the reaction.  Since these time-scales vary with time during any given 

reaction, it is important to take into account the smallest to ensure an accurate 

representation of the solution. 
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Stable systems approach a finite steady-state, while unstable systems approach 

infinity as time progresses.  Combustion processes begin at some initial state with 

the initial reactants at some starting quantity and progress to steady-state over a 

given time.  The steady-state occurs as time approaches infinity as 

combustion processes in closed systems can be shown to be stable.  When no further 

changes occur in the dependent variables of the system for continued changes of the 

independent variables, the equilibrium state has been reached.  For combustion 

processes, the independent variable is time and the dependent variables are the 

species concentrations.  For example, consider the following n-dimensional system 

of n first-order ODEs as defined by 

 

),...,,( 21 nxxx
dt

d
f

x = ,      (2.1)  

 

where the lowercase boldface letter represents a vector f as a function of time t and x 

is a vector of dependent variables composed of n individual variables xi.  Similarly, 

use of capital boldface notation denotes a matrix.  The vector f is composed of 

equations that describe the rates of change of the associated dependent variables in 

terms of time, which varies from ∞≤≤ t0 .  If the system of equations if linear, then it 

may be referred to by 

 

Ax
x =

dt

d
,      (2.2)   

 

where A is a matrix of constants.  The critcal points of the system are the constant 

and time-independent solutions for a given set of initial conditions.  The critcal 

points were obtained by equating 0)( 0 =xf  to zero and solving for the dependent 
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variables at this condition.   And when 0)( 0 =xf , the rate of change is consequently 

zero at critical point x0.  The critical points may vary with intial conditions. 

 

 

2.2 Eigenvalue and Eigenvector Analysis 

 

The Jacobian is a local linearization of the system whose components can be utilized 

to describe the system characteristics near a point along the solution trajectory.  The 

local behavior of the system in Equation (2.1) can be ascertained at point x0 by 

utilizing the Jacobian J represented by 
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J ,   (2.3) 

 

where the subscript O indicates the point x0 at which the Jacobian is evaluated.  This 

point x0  is an arbitrary point in the phase space x.  Each term of the matrix 

represents the rates of change for each equation within the system by each 

dependent variable xi in terms of the independent variable and the remaining 

dependent variables.  If x0 is chosen to be a critical point which is defined as 

0)( 0 =xf , then the real positive eigenvalues resulting from the Jacobian matrix in 

Equation (2.3) indicate that the given critical point of the system is unstable.  Note, 

this analysis applies strictly to two-dimensional systems; however, similar 

extensions can be made for systems of higher dimensions.  Real eigenvalues of 

opposite signs indicate that the given critical point of the system is an unstable 

saddle point.  Imaginary components to these critical points indicate that the 
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solution possesses an oscillatory component near the critical point with either a 

stable or unstable spiral depending on the sign of the real part of the eigenvalues.  

Real negative or positive eigenvalues indicate that the given point of the system is a 

sink or source, respectively.   

 

As mentioned before, the physical combustion processes modeled by a system of 

ODEs are stable and thus approach some final equilibrium condition; however, the 

differential equations used to model these physical processes may in fact possess 

additional critical points that may lie in the non-physical region of the phase space.  

For example, a system of ODEs that models a given combustion process may contain 

a stable equilibrium with one or more negative coordinates in the phase plane.  Even 

though laboratory experiments could never produce negative species 

concentrations, understanding these non-physical critical points can yield important 

insights that relate to the physical behavior of the combustion process represented 

within the physical region of the space.   

 

The amount of computational time and effort required to execute a numerical 

solution depends directly on the exact nature of the ODE system, especially its 

stiffness.  I am restricting my discussion to systems with strictly real eigenvalues 

and that suitable extensions exist for systems with complex eigenvalues; therefore,  

nλλλ ,...,, 21 are the eigenvalues of a system of ODEs, the stiffness S is 

λ
λ

min

max
=S .      (2.4) 

 

2.3 System Time-Scale and Manifold Identification 

 

The local set of time-scales that describe the reaction rates of the elementary 

reactions that occur within a combustion process are represented by the eigenvalues 
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of the Jacobian of the ODE system.  For systems with real eigenvalues the reaction 

time scales are equal to the reciprocals of the eigenvalues of the Jacobian matrix.  

The solution x(t) with respect of time t resulting from a system of two ODEs with 

two non-equal eigenvalues is 

 

 tt BeAetx 21)( λλ += ,  (2.5) 

 

where A and B are constants.  Negative eigenvalues indicates that the system 

exponentially approaches a steady-state value.  Positive eigenvalues indicates that 

the system exponentially grows towards some an infinite unstable value.  The non-

zero imaginary components of the eigenvalues, if they exist, define the frequency 

and the time-scale of the oscillatory component of the system near that point.  The 

eigenvectors of the Jacobian indicates the instantaneous direction of the solution 

trajectory at a certain point in the phase space.   

 

In instances where the difference between the smallest and longest time-scale is on 

the order of several magnitudes, the information contained in the solution for the 

reaction rate equation relating to the smallest time-scale is the most important and 

can be used to classify the behavior of the entire system.  The behavior of the system 

characterized by the slowest time-scale is often the most important of the system 

because it is that behavior that is most easily observed in the physical results and 

represented in laboratory data for a given combustion process.  The fastest time-

scale components of the system equilibrate onto what is termed a low-dimensional 

manifold; therefore, since it is the slow time-scale components that determine the 

nature of this low-dimensional manifold, the slow time-scale components uniquely 

define the long term system response.   

 

Consider that an n-dimensional manifold is a space in n dimensions.   A point is a 

zero-dimensional manifold, while a line is a one-dimensional manifold.  For 
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example, the solution trajectories that describe the species concentration for a 

combustion reaction throughout time begin at time zero at a set of given initial 

concentrations.  Those initial concentrations determine the unique behavior and 

characteristics of the solution trajectories in the phase space of the system as the 

concentrations approach a steady-state for those specific initial conditions.  For any 

initial conditions within a certain region of the phase space, all the solution 

trajectories approach the steady-state equilibrium point.  This equilibrium condition, 

a point in the phase space, is the zero-dimensional manifold for the system and 

achieved as time approaches infinity.   

 

The solution trajectories approach a one-dimensional manifold, or the one-

dimensional path, at times when the slowest of the system time-scales dominates the 

response.  The one dimensional path is common to all solutions, for a given set of 

initial conditions, in a certain region of the phase space.  The two-dimensional 

manifold is the two-dimensional surface that the trajectories approach from the 

same initial conditions when the two longest time-scale dominate the responses.  

The three-dimensional manifold and other higher order manifolds are defined 

similarly and depend on the relative magnitude of the time-scales that currently 

dominate the system response at each point.   

 

As time approaches infinity, the location of the solution trajectories become confined 

to smaller dimensions – as long as all initial conditions reside in a similar region of 

the phase space – until all trajectories end at one point, the equilibrium condition.  

The ability of a manifold to accurately describe a particular solution is determined 

by the dimension of the manifold and related directly to the time that has passed in 

the reaction.  The system response of a stable system initially dominated by a fast 

time-scale will approach a low-dimensional manifold as time progresses and finally 

reach the steady-state, the zero-dimensional manifold.  
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In general, as time progresses, the solution trajectories approach the manifolds more 

closely, but never actually lie on the manifold itself.  This observation holds true for 

all initial conditions that fall within the region of the phase space where trajectories 

approach the same equilibrium condition as time approaches infinity.  Initial 

conditions in different regions of the phase space may approach different 

equilibrium conditions with different solution trajectories and associated manifolds.  

The only instance when a solution trajectory falls on the manifold itself occurs when 

the initial conditions lie on the manifold.  The solution trajectory for a set of initial 

conditions on the manifold never leaves the manifold as the system approaches the 

equilibrium state.  

 

For a given set of initial conditions, all trajectories eventually approach a zero-

dimensional manifold, or equilibrium condition, as time approaches infinity and if a 

set of initial conditions happens to reside on a manifold, the resulting solution 

trajectory will never leave that manifold.  Thus if a set of initial conditions happens 

to correspond to an equilibrium point of a system, the solution trajectory will simply 

remain at that point.  The equilibrium condition is the initial condition.  For a 

combustion process, the initial species concentration will not change, regardless of 

how much time elapses for the reaction process.  Accordingly, if a set of initial 

conditions lies on the one-dimensional manifold, it will follow the one-dimensional 

path of that manifold to the equilibrium point assuming a stable equilibrium.     



 16 

3 Analysis of Ozone Decomposition 

 

3.1 Reaction Characteristics 

 

The three species, fourteen step reaction mechanism for the decomposition of ozone 

was studied, [4].  The fourteen steps, or intermediate reactions, consisted of the 

following, listed respectively 

 OOOO
k

223

1

+→+ ,  (3.1) 

 OOOO
k

+→+ 32

2

2 , (3.2) 

 OOOO
k

+→+ 223 2
3

, (3.3) 

 232

4

2 OOOO
k

+→+ , (3.4) 

 323

5

2 OOOO
k

++→ , (3.5) 

 332 2
6

OOOO
k

→++ , (3.6) 

 23 2
7

OOO
k

→+ , (3.7) 

 32

8

2 OOO
k

+→ , (3.8) 

 OOO
k

3
9

2 →+ , (3.9) 

 OOO
k

+→ 2

10

3 , (3.10) 

 22 22
11

OOO
k

+→ , (3.11) 

 22 22
12

OOO
k

→+ , (3.12) 

 332 2
13

OOOO
k

+→+ , (3.13) 

 323

14

2 OOOO
k

+→+ , (3.14) 
 

where ki indicates the reaction coefficient for each reaction.  The three intermediate 

components in this combustion process are O, O2 and O3.  The system was assumed 
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to be a well-stirred, isothermal reaction; thus, the three elementary reaction rates for 

each of these intermediate species were obtained from the law of mass action.  The 

reaction rates for the Zeldovich mechanism were obtained earlier by utilizing the 

same assumptions.  The reaction rate, or kinematic, equations are 

 

 

][][2]][[2][][2

][2][2]][[2][]][[]][][[

][]][[]][[][][]][[
][

3
2

1432132
2

12

2
211

3
1029

2
2837326

2
35

2
243232

2
231

OOkOOkOOk

OkOkOOkOkOOkOOOk

OkOOkOOkOOkOOk
dt

Od

−+−

+−++−−

+−+−=

,    (3.15) 

 

][][]][[][][

][][]][[][2]][[2]][][[

][]][[]][[][][]][[
][

3
2

1432132
2

12

2
211

3
1029

2
2837326

2
35

2
243232

2
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2

OOkOOkOOk

OkOkOOkOkOOkOOOk

OkOOkOOkOOkOOk
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+−+

−+−−+−

+−+−=

,   (3.16) 

 
2

2837326

2
35

2
243232

2
231

3

][]][[]][][[

][]][[]][[][][]][[
][

OkOOkOOOk

OkOOkOOkOOkOOk
dt

Od

+−+

−+−+−=
.   (3.17) 

 

The reaction rate coefficients were determined by utilizing the Arrhenius form of 

Equation (1.5).  The reaction temperature was assumed to be 3000 K.   
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The constants A and b along with the activation energies EA for each reaction are 

shown in Table 1.  These constants were used in conjunction with Equation (1.5) to 

obtain the reaction coefficients for the decomposition.  The units of A were chosen 

such that the reaction rates achieve the units of mole/cm^3/s.    

 

Reaction A b EA  [kJ/mol] 

1 6.76 x 106 2.50 1.01 x 1012 

2 1.18 x 102 3.50 0.00 

3 6.76 x 106 2.50 1.01 x 1012 

4 1.18 x 102 3.50 0.00 

5 6.76 x 106 2.50 1.01 x 1012 

6 1.18 x 102 3.50 0.00 

7 4.58 x 106 2.50 2.51 x 1011 

8 1.88 x 106 2.50 4.15 x 1012 

9 5.71 x 106 2.50 4.91 x 1012 

10 2.47 x 102 3.50 0.00 

11 5.71 x 106 2.50 4.91 x 1012 

12 2.47 x 102 3.50 0.00 

13 5.71 x 106 2.50 4.91 x 1012 

14 2.47 x 102 3.50 0.00 
 

Table 1: Values of A, b and EA for each intermediate reaction, [3]. 

 

The reaction system shown in Equations (3.15-3.17) can be written in the matrix form 

 

DC ⋅=



























dt

Od
dt

Od
dt

Od

][

][

][

3

2 .      (3.18) 
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The matrix C is defined as 

 

















−−−−
−−−−−−−
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=

00000011111111

11111122111111

22222211111111

C ,  (3.19) 

 

and the matrix D composed of the rate coefficients and intermediate reaction species 

components is defined as 
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OOk

D .               (3.20) 

 

The three differential equations are autonomous functions.  The system is non-linear 

with a reaction order of three.   
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3.2 Simplifications and Constraints 

 

The form of the matrix resulting from C·D represented in Equation (3.18) can be 

simplified by performing row operations on the matrix to reduce matrix C to row-

echelon form according to 

 

DC

dt

Od

dt

Od

dt

Od
dt

Od

dt

Od
dt
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dt
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The resulting matrix Cnew in row-echelon form is 

 
















−−−−

−−−−−−
=

00000000000000

11111111000000
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newC .  (3.22) 

 

These resulting three differential equations, now in a new x1-x2-x3 phase space, 

indicate that  

0
][

3
][

2
][ 323 =++=

dt

Od

dt

Od

dt

Od

dt

dx
.    (3.23) 

 

Integrating the expression in Equation (3.23) yields 

 

iii OOOx ][3][2][ 323 ++= ,    (3.24) 

 

where the term x3 is constant throughout the process.   Given a specific set of initial 

concentrations, the algebraic constraint of Equation (3.24) can be used to express x3 

and thus the concentration of [O3] in terms of the concentrations of [O] and [O2] at 
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any time during the combustion process.  The value of x3 at the initial conditions can 

be obtained by utilizing Equation (3.24) for a given set of initial concentration and 

according to Equation (3.23) and Equation (3.24), that value remains constant 

throughout the combustion process.  The resulting expression for the concentration 

of [O3] in terms of the concentrations of [O] and [O2] is  

 

3

][2][][3][2][
][ 232

3

OOOOO
O iii −−++

= ,    (3.25) 

   

 

where [O]i, [O2]i  and [O3]i  are the initial concentrations of [O], [O2] and [O3], 

respectively.  The expression for the concentration of [O3] in Equation (3.25) becomes  

 

3

][2][102.7419682
][ 2

-5

3

OO
O

−−×
= ,   (3.26) 

 

when the concentrations listed in Table 2 are utilized. 

 

[O]i  [mol/cm3] [O2]i  [mol/cm3] [O3]i  [mol/cm3] 

0.00 0.00 (2.741982/3) x 10-5 
 

Table 2: Initial vales for the concentrations [O], [O2] and [O3]. 

 

By utilizing Equation (3.26), the three differential equations listed in Equations (3.15-

3.17) in terms of [O], [O2] and [O3] can be reduced to two differential equations in 

terms of variable x1 and x2.  In the new x1-x2-x3 

  

3

2102.7419682 21
-5

3

xx
x

−−×
= .    (3.27) 
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The two reduced and simplified differential equations become 
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Both Equation (3.28) and Equation (3.29) were derived using the initial conditions in 

Table 2; therefore, resulting solutions of x1 and x2 only correspond to physical 

concentrations of [O] and [O2] for those initial values.  The resulting trajectories and 

low-dimensional manifolds for other initial conditions do not correspond to physical 

responses of the system.  The low-dimensional manifold found and discussed in 

later sections applies only to this set of initial conditions in Table 2.   

 

3.3 Critical Points 

 

The critical points, or roots, of the two differential equations for dtdx1  and dtdx2  

in Equations (3.28 - 3.29), respectively, were obtained by setting each expression to 

zero and solving for the corresponding values of x1 and x2 simultaneously at that 

condition.   
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The seven roots to the two equations are listed in Table 2. 

 

point x1   [mol/cm3] x2   [mol/cm3] 

1 1.82956413375383 x 10-12 -2.74196858174691 x 10-5 

2 -2.74196839879049 x 10-5 2.74196858174691 x 10-5 

3 -0.221933277630227 2219578.43997629 

4 -9.43552870455286 x 10-6 1.8427552960238 x 10-5 

5 -5.57102200570931 x 10-7 1.39884272357373 x 10-5 

6 (physical) 5.4523034383475 x 10-7 1.34371928482426 x 10-5 

7 80.8033083728895 -168.786508474242 
 

Table 3: Critical points of Equations (3.28 - 3.29). 

 

The eigenvalues of the Jacobian matrix obtained from Equations (3.28 - 3.29) and 

calculated at the critical points listed in Table 3 can be utilized to classify the critical 

points according to their local behavior.  All of the eigenvalues are real.  These 

classifications can be used to determine the stability of each critical point.  The 

classification of each critical point according to the eigenvalue analysis is listed in 

Table 4.  

 

point type stability 

1 saddle unstable 

2 saddle unstable 

3 sink stable 

4 source unstable 

5 saddle unstable 

6 (physical) sink stable 

7 source unstable 
 

Table 4: Critical point classifications. 

 

These seven roots of Equations (3.28 - 3.29) define the equilibrium points of the 

decomposition process of ozone.  All seven points are real and contain no imaginary 

components.  Two points are stable equilibrium points, while the other five are all 
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unstable; however, of the seven points, only one represents the physical 

decomposition process.  Only the sixth equilibrium point contains positive values 

and thus represents the physical process.  The other six contain at least one negative 

component.  Negative components indicate negative concentrations.  There can be 

no negative concentrations in the physical system at any time throughout the 

decomposition process.  Only the sixth critical point with two positive components 

indicates the concentrations that the system will equilibrate to steady-state as time 

approaches infinity. 

 

3.4 Space Transformations 

 

The critical points vary in several orders of magnitude and contain both negative 

and positive values; therefore, in order to obtain a simple plot of the solution 

trajectories near each critical point on a global scale, it is necessary to transform the 

results into a different space.   

 

A convenient transformation from the x1-x2 phase space to the θρ −  space was 

achieved by the following 

 

( )2
2

2
1ln

2

1
xx +=ρ , ∞<<∞− ρ     (3.31) 
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






=
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2arctan
x

xθ , 22 πθπ <<−    (3.32) 

 

The reaction rates in Equations (3.28 - 3.29) were then solved for the new rates dρ/dt 

and dθ/dt.  The local linearized behavior and stability characteristics are the same for 

each respective critical point in the new space as they were in the original space; 

therefore, the conditions in Table 4 still hold for each point.   
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The critical points in the θρ − phase space are listed in Table 5. 

 

point ρ θ 

1 -10.5042493420479 -1.57079626007042 

2 -10.1576757851301 -0.785398196759688 

3 14.6128278439141 -1.57079622680596 

4 -10.7852439550598 -1.09756814317026 

5 -11.1764877719111 -1.53099142733861 

6 (physical) -11.2166615727181 1.53024236454978 

7 5.23180960493588 -1.12430835749168 
 

Table 5: Critical points of Equations (3.28 - 3.29) in the θρ −  space. 

 

The critical points, represented by square markers, are shown superimposed on the 

new phase space in Figure 3. 
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Figure 1: System phase plot in the θρ −  space. 
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The trajectories of produced by several initial values of x1 and x2 are shown in Figure 

2.  The square markers denote the equilibrium points located in this region of the 

space with the position of the physical equilibrium denoted individually. 
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Figure 2: System response in the θρ −  space near the physical critical point. 

 

Again, Equations (3.28 - 3.29) were derived using the initial conditions in Table 2; 

therefore, the resulting system response for x1 and x2 correspond to physical 

concentrations of [O] and [O2] for those initial values.  Utilizing the initial 

concentrations in Table 2 for the initial values of x1 and x2 produced the system 

response of the concentrations of [O], [O2] and [O3] versus time. 
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The concentration of [O3] was derived from the algebraic constraint in Equation 

(3.25).  The system evolution is plotted in Figure 3. 
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Figure 3: Concentrations of [O], [O2] and [O3] versus time for initial conditions in Table 2. 

 

The final steady-state equilibrium values achieved for the initial conditions in Table 

2 are listed in Table 6. 

 

[O]  [mol/cm3] [O2]  [mol/cm3] [O3]  [mol/cm3] 

5.4523034 x 10-7 1.3437193 x 10-5 8.5947097 x 10-6 
 

Table 6: Steady-state equilibrium vales for the concentrations [O], [O2] and [O3]. 
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3.5 System Response 

 

The trajectories all approach the same steady-state equilibrium point as time 

increases.  This point is the one physical equilibrium point.  This point is a stable 

sink, meaning that for any set of physical initial values of x1 and x2, the values of x1 

and x2 will approach the physical equilibrium values as time approaches infinity 

since the system models the real combustion process of ozone.  Physical initial 

concentrations will not lead to negative non-physical results in the laboratory.  The 

eigenvalues and associated eigenvectors evaluated at the physical equilibrium point 

indicate the time-scale and approach direction of the trajectories near the 

equilibrium point.  This same analysis technique applied at each time increment 

along the solution trajectory will yield the time-scale at each point on the trajectory.    

 

As time approaches infinity, the corresponding time-scale increases towards a finite 

value as the corresponding eigenvalue approaches a finite negative value.  The 

solution approaches the zero-dimension manifold, one point, in the phase space.  

Before the trajectories in Figure 2 reach the zero-dimensional manifold, the 

equilibrium point, they approach the one-dimensional manifold.  This manifold is a 

line in the phase space and observable in Figure 2.  The trajectories approach this 

line when slow time-scales dominate the system.  As the dominat time-scale length 

decreases, the resulting manifolds increase in dimension and become impossible to 

represent via the phase plot; therefore, the most important manifold and most easily 

understood is a low-dimensional manifold. 

 

None of the initial conditions used to generate the trajectories displayed in Figure 2 

lie on the low-dimensional manifold.  If an initial value lies on a manifold, the 

resulting solution response will not deviate from that manifold.  For example, if a set 

of initial conditions corresponded precisely with the physical equilibrium point, the 

resulting solution trajectory would never deviate from that point at any time.  The 
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solution trajectory would be simply a point.  Similarly, if a set of initial conditions 

corresponded to a point on the manifold, the resulting solution trajectory would 

mimic the space, a curve in this case, that defines that particular manifold.   

 

The unstable source must terminate at another critical point, since all trajectories 

must end at a critical point; therefore, the length of the manifold is finite, for it must 

stretch between a source and a sink unless one of those critical points is infinity.  In 

the case of the manifold in Figure 2, the starting point of the manifold lies at the 

unstable source, or seventh critical point listed in Table 3, and terminates at the 

stable physical equilibrium point.  This manifold is pictured in Figure 4. 
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Figure 4: Manifold between the physical sink and unstable source. 
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As discussed earlier, trajectories approach this manifold when the response is 

dominated by slowest time-scales.  The solution components with faster time-scales 

are thus dominated by the slowest time-scale component and quickly approach the 

low-dimensional manifold.   The eigenvectors at each point in the space indicate the 

local system response direction.  Given that the magnitude of the time-scale 

corresponds to the inverse of each component of the associated eigenvalues, the 

largest eigenvalue corresponding to the slowest time-scale of the system would 

indicate the local behavior – notably the direction of the trajectory – for the response. 

 

3.6 Manifold Description 

 

To determine the nature of the manifold between the stable physical equilibrium 

and the unstable source, the initial concentrations must be such that they nearly, but 

not precisely, equal to the coordinates of the source in the space.  Since the source is 

a critical point of the system, it is also a zero-dimensional manifold; yet, unlike the 

physical sink, this manifold is in fact repelling and can be demonstrated so by 

calculating the eigenvectors at that point.  The initial conditions must thus fall 

slightly away from this critical point.   

 

A local linearized perturbation was used to obtain a new set of initial conditions.  If 

the initial x1 is selected arbitrarily by utilizing a small change between this condition 

and the x1 condition at the source, the corresponding x2  can be determined by setting 

the slope for a line.  For this point to reside on the one-dimensional manifold as 

desired, the slope must be equal to that of the eigenvector which has the least 

negative eigenvalue indicative of the slowest time-scale.  Since the eigenvalues are 

inversely proportional to the time-scales, the smallest of the eigenvalues would 

correspond to the slowest time-scale.  And since the sink is repelling, the eigenvector 

is negative and the slope of the line is indeed negative as well.  The sink location and 

initial conditions located on the one-dimensional manifold are listed in Table 7.           
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point ρ θ 

7 (sink)  5.23180960493587 -1.12430835749168 

initial conditions 5.23167169426310 -1.12424400000000 

 

Table 7: Sink location and initial conditions located on the one-dimensional manifold. 

 

The manifold extending from the unstable source to the stable sink is shown in 

Figure 4.  The evolution of the ρ and θ concentrations in θρ −  space versus time for 

initial conditions in Table 7 is shown in Figure 5. 

 

Figure 5: The concentrations in θρ −  space versus time for initial conditions in Table 7. 

 

Regions of the manifold can be classified according to their relative attractiveness.  

The attractiveness of the manifold is reflected in the size of the time-scales for the 
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trajectories as they approach the one-dimensional manifold from a given set of 

initial conditions.  The smaller the reaction time from initial conditions to individual 

solution convergence to the manifold, the more attractive the manifold is for that 

particular region.  Regions of the manifold can also repel solution trajectories away 

from convergence with the manifold for that region; therefore, the only trajectories 

that would follow this type of manifold originated on with initial conditions on the 

actual manifold.   

 

The eigenvalues evaluated at every point along the manifold were used to 

determine the attractiveness of the manifold at each particular point.  The norm, 

taken with respect to the largest eigenvalue, of the difference between the two 

eigenvalues determined the magnitude of the attractiveness and the sign of the 

difference determined the direction of its effects – positive indicates a repulsive 

tendency and negative indicates an attractive nature.  Consider an example 

involving two eigenvalues, 1λ  and 2λ , of different values.  Assume that the largest of 

the pair is always denoted as 1λ  and the smallest is always referred to as 2λ .  Then 

the magnitude and direction of the indicator of attractiveness at the particular point 

with eigenvalues of 1λ  and 2λ is H.  For example, in the case where 1λ  and 2λ are both 

real and negative, H is defined as  

 

 
1

21

λ
λλ −

=H .   (3.33) 

 

In the case where 1λ  and 2λ are both real and positive, H is defined as  

 

 
2

21

λ
λλ −

=H .   (3.34) 

Figure 6 shows how the attractiveness of the manifold varies along the manifold 

length.  The relative magnitude of the attractiveness or repulsiveness along the 
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manifold is presented as a log-magnitude.  The positive region to the right of the 

origin denotes repulsion.  The magnitude zero constant region near the origin 

represents a neutral attractiveness.  The negative region to the left of the origin 

denotes attraction. 
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Figure 6: Manifold between the physical sink and unstable source and log-magnitude attractiveness. 
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3 Conclusions 

 
The concentrations of the intermediate molecular species with respect to time during 

the isothermal spatially homogeneous decomposition of ozone were utilized to 

identify and determine the behavior of the invariant manifold for the system located 

between the unstable source and stable physical equilibrium conditions.  The 

eigensystem analysis used to ascertain the attractiveness of the manifold at every 

point along this manifold indicates that the manifold contains a repulsive tendency 

near the source and gradually increases in attractiveness as the system response 

approaches the physical equilibrium, or steady-state condition.   

 

The reduction of the three elementary reaction rate equations for the three 

intermediate elements of the reaction into two equations and the utilization of the 

algebraic constraint obtained from linear operations on the elementary reaction rate 

equations greatly simplified the integration routine.  The algebraic constraint 

reduced the number of dependent variables from three representing the 

concentrations of O, O2 and O3 to two representing the concentrations of O and O2 

for the prescribed initial conditions used in the algebraic constraint to simplify the 

equations.  This simplification also reduced the size of the phase space and confined 

the system trajectories to a two-dimensional plane whereas before the system 

response existed in three-dimensional space.  Since numerical integration techniques 

were used to obtain the system response, the approach discussed and outlined 

herein provides a representation of the chemical kinetics of a combustion process of 

the system represented by two non-linear ODEs.   

 

Analysis indicated the existence of seven critical points of the elementary reaction 

rate equations.  All were wholly real without any imaginary components and two 

points were stable sinks.  Only one point represented an actual physical state that 



 35 

the reaction may achieve.  This equilibrium point represented the steady-state 

condition for the reaction.  The system response and critical points were transformed 

from the x1-x2 phase space into the new θρ −  space to facilitate the analysis on a 

global level.  System response trajectories were generated in the phase space and 

utilized to determine the location and appearance the one-dimensional manifold 

between the physical stable sink and unstable source.  The computational time 

required to perform the numerical integrations was minimal due to the simplified 

nature of the rate equations through the imposition of the algebraic constraint and 

reduction in dependent variables.  This technique provided an accurate picture of 

the system response and invariant manifold characteristics for the decomposition of 

ozone, as the only error introduced into the system response arose from the 

precision limitations of the computational routine.         
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