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Abstract

The force distribution problem (FDP) in robotics requires the determination of multiple contact
forces to match a desired net contact wrench. For the double support case encountered in humanoids,
this problem is underspecified, and provides the opportunity to optimize desired foot centers of pressure
(CoPs) and forces. In different contexts, we may seek CoPs and contact forces that optimize actuator
effort or decrease the tendency for foot roll. In this work, we present two formulations of the FDP for
humanoids in double support, and propose objective functions within a general framework to address
the variety of competing requirements for the realization of balance. As a key feature, the framework is
capable to optimize contact forces for motions on uneven terrain. Solutions for the formulations developed
are obtained with a commercial nonlinear optimization package and through analytical approaches on
a simplified problem. Results are shown for a highly dynamic whole-body humanoid reaching motion
performed on even terrain and on a ramp. A convex formulation of the FDP provides real-time solutions
with computation times of a few milliseconds. While the convex formulation does not include CoPs
explicitly as optimization variables, a novel objective function is developed which penalizes foot CoP
solutions that approach the foot boundaries.
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Figure 1: Force distribution block diagram and setting. The general approach taken in this work resolves a
required net wrench (with force f and moment n) on the system to two foot wrenches in an optimal manner.

1 Introduction

The force distribution problem (FDP) in robotics is a fundamental problem that requires the computation
of physically feasible contact forces to match a desired net contact wrench. Solutions to this problem have
been studied to properly select foot forces in multilegged robots, with early formulations appearing decades
ago.1–4 Point contacts at the feet, which can generate no moments, are typically assumed to simplify the
problem. The FDP for humanoid robots, described by Fig. 1, does not permit this assumption and requires
a more general distribution of the wrench to each foot, due to planar contacts which can generate significant
moments. Although this complexity introduces additional constraints on the individual foot wrenches, the
FDP is generally underspecified and provides the opportunity to optimize the foot centers of pressure (CoPs)
and contact forces. The study here addresses how to efficiently formulate the FDP for humanoids and to
optimally select foot CoPs and forces for minimum actuator effort and to prevent foot roll.

The FDP formulation presented here is general to any humanoid model. The desired net wrench input
to the FDP in Fig. 1, however, will often be based on a specific whole-body dynamic model and may come
from any number of high-level controllers. For instance, the net wrench may be specified from some desired
pre-computed dynamics,5 from the intermediate product of a whole-body control strategy,6 or from desired
center of mass (or more generally, centroidal7) dynamics.8,9 In the latter case, the desired net contact wrench
is precisely determined by the desired rate of change in the net system linear and angular momentum. Once
the FDP is solved, methods to physically realize the optimized ground reaction forces and CoPs will be
dependent on the dynamic and kinematic parameters of the model. Still, as it will be shown, the FDP
itself relies purely on the kinematic parameters of the humanoid and contact limitations such as friction.
Examples of how force distribution fits within the context of whole-body control are given in Section 2 and
in previous work.6

In this paper, we focus on the case of force distribution for a humanoid robot in double support. Prelim-
inary force distribution algorithms10–12 have been required in many of the most advanced force-controlled
humanoids, and will continue to be one of several algorithms needed for humanoids to operate compliantly
within a force-controlled framework. In single support, the force distribution problem is trivial; every feasible
net contact wrench implies a unique foot CoP and required ground reaction force (GRF). Yet, in double sup-
port, there are numerous ways to resolve the net contact wrench into two foot CoPs and GRFs. While much
legged robotics research has concentrated on the control of periodic motions dominated by single support
(e.g.13), many useful humanoid tasks such as lifting14 or household cleaning15 occur predominantly in double
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support. Double support force distribution algorithms will also be necessary for force-controlled humanoids
to perform human motion transfer and retargeting tasks,6 walking gaits with extended periods of double
support,16 or any other motion that requires intermittent steps. Algorithms to compute force distributions
for more complex contact scenarios are a straightforward extension once contact force optimization has been
addressed through study of double support.

1.1 Related Work

In double support, a net wrench’s distribution to each foot is generally underspecified. While this contact
force underspecification has been addressed in-part in the force-controlled humanoids community, the op-
portunity to optimize these contact forces and CoPs for a variety of objectives pertinent to dynamic balance
has yet to be fully explored. Preliminary studies have been dominated by pseudo-inverse based approaches
and constrained optimization approaches.

Pseudo-inverse approaches have been used to address contact force underspecification by a number of
researchers, but limit the potential objectives and do not enforce frictional constraints on the GRFs. Mistry,
et al.5 and Righetti et al.10 addressed contact force underspecification for floating-base inverse dynamics
(ID). Due to ground contacts, the ID problem does not have a unique solution in double support. Their
approach decomposes the system dynamics and uses pseudo-inverse methods to provide force distributions
which optimize joint torque norms5 or quadratic objectives of the contact forces.10 More complex objectives,
such as those on CoP studied here, have not been shown to be compatible with their framework.

Hyon et al.11 solve the force distribution problem for compliant multi-contact behaviors. Their pseudo-
inverse solution considers the optimization of contact force norms, but again does not enforce friction limits
on the GRFs. While this drawback was partially addressed with an impedance based control law,8 the
approach, by construction, allows some foot slip. Friction constraints are included here which provides a
strong guarantee on the physical realizability of the contact forces that emerge from our FDP solutions.

Sentis et al.15 partially address force underspecification within their prioritized multi-tasking frame-
work.17 The last level in their prioritized control framework selects torques which modify the force dis-
tribution, but do not disturb the desired dynamics dictated from the higher-priority control levels1. As
opposed to optimizing contact forces, their objective is to produce no moments at desired contact CoPs as
well as to achieve certain interaction forces and moments between the contacts. Due to their pseudo-inverse
based approach, feasible contact forces do not always result (even when they may exist to realize the de-
sired dynamics), and it is necessary to check friction constraints in an additional step. Through the use of
constrained optimization, the FDP formulation for planar contact introduced here guarantees that feasible
contact forces will result, when they exist, to match the required wrench.

Others have formulated the force distribution problem more formally as a constrained optimization prob-
lem and have employed sub-optimal solution methods or used various simplifying assumptions. Sub-optimal
force distribution was presented in6 for the case of a side by side stance. Efficient algorithms to test feasi-
bility of the force distribution problem were used to produce non-optimized contact forces.19 More general
solutions have emerged recently by Stephens and Atkeson12 and Lee and Goswami.9 Both approaches use
a linear approximation to the friction cone constraints and consider a single objective. Stephens and Atke-
son optimize the ground force magnitudes (similar to8), yet enforce friction constraints more satisfactorily.
While only considering this simple objective, they demonstrate the usefulness of the force distribution prob-
lem to lifting tasks as well as postural maintenance. Lee and Goswami optimize ankle torques and apply a
multi-stage optimization process that results in near-optimal solutions. In contrast, we use general convex
optimization to show how friction cone constraints can be enforced and how CoP-based objectives can be
optimized in real time.

The remainder of this paper is organized as follows. Section 2 introduces the FDP within the context of
floating-base inverse dynamics. Sections 3 and 4 then provide and contrast two formulations of the FDP for
planar contacts. These formulations differ in the manner through which each foot wrench is characterized.
The section following provides a description of the direct applicability of the force distribution algorithm to
uneven terrain and gives results for motion on a ramp. Section 6 presents a new objective to avoid foot roll
through a novel optimization of foot CoP margins that is able to be computed in real time. Finally, the
work is summarized and conclusions of the work are discussed.

1Thus, this final layer of control essentially solves a floating-base ID problem. This connection has been formalized.18
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2 Background

While the FDP has been recognized within the multilegged robotics community for quite some time, it is a
relatively new area of study for application to humanoid robots. To assist in its introduction, this section
will demonstrate an example application of the FDP to solve floating-base inverse dynamics in double
support. Let the generalized coordinates for a floating-base humanoid be decomposed as q = [qT

u , q
T
a ]T

where qu ∈ R6 and qa ∈ Rn are the unactuated (floating-base) and actuated degrees of freedom (DOFs)
respectively. Consider the standard equations of motion for a floating-base humanoid:20

Hq̈ + Cq̇ + G = JT
c fc + ST

a τ a (1)

where H, Cq̇, and G are the familiar mass matrix, velocity product terms, and gravitational terms respec-
tively. Following the conventions of Fig. 1, we define the combined contact force fc = [nT

1 , f
T
1 , n

T
2 , f

T
2 ]T .

Here Jc = [JT
1 JT

2 ]T is a combined contact Jacobian for the feet, τ a ∈ Rn is the vector of actuated joint
torques, and Sa = [0n×6 In×n] is a selection matrix which encodes the system’s actuation. Similarly, we
define Su = [I6×6 06×n]. The floating-base ID problem is as follows: given a robot state (q, q̇) and some
desired accelerations q̈d, select τ a to achieve q̈d. It is assumed that the robot state and q̈d are consistent
with double support. Standard open-chain ID20 can be used to compute the quantity:

τ̃ = Hq̈d + Cq̇ + G .

In order to achieve q̈d, we then have the following system of equations in τ a and fc:

Suτ̃ = SuJ
T
c fc = Su

(
JT
1

[ n1

f1

]
+ JT

2

[ n2

f2

])
(2)

Saτ̃ = SaJ
T
c fc + τ a . (3)

Here, (2) states that the floating-base wrench Suτ̃ found from open-chain ID must be equal to the sum
of the left and right foot wrenches (expressed at the floating base). As a result, the left side of (2) represents
the net wrench that should be input to the force distribution problem for this application. Note that (2)
is a system of 6 equations, with 12 unknown components of fc to be selected. As a result, this equation is
underspecified in fc and thus allows flexibility in the distribution of the net wrench to each foot. Once the
FDP is solved, with the optimal contact wrenches denoted as f∗c , (3) can be rearranged as

τ a = Sa

(
τ̃ − JT

c f
∗
c

)
which specifies the joint torques required to achieve q̈d and to physically realize f∗c . While model-specific mass
and inertia parameters were required for the computation of τ̃ , it will be shown that the FDP formulation
relies only on the geometric parameters of the contacts and their friction limitations. In this paper we
demonstrate how to optimize the foot wrenches and associated CoPs subject to wrench balance constraints
similar to (2), as well as other constraints of physical realizability. The next sections study how to efficiently
represent fc for optimization.
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Figure 2: Coordinate system and variable description for the Foot CoPs formulation.

3 Foot CoPs Optimization Formulation

In the first formulation of the force distribution problem (FDP), the net wrench for each foot will be charac-
terized by its center of pressure (CoP) and a wrench which acts at this CoP. In this manner, on even terrain,
the force distribution can be thought of as the distribution of a global ZMP (and associated wrench) to two
local CoPs (and associated wrenches). It is assumed that each foot is in contact with the ground through a
planar convex polygonal contact. Figure 2 illustrates these contact conditions for the case when all ground
supports are co-planar. Note that the formulation as developed below is based on a net wrench (not ZMP)
and thus may be applied to uneven terrain without any changes to the formulation.

Figure 2 provides a graphical description of the given variables for this formulation. Each FDP requires
the realization of a required wrench given by a force and moment (f, n) which acts at a position pf . Expressed
in the global coordinate system, these vectors are represented by the quantities 0f, 0n, and 0pf respectively.
The position and orientation of foot i is given by the pair (0pi,

0Ri) where 0Ri ∈ R3×3 is the rotation matrix
for foot i. Each local coordinate frame is defined such that the z = 0 plane contains the local plane of
contact, and thus its ẑ axis is normal to this plane. Additionally, each foot has an associated ankle center
Ai, with position in local coordinates given by ipAi

.
The optimization variables for foot i prescribe a local center of pressure ipCoPi

and associated wrench(
ifi,

ini

)
. Due to the local coordinate system conventions outlined previously, these optimization variables

take the form:
ipCoPi

= [ipxCoPi
, ipyCoPi

, 0]T , ini = [0, 0, inzi ]T , (4)

where the leading superscript i indicates that the components are given in the coordinate frame attached to
foot i. This section will introduce the constraints and objectives considered for this formulation. A simplifi-
cation of the Foot CoPs formulation will then be presented and solved in order to extract the approximate
behavior of the full formulation for many contact cases.

3.1 Force and Moment Balance Constraints

For the force distribution to be valid, the net effect of the foot wrenches must be statically equivalent to the
desired wrench. This leads to the following constraints:

0f =

2∑
i=1

0Ri
ifi (5)

0n =

2∑
i=1

0Ri

[
ini +

(
ipCoPi

− ipf

)
× ifi

]
. (6)

While the force balance constraint in (5) is linear, the three equations from the moment balance constraint
in (6) are nonlinear in the optimization variables. This nonlinearity arises due to the position-force cross
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terms, ipCoPi
× ifi, that appear in the constraint. Thus, this constraint introduces non-convexity into this

formulation.

3.2 Friction Constraints

To prevent foot slip, the wrench at each foot CoP must obey constraints given by:√
(ifxi )2 + (ifyi )2 ≤ µfi

ifzi (7)

|inzi | ≤ µni

ifzi (8)

where µfi is the static coefficient of friction and µni
is a torsional friction coefficient21 which provides an

approximation that is dependent upon the contact surface conditions. Constraint (7) is a second-order
cone constraint (it is nonlinear, but still convex) and is easily handled by many computational optimization
methods.22 The friction cone for each foot will be denoted as:

Ki =
{
f ∈ R3

∣∣∣ √(fx)2 + (fy)2 ≤ µfif
z
}
. (9)

In addition to a constraint on the magnitude of the tangential force at each CoP, these friction constraints
restrict the normal force to be non-negative.

3.3 Center of Pressure Constraints

Finally, for each of the CoPs to be physically realizable, they must reside within the contact polygon of
the foot. From the assumption that each foot is in convex polygonal contact with the ground, this can be
expanded as a set of linear inequality constraints:

Bi

[
ipxCoPi

ipyCoPi

]
≤ ci (10)

for some Bi ∈ Rmi×2 and ci ∈ Rmi , where mi is the number of sides for the polygonal contact on foot i. For
later convenience we define Fi as the set of all CoP locations which satisfy this constraint

3.4 Initial Objective Function

The first objective considered is to properly select foot CoP locations and associated forces in order to
minimize the required ankle effort. Proper CoP selection for this objective is pertinent in many applications
to find energy-efficient solutions and to minimize the performance requirements on the ankle actuators.
Minimizing this requirement is particularly important since the ankle, as the distal joint, often employs the
smallest and lowest power actuators. A similar goal is also considered by Lee and Goswami9 to minimize the
possibility for foot roll. This objective is motivated from a biomimetic standpoint as well, as biomechanics
studies have shown that minimal ankle torques are employed for dynamic balance in order to maintain
full foot contact with the environment.23 To formalize this objective, the sum of squared ankle torque is
minimized as:

min

2∑
i=1

‖
(
ipCoPi

− ipAi

)
× ifi + ini‖2 . (11)

Once again, the position-force cross terms lead to undesirable characteristics for this formulation, as this
objective is non-convex. The full Foot CoPs FDP can now be formulated and is given by:

min
∑
i

‖(ipCoPi
− ipAi)× ifi + ini‖2

s.t. (5), (6)

(7), (8), (10), ipzCoPi
= 0 ∀i ∈ {1, 2}
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3.5 Simplifying Assumptions

For many motions, the required wrench will be dominated by a gravity compensation force. Thus, to
provide a sub-optimal solution of the Foot CoPs formulation on flat terrain the following simplifications will
be considered:

• It is assumed that the desired wrench has been transformed to a desired ZMP on a level ground plane
of contact. Thus 0pf = [0pxf ,

0pyf , 0]T . This can be accomplished with standard ZMP calculations as

provided elsewhere.24

• It is assumed that the net wrench expressed at the ZMP has negligible tangential force and normal
moment. That is, 0f = [0, 0, 0fz]T and 0n = 0.

• The desired wrench will be matched through distribution of the normal force only. That is, 0fi =
[0, 0, 0fzi ]. As a result, the ankle height has no bearing on the objective (11) so we select 0pAi

=
[0pxAi

, 0pyAi
, 0]T .

• All variables are expressed in global coordinates.

Under these simplifications, and disregarding the unidirectional force and foot boundary constraints for
the time being, a unique local optima exists and employs a left foot CoP position given by:

pCoP1/A1
=

pA1/A2
tan(θ)× ẑ

2
(12)

where the notation pa/b represents the vector pa − pb and θ is the angle about the ẑ axis from pf/A2
to

pA1/A2
. This optimal CoP is shown graphically in Fig. 3. This result can be found through analysis of

the first-order necessary conditions for equality-constrained local minima with the assumptions described
previously. The main result here is that the optimal centers of pressure lie along the lines perpendicular to
the line between the ankle centers. Also, the optimal CoPs are required to be co-linear with the ZMP to
satisfy the moment balance constraints. Further, as long as pf lies within the perpendicular lines at the
ankle centers, the corresponding optimal foot forces satisfy fzi ≥ 0. Thus, if this condition on pf holds and
the optimal CoPs are within the foot boundaries, then this geometric solution is the global optimum for the
FPD under the assumptions described. We compare the optimum of the simplified problem to that of the
general formulation through numerical optimization in the next sections.

3.6 Numerical Optimization

To determine the (non-simplified) Foot CoP formulation’s applicability for use in real-time control, a solution
method was developed with the KNITRO optimization package in C++.25 This optimization package
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Figure 4: Motion snapshots from a 5.4s section of the CMU reaching motion.26 This motion was used to
assess the real-time performance of the force distribution algorithm.
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Figure 5: Optimal CoPs as found by the Foot CoPs formulation for the CMU reaching motion.26

provides algorithms to solve general nonlinear programming problems and thus is applicable for use with
the full non-convex Foot CoPs formulation presented earlier. The package contains both active-set and
non-traditional interior-point algorithms. To aid the iterative algorithms in the KNITRO package, analytic
gradients and Hessians for the objective and constraints were provided to the optimization routines in this
work.

3.7 Results

To assess the real-time performance of the Foot CoPs formulation, the optimization algorithm was tested
on a reaching motion from the CMU motion library.26 This motion is highly dynamic6 in comparison to
motions performed by state-of-the-art humanoid robots. With methods developed previously,6 this motion
was kinematically and dynamically retargeted to a model of Honda’s humanoid and is shown in Fig. 4. The
motion is 45.8s in length and we seek to solve the FDP every 10 ms (4580 total instances of the FDP).
Model-specific methods described in Section 2 were used to extract the required net wrench at each of the
4580 instants of motion.

The optimal foot CoPs found by the force distribution algorithm are shown in Fig. 5. On a MacBook
Pro with a 2.26GHz Intel Core 2 Duo processor, the force distribution algorithm required 73.2 ms to reach
a solution on average and over 600 ms in the worst case. While the optimal foot CoPs in the non-simplified
case do not fall exactly on the lines perpendicular to the line between the ankle centers, this behavior is
generally observed. Thus, while this formulation is not suitable for real-time control, the simplified solution
can often be used to obtain a fast and satisfactory solution to the FDP. This sub-optimal approach is often
adequate for locomotion on level surfaces.
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4 Contact Vertices Formulation

This section will describe another formulation of the FDP that enables solutions in real time for a general
setting. In the previous formulation, non-convexities were present due to position-force cross terms that
appeared in the objective function and moment balance constraint. To eliminate this drawback, instead of
optimizing foot CoP locations directly, a formulation will be proposed that considers a lattice of contact
points that are instantaneously fixed for each instance of the FDP. CoP objectives can still be optimized with
new approaches described in Section 6.

In this formulation, each foot wrench will be approximately represented by a set of forces which act at
the contact polygon vertices. Figure 6 provides a graphical description of the quantities, pij and fij , where
pij is contact vertex j for foot i, and fij is the force acting at contact vertex j for foot i where i ∈ {1, 2} and
j ∈ {1, 2, ...,mi} and mi is the number of vertices for foot i. While any lattice of contact points underneath
each foot may be selected, this particular contact discretization is employed in other humanoid work.11,19,27

The full contact force optimization vector fc is then redefined as:

fc = [1fT11, . . . ,
1fT1m1

, 2fT21, . . . ,
2fT2m2

]T .

4.1 Force and Moment Balance Constraints

Again, the distribution of force must be statically equivalent to the desired wrench:

0f =

2∑
i=1

mi∑
j=1

0Ri
ifij , and (13)

0n =

2∑
i=1

mi∑
j=1

0Ri

[
(ipij − ipf )× ifij

]
=

2∑
i=1

mi∑
j=1

0RiS(
ipij − ipf)

ifij , (14)

where S(p) is the skew-symmetric cross product matrix :

S(p) =

 0 −p3 p2
p3 0 −p1
−p2 p1 0

 (15)

for p = [p1, p2, p3]T which provides S(p)r = p × r, ∀ r ∈ R3. The matrices S(ipij − ipf) are known and
constant for each instance of the FDP. Thus, both the force and moment balance constraints here are linear
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Foot CoPs Form. CV Form.
Objective Non-Convex Convex (Quadratic)
Variables 12 3m

Linear Ineq. Constr. 4 +m 0
Nonlinear Ineq. Constr. 2 m

Linear Eq. Constr. 3 6
Nonlinear Eq. Constr. 3 0
Average Comp. Time 73.2 ms 1.75 ms

Worse Case Comp. Time 620 ms 10.8 ms

Table 1: Formulation comparison. Computational times were measured on a MacBook Pro with a 2.26GHz
Intel Core 2 Duo processor.

constraints. For compactness we will express the desired net external wrench as 0w = [0nT , 0fT ]T . Letting
m = m1 +m2, we combine the force and moment balance equations as:

0w = Afc (16)

where A ∈ R6×3m.

4.2 Friction Constraints

Once again, a coulomb friction model is adopted at each contact. We retain the friction cone definition
provided previously and require:

ifij ∈ Ki ∀i ∈ {1, 2}, j ∈ {1, 2, . . . ,mi} .

Succinctly, this constraint is written as fc ∈ Kc.

4.3 Initial Objective Function

Once again, the minimization of ankle effort is considered. The fixed nature of the contact points allows
the position-force cross product to be expressed as a constant matrix multiplication with the optimization
variables.

min

2∑
i=1

∥∥∥∥∥∥
mi∑
j=1

S
(
ipij − ipAi

)
ifij

∥∥∥∥∥∥
2

= min

2∑
i=1

fTciQ
T
i Qifci = min fTc Qfc (17)

where
Qi = [S(ipi1 − ipAi

), . . . ,S(ipimi
− ipAi

)] and Q = diag(QT
1 Q1,Q

T
2 Q2).

The Contact Vertices formulation does not suffer from the non-convexities found in the Foot CoPs
formulation. The objective is a positive semi-definite quadratic form of the optimization vector and thus is
convex. The full Contact Vertices formulation can now be fully written in compact form and is given by:

min fTc Qfc (18)

s.t. 0w = Afc

fc ∈ Kc .

This formulation is similar in spirit to FDPs found in point-contact force optimization.28 Still, the use of this
framework will not prevent the development of explicit CoP objectives that are specific to planar contacts.
These additional objectives will be developed in Section 6.
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Figure 7: Optimal CoPs as found by the Contact Vertices (CV) force distribution algorithm for the CMU
reaching motion.

4.4 Results

A solution method to the Contact Vertices (CV) formulation was again developed with KNITRO and was
tested to solve the FDP for execution of the CMU reaching motion. The CV formulation was found to result
in similar optimal CoPs as the Foot CoPs formulation, but the convexity of the CV formulation makes it
applicable for use in real-time control. The optimal CoPs for the CV formulation are show in Fig. 7 and
are predominantly found along the lines perpendicular to the line between the ankle centers. The solution
algorithm is an interior-point algorithm and obtains convergence at all instances of the CMU reaching motion.
A solution to the FDP was found in 1.75 ms on average, and in 10.8 ms in the worst case. Thus, on average,
this method is over 40 times faster than the Foot CoPs algorithm.

Table 1 provides a comparison between the two formulations developed thus far. The nonlinear equality
constraints and non-convex objective found in the Foot CoPs formulation are eliminated at the expense of
extra variables in the CV formulation. The average computation times are given for the CMU reaching
motion with square feet (m = 8). In both formulations, iterates were initialized to the previous optimal
solution to improve convergence time.

5 Application to Uneven Terrain

While the results thus far have focused on force distribution for motions on even terrain, the formulations
presented are general to any foot orientation and position. In fact, the feasibility of an instance of the FDP
on uneven terrain provides a certificate of instantaneous dynamic feasibility in a manner that is analogous to
the computed ZMP falling within the support polygon on even terrain. Thus feasibility of the FDP within
our formulation provides an alternative check of dynamic feasibility to the conditions presented in other
work.19,24,27

The CV formulation was used to optimize the force distribution for the CMU reaching motion on the
end of a ramp. A snapshot from the motion in this setting is shown in Fig. 8(a). The uneven footholds
demonstrate the generality of the formulation to handle different foot heights as well as orientations. Once
again, a dynamically feasible desired motion was prescribed. The resultant optimal foot CoPs are shown
in Fig. 8(b). The lines perpendicular to the line between the ankle centers are shown in this figure to
compare the behavior of this solution to the simplified case. For the right foot, the perpendicular line
is projected along the global z-axis to the local plane of contact. As long as the vector opposite gravity
is within each friction cone around the contact normals, this simplified solution still has the potential to
provide quick sub-optimal solutions. As expected, the solution to the FDP on uneven terrain experiences
the same computational performance as on even terrain. For this motion, the CV solution algorithm was
able to determine an optimal force distribution in 1.73 ms on average.
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Figure 8: (a) Motion snapshot from the CMU reaching motion on the end of a ramp. The uneven foot
positions highlight the generality of the formulation to handle feet at different heights and with different
orientations. (b) Optimal local CoPs for the CMU reaching motion while standing on the end of a ramp.
Optimal CoPs still follow the heuristic identified from the simplified formulation, with the lines perpendicular
to the line between the ankle centers projected (along the z-axis) to the local plane of contact.

6 Alternative Objective: Foot Center of Pressure Margins

The ankle effort objective considered previously can be effective, yet it often places foot CoPs at extreme
locations to obtain optimal torque-squared performance. This can be undesirable, as local CoPs near foot
boundaries provide less margin for error against model or terrain uncertainties that can lead to foot roll.
On the other hand, foot CoPs placed near the center of support can help to prevent unwanted transitions
to edge or point contact in the case of contact disturbances.15

To address these issues, it is desirable to design a formulation which achieves near-optimal torque-
squared performance yet prevents the local CoPs from being placed at the foot boundaries. This will be
accomplished through an augmented objective and penalty approach that optimizes the foot CoP margins.
Our approach more directly penalizes transitions to edge contacts as compared to previous approaches that
penalize tangential moments at desired foot CoPs.15,29

6.1 Auxiliary Variables and Objective Augmentation

A number of auxiliary variables will be defined to assist in the foot CoP margin optimization. We note that
the local CoP for foot i reaches the foot boundary when:

1. At least one of the contact vertices has zero associated force. That is, fzij = 0, for some j ∈ {1, . . . ,mi}.
Still, this is not a sufficient condition for edge contact.

2. All of the load for a foot is placed on a single edge. This occurs when the total force for a foot resides at
two adjacent vertices, that is

∑
j f

z
ij = fzik + fzik′ for some k ∈ {1, . . . ,mi} and some vertex k′ adjacent

to vertex k for foot i.

In this spirit, we make the following definitions. Define the adjacency sets:

Ai := {(k, k′) ∈ {1, . . . ,mi}2 | vertex k is adjacent to k′} . (19)

With these sets, for each foot we define the maximum edge force as:

Fi = max
(k,k′)∈Ai

ifzik + ifzik′ (20)
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and the total foot load as:

Li =

mi∑
j=1

ifzij .

We define the minimum vertex force as:

fi = min
j∈{1,...,mi}

ifzij . (21)

Thus, the local foot CoP becomes undesirable as fi approaches 0 and Fi approaches Li. To penalize fi → 0,
the objective is augmented with a term:

2∑
i=1

ρ0 exp(−r0fi) (22)

which is convex in the auxiliary variable fi. This term assigns a fixed penalty ρ0 when any contact vertex

carries no load and decays at a rate controlled by r0. Similarly a penalty is introduced on Fi:

2∑
i=1

ρ1Li exp

[
r1

(
Fi

Li
− 1

)]
. (23)

This term is convex, as it is a scalar multiple of a perspective function on the exponential function (and
satisfies the restriction that Li ≥ 0). While initially only the penalty from (23) was used, the addition of
the penalty in (22) led to more computational reliability in the algorithm’s real-time convergence.

6.2 Formulation

These penalties will be added linearly to the previous objective to provide an opportunity to optimize
torque performance without sacrificing CoP margins. Overall the modified CV formulation for indirect CoP
optimization is:

min fTc Qfc +
∑
i

ρ0 exp(−r0fi) + ρ1Li exp

[
r1

(
Fi

Li
− 1

)]
s.t. 0w = Afc

fc ∈ Kc

Li =
∑
j

ifzij ∀i ∈ {1, 2}

Fi ≥ ifzik + ifzik′ ∀i ∈ {1, 2}, (k, k′) ∈ Ai

fi ≤ ifzij ∀i ∈ {1, 2}, j ∈ {1, . . . ,mi}

While Fi and fi are not explicitly constrained to be maxima and minima as in (20) and (21), any optimum

will satisfy these equations. This is accomplished by the terms in the objective that seek to drive down Fi

and drive up fi.

6.3 Performance and Parameter Selection

The selection of the parameters ρ0, ρ1, r0, and r1 have a substantial effect on the resultant optimal CoPs.
While ρ0 and ρ1 control the trade-off between torque squared and foot CoP margin objectives, the rate
terms r0 and r1 control how quickly the maximum penalties decay. That is, a very large value for r1 will
result in a penalty on CoPs that is heavily localized to the edge of the foot. To illustrate the role of this
parameter, a number of parameter selections and the resultant optimal CoPs are shown in Fig. 9. As shown,
the foot CoP margin optimization succeeds in improving the CoP locations over the original torque-squared
objective alone. As the penalty decay rate is decreased, the optimal CoPs are pushed towards the center
of foot support, at the expense of ankle effort. Still, the average ankle effort for the most extreme of these
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Figure 9: Optimal foot CoPs before and after foot CoP margin optimization. The last three cases employ
foot CoP margin optimization with parameters ρ0 = 5000 and ρ1 = 10. Different selections of parameters
r0 and r1 are employed, where r1 is shown below each subfigure, and r0 = r1/150.

modifications (the r1 = 30 case) is only about 25% more than the original case. All solutions obtain real-time
convergence with average convergence time on the order of 3 - 6 ms for each of the cases.

Proper selection of the parameters ρ0 and ρ1 does depend on the system. They should be selected
such that ρ0 is approximately ρ1 times larger than average foot load (approximately half the system’s
weight). These parameters then should be scaled proportionally until the desired tradeoff between objectives
is reached.

7 Conclusions

This paper has presented and analyzed two general formulations of the force distribution problem for a
humanoid robot that enable a unified treatment of joint torque and CoP objectives. While previous develop-
ments haven’t explicitly enforced friction constraints or have used linear approximations to the friction cones,
our work handles friction constraints more generally and considers a formulation to push foot CoPs away
from foot boundaries. On level terrain, our Foot CoPs formulation enables sub-optimal solutions to the ankle
effort minimization problem, that have been measured at a rate of over 1 MHz, through simplifications to the
formulation. In contrast, our Contact Vertices (CV) formulation possesses convexity and enables solution of
the FDP at over 100 Hz for even and uneven terrain. These computational rates are on par with a previous
application of contact force optimization for real-time inverse dynamics.10 As an immediate consequence,
the CV formulation provides a computational approach to verify dynamic feasibility for motions on uneven
terrain. Although the CV formulation explicitly optimizes a discrete set of contact forces, we have developed
a novel FDP objective that allows optimization of foot CoPs to avoid foot roll through penalization of CoPs
near foot boundaries.

This work has laid the foundation for high-level controllers to employ force distribution in a variety of
contexts for force-controlled humanoids. These algorithms have provided the real-time capability needed for
force distribution optimization and have the potential to enable humanoids to plan and perform compliant
motions in increasingly complex contact conditions. Intelligently scheduling the objectives presented in this
paper proves to be an interesting avenue for future investigation.
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