
University of Notre Dame Aerospace and Mechanical Engineering
AME40453 Spring 2020	

	

C3 – PID in LabView 1 Last Revision: 1/28/20

Experiment C3
PID Temperature Controller

Procedure

Deliverables: Checked lab notebook, Technical Memo

Overview
In this lab, you will use a special feedback method known as Proportional Integral Derivative
(PID) control. PID is a common method for controlling temperature or other system parameters.
For PID temperature control, the heater power is continuously adjusted using feedback from a
temperature sensor. The algorithm sets the power using the formula

!q = kp(TS −T)+ kI (TS −T)dt∫ + kD
d
dt
(TS −T) , (1)

where T is the measured temperature, TS is the desired temperature (or set point), and kp, kI, and kD
are the proportional, integral, and derivative “gains”, respectively. The parameters TS, kp, kI, and
kD are set by the user.
In this lab, you will learn how to use “pulse width modulation” to digitally control power. Then,
you will learn how to implement a PID algorithm in LabView. Lastly, you will explore how the
proportional, integral, and derivative gains change the behavior of the controller, and how to
choose optimal values for these parameters.

Part I: Pulse Width Modulation
Background

Pulse width modulation (PWM) is a common technique for controlling analog electronics with a
digital square wave. Shown in Fig. 1, a digital square wave is used to open and close the gate of a
MOSFET transistor, which rapidly switches the source-drain current ON and OFF. Changing the
width of the pulses or “duty cycle” changes the average amount of power delivered to a heater or
motor.

Experimental Procedure
1. Use the alcohol thermometer to measure the temperature of the air in the lab TAir. Record

the value in your lab notebook.
2. Sketch the circuit and pin-out shown in Fig. 1 in your lab notebook.

3. Construct the thermistor voltage divider circuit from C1 near the top of the breadboard.
4. Connect the output of the voltage divider Vs to the analog input on the analog input of the

USB-6341 and use the LabView program from C1 to measure the temperature vs. time.
Make sure it is working before you move on to the next step.

University of Notre Dame Aerospace and Mechanical Engineering
AME40453 Spring 2020	

	

C3 – PID in LabView 2 Last Revision: 1/28/20

	
Figure 1 – (a) An N-Channel MOSFET allows a low power digital signal to control a large

amount of current passing through a resistive heater. (b) The pin-out for the TO-220
power MOSFET.

5. Sketch the MOSFET PWM circuit shown in Fig. 1a.

6. Sketch the MOSFET pin-out shown in Fig. 1b.
7. Construct the MOSFET PWM circuit shown in Figure 1, such that the 100Ω heater is in

contact with the thermistor. Bend the thermistor so it touches the resistor, and inject a
small dab of thermal paste between the two.

8. Test the circuit. Use a handheld DMM to measure the voltage across the heater.
a. Initially, there should be 0V across the heater.

b. Connect the MOSFET gate (“PWM input” in Fig. 1) to the 5V power supply. The
heater should turn on with ~12V across it, and the temperature should start to
increase.

c. Disconnect the 5V from the gate. The heater voltage should go back to 0V, and the
temperature should decrease.

9. Using the BNC T, connect the output of the function generator to CH1 of the oscilloscope.

10. Set up the function generator for “Pulse” function with a frequency of 500 Hz, a high value
of 5V and low value of 0V.

11. Using the BNC T, connect the output of the function generator to the MOSFET gate.
12. Turn on the output from the function generator. Vary the duty cycle or pulse width on the

function generator, and observe how it affects the heater power and temperature.
13. In your notebook, record the equilibrium temperature as a function of the PWM duty cycle.

You should measure 6 data points from 0 – 100% duty. At this point, you could set the
temperature using data from this table, interpolating between values. This is known as a
“feed forward, open loop” control system. However, small changes in the surrounding
environment usually make this approach innacurate.

University of Notre Dame Aerospace and Mechanical Engineering
AME40453 Spring 2020	

	

C3 – PID in LabView 3 Last Revision: 1/28/20

14. Disconnect the function generator and turn it off.

Part II: Generating PWM Signal with LabView
Experimental Procedure

1. Create a new LabView VI, give it an intelligent file name, and save it in your C3 folder.
2. Create a while loop with a stop button.
3. Right-click inside the while loop. Under “Express” > “Input”, select the “Simulate Signal”

express VI and place it in the while loop.
4. In the Configure window, make a 500 Hz square wave. Under timing, set it to 50000

samples per second. Make sure “Automatic” and “Run as fast as possible” are activated,
and press OK.

5. Create controls for the Amplitude and Duty Cycle. Wire up the “Offset”, such that it is
always half of the amplitude. That is, you want the low value to always be zero volts.

6. Right-click inside the while loop. Under “Express” > “Output”, select the “DAQ Assist”
express VI and place it in the while loop.

7. In the pop-up window, select “Generate Signal” > “Analog Output” > “Voltage” > “ao0” >
“Finish”.

NOTE: We are essentially using a digital-to-analog converter to simulate a digital pulse train
on an analog output. This is a very inefficient way to make a PWM signal, and we are only
doing it this way for educational purposes. In the “real world”, PWM output should be kept all
digital, which is what we will do next week with the Arduino microcontroller.

8. For generation mode, select “Continuous Samples”
9. Add jumper wires to the corresponding analog output and ground connections on the USB-

6341. Connect them to the oscilloscope and click “Run” at the top of the screen. You
should be able to see a sine wave on the oscilloscope. After you observe the sine wave
click OK.

10. Connect the output of “Simulate Signal” to the input of the “DAQ Assist”.

11. Test the program in the Front Panel. Press run, and try adjusting the amplitude and duty
cycle. Test the output on the oscilloscope to make sure it works. Try to vary the amplitude
and duty cycle in LabView. Make sure the low value is always zero.

12. Connect the PWM output from the USB-6341 as you did in Part I. Adjust the duty cycle in
LabView and observe how it affects the heater voltage.

13. Save your VI.

University of Notre Dame Aerospace and Mechanical Engineering
AME40453 Spring 2020	

	

C3 – PID in LabView 4 Last Revision: 1/28/20

Part III: Proportional Control with LabView
You will now combine your C1 temperature measurement VI with the PWM circuit and VI to
create a PID controller. The measured temperature will be used to adjust the PWM output a la Eq.
(1).

Experimental Procedure
1. Create a copy of your C1 thermistor VI, give it an intelligent file name (i.e.

“C3_proportional_feedback_yourName.vi”), and save it in the C3 folder.
2. Right click inside the while loop and select “Programming” > “Structures” > “Flat Sequence”.

Draw a box around all of the temperature measurement and formulae, but NOT the timing code
and stop button at the bottom.

3. Right click the edge of the sequence and select “Replace” > “Replace with Flat Sequence”.
4. Right click the edge of the sequence and select “Add Sequence Local”. This will create a local

variable for you to store the measured temperature.
5. Right click the edge of the sequence and select “Add Frame After”.
6. Copy (ctrl+c) everything inside the while loop from Part II that you created to generatre the

PWM signal. Paste (ctrl+v) it into the empty “frame” you just created.
7. Delete the control for Duty Cycle. Instead, you will use proportional feedback to adjust the

PWM % duty cycle.
8. Create controls for the temperature set point TS proportional gain kp. Arrange them nicely on

the front panel.
9. Use the numeric functions palette to implement the proportional feedback (i.e. the first term on

the right hand side of Eq. (1)). The measured temperature can be read in the sequence local
variable.

NOTE: The heater power is not directly proportional to the % duty cycle. You will need to use
the formula from problem 1 in the pre-lab assignment to correctly scale the PWM signal.
10. Use a “Case Structure” so the program sets the duty cycle to 0% if the actual temperature is

greater than the set point. (“Simulate Signal” does not like negative values of duty cycle.)
11. Create an indicator to display the duty cycle on the front panel.
12. Test the program with a set-point TS = 315 K to make sure it works.
13. When you are convinced the program works, record test data for several different value of

proportional gain, starting with kp = 0.1 W/K. Keep the set-point constant at TS = 315 K, test it
with at least three different values of of kp, and save the data. How does the proportional gain
kp change the behavior of the controller? How does this compare with your performance
prediction in the pre-lab assignment?

University of Notre Dame Aerospace and Mechanical Engineering
AME40453 Spring 2020	

	

C3 – PID in LabView 5 Last Revision: 1/28/20

Part IV: Implementing the PID Controller
Experimental Procedure

1. Create a copy of your code from Part III, give it an intelligent file name (i.e.
“C3_PID_yourName.vi”), and save it in your C3 folder.

2. Use shift registers and a Riemann sum formula to compute the integral of the temperature error
TS – T in the frame next to the proportional feedback. Add an indicator to display the value in
the front panel.

3. Add case structure that sets the integral to zero if (TS - T) > 5. This will stop the integral from
picking up too much steam in the beginning.

4. Use shift registers and a finite difference formula to compute the derivative of the temperature.
Add an indicator to display the value in the front panel.

5. Add controls to the front panel for the integral gain kI and derivative gain kD.
6. Add the integral and derivative feedback to the proportional feedback to create a full PID

controller.
7. Use a fixed set-point TS = 315 K, and test the controller starting with kI = kD = 0. Then, test it

again with a small value of kI < 1 W/Ks and kD = 0. Save the data.
8. Test the controller further with kI > 1 W/Ks and kD = 0. Then, test it again with a small value

of kI > 1 W/Ks and kD > 20 Ws/K. Save the data. How do the gains affect the behavior?

Part V: Tuning the PID Controller
As you can probably see, it is not obvious what values should be used for the gains kp, kI, and kD.
You will now use a heuristic method developed by Ziegler and Nichols to “tune” the controller to
the optimal values of kp, kI, and kD. By “optimal”, we mean fast response with minimal
oscillations.
Experimental Procedure
1. Using a fixed set-point TS = 315 K and kI = kD = 0, perform several tests, each with increasingly

larger proportional gain kp. Stop the program and allow the heater to cool for a few seconds
between each test. Do this until the system goes into consistent, periodic oscillations.

2. Record the lowest value of kp that yielded consistent oscillations. Denote it as the “critical
gain” ku.

3. Measure the period of the oscillations Tu and write it in your lab notebook.
4. For a proportional-integral (PI) controller with kD = 0, Ziegler-Nichols says the optimal gains

are kp = 0.45ku and kI = 0.54ku/Tu. Calculate these values and write them down in your lab
notebook.

5. Test the PI controller with kp = 0.45ku, kI = 0.54ku/Tu, and kD = 0. Save the data.
6. For a full PID controller, Ziegler-Nichols says the optimal gains are kp = 0.6ku, kI = 1.2ku/Tu,

and kD = 3kuTu/40 Calculate these values and write them down in your lab notebook.

University of Notre Dame Aerospace and Mechanical Engineering
AME40453 Spring 2020	

	

C3 – PID in LabView 6 Last Revision: 1/28/20

7. Test the PID controller with kp = 0.6ku, kI = 1.2ku/Tu, and kD = 3kuTu/40. Save the data. How
does the PID controller compare with the PI controller? What effect does the derivative term
have?

8. Leave the MOSFET and thermistor circuits intact on the breadboard and disassemble
everything else. You will use it again next week. Carefully store everything in the large tote
and place it in the cabinet above your lab bench.

Data Analysis and Deliverables
Using LaTeX or MS Word, make the following items and give them concise, intelligent captions.
Make sure the axes are clearly labeled with units. Plots with multiple data sets on them should
have a legend. Additionally, write several paragraphs describing the plots/tables. Any
relevant equations should go in these paragraphs.

IMPORTANT NOTE: Check the units of your gains kp, kI, and kD. For example, the
proportional gain kp in your code likely has units of duty_cycle/Kelvin. However, in the pre-lab
assignment it has units of Watts/Kelvin. You will need to use some factor of V2/R to convert
from duty cycle to average power in Watts if you did not all ready do so in your code. (See the
C3 pre-lab assignment.)

1. From Part III, a plot of the temperature vs. time for at least 3 different values of kp (all on the
same plot with a legend). Add a horizontal line denoting the set-point. Compare this with your
predictions from the pre-lab assignment.

2. From Part IV, some of the temperature vs. time traces (all on the same graph) for different
values of the gains. Add a horizontal line denoting the set-point. Be sure to include a legend
denoting the gains.

3. From Part V, a plot of the temperature vs. time traces (both on the same graph) for the tuned PI
and PID controllers. Add a horizontal line denoting the set-point.

4. From Part V, a table containing the optimal gains for the PI and PID controller that you
determined using the Ziegler-Nichols tuning method.

Talking Points – Discuss these in your paragraphs.

• Include the important equations you derived in the Pre-lab Assignment.

• Qualitatively discuss the response time of the proportional controller as a function of the
proportional gain kp.

• Does your proportional controller from Part III oscillate? Is this predicted by the
differential equation you derived in the Pre-lab? Explain.

• Qualitatively compare the performance of the tuned controller from Part V with the un-
tuned controller from Part IV.

University of Notre Dame Aerospace and Mechanical Engineering
AME40453 Spring 2020	

	

C3 – PID in LabView 7 Last Revision: 1/28/20

Appendix A

Equipment
• USB-6341 DAQ
• PC computer with LabView 2017
• Bread board
• 2 BNC cables
• BNC to mini-grabber adapter
• Extech handheld DMM
• Vishay NTCLE100E3103JB0, NTC Thermistor 10k Bead (Digikey part # BC2301-ND)
• 4.7kΩ resistor
• N-Channel MOSFET TO-220AB (Digi-key part #: 497-2765-5-ND)

