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Predictive Simulation: the treatment of model and data uncertainties and their
propagation through a computational model to produce predictions of quantities
of interest with quantified uncertainty.
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Quantities of Interest

Simulations have a purpose: to inform a decision-making process

• Quantities are predicted to inform the decision

• These are the Quantities of Interest (QoI’s)

• Models are not (evaluated as) scientific theories

Acceptance of a model is conditional on:
• its purpose

• the QoI’s to be predicted

• the required accuracy
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What are Predictions?

Prediction
Purpose of predictive simulation is to predict QoI’s for which
measurements are not available (otherwise predictions not needed)

Measurements may be unavailable because:

• instruments unavailable

• scenarios of interest inaccessible

• system not yet built

• ethical or legal restrictions

• it’s the future

How can we have confidence in the predictions?
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Problem Statement

“A theory is something nobody believes, except the person who made it.
An experiment is something everybody believes, except the person who made it.”

[Attributed to Albert Einstein]

What are the necessary conditions that entitle us to make predictions
and what are the sufficient conditions to trust those predictions?

We are concerned with developing a methodology capable to provide a
credible and defensible level of confidence regarding the predictive

capability of a model.

Best Estimate + Uncertainty + Confidence Level
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Model Pedigree

• (M1) Pure Physics. Models are accepted as established laws of nature by the scientific
community in their domain of applicability (Eq. Newtonian and Quantum mechanics).

• (M2) Models with Localized Model Error. Examples are models derived from fundamental
laws such as conservation of mass, but solved together with phenomenological constitutive
relations which are uncertain (Eq. RANS). This is the common case

• (M3) Pure Empirical. Models in this category are data driven-models, thus their domain of
applicability is solely defined by the input data (Eq. data reduction models).

Model Error: concerned with source, structure

Extrapolation to new scenarios is only justified for models of type M1 and M2. This is what makes
prediction possible.
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Validation for Complex Systems

Observables and Scenario Parameters
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Processes for Confidence Building
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Uncertainty

Need to Treat Uncertainty in Calibration and Validation

• Mathematical representation of uncertainty (Bayesian probability)

• Uncertainty models (e.g. data, model inadequacy)

• Probabilistic calibration & validation processes (Bayesian inference)

Uncertainty considerations can inform modeling
• How does the data inform the models?

• What new/better data are needed?

• What are the nature & consequences of model inadequacies?
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FIN-S and the full system simulation

Atmospheric Reentry
• RV problems present physical modeling challenges at multiple scales

• Models involve numerous uncertain parameters

• Models are not always reliable (e.g. turbulence)
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FIN-S and the full system simulation

Predictive Simulation Target (QoI’s)

We will simulate
• Earth reentry vehicle with ablative TPS

• ISS and Lunar return trajectories
• The thermal environment

I Radiative
I Convective
I Chemical

• The (peak) heat loads on the vehicle (QoI)

• The (peak) consumption of ablative TPS (QoI)

• During the peak heating regime

Forward Uncertainty Propagation
Calibrated Input Parameter PDF→ Output QoI Statistics
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FIN-S and the full system simulation

Uncertain Parameters

Submodel Uncertainties
• Hypersonic Flow

I Chemical reaction rates
I Diffusive flux model

coefficients
I Turbulent mixing

augmentation
• Radiation

I Absorptivity/Model Error
• Ablation

I Virgin, char densities
I Reaction rate, equilibrium

constants

∼ 300 independent parameters
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FIN-S and the full system simulation

Challenges

Uncertainty Quantification
• High individual forward solve cost

• High parameter count

Verification
• Code complexity

• Lacking analytical solutions to complex physics

• Sole interest: Quantity of Interest functionals

Validation
• Validation processes are cyclical

I Modeling informs research informs modeling
I FSS results inform model development, data collection
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Verification

Code verification
To create a suite of representative test problems that are simple and whose
solutions are (partially) known.

Methodology:

• Problems for which special features of the solution are known

• Problems with manufactured solutions

• Problems with known rates of convergence

• Benchmark problems

Example: Method of Manufactured Solutions

• Assume form of solution (guess)

• Non-trivial to solve by hand - use symbolic manipulation software packages
(Maple)

• This method can be extended to complex systems of equations
(Navier-Stokes w/ chemistry)
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Verification

Manufactured Analytical Solutions Abstraction Library
Features
• Provides standardized interface for all MMS across the center

• C++, C, Fortran90 bindings

• Supports gnu, Intel, portland group compilers

• Meet or exceed all PECOS software standards

• Released under LGPL 2.1: red.ices.utexas.edu/projects/software

• Performance is not principle consideration

Equations Dimensions Coordinate System
Euler (+ chemistry) 1,2,3 Axisymmetric, Cartesian

Navier-Stokes (+ ablation) 1,2,3 Axisymmetric, Cartesian
Heat 1,2,3 Cartesian

Sod Shock Tube 1 Cartesian
RANS: SA (+ wall) 1 Cartesian
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Verification

Solution Verification

Estimate numerical errors
• Consider u = uh to be a numerical approximation to u

• Estimate error in the QoI E = Q(u)−Q(uh) ≈ R(uh; p)

• Is error in QoI within acceptable tolerance?

Goal-Oriented Adaptive Refinement
Goal: Construct a sequence of numerical representations to
systematically reduce the error in the QoI

• The adjoint solution p indicates where the QoI is sensitive to
numerical errors

• Use to drive adaptive refinement to reduce errors in the QoI
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Verification

Example: Goal-Oriented Refinement

Adaptive Discretization
• Estimate error on each cell

I Patch recovery on forward solution
• Estimate each cell error contribution to

QoI
I Patch recovery on adjoint solution

• Refine highest contribution cells first
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Verification

Example: FIN-S and Adaptivity

Solution verification in libMesh
• Uniform, adaptive mesh refinement

• Adjoint-based error estimation
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Example: 4.75 km/sec inviscid 5-species air flow around a cylinder
Fine grid: 116K nodes AMR grid: 13K nodes
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Calibration and Validation

Calibration and Validation

Process of Predictive Simulation
• Identify QoI’s: reflects the purpose of the simulations

• Calibration: models and error models are informed by observations

• Validation: models and error models are challenged by observations

• Predictive Assessment: assess ability of models to predict QoI’s

Expectations of data
• Properly calibrated data reduction model (calibration should be

interpolative, not predictive!)

• Validated data reduction model for scenarios of interest
• Uncertainty information on output quantities
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Calibration and Validation Surface Chemistry Calibration

Example: Surface/Wall Catalysis

Motivation
• Surface/wall catalysis plays a critical role in surface heat flux on a

re-entry vehicle

• Reported estimates of surface reaction efficiency vary by few orders
of magnitude1 (often supercatalytic wall is assumed2)

1 Zhang et. al. AIAA-2009-4251
2 Wright et. al. AIAA-2004-2455
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Calibration and Validation Surface Chemistry Calibration

Experimental Setup1

1 Zhang et. al. AIAA-2009-4251
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Calibration and Validation Surface Chemistry Calibration

Plug Flow Reactor Model (1D) – PFRM

d(vCN )/dx = −γ̄N v̄
th
N
CN /deff

− 2kNNC
2
N
CN2

Two recombination mechanisms:

• Recombination at tube surface: γ̄N = γNT
n
N

• Recombination in gas-phase: kNN = ANN e
(−Ea

NN
/(RT ))

where, Cj is concentration of species j with no radial gradients, v is bulk
flow velocity, and d

eff
is effective diameter
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Calibration and Validation Surface Chemistry Calibration

Carbon Mass Loss

∆mC = πds∆tMC

∫
Ls
Rs(x)dx

Gas-surface mechanism:

• Reaction flux: Rs(x) = γCN v̄
th
N
CN (x)/4

where, gas-surface interaction is based on a simplified flux model in which
we assume CN,ws

(x) = CN (x) and keq(T ) to be large

R. D. Moser V&V / UQ for RVs 23 / 43



Calibration and Validation Surface Chemistry Calibration

Synthetic Data : Joint PDFs of Parameters

d(vCN )/dx = −γNT
n
N v̄th

N
CN /deff

−2ANN e
(−Ea

NN
/(RT ))

C2
N
CN2

∆mC = πds∆tMCγCN (v̄th
N
/4)

∫ Ls

0
CN (x)dx
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Calibration and Validation Surface Chemistry Calibration

Observed Data (35 runs) : Joint PDFs of Parameters

• A model ignoring inadequacy (d∆m = ε y∆m) has null plausibility

• Up to 1 million samples in the last level
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Calibration and Validation Surface Chemistry Calibration

A Look Back at Modeling Assumptions

Assumptions:

• no radial gradients in species concentration: CN (x)

• bulk flow velocity: v(x)

• effective diameter: d
eff

• concentration at sample surface is same as bulk: CN,ws
(x)
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Calibration and Validation Surface Chemistry Calibration

GRINS: General Reacting Incompressible Navier-Stokes

Plan
• Develop GRINS code on top of libMesh to perform modeling and

analysis of laminar, non-isothermal, low Mach number, reacting flows

• Support general problem cases: axisymmetric, two-dimensional or
fully three-dimensional

• Use GRINS code for joint calibration of model parameters as well as
for optimal design of experiments (jointly with J. Marschall; for both
nitridation and oxidation)
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Calibration and Validation Turbulence Calibration

Example: Spalart-Allmaras (SA) Model Calibration

Why start with SA?
• Widely used in aerospace applications

• Relatively easy to implement and robust

• Roy and Blottner [2001, 2003] find reasonable performance for
hypersonic boundary layers

SA implemented in FIN-S for FSS and implementation verified via MASA

Mach number Kinematic eddy viscosity
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Calibration and Validation Turbulence Calibration

Calibration Data
Experiment
Data in supersonic TBL experimental literature found insufficient
• Requirements for calibration data very difficult to satisfy

I Fully characterized BCs
I Systematic and quantitative uncertainty analysis

• Often data only available in outer layer
I Leads to pathological behavior in calibrated parameters (e.g., κ < 0.3)

• Novel PIV technique under development (Sharma and Clemens)
intended to enable resolved velocity measurements down to y+ ≈ 22

Direct Numerical Simulation
Currently pursuing DNS as primary calibration data source

• Obtain data arbitrarily close to wall

• Simulation complicated by streamwise inhomogeneity

• Develop “slow growth” approach to avoid this complication
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Calibration and Validation Turbulence Calibration

Temporal Slow Growth Formulation

Motivating flow: Rayleigh Problem
• At t = 0, impulsively start infinite plate with velocity U

• Homogeneous in streamwise direction but not
stationary

U

Slow temporal development
• Define two time variables: tf = t, ts = εt where ε� 1

• Assume mean and RMS depend only on slow time variable

• Navier-Stokes equations become
∂U

∂tf
+ ε

∂U

∂ts
+N(U) = 0

• Idea: Simulate at single point in slow time

• Procedure: Use similarity assumption to develop model for slow time
development
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Calibration and Validation Turbulence Calibration

DNS Mean Flow Results
Case scenarios very loosely based on CEV BL conditions for ISS return

Case 1
• M∞ ≈ 0.925, Tw/T∞ ≈ 0.285,

• Reδ∗ ≈ 262, Reτ ≈ 916

Case 2
• M∞ ≈ 1.17, Tw/T∞ ≈ 0.285,

• Reδ∗ ≈ 501, Reτ ≈ 1330
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Calibration and Validation Turbulence Calibration

Uncertainty Models
Model Uncertainty

ρtrue = (1 + ερ)ρrans; ρutrue = (1 + ερu)ρurans

Two zero-mean Gaussian stochastic models for ερ and ερu
• Independent at observation points: ερ ∼ N(0, σ2ρδ(y − y′))
• Correlated with two-length structure: ερ ∼ N(0, k(y, y′)) where

k(y, y′) = σ2ρ

(
2`(y)`(y′)

`2(y) + `2(y′)

)1/2

exp

[ −(y − y′)2
`2(y) + `2(y′)

]
Data Uncertainty
• Now: Assume Gaussian with σ of 0.1% of reported value

• Soon: Estimate uncertainty in DNS sample statistics

Model uncertainty + Data uncertainty⇒ Likelihood function
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Calibration and Validation Turbulence Calibration

Physical Parameter PDFs
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Calibration and Validation Turbulence Calibration

Uncertainty Parameter PDFs

Independent
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Correlated model sees more uncertainty, particularly in ρu
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Calibration and Validation Turbulence Calibration

Model Comparison Results

SAB+IND SAB+COR SAC+IND SAC+COR
log p(D|Mj) 558.6 982.5 557.6 982.0
P (Mj |D,M) ≈ 0 0.61 ≈ 0 0.39

SAB = Spalart-Allmaras; SAC = SA with Catris-Aupoix correction
IND = Independent model uncertainty; COR = Correlated model uncertainty

• Catris-Aupoix correction makes virtually no difference
• Independent uncertainty model highly implausible relative to

correlated
I Parameter uncertainty + white noise does not explain the data

• Correlated uncertainty model best of this set
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Calibration and Validation Turbulence Calibration

Density Calibration Data Comparison
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• Parameter uncertainty does not capture data

• Must propagate model uncertainty
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Calibration and Validation Turbulence Calibration

QoI Results

• QoI = ∂T
∂y

∣∣
wall

at M∞ = 0.925

• Only correlated uncertainty
model

I Represents data better
I Cannot propagate model

uncertainty to this QoI for
independent model
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• DNS value in tail of PDF given by parameter uncertainty only

• Model uncertainty critical again

• Model uncertainty possibly overestimated here... multiplicative
uncertainty model for density breaking down near the wall?
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Forward Propagation of Uncertainty

Recall: Full System Simulation

We will simulate
• Earth reentry vehicle with ablative TPS

• ISS and Lunar return trajectories
• The thermal environment

I Radiative
I Convective
I Chemical

• The heat loads on the vehicle

• The consumption of ablative TPS

• During the peak heating regime

Forward Uncertainty Propagation
Calibrated Input Parameter PDF→ Output QoI Statistics
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Forward Propagation of Uncertainty

Sensitivity Analysis from Calibrated Component Physics

Physics: Calibrated Sensitivity Results

Ablation

Radiation

Transport

Kinetics

Turbulence • Kinetics parameter uncertainty largest

I Need data on carbon reactions

• Confirmed nitridation insensitivity

• Turbulence model parameter uncertainty
less important than model uncertainty

Algorithms

• Monte Carlo sampling is expensive

• Push development of adjoint-enhanced sensitivity methods
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Forward Propagation of Uncertainty

Calibrated Forward Propagation Results
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UQ Output
• Much lower mean ablation mass

loss than with uncalibrated
submodels

I 2010 peak: ≈ 1.97× 10−5

I 2011 peak: ≈ 4.37× 10−6

• Primary driver: 100× lower
nitridation coefficient than initial
prior

• New nitridation sensitivity:
negligible
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Conclusions

Discussion

What is necessary to entitle making predictions
• Reliable physics models, possibly with embedded less reliable

models, used in domain of applicability
• Less reliable embedded models & modeling assumptions identified:

I augmented with model inadequacy models & formulated to use in
prediction

I uncertainty estimates for model parameters (due to calibration)
I calibrated with data from scenarios relevant to the prediction

• Models with all uncertainty models consistent with all available data

What is sufficient for confidence in predictions
• Errors to which the QoI’s are sensitive have been modeled

• All model assumptions and empirical sub-models (including
uncertainty models) challenged in scenarios relevant to prediction
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Conclusions

Lessons Learned

• MMS quickly become intractable for multiphysics problems
I MASA software infrastructure helps
I Divide and conquer strategies

• Data reduction modeling (DRM) is critical but very difficult
I Build close relationships with experimentalists
I Work with them to improve DRM

• Model inadequacy models needed, but not well developed
I Construct to respect what is known about the models – this is a further

physical modeling challenge
• Inadequacy models lead to stochastic models (e.g. stochastic PDE’s)

I Need new Bayesian inference algorithms to avoid nested sampling

• Model comparison, model evidence and information theory are critical
“validation” tools
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Conclusions

Thank you!

Questions?
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