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Abstract— This paper presents a new formulation of priori-
tized task-space control for humanoids that is used to develop
a dynamic kick and dynamic jump in a 26 degree of freedom
simulated system. The demonstrated motions are controlled
through a real-time conic optimization scheme that selects
appropriate joint torques and contact forces. More specifically,
motions are characterized in appropriate task spaces, and
the real-time optimizer solves the task-space control problem
while accounting for user-defined priorities between the tasks.
In contrast to previous solutions of the Prioritized Task-
Space Control (PTSC) problem for humanoids, the solution
presented here satisfies the ZMP constraint and ground friction
limitations at all levels of priority, and is general to periods
of flight as well as support. All generated motions include
control of the system’s centroidal angular momentum, which
leads to emergent whole-body behaviors, such as arm-swing,
that are not specified by the designer. In addition, compared
to a previous quadratic programming solution of the PTSC
problem, our approach gains a factor of 2 speedup in its
required computational time. This speedup allows the control
approach to operate at real-time rates of approximately 200 Hz.

I. INTRODUCTION

While the field of humanoid robots has received much at-
tention over the past decade, control of dynamic whole-body
humanoid behaviors remains a difficult objective. Although
challenging, the proper coordination of humanoids’ many
degrees of freedom (DOF) offers many benefits such as in
the recovery from disturbances through arm-swinging [1] or
to redirect the torso during a fall through managing inertial
couplings from the legs [2]. While these additional DOFs
provide more flexibility to whole-body motion, they also add
complexity to select appropriate joint torques in real time.
Additionally, the large number of DOFs make it difficult
to author motions by hand, which has lead to widespread
use of motion capture techniques for whole-body motion
generation [1], [3], [4], [5].

Task-space (or operational-space) control [6], [7] provides
a framework that significantly eases the burden of author-
ing whole-body behaviors. Task-space trajectories can be
designed in intuitive motion spaces. For instance, walking
motions can be specified through design of foot and center
of mass trajectories. Without the need for any inverse
kinematics, online task-space controllers provide an elegant
solution to generate whole-body walking behaviors [8].

In this paper, Prioritized Task-Space Control (PTSC) is
used to generate dynamic behaviors such as the kick and
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Fig. 1. A new formulation of the Prioritized Task-Space Control problem
allows us to control dynamic behaviors such as a kick and a jump at
real-time rates and in challenging environments. The use of Centroidal
Momentum control results in rich emergent arm motions to maintain
balance without any upper-body motion authoring.
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Fig. 2. Block diagram for behavioral controllers used in this work. A
high-level state machine manages the commanded task dynamics ṙt,c and
priorities at each instant. A prioritized task-space controller then finds joint
torques τ which keep feet planted and prevent slipping while realizing
the desired task dynamics. This control loop is closed at real-time rates of
approximately 200 Hz.

jump shown in Fig. 1. The common control structure used
to create these behaviors is shown in Fig. 2. A high-level
state machine is used to manage the desired task behaviors,
while a new conic optimization formulation of PTSC is
used to select joint torques at every control step. Through
the formulation of PTSC described here, the control loop
is able to be closed at rates of approximately 200 Hz on
a commodity laptop, which is approximately double that
of previous formulations. Generated motions automatically
satisfy the ZMP constraint on level terrain and are general to
produce balanced motions on uneven surfaces. Additionally,



centroidal momentum control [9] is used to alleviate the need
to design specific upper-body trajectories, which instead
emerge from our control strategies.

Related Work in Whole-Body Humanoid Control

While we adopt a task-space approach here, many previ-
ous approaches assume access to pre-designed joint trajec-
tories and apply an inverse dynamics controller to select
joint torques. Under the assumption of sufficient friction
on the feet, Mistry et al. [10] use a projection method
to select appropriate torques and to resolve over-actuation
in double support. Improvements to their approach [11]
attempt to push ground reaction forces inside their frictional
boundaries. Still, no motion modification is applied, which
can lead to balance failure when aggressive joint acceler-
ations are desired. This problem can be accounted for by
the application of motion filtering techniques that modify a
motion to remain balanced [5], [12]. Park et al. formulate a
stringent motion filter as a conic optimization problem [13]
which forces the feet to remain in full support. Other
motion filtering techniques incorporate long-term balance
strategies based on simple models while trying to follow
motion [3]. Again, all these approaches require whole-body
joint trajectories which are costly to plan in advance and
even more difficult to modify online.

Task-space control provides an alternative to the afore-
mentioned approaches, and can be solved in a variety of
ways. Projection methods of Park and Khatib [7] and Sentis
et al. [14] allow task-priorities to be enforced and deal well
with support foot constraints as long as the desired task dy-
namics lead to balanced motion. Just as a motion filter can be
applied to balance pre-designed joint trajectories that violate
contact force constraints (such as ZMP), similar filters can
be applied to physically unrealizable task-space trajectories.
For example de Lasa et al. [8] and Salini et al. [15] both
use a series of quadratic programs (QPs) to solve PTSC
while satisfying ground reaction force constraints. This paper
is inspired by their work and reformulates their QPs into
a conic optimization problem where PTSC can be solved
at real-time rates. This improvement allows high-bandwidth
control of highly dynamic movements such as the kick and
jump showcased here.

II. TASK-SPACE CONTROL FOR HUMANOIDS

A. Notation

This section introduces notation and summarizes the pre-
vious approaches that are used to solve the PTSC prob-
lem for humanoids. Given an n degree-of-freedom (DOF)
floating-base humanoid, as shown in Fig. 3, the system’s
configuration can be described by:

q = [ qTb qTa ]T . (1)

Here qb ∈ SE(3) is the unactuated position and orientation
of the system’s floating base, described in Fig. 3 and qa
denotes the actuated joints’ configurations. The system’s
joint rate q̇ ∈ Rn+6 and acceleration vectors and q̈ ∈ Rn+6

F s =


fs1

fs2

�
fs1

fs2qb

Fig. 3. The floating-base configuration qb ∈ SE(3) describes the position
and orientation of the floating-base fixed coordinate system with respect to
an earth fixed frame. The combined contact force vector F s is comprised
of local contact wrenches (force and moment) fs1 ∈ R6 and fs2 ∈ R6

which act on bodies in support.

are partitioned similarly. The standard dynamic equations of
motion are:

H(q)q̈ +C(q, q̇)q̇ +G(q) = STa τ + Js(q)
TF s (2)

where H , Cq̇ , and G are the familiar mass matrix, velocity
product terms, and gravitational terms, respectively [16].
Here F s collects ground reaction forces (GRFs) for ap-
pendages in support, as described in Fig. 3, and Js is a com-
bined support Jacobian. The matrix Sa = [0n×6 1n×n ] is
a selection matrix for the actuated joints.

In order to author whole-body behaviors, it is often
convenient to characterize the system’s desired dynamics in a
task (or operational) space [6]. Task velocities ẋt are related
to joint-rates q̇ by the standard relationship:

ẋt = J t(q) q̇ (3)

where J t(q) is a task Jacobian. Alternatively, our task may
not arise from a Jacobian relationship, such as in the control
of the system’s net angular momentum. To accommodate
such a generalization, we relax this definition of a task to
any relationship of the form:

rt = At(q) q̇ . (4)

Given commanded instantaneous task dynamics ṙt,c the
task-space control problem is to find joint torques τ that
result in joint accelerations q̈ with:

Atq̈ + Ȧtq̇ = ṙt (5)

such that ṙt most closely matches ṙt,c. Depending on the
choice of ṙt,c additional freedoms may be used to match
lower-priority task dynamics. For systems in support, there
are a variety of ways to solve this problem, which differ
in how they account for the presence of external forces F s
in (2). These different methods are discussed in the following
subsections.



B. Projection Methods for Task-Space Control During Sup-
port

In periods of support, the equations of motion (2) are often
considered under the constraint of zero acceleration at the
support bodies:

ẍs = Jsq̈ + J̇sq̇ = 0 . (6)

The support forces F s required to ensure (6) can be sub-
stituted into (2) to produce a set of constrained dynamic
equations of motion:

Hq̈ +NT
s (Cq̇ +G) + γ(q, q̇) =NT

s S
T
a τ (7)

where γ = JTs (JsH
−1JTs )

†J̇sq̇ is a velocity dependent
term due to the constraints and

NT
s = 1− JTs

(
JsH

−1JTs

)†
JsH

−1 (8)

is the dynamically-consistent null-space projector for sup-
port [7]. The symbol (·)† denotes the Moore-Penrose
pseudo-inverse of the enclosed matrix. In a rough sense,
these equations of motion are a projection of the original
equations of motion onto the subset of the configuration
space that is consistent with the support constraint. Since no
constraints are placed on the GRFs, these dynamic equations
are in fact not correct if torques are supplied that would lift
the foot off the ground, or cause the foot to slip.

Starting from (7) the works of Park and Khatib [7]
and Sentis et al. [14] extend the traditional prioritized
operational-space control framework for manipulators to the
case of humanoids in support. Just as in the above derivation,
all their control laws are predicated on the assumption that
given a joint input τ , the ground is capable of supplying
support forces F s to ensure the foot remains stationary. This
assumption is powerful, and often valid on level terrain since
GRFs are dominated by a gravity compensation force. Still,
for highly dynamic motions, additional care has to be taken
to ensure that the commanded task dynamics do not require
GRFs outside their unidirectional or frictional boundaries.
This becomes increasingly difficult on more challenging
terrains. Their approach uses a nested series of task nullspace
projectors to enforce task priority [14].

C. Ground Reaction Force Constraint Modeling

To account for the true constraints on ground reaction
forces (GRFs) during the selection of joint torques, others
([8], [15], [17], [18]) have proposed the use of constrained
quadratic programming to solve the PTSC problem. These
approaches treat F s as a control variable and optimize the
selection of τ and F s under appropriate constraints. In order
to approximate the constraints on each net foot wrench fsi ,
it is customary to represent each wrench as a combination
of pure forces that act at the corners of the feet, as shown
in Fig. 4. Unidirectional and frictional constraints can then
easily be enforced on the individual vertex forces fsij ∈ R3.
Given a coefficient of friction µi for foot i, these forces must
reside inside a friction cone:

Ci :=
{
(fx, fy, fz) ∈ R3

∣∣∣
√
f2x + f2y ≤ µifz

}
. (9)

Fig. 4. The contact wrench fsi ∈ R6 on foot i is approximated by
a distribution of pure forces (no moment) to a lattice of contact points
underneath the feet. These forces are denoted as fsij ∈ R3 in the text.
Forces are constrained to lie inside the friction cone Ci ⊂ R3 (show in
blue), or in a more restrictive friction pyramid Pi ⊂ R3 (shown in gray)
as in previous work.

To simplify optimization, previous work has approximated
these cones by a friction pyramid Pi ⊂ Ci as shown in
Fig. 4. To aid further development, we define NS to be the
number of feet in support, and NPi

as the number of local
contact points for foot i.

D. Quadratic Programming Methods for Task-Space Con-
trol During Support

Previous work [8], [18] formulates a quadratic program
(QP) to find contact forces, joint accelerations q̈, and joint
torques τ that are consistent with the dynamic equations
of motion, and most closely match the commanded task
dynamics. An example of such a QP is given below.

min
q̈,τ ,f sij

1

2
||At q̈ + Ȧt q̇ − ṙt,c||2 (10)

subject to H q̈ +C q̇ +G = STa τ +

NS∑

i=1

NPi∑

j=1

JTsijfsij

fsij ∈ Pi ∀i ∈ {1, . . . , NS}, (11)

∀ j ∈ {1, . . . , NPi
}

Js q̈ + J̇sq̇ = 0 (12)
τ ≤ τ ≤ τ .

Here each Jsij ∈ R3×(n+6) is the Jacobian for the contact
point where fsij acts. Joint torque limits are described by
the vectors τ and τ . The unidirectional constraints also
imposed on the GRFs through (11) combined with the
support acceleration constraint (12) assure that the optimized
q̈ satisfy the ZMP constraint.

To optimize for lower priority tasks, the QP may be
modified and additional constraints included to ensure that
high-priority task dynamics are not corrupted. This nested
series of QPs (or stack of QPs) replaces the nested series of
nullspace projectors that are required for projection based
methods. In the work of Mansard [17], an elimination of
variables is employed that reduces the size of the above
QP at each step, but this reduction is specific to periods of



support. In the next section, we propose a reduction that is
general to periods of flight as well as support.

E. Net Momentum Control

As a quick aside, we note that the previous formulation
is general to control features that cannot be described with
a Jacobian relationship. Most notably, this generality can
be exploited to control the system’s centroidal momentum
hG [9]. The centroidal momentum hG = [kTG, l

T
G]
T is

a spatial momentum comprised of the system’s net linear
momentum lG ∈ R3 and angular momentum kG ∈ R3 about
the Center of Mass (CoM). The centroidal momentum is
given by the relationship

hG = AG(q) q̇ (13)

where AG is known as the Centroidal Momentum Ma-
trix [9]. While this looks like a Jacobian relationship, the
system’s net angular momentum does not admit any function
g(q) with Jacobian Jg =

∂g
∂q such that kG = Jg q̇. This

result is due to the fact that the conservation of angular mo-
mentum imposes a nonholonomic constraint [19]. Methods
to compute AG and ȦGq̇ are given in [1] and [9].

III. CONIC FORMULATION OF PRIORITIZED
OPTIMIZATION

This section provides a reformulation of the PTSC prob-
lem as a conic optimization problem. This reformulation
results in a reduced number of variables, reduced number
of constraints, and is general to periods of flight as well as
support. This reduction allows our reformulation to be solved
about twice as fast as (10) for the examples considered.
Suppose that the task matrix At contains all possible tasks
regardless of priority. The error in achieving a commanded
task dynamics is given by:

e = ṙt,c − ṙt (14)

= ṙt,c −Atq̈ − Ȧtq̇ . (15)

Solving (2) for q̈, the task dynamics error e obeys:

bt = AtH
−1STa τ +AtH

−1JTspF sp + e (16)

where:
bt = ṙt,c +AtH

−1(Cq̇ +G)− Ȧtq̇ . (17)

In (16), F sp collects all support forces fsij and Jsp is
the combined support point Jacobian. This support point
Jacobian relates q̇ to the linear velocity of all the support
vertices and differs from the support Jacobian Js which
related q̇ to the linear and angular velocity of all support
bodies. We define:

Λ−1tτ = AtH
−1STa and (18)

Λ−1ts = AtH
−1JTsp (19)

with symbols Λ−1 since each of these is a cross-coupling
inverse operational-space (task-space) inertia matrix [20].

Here, the PTSC problem with K levels of prioritization is
solved with a series of K conic optimization problems. At
each level k ∈ {1, . . . ,K} it is assumed that the subset of

the tasks to be optimized is encoded in a task optimization
selector matrix So,k. Each row of So,k is a unit vector
that selects a single task error, and the number of rows
corresponds to the number of tasks concurrently optimized at
level k. The optimal error from the previous level is defined
as e∗k−1. A similar task constraint selector Sc,k selects those
tasks from all previous levels, as well as any additional hard
constraints. The problem for priority level k is then:

min
τ ,F sp,ek,z

z (20)

s.t. Λ−1tτ τ + Λ−1ts F sp + ek = bt

‖So,k ek‖ ≤ z (21)
Sc,k ek = Sc,k e

∗
k−1 (22)

fsij ∈ Ci (23)

τ ≤ τ ≤ τ .

Minimization of the scalar z in (20) results in a minimiza-
tion of error for the current task dynamics to be optimized
due to constraint (21). The incorporation of z also provides
a linear objective, which is required for the conic solver
used here. The constraint (22) ensures that the optimal
errors for the higher priority tasks are not corrupted. Table I
describes the entire algorithm for this series of optimization
problems in more explicit detail. Note that for application
to position controlled systems, an optimal q̈ can be obtained
by solving (2) or through a forward dynamics computation.

Inputs:

Task Dynamics Descriptors: At, Ȧtq̇, ṙt,c
System Dynamics Descriptors: H, Cq̇, G, Sa, Jsp
Task Priority Descriptors: e∗0, Sc,1,K

So,k ∀ k ∈ {1, . . . ,K}
Algorithm:

Λ−1
tτ := AtH

−1STa
Λ−1
ts := AtH

−1JTsp
bt := ṙt,c +AtH

−1(Cq̇ +G)− Ȧtq̇

for k = 1 to K do
(τ∗,F ∗

sp, e
∗
k, z

∗) := argminτ ,F sp,ek,z
(20)

Sc,(k+1) := [STc,k S
T
o,k]

T

end for k

Output:
τ := τ∗

TABLE I
PRIORITIZED TASK-SPACE CONTROL (PTSC) ALGORITHM

The advantages of this strategy over the QP in (10) is
multi-pronged. First, the variables q̈ are eliminated in favor
of task error e. Since at each level only a few tasks are
optimized, this reduces the number of optimization variables,
and simplifies the objective. Salini [18] eliminates q̈ in
an alternative QP formulation, but does not include e,
resulting in a dense objective function Hessian. As a result,
the formulation of [18] and the QP here were found to
perform comparably. Second, polygonal approximations to
the friction cones, which grow in complexity as the fidelity
of the approximation is increased, are replaced by a single
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Fig. 5. State machine used for Kick control. All states use the task priorities
(1) Feet, (2) Linear Momentum, (3) Pose & Centroidal Angular Momentum.
All state transitions are based on time in this example.

constraint per force fsij . For a 4-sided polygonal approxi-
mation, the use of friction cones was not found to have any
substantial effect on the computation times or simulation
results. Beyond a 4-sided polygonal approximation, it was
found to be advantageous to use cone constraints to enable
faster solutions. Solution of all optimization formulations
was provided by the interior point optimizer in MOSEK [21].
This optimizer employs a primal-dual method that handles
the cone constraints (21) and (23) directly and efficiently.

IV. APPLICATION TO THE CONTROL OF DYNAMIC
BEHAVIORS

A. Model and Simulation

The model used in this work is a 26 DoF (20 actuated
DoFs) humanoid as shown in Fig. 3. Spherical joints are
modeled at the hips and shoulders, providing 6 DoFs in
each leg, and 4 DoFs in each arm. Degrees of freedom in
the hands, wrists, and head are not modeled. The mass dis-
tribution to each segment is modeled after a 50-th percentile
male [22], with segment dimensions based on the model
presented in [23]. Inertia tensors are estimated based on a
simple equidensity mass distribution for each segment.

Full 3D simulation of the system is carried out using the
DynaMechs [24] simulation package. This package provides
an extremely efficient implementation of the articulated-
body algorithm [25] with recursive steps of the algorithm
optimized for each type of joint. Contact dynamics are sim-
ulated with a penalty-based spring damper model. No force
feedback or information about the environment (e.g. surface
normal or surface height) is provided to the controller.

B. Control of a Dynamic Kick

As a first example, PTSC is used along with a state
machine, shown in Fig. 5, to control a dynamic kicking
motion. During all states, the task prioritization (1) Feet,
(2) Centroidal Linear Momentum, (3) Pose and Centroidal
Angular Momentum is employed. Pose control helps to pre-
vent configuration drift. The details of how the commanded
task dynamics ṙt,c are specified is described below.

Foot control commands linear and angular acceleration of
the foot: ṙc = [ω̇Tc p̈

T
c ]
T . This command is set to zero for

feet in support. When the foot is in the air, these rates are
selected based on a position/orientation PD scheme:

ω̇c = ω̇d +KD,ω(ωd − ω) +KP,ωeθ (24)
p̈c = p̈d +KD,p(ṗd − ṗ) +KP,p(pd − p) (25)

where eθ ∈ R3 is an angle-axis representation of error
between a desired and actual orientation, as used in [4].
Desired positions and orientations are derived from hand-
authored motion, such as the kick trajectory in the kick state.

For Centroidal Momentum, a rate of change
ṙc = [k̇

T

G,c l̇
T

G,c]
T is commanded separately for linear

and angular momentum. For linear momentum, this
command is from PD control on the desired CoM (G):

l̇G,c = m[p̈G,d +KD,`(ṗG,d − ṗG)
+KP,`(pG,d − pG)] (26)

where pG is the CoM position and m is the total mass
of the system. The commanded rate of change in angular
momentum takes a simpler form:

k̇G,c = k̇G,d +KD,k(kG,d − kG) . (27)

All of the balance states and the lift state employ
k̇G,d = kG,d = 0 which provides a dampening of any excess
angular momentum.

To achieve pose control, joint accelerations are com-
manded for actuated joints and the torso orientation. For
all examples, this commanded acceleration takes the form
of a PD law to a static nominal pose. For revolute joints:

q̈i,c = q̈i,d +KD,i(q̇i,d − q̇i) +KP,i(qi,d − qi),

where q̇i,d = q̈i,d = 0 in all the examples here. For
spherical joints and orientation of the torso, the law (24)
is employed. Since the pose task is optimized at the last
level of control, it is generally not possible to fulfill all the
desired pose dynamics. Weighting factors are employed that
promote closer tracking on certain joints than others. For
instance, the shoulder and elbow are given lower weight to
promote arm action in the resultant motion. These weights
can be incorporated by replacing e with We in (16) for an
appropriate diagonal weighting matrix W .

Simple spline trajectories are used throughout to generate
the desired dynamic motions. Cubic spline trajectories on
the CoM and right foot are used to generate the desired
motions for the Balance and Lift states. In the kick state,
the foot is commanded to move in an arc centered at the
initial right hip position. The orientation of the right foot
is commanded to remain tangent to this arc. A series of
cubic splines on the desired right virtual leg angle θd are
used to produce the desired 3D accelerations of the right
foot using standard formula that relate accelerations in polar
coordinates to cartesian coordinates.

During a kick, the system predominantly rotates about the
stance hip, resulting in non-zero centroidal angular momen-
tum. For the example shown, the inertial z-axis is opposite
gravity and the y-axis is perpendicular to the sagittal plane.
To promote a whole-body rotation about the y-axis, the
system’s net moment of inertia about the y-axis Iyy,0 is
recorded at the beginning of the kick motion and desired
centroidal angular momentum and rates are selected as:

kG,des = [0, γ Iyy,0 θ̇d, 0]
T ,

k̇G,des = [0, γ Iyy,0 θ̈d, 0]
T .
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Fig. 6. Shoulder and torso angles during the Kick state of the kick motion.
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Fig. 7. Control computation times for PTSC applied to a kick motion
with a QP versus a conic formulation. State transitions are shown by the
vertical dotted lines, with the state denoted at the top of each corresponding
section.

Here γ = 0.8 is a factor that accounts for the stance leg
remaining stationary. While crude, these desired centroidal
momentum dynamics are some of the first non-trivial ones
to be designed in the literature and are sufficient to produce
rich motion. For a video of the kick motion, please see the
attachment to this paper or view it at the link below.

http://www.go.osu.edu/Wensing_Orin_ICRA2013

Without authoring any upper-body trajectories, the control
approach yields complex upper-body motion. Shoulder and
torso angles during the kick state are shown in Fig. 6.
During the kick motion, the left shoulder shows a larger
displacement. This behavior emerges from the controller to
regulate the angular momentum about the global vertical z-
axis in response to the right foot’s kick trajectory.

The conic formulation of PTSC was found to be much
faster than the QP formulation for this example. As shown
in Fig. 7, the conic formulation (20) was able to be solved
in nearly half the time as the QP formulation (10) (in 55%
of the time on average). A 4-sided polygonal approximation
to the friction cone was employed for the QP formulation.
Thus, the majority of the improved speed results here can be
attributed to the variable reductions and simplified objective
due to the use of e. The times shown in this graph include the
computation time of all quantities required by each algorithm
(H , Ȧtq̇, Λ−1ts , etc.) as well as the optimization time of the
solver. All computational experiments were run on a 2.3
GHz Intel Core i5 MacBook Pro.
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Fig. 8. State machine used for Jump control. States shown in blue use
task priorities (1) Feet, (2) Centroidal Momentum, (3) Pose. The state in red
(Flight) uses task priorities (1) Feet, (2) Pose. State transition criteria are
noted on the transition arrows, where an omission of a criterion indicates
a transition that takes place based on time.
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Fig. 9. Shoulder and torso angles during the jump motion. State transitions
are shown by the vertical dotted lines, with the state denoted at the top of
each corresponding section. Angles are measured the same as in Fig. 6. The
angle of the torso is also shown with arms locked, and results in greater
torso pitch during Thrust.

C. Control of a Standing Broad Jump

The PTSC framework was also applied to produce a
standing broad jump using the state machine shown in Fig. 8.
All states during stance use the task priorities (1) Feet,
(2) Centroidal Momentum, (3) Pose. Centroidal momentum
control is omitted during flight, as ḣG is equal to the net
gravity force in the absence of GRFs.

The details of the task dynamics commanded by the jump
state machine are very similar to those in [8]. During the
squat state, the desired CoM is lowered though a cubic spline
trajectory. At the beginning of the thrust state, the desired
CoM position and velocity is discontinuously incremented in
the desired direction of the jump. This results in the selection
of joint torques that will result in an impulsive ground
force on the system. As the legs approach full extension, a
knee angle threshold triggers transition to the flight state. In
flight, the foot trajectories commanded are largely ballistic,
but modified smoothly to position the feet forward for
landing. Space limitations prevent the precise details of these
trajectories from being included. At touchdown, the PD gains
on the CoM are softened to provide a smooth landing, with
a desired CoM placed over the middle of the support.

The video attachment to this paper shows the use of
the jump controller in a number of different environments.
Note that all jumps display significant arm action forward
and backward to maintain balance and to help position the
feet before landing. This is a feature of biological long
jumps [26] that was largely not present in previous work



where hand authored upper-body motions were used [27].
The torso and shoulder angles for the level terrain jump are
shown in Fig. 9. During thrust, the arms are swung upwards
to prevent the torso from pitching backwards. If the arms
are forced to remain locked, the lack of this behavior results
in excess torso pitch as shown.

The jump controller for level terrain is applied without
modification for a jump onto uneven terrain. Once the system
lands, no knowledge of the terrain is assumed, and the feet
are simply commanded to not accelerate. Since the control
approach used here always attempts to push off the ground,
corners of the foot that are originally not in contact are
quickly pushed into contact with the unknown terrain. Based
on these experiments, it appears that force feedback may not
be required for reasonably stiff terrain.

In a final video demonstration, we show the performance
of the jump controller when landing on a slippery surface.
In this demonstration, the controller assumes that the ground
has a coefficient of friction of µ = 0.6, but the simulation
employs a coefficient of µ = 0.4. While the system does
experience foot slip due to this inaccuracy, the balance
controller is robust to this disturbance and results in non-
authored arm-windmilling to maintain balance. The desired
CoM is constantly updated in the example to remain over
the middle of the support polygon.

V. CONCLUSION

Prioritized Task-Space Control provides a convenient
framework in which to characterize dynamic behaviors for
humanoid systems. Through consideration of the constraints
on ground reaction forces, motions for level terrain are able
to be easily adapted to uneven terrain scenarios. Reformu-
lation of previous QP formulations for PTSC allows speed
gains to be achieved while addressing friction constraints
in their full complexity with conic optimization. This refor-
mulation enables real-time control rates of 200 Hz. These
algorithms are general to control quantities such as the
system’s net angular momentum, which leads to rich upper-
body behaviors that are not authored by the designer. Future
work will focus on addressing joint limits and self-collision
as well as analysis of generated torque data for both QP and
conic formulations. Additionally, the use of these methods
to support higher-level motion planners provides an exciting
direction of future work that may provide humanoids with
a broader vocabulary of dynamic maneuverability.
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