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Computational Simulations of Implosions 
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Complex pattern formation created by implosion of Argon are 

predicted with the 2D Navier-Stokes equations using the wavelet 

adaptive mesh refinement (WAMR) technique. Upon removal of a 

diaphragm, collapsing flow structures interact with one another to 

produce complex, symmetrical patterns. 
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Complex Pattern Formation 
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Symmetrical patterns were observed in imploding systems of Argon with an initial high and 

low pressure of 4.0 atm and 0.2 atm, respectively. Figure 3 shows the results for four 

different initial angles of symmetry (AOS). Initially, a shock and contact discontinuity collapse 

toward a central focal point until the shock fully collapses at approximately 40 ns. The 

compressed region explodes outward, crossing the contact discontinuity at approximately 60 

ns. Complex, symmetrical patterns are further developed at the same angle of symmetry 

seen in the initial conditions. Symmetry breaks when the rarefaction wave begins to reflect 

from the boundary. These results are similar to those found by Wang et al.4 using the Euler 

equations for imploding C3H8/air; the present results improve upon previous predictions with 

the inclusion of all diffusive terms. 

WAMR was partially verified by comparing the predicted solution of 

a 1D Sod shock tube using Navier-Stokes equations with the exact 

solution to a Riemann problem as described by Sod2. 

The number of collocation points used by WAMR dramatically 

increases as the reflected shock travels through the contact 

discontinuity. The overall complexity of the system is weakly 

dependent of the angle of symmetry. 

Figure 2. Density vs. 

position in a Sod shock 

tube with inert Argon 

initially at 300 K separated 

by a diaphragm with a high 

and low state initially at 1.0 

atm and 0.1 atm, 

respectively. 

Analysis 
The temperature at the center ranges from six to eight times 

greater than To. As the angle of symmetry decreases, the peak, 

centerline temperature increases. 

Density Contours 

WAMR 
WAMR adaptively discretizes with multiple levels of refinement to 

provide an accurate prediction to nonlinear partial differential 

equations at a computational cost that is independent of 

dimension3. The minimum !x is related to the mean free path of 

molecular collisions1. 
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Figure 1. Grid distribution using 

WAMR with minimum !x of 

0.0031 µm for the octagonal 

diaphragm problem at a time of 

80 ns.   

Figure 3.  Density contours with an initial circular diaphragm, an octagonal diaphragm, a triangular diaphragm, and an asymmetric 

diaphragm (from left to right) at 40 ns time-intervals (from top to bottom). 

Navier-Stokes Equations 

Figure 6 shows an r-t diagram depicting density contours.  Evident 

is a shock front, a contact discontinuity, and a rarefaction fan.  

After the implosion, the shock explodes outward and passes 

through the contact discontinuity. 

Figure 6. r-t diagram for an imploding structure (circular diaphragm). 
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Figure 4. Non-dimensional temperature 

vs. non-dimensional time (scaled by 

the implosion time). 

Figure 5. Collocation points used 

by WAMR vs. non-dimensional 

time for different initial conditions. 
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