For the following questions, please express your answers as algebraic equations written on a separate sheet of paper, and show your work. Then, transcribe the important equations into your lab notebook. - 1. Refer to Figure 1 of the lab handout for the following questions. Assume both tanks have the same cross sectional area A_T . - a. Use conservation laws (rate balance for the volume of water) to derive a system of differential equations for the height of the water in each tank, h_1 and h_2 . Use Poiseuille's Law $p = RQ_{OUT}$ and the hydrostatic pressure $p = \rho gh$ to determine the flow rate out. - b. If the tanks are identical and both outlet nozzles are the same $(R_1 = R_2 = R)$, derive an equation for the time constant τ in either tank in terms of R, ρ , g, and the cross-sectional area of the tank $A_T = \pi r^2$. - c. Derive an equation for the steady-state equilibrium height for the top tank h_{1S} in terms of S, τ , and tank area A_T . - d. If the tanks are identical and both outlet nozzles are the same $(R_1 = R_2 = R)$, derive an equation for the steady-state equilibrium height for the bottom tank h_{2S} in terms of h_{1S} . What are the implications for controlling the system? - e. Derive an equation for flow rate S_s that yields an equilibrium height h_{IS} . - f. Express the governing equations derived in problem 1a in the form $\dot{x} = Ax + Bu$ where $x = \begin{bmatrix} h_1 h_{1S} \\ h_2 h_{2S} \end{bmatrix}$ and $u = S S_s$. In particular, what are A and B in terms of A_T and τ ? - g. Use the lqr() method in Matlab to calculate the optimal gains k_{p1} and k_{p2} (in units of in²/s) for identical tanks, both with a diameter D = 5" and time constant $\tau = 6$ s. Assume $\mathbf{R} = [1]$ and $\mathbf{Q} = \mathbf{I}$. (\mathbf{R} is the 1x1 identity matrix, and \mathbf{Q} is the 2x2 identity matrix.) - 2. Refer to Figure 2 of the lab handout for the following questions. Assume both tanks have the same cross-sectional area A_T . However, we will allow both tanks to have different nozzles, such that the flow resistances $R_1 \neq R_2$. - a. Similar to Part 1, use conservation laws (rate balance for the volume of water) to derive a system of differential equations for the height of the water in each tank, h_1 and h_2 . - b. Derive an equation for the time constant τ_I for Tank 1 in terms of R_I , ρ , g, and the cross-sectional area of the tank A_T . - c. Derive an equation for the time constant τ_2 for Tank 2 in terms of R_2 , ρ , g, and the cross-sectional area of the tank A_T . - d. Derive an equation for the steady-state equilibrium height h_{IS} for Tank 1 in terms of S_I , τ_I , and A_T . - e. Derive an equation for the steady-state equilibrium height h_{2S} for Tank 2 in terms of S_2 , h_{1S} , R_2 , ρ , and g. - f. What is the minimum equilibrium height h_{2S} for Tank 2 when $S_2 = 0$? For a larger range of allowable equilibrium heights h_{2S} , do you want $R_2 \ll R_1$ or $R_2 \gg R_1$? - g. Derive an equation for the flow rate S_{IS} necessary to maintain an equilibrium height h_{SI} in terms of *only* the variables A_T , τ_I , and h_{IS} . - h. Derive an equation for the flow rate S_{2s} necessary to maintain an equilibrium height h_{2S} in terms of *only* the variables A_T , τ_1 , τ_2 , h_{1S} , and h_{2S} . - i. Express the governing equations derived in problem 2a in the form $\dot{x} = Ax + Bu$ where $x = \begin{bmatrix} h_1 h_{1S} \\ h_2 h_{2S} \end{bmatrix}$ and $u = \begin{bmatrix} S_1 S_{1S} \\ S_2 S_{2S} \end{bmatrix}$. In particular, what are A and B in terms of A_T , τ_I , and τ_2 ? (Note: A and B will both be 2x2 matrices.) - j. Use the lqr() method in Matlab to calculate the optimal gain matrix (in units of in²/s) for identical tanks, both with a diameter D = 5" and time constants $\tau_I = 8$ s and $\tau_2 = 2$ s. Assume $\mathbf{R} = \mathbf{Q} = \mathbf{I}$. (\mathbf{R} and \mathbf{Q} are the 2x2 identity matrix.) - k. Assume the flow rates are linearly related to the duty cycle for both pumps, such that $S_1 = a_1(\%PWM_1) + b_1$ and $S_2 = a_2(\%PWM_1) + b_2$. Take Eq. (6) in the handout, and use these calibration equations to replace S_1 and S_2 with $\%PWM_1$ and $\%PWM_2$. (i.e. Repeat what was done in Eqs. (1) (4) in Part I of the handout.)